Supplementary Information

Quantification of Solid State Impurity with Powder X-ray Diffraction using Laboratory Source

Meenakshi Sundaram, ${ }^{a}$ Saravanan Natarajan, ${ }^{a}$ Amol Dikundwar, ${ }^{a *}$ Hemant Bhutani ${ }^{b^{*}}$

${ }^{\text {a }}$ Analytical R\&D, Pharmaceutical Development, Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore 560099, India.
${ }^{\text {b }}$ Analytical R\&D, Pharmaceutical Development, Biocon Bristol-Myers Squibb Research and Development Center, Bristol-Myers Squibb India Private Limited., Bangalore 560099, India.

Index

1. Calculation of degree of crystallinity of BPO; Page 05
2. Preparation of BPO and API standard mixture; Page 06
3. PXRD method development; Pages 07 to 08
4. Preparation of calibration curve; Pages 09 to 18
5. PXRD method validation; Pages 19 to 22
6. HPLC method details and validation; Pages 23 to 27
7. Comparison of PXRD and HPLC results for 'unknown' samples; Pages 28 to 30

List of Tables:

Table S1. Degree of crystallinity calculation using EVA Version 4.3.0
Table S2. Method parameters for a general PXRD method
Table S3. BPO and API stock standard mixture preparation
Table S4. Intensities (areas) of BPO and API peaks and calculation of area ratio for the preparation of calibration curve using different BPO and API standard mixtures

Table S5. Comparison of the area ratios obtained by using intensity values (area under the curve) from profile fitted peaks ($7.38^{\circ} 2 \theta$ of API and $8.86^{\circ} 2 \theta$ of BPO) and that from manual integration

Table S6. Range studies at 0.90% and 0.10% w/w BPO in API standard mixtures
Table S7. Method precision determined using $0.45 \%, 0.35 \%$ and 0.25% w/w BPO in API standard mixtures

Table S8. Precision determination for standard mixture corresponding to LOQ (i.e. 0.133\% w/w BPO in API) and for next available lower level (i. e. 0.099% w/w BPO in API)

Table S9. Precision determination for standard mixture corresponding to LOD (i.e. 0.068\% w/w BPO in API

Table S10. Accuracy determination using $0.45 \%, 0.15 \%$ and $0.10 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixtures with calculated slope (0.1405) and intercept (-0.0025) values from the calibration curve

Table S11. Estimation of assay errors such as Instrument Repeatability with 0.90% w/w BPO in API standard mixture and Intra-Inter Day Repeatability with 0.45% w/w BPO in API standard mixture

Table S12. HPLC method of analysis for BPO
Table S13. HPLC data for preparation of linearity curve using standard solutions with different levels of BPO

Table S14. HPLC Injection Precision for 0.10% and $1.00 \% \mathrm{w} / \mathrm{w}$ BPO standard solutions
Table S15. HPLC \% Recovery at $0.01 \%, 0.10 \%$ and 1.00% w/w BPO spiked in API
Table S16. HPLC Precision at LOQ level $0.01 \% \mathrm{w} / \mathrm{w}$ BPO standard solution
Table S17. Concentration of BPO determined using PXRD and HPLC

List of figures:

Figure S1. PXRD Overlay of $0.45 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture analysed with different step times (exposure time, seconds per step) with constant step size of 0.05°

Figure S2. PXRD Overlay of $0.45 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture analysed with different step sizes with constant step time of 5 seconds per step

Figure S3. PXRD Overlay of $0.90 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture analysed with different divergence slit widths

Figure S4. Measurement of BPO and API peak area of a 0.866% w/w BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S5. Measurement of BPO and API peak area of a 0.443% w/w BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S6. Measurement of BPO and API peak area of a $0.340 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S7. Measurement of BPO and API peak area of a 0.239% w/w BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S8. Measurement of BPO and API peak area of a 0.133% w/w BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S9. Measurement of BPO and API peak area of a $0.099 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S10. Measurement of BPO and API peak area of a $0.068 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S11. Measurement of API peak area of a $0.027 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S12. Profile fitting (peak decomposition) analysis for a PXRD pattern of $0.866 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture sample

Figure S13. Profile fitting (peak decomposition) analysis for a PXRD pattern of $0.443 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture sample

Figure S14. Profile fitting (peak decomposition) analysis for a PXRD pattern of $0.340 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture sample

Figure S15. Profile fitting (peak decomposition) analysis for a PXRD pattern of $0.239 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture sample

Figure S16. Profile fitting (peak decomposition) analysis for a PXRD pattern of $0.133 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture sample

Figure S17. Profile fitting (peak decomposition) analysis for a PXRD pattern of $0.099 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture sample

Figure S18. Profile fitting (peak decomposition) analysis for a PXRD pattern of $0.068 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture sample

Figure S19. Profile fitting (peak decomposition) analysis for a PXRD pattern of $0.027 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture sample

Figure S20. HPLC linearity curve plotted using peak area of BPO against concentration of BPO in the standard solutions

Figure S21. HPLC overlay of different levels of BPO analysed for Linearity
Figure S22. HPLC Overlay of different levels $(0.01 \%, 0.10 \%$ and $1.00 \% \mathrm{w} / \mathrm{w})$ of BPO spiked in API analysed for HPLC method Recovery

Figure S23. PXRD overlay of 'unknown' samples (I, II and III) of BPO spiked API
Figure S24. HPLC overlay of 'unknown' samples (I, II and III) of BPO spiked API

1. Calculation of degree of crystallinity of BPO

Three sample preparations were analysed in a low background holder by an initial PXRD method (tables S1 and S2). Degree of crystallinity was calculated using EVA software suite (Bruker, DIFFRAC.EVA, User Manual, version 09.2017) as follows:

$$
\% \text { Amorphous }=\frac{\text { Global area }- \text { Reduced area }}{\text { Global area }} \times 100
$$

\% Crystallinity = $100-$ \%Amorphous

Table S1. Degree of crystallinity calculation using EVA v.4.3.0

Degree of crystallinity of BPO				
BPO	Preparation-1	Preparation-2	Preparation-3	Average Degree of Crystallinity (\%)
\% Crystallinity	94.7	94.6	94.1	94.47

Table S2. Method parameters for initial PXRD method

Parameter	Parameter Values
Instrument Configuration	Bragg-Brentano geometry (e.g. Theta-theta)
Tube	Ceramic X-ray Cu anode (LFF) tube
Generator power	$40 \mathrm{kV} / 40 \mathrm{~mA}$
Detector	LYNXEYE
Soller slit	axial 2.5° primary/secondary
Divergent slit	0.3° primary
Active length of detector	$2.949^{\circ} 2 \theta$
Diffracted beam anti scattering slit	8 mm (not automated)
Diffracted beam filter	Nickel $K \beta$ filter
Phi rotation (spinner)	On $(15$ rpm)
Scan Range	2 to $40^{\circ} 2 \theta$
Scan mode	Continuous
Step size	$0.0388^{\circ} 2 \theta$
Time/Step	1.0 second

2. Preparation of BPO and API standard mixture

The batch of API used for preparing standard compositions of BPO spiked API samples contained $0.03 \% \mathrm{w} / \mathrm{w}(259 \mathrm{ppm})$ BPO as confirmed by HPLC analysis. Potency of the batch of BPO used for spiking studies was $90 \% \mathrm{w} / \mathrm{w}$. The weight correction to the API and BPO samples were performed as follows:

$$
\text { Weight of BPO in API taken in } \mathrm{mg}=\frac{\text { Weight of API taken } \times \text { Percentage of BPO present in the API }}{100}
$$

The content of BPO in standard mixtures was calculated using the corrected weights of API and BPO:

$$
\text { Content of BPO }\left(\% \frac{\mathrm{w}}{\mathrm{w}}\right)=\frac{\text { Corrected BPO weight in } \mathrm{mg}}{\text { Total weight }} \times \% \text { Potency }
$$

Table S3. BPO and API stock standard mixture preparation

Weight of BPO $(\mathbf{m g})$	Weight of API $(\mathbf{m g})$	Weight of BPO in API $(\mathbf{m g})$	Corrected BPO weight $(\mathbf{m g})$	Corrected API weight $(\mathbf{m g})$	Total weight $(\mathbf{m g})$	Content of BPO $(\% \mathbf{w} / \mathbf{w})$
101.38	893.50	0.27	101.65	893.23	994.88	9.236

3. PXRD Method development

Figure S1. PXRD Overlay of $\mathbf{\sim 0 . 4 5 \%} \mathbf{w} / \mathbf{w}$ BPO in API standard mixture analysed with different step times (exposure time, seconds per step) with constant step size of $\mathbf{0 . 0 5}{ }^{\circ}$

Figure S2. PXRD Overlay of $\sim 0.45 \% ~ w / w ~ B P O ~ i n ~ A P I ~ s t a n d a r d ~ m i x t u r e ~ a n a l y s e d ~ w i t h ~$ different step sizes with constant step time of 5 seconds per step

Figure S3. PXRD Overlay of $\mathbf{\sim 0 . 9 0 \%} \mathbf{w} / \mathbf{w}$ BPO in API standard mixture analysed with different divergence slit widths

4. Preparation of calibration curve

Table S4. Intensities (areas) of BPO and API peaks and calculation of area ratio for the preparation of calibration curve using different BPO and API standard mixtures

Figure S4. Measurement of BPO and API peak area of a 0.866% w/w BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S5. Measurement of BPO and API peak area of a $0.443 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S6. Measurement of BPO and API peak area of a 0.340% w/w BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S7. Measurement of BPO and API peak area of a 0.239% w/w BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S8. Measurement of BPO and API peak area of a 0.133% w/w BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S9. Measurement of BPO and API peak area of a $0.099 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S10. Measurement of BPO and API peak area of a $0.068 \% \mathrm{w} / \mathrm{w}$ BPO in API standard mixture using MDI JADE v. 9.5.0

Figure S11. Measurement of API peak area of a $0.027 \% ~ w / w ~ B P O ~ i n ~ A P I ~ s t a n d a r d ~$ mixture using MDI JADE v. 9.5.0

4.1. Profile fitting (peak decomposition) analysis

A PXRD pattern from each of the spiking levels was analysed for profile fitting and peak decomposition. It was observed that all the peaks in the range 5-10 2θ could be profile fitted satisfactorily for all the samples (Figures S12-S19). The resolution between the two closely spaced peaks namely, a peak at $8.48^{\circ} 2 \theta$ of API and a peak at $8.86^{\circ} 2 \theta$ of BPO was found to be greater than 1 in each case [1]. Area ratios obtained by intensity values from profile fitted peaks are comparable to that obtained from the manual integration and follow similar trend i.e. increase in the area ratio value with increase in BPO spiking concentration (Table S5).

Table S5. Comparison of the area ratios obtained by using intensity values (area under the curve) from profile fitted peaks ($7.38^{\circ} 2 \theta$ of API and $8.86^{\circ} 2 \theta$ of BPO) and that from manual integration

S. No.	Sample		
		Area ratio	
	\% w/w BPO in API)	Using intensity value from profile fitted peaks	Using intensity value from manual integration
1	0.866	0.1299	0.1198
2	0.443	0.0600	0.0592
3	0.340	0.0395	0.0431
4	0.239	0.0318	0.0325
5	0.133	0.0161	0.0168
6	0.099	0.0112	0.0132
7	0.068	0.0072	0.0070
8	0.027	0	0

[1] Resolution with next adjacent peak $\left(R_{s}\right)$ was calculated as:

$$
R_{S}=\frac{X_{c 2}-X_{c 1}}{0.5\left(w_{2}+w_{1}\right)}
$$

Where $X_{c 1}$ and $X_{c 2}$ are peak centers, and w_{1} and w_{2} are constructed base widths.

Figure S12. Profile fitting (peak decomposition) analysis for a PXRD pattern of $\mathbf{0 . 8 6 6 \%}$ w/w BPO in API standard mixture sample

Figure S13. Profile fitting (peak decomposition) analysis for a PXRD pattern of $\mathbf{0 . 4 4 3 \%}$ w/w BPO in API standard mixture sample

Figure S14. Profile fitting (peak decomposition) analysis for a PXRD pattern of $\mathbf{0 . 3 4 0 \%}$ w/w BPO in API standard mixture sample

Figure S15. Profile fitting (peak decomposition) analysis for a PXRD pattern of $\mathbf{0 . 2 3 9 \%}$ w/w BPO in API standard mixture sample

Figure S16. Profile fitting (peak decomposition) analysis for a PXRD pattern of $\mathbf{0 . 1 3 3 \%}$ w/w BPO in API standard mixture sample

Figure S17. Profile fitting (peak decomposition) analysis for a PXRD pattern of $\mathbf{0 . 0 9 9 \%}$ w/w BPO in API standard mixture sample

Figure S18. Profile fitting (peak decomposition) analysis for a PXRD pattern of $\mathbf{0 . 0 6 8 \%}$ w/w BPO in API standard mixture sample

Figure S19. Profile fitting (peak decomposition) analysis for a PXRD pattern of $\mathbf{0 . 0 2 7 \%}$ w/w BPO in API standard mixture sample

5. PXRD method validation

Table S6. Range studies at $\mathbf{0 . 9 0 \%}$ and $\mathbf{0 . 1 0 \%} \mathbf{w} / \mathrm{w}$ BPO in API standard mixtures

Range at 0.90% w/w BPO in API standard mixture				
S.No.	\% w/w of BPO content	Area in counts $7.38^{\circ} 2 \theta$	Area in counts at $8.86^{\circ} 2 \theta$	Area ratio
1		1101029	150516	0.1203
2		1103768	152452	0.1214
3	0.866	1106388	149215	0.1188
4	0.866	1104540	153624	0.1221
5		1107447	146016	0.1165
6		1101337	144264	0.1158
Mean st.DEV \%RSD				0.119
				0.0026
				2.18
Range at 0.10\% w/w BPO in API standard mixture				
S.No.	\% w/w of BPO content	Area in counts $7.38^{\circ} 2 \theta$	Area in counts at $8.86^{\circ} 2 \theta$	Area ratio
1		1049862	15184	0.0143
2		1058913	14908	0.0139
3	0.099	1052540	14603	0.0137
4		1058293	12582	0.0117
5		1055215	13067	0.0122
6		1045791	13837	0.0131
Meanst.DEV				0.013
				0.0010
\%RSD				7.69

Table S7. Method precision determined using $\mathbf{0 . 4 5 \%}, \mathbf{0 . 3 5 \%}$ and $\mathbf{0 . 2 5 \%} \mathbf{w} / \mathrm{w}$ BPO in API standard mixtures

| S.No. | $\%$
 w/w of BPO
 content | Area in counts Area in counts
 at 7.38
 $\mathbf{2 \theta} \boldsymbol{\theta}$
 at $\mathbf{8 . 8 6}^{\circ} \mathbf{2 \theta}$ | Area ratio | Mean | st.DEV | \%RSD | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | 1113860 | 71710 | 0.0605 | | | |
| 2 | 0.443 | 1116109 | 71374 | 0.0601 | 0.060 | 0.001 | $\mathbf{1 . 8 3}$ |
| 3 | | 1118092 | 69409 | 0.0584 | | | |
| 4 | | 1090902 | 48456 | 0.0425 | | | |
| 5 | 0.340 | 1117212 | 50965 | 0.0436 | 0.043 | 0.001 | $\mathbf{1 . 8 6}$ |
| 6 | | 1117067 | 51556 | 0.0441 | | | |
| 7 | | 1083216 | 38575 | 0.0344 | | | |
| 8 | 0.239 | 1080844 | 34991 | 0.0314 | 0.033 | 0.002 | $\mathbf{4 . 5 5}$ |
| 9 | | 1082934 | 37228 | 0.0332 | | | |

Table S8. Precision determination for standard mixture corresponding to LOQ ($\mathbf{0 . 1 3 3 \%}$ w/w BPO in API) and for next available lower level ($\mathbf{0 . 0 9 9 \%} \mathbf{w / w ~ B P O ~ i n ~ A P I) ~}$

0.133\% w/w BPO in API binary mixture Precision				
S.No.	\% w/w of BPO content	Area in counts at $7.38^{\circ} 2 \theta$	Area in counts at $8.86^{\circ} 2 \theta$	Area ratio
1	0.133	1129288	17627	0.0154
2		1126209	20252	0.0177
3		1126390	20565	0.0179
4		1129758	19574	0.0170
5		1126454	18039	0.0158
6		1096074	19306	0.0173
Mean st.DEV \%RSD				0.017
				0.0010
				5.88
Limit of Quantification level (0.099% w/w BPO in API binary mixture) precision				
S.No.	\% w/w of BPO content	Area in counts at $7.38^{\circ} 2 \theta$	Area in counts at $8.86^{\circ} 2 \theta$	Area ratio
1	0.099	1049862	15184	0.0143
2		1058913	14908	0.0139
3		1052540	14603	0.0137
4		1058293	12582	0.0117
5		1055215	13067	0.0122
6		1045791	13837	0.0131
Meanst.DEV				0.013
				0.0010
\%RSD				7.69

Table S9. Precision determination for standard mixture corresponding to LOD ($\mathbf{0 . 0 6 8 \%}$ w/w BPO in API)

S.No.	\% w/w of BPO content	Area in counts at $7.38^{\circ} 2 \theta$	Area in counts at $8.86^{\circ} 2 \theta$	Area ratio
1	0.068	999919	7834	0.0078
2		1001434	7330	0.0073
3		1006071	5992	0.0059
4		1006820	7996	0.0079
5		1006302	6775	0.0067
6		946956	7156	0.0075
Mean st.DEV \%RSD				0.007
				0.0007
				10.00

Table S10. Accuracy determination using $\mathbf{0 . 4 5 \%}, \mathbf{0 . 1 5 \%}$ and $\mathbf{0 . 1 0 \%} \mathbf{w} / \mathrm{w}$ BPO in API
 calibration curve

S.No.	\% w/w of BPO content	Area in counts at $7.38^{\circ} 2 \theta$	Area in counts at $8.86^{\circ} 2 \theta$	Area ratio	Average Area ratio	Calculated $\% \mathrm{w} / \mathrm{w}$ of BPO	\% Recovery
1	0.443	1113860	71710	0.0605	0.060	0.460	99.59
		1116109	71374	0.0601			
		1118092	69409	0.0584			
2	0.133	1126209	20252	0.0177	0.018	0.149	91.15
		1126390	20565	0.0179			
		1129758	19574	0.0170			
3	0.099	1049862	15184	0.0143	0.014	0.119	84.30
		1058913	14908	0.0139			
		1052540	14603	0.0137			

Table S11. Estimation of assay errors such as Instrument Repeatability with $\mathbf{0 . 9 0 \%}$ w/w BPO in API standard mixture and Intra/Inter Day Repeatability with $\mathbf{0 . 4 5 \%}$ w/w BPO in API standard mixture

6. HPLC method details and validation

Table S12. HPLC method of analysis for BPO

Column	Waters Xbridge C18, $100 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ i.d., $3.5 \mu \mathrm{~m}$ particle size	
Column Part No.	186003033	
Column Temperature	$25^{\circ} \mathrm{C}$	
Sample Temperature	$25^{\circ} \mathrm{C}$	
Detector Wavelength	205 nm	
Pump Configuration	Gradient	
Flow Rate	$1.0 \mathrm{~mL} /$ minute	
Injection Volume	$10.0 \mu \mathrm{~L}$	
Run Time	20 minutes	
Mobile Phase A	0.05% v/v TFA MilliQ Water: Acetonitrile/ $90: 10 \mathrm{v} / \mathrm{v}$	
Mobile Phase B	0.05% v/v TFA MilliQ Water: Acetonitrile/ $10: 90 \mathrm{v} / \mathrm{v}$	
Needle Wash	Acetonitrile: Water $(1: 1 \mathrm{v} / \mathrm{v})$	
Diluent	DMSO	
	Time (min)	$\%$ of Mobile phase A $\%$ of Mobile phase B
	0	40
Gradient Programme	5	0
	15	0
	17	40
Retention Time of BPO		40

Standards Preparation:

Standard Stock Solution: Weighed about 110 mg of BPO (corrected for potency) in 100 mL volumetric flask, dissolved and diluted to volume with acetonitrile

Standard solution-1 ($1 \% \mathrm{w} / \mathrm{v}$ level): Pipetted out 10 mL of standard stock solution in 100 mL volumetric flask, diluted to volume with diluent

Standard solution-2 ($0.1 \% \mathrm{w} / \mathrm{v}$ level): Pipetted out 10 mL of standard solution-1 in 100 mL volumetric flask, diluted to volume with diluent

Standard solution-3 ($0.05 \% \mathrm{w} / \mathrm{v}$ level): Pipetted out 5 mL of standard solution-1 in 100 mL volumetric flask, diluted to volume with diluent

Standard solution-4 ($0.01 \% \mathrm{w} / \mathrm{v}$ level): Pipetted out 1 mL of standard solution-1 in 100 mL volumetric flask, diluted to volume with diluent

Sample concentration: Weighed about 100 mg of sample in 10 mL , dissolved and diluted to volume with diluent

Table S13. HPLC data for preparation of linearity curve using standard solutions with different levels of BPO

Linearity			
Weight of BPO (mg) Potency of BPO (\%)			110.08
			90
Level	Concentration	Area	Average Area
0.01\%	0.001101	7695	7658
		7621	
0.05\%	0.005504	41111	41632
		42153	
0.10\%	0.011008	83912	84137
		84361	
0.30\%	0.033024	267631	266671
		265710	
0.50\%	0.055040	401946	401280
		400614	
0.80\%	0.088064	630628	630667
		630705	
1.0\%	0.110080	861943	861531
		861119	
Correlation Coefficient			0.9979

Figure S20. HPLC linearity curve plotted using peak area of BPO against concentration of BPO in the standard solutions

Table S14. HPLC Injection Precision for $\mathbf{0 . 1 0 \%}$ and 1.00% w/w BPO standard solutions

$\mathbf{0 . 1 0 \%}$ Level			$\mathbf{1 . 0 0 \%}$ Level	
Injections	Area	Injections	Area	
1	727390	1	7294956	
2	728938	2	7308388	
3	727270	3	7289689	
4	728671	4	7293163	
5	725630	5	7324544	
Average	$\mathbf{7 2 7 5 8 0}$	Average	$\mathbf{7 3 0 2 1 4 8}$	
SD	$\mathbf{1 3 2 0}$	SD	$\mathbf{1 4 3 8 9}$	
\% RSD	$\mathbf{0 . 1 8}$	\% RSD	$\mathbf{0 . 2 0}$	

Table S15. HPLC \% Recovery at $\mathbf{0 . 0 1 \%}, \mathbf{0 . 1 0 \%}$ and $\mathbf{1 . 0 0 \%}$ w/w BPO spiked in API

Sample Wt (mg)							
102.52 (As Such)		102.38 (Spiked)		101.44 (Spiked)		100.2 (Spiked)	
Area	Ave.Area	Area	Ave.Area	Area	Ave.Area	Area	Ave.Area
$\begin{aligned} & 163914 \\ & 165201 \end{aligned}$	164558	234037	234116	$\begin{aligned} & \hline 877626 \\ & 878472 \end{aligned}$	878049	7382585	7385649
\% Recovery		0.01	Level	98.2		99.5	

Table S15. HPLC Precision at LOQ level 0.01% w/w BPO standard solution

Injection	Area
1	7695
2	7621
Average	7623
Standard Deviation	7664
\% RSD	7739

Figure S21. HPLC overlay of different levels of BPO analysed for Linearity

Figure S22. HPLC Overlay of different levels $(\mathbf{0 . 0 1 \%}, \mathbf{0 . 1 0 \%}$ and $\mathbf{1 . 0 0 \%} \mathbf{w} / \mathbf{w})$ of BPO spiked in API analysed for HPLC method Recovery

7. Comparison of PXRD and HPLC results for 'unknown' samples

Samples with three different levels of BPO spiking in API were prepared for verification of results obtained from PXRD calibration curve and its comparison with results obtained by HPLC technique.

Table S17. Concentration of BPO in API determined using PXRD and HPLC

PXRD						
S.No.	Sample	Area in counts at $7.38^{\circ} 2 \theta$	Area in counts at $8.86^{\circ} 2 \theta$	Area ratio	Average Area ratio	BPO content (\% w/w in API)
		610637	59155	0.0883		
1	I	603940	61642	0.0926	0.093	0.680
		615290	66514	0.0976		
		654480	32007	0.0466		
2	II	657285	33204	0.0481	0.048	0.359
		655223	33150	0.0482		
		693432	8302	0.0118		
3	III	698202	7960	0.0113	0.011	0.096
		699662	7543	0.0107		
HPLC						
S.No.	$\% \mathrm{w} / \mathrm{w}$ of BPO in API	Area of Brettphos Oxide		Average Area		BPO content (\% w/w in API)
1	I	4592712		4600305.5		0.695
2	II	2485301		2483538		0.381
		2481775				
3	III	716821		716096		0.108

Figure S23. PXRD overlay of 'unknown' samples (I, II and III) of BPO spiked API

Figure S24. HPLC overlay of 'unknown' samples (I, II and III) of BPO spiked API

