Modeling Nanoindentation using the Material Point Method

Chad C. Hammerquist and John A. Nairn
Wood Science and Engineering, Oregon State University,
Corvallis, OR 97330, USA

1. SUPPLEMENTAL MATERIAL

The published paper associated with these notes concentrated on material science aspects of nanoin-
dentation by using virtual, numerical experiments to investigate best approaches to extracting effective
modulus from nanoindentation experiments. The simulations all used the material point (MPM) method
and this work included two relatively minor enhancements to MPM specifically needed to optimize its
use for nanoindentation simulations. Because those two MPM enhancements have not been previously
published, this supplemental material is being provided to document them.

2. CONTACT MODELING

Contact detection in MPM is improved by including a calculation or particle edge displacements. In other
words, two material domains are only modeled as in contact when d; j, —d; , < 0 where d; ; is the distance
along the normal vector from the edge of material j to node i [1]. The challenge in implementing this
criterion is that edge locations are typically not tracked in MPM. A method for that calculation is needed.

The calculation of d; ; is started by extrapolating material point positions to the grid using usual
mass-weight MPM extrapolations :
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Here m,, and x, are particle mass and location S;, is MPM shape function for particle p and node i, and

the sums are for all material points of material j. An “apparent” distance from extrapolated particle
position (x; ;) to node i (at x;) along normal vector #; for interface between two contacting materials is:
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But this distance is not the “actual” distance needed for contact calculations. To determine the “actual”
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distance, the value of dfj,x ) needs to be corrected. The process is equivalent to finding the function
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d; j (di(j.“)) for actual distance as a function of dl.(j.“ .

The required calculations are done by using MPM shape functions to find dl.(e.Xt) as function of actual

distance and then inverting the results. Imagine a 1D grid with material a appfoaching node i from the
left and material b approaching from the right (see Fig. S1). From Egs. (1) and (2) with node i at the
origin:
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The similar expression for material b is
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Figure S1: A 1D MPM grid with materials a and b approaching node i from left and right, respectively. The indicated
lengths d; ; and d; ;, are actually distances from edges of materials a and b to node i. Each particle has radius .
Farticles for each material type are numbered k = 1, 2,... starting from edge of the material near node i.

Here r,, is particle radius, and S;;, (x) is shape function for particle p on node i when midpoint of particle
is at x and origin (or x = 0) is at node i. These calculations were done with GIMP shape functions that
integrate grid shape functions over the current particle domain. For these undeformed particles, the
explicit shape function for node i at x = 0 is [2]:
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This evaluation of S;;, applies only to r, < Ax/2 where Ax is cell spacing or to MPM model with one or
more particles per cell. Most MPM simulations use 2 particles per cell with r, = Ax /4. The calculations
using CPDI shape functions would not change much for these undeformed particles. The summations

for dl.(j.“) include all particles with non-zero shape functions. The resulting functions (inverted to plot
actual distance as a function of extrapolated distance) are the dashed lines in Fig. S2. As expected, the
extrapolated distance differs from the desired edge distance d; ;. For example, di(;xr) will always be
negative as the edge of material @ moves from node i —1 to node i + 1, while actual d; , will vary from
—AXx to +Ax. Similarly, the extrapolated distance for material b is always positive.
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to calculate actual edge distance from extrapolated “apparent” distance. Reference [1] proposed a simple
constant correction such that

The imposition of contact detection in MPM calculations requires definition of a function d; j(

dip—digm~ (Xip—x;p) A;—85Ax (6)

where &, is a constant offset (in units of cell size) used to approximate actual separation. By analysis
and test simulations, a value of 6. = 0.8 works well for MPM simulations with two particles per cell (or
rp = Ax/4). This approach is equivalent to assuming the distance mapping functions are:

d“Y L 04Aax  left orj=a

' ( .(e.xt)) _ i,a
03 \%,j Y —0.4Ax rightor j=b

(7)

These “linear” functions are plotted in Fig. S2 and can be described as best fit to a line with slope equal to
one or to d; ; (dl.(j“)) = dl.(;“) + 6.Ax /2 where &, is the only fitting parameter. To improve the material
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Figure S2: Calculation of d; ; as a function of d for “left” and “right” materials approaching node i. The black
dotted curves show explicit calculations using GIMP shape functions. The red solid lines show the linear functions (Eq. (7))
and the power-law functions (Eq. (8)) to approximate the shape function calculations.

separation calculation, we replaced the constant correction with new mapping functions given by:
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These two mapping functions are compared to shape function calculations in Fig. S2. Although the
“linear” correction generally works well, it was easy to implement non-linear corrections instead. For
nanoindentation simulations in this paper, all of which depend strongly on contact mechanics, we used
the more accurate power law functions. This approach gave small, but noticeable, improvements in the
results.

Note that the above mapping functions depend on particle r, or different linear offsets (6.) and
different non-linear functions would be needed for MPM simulations using different sizes of particles. We
used the above approach that found 6. when r, = Ax /4 to investigate how it changes with differently-
sized particles. For one particle per cell or r, = Ax /2, 6. = 1.07 is the recommend offset. For two or
more particles per cell r, < Ax /4, the recommended 5. depends only weakly on particle size decreasing
from 6. = 0.8 for two particles per cell to 6, = 0.72 for six particle per cell. Because of these findings,
an MPM simulation that varies size of particles with all r, < Ax /4 could likely detect contact well with a
single value for 6,.. We did not investigate changes in the non-linear functions needed for more advanced

contact calculations at different particle sizes.

2.1. MPM Tartan Grid

For nano-indentation simulations, we used a grid scheme termed a “tartan” grid as illustrated in Fig. S3.
In a tartan grid, one or more “regions of interest” are modeled with a high-resolution, regular grid with
equally-sized elements. For the nanoindentation problem, the one region of interest under the indenter
was modeled with 100 nm cells determined above as needed for convergence. Outside regions of interest,
the grid cell sizes were allowed to increase, thus forming a tartan-like pattern.
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Figure S3: An MPM tartan grid with orthogonal background cells for nanoindentation simulations. The “region of
interest” has a regular grid with equal size elements. The grid cell size increases linearly with distance from the region of
interest.

Note that a tartan grid maintains orthogonal grid lines. This type of grid greatly simplifies imple-
mentation, especially when using CPDI shape functions [3] (see text of paper). To simplify contact
calculations, which all occur in the region of interest, the cells within the region of interest are all the
same size. Outside the region of interest, the cell size increases as a function of distance from the region
of interest. We implemented two cell scaling methods. The first is a linear scaling where

Ax, = nRAx C)

where n is the number of cells away from the region of interest, R is a specified ratio, and Ax is
the constant cell size in the region of interest (see Fig. S3). Alternatively, the cell size can increase
geometrically such that

Ax, =R"Ax (10)

where R is now ratio of cell size for element n to size of the previous element. For this simulations, the
linear method worked well and converged simulations used R = 2 and Ax = 100 nm.

A tartan grid was particularly effective or nanoindentation simulations. Virtually the complex stress
states occur under the indenter and that region is an area of interest with a regular grid. The stresses
outside that are vary more slowly and are easily handled with large particles. Figure S4 shows compression
force vs. time for the same problem done with a regular grid (black line) and a tartan grid (red line).
The results are essentially superposable.

A tartan grid can have general applicability in MPM codes (although may not always be as effective
as it is for nanoindentation simulations). Furthermore, a more complete implementation of tartan grid
methods would required some additional details that were not needed for nanoindentation simulations:

1. Shape functions: what ever shape functions are used, they have to be capable of accounting for
variable element sizes around any given node and variable size particles. In particular, using of
GIMP shape functions would require re-evaluation of many standard functions used in current
MPM codes. Use of CPDI shapes functions (as done here) needs no changes except for code to be
able to find corners of particles within a grid with variably-sized particles and cells.
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Figure S4: Nanoindentation force as a function of time during loading and unload as calculated using a regular grid
(black line) and a tartan grid (red line).

2. Contact calculations: contact calculations depend on particle size and as mentioned above, contact
detection depends on particle size as well. If contact occurs outside areas of interest, the use of tartan
grids needs customization to account for variable element and particle sizes. For nanoindentation
simulations, all contact was within the regular grid, area of interest.

3. Particle integrations: Sometimes MPM calculations look at integrations over particles such as
average particle stress or integration inside a J-integral contour to account for dynamic stress
states [4]. These integrations need to account for variable particle sizes. For example, the average
stress should be found from a volume-weighted average stress.
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