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1. Hygric expansion from swelling clays 

 To test the possibility that the measured expansion of CCL during water uptake results 

from swelling of clays, dilatation was measured in the DMA during imbibition of decane, which 

would not be expected to cause swelling of clays. A small swelling of CCL (5-12 µm/m) was 

observed, which leads to two different explanations for the measured hygric expansion:  

• The Bangham effect (i.e. the reduction of the surface stress which leads to an expansion 

of the solid surface) might take place during adsorption of water vapor on the pore 

surface1,2,3.  

• A water meniscus that persists after drying might keep the sample in compression, which 

is released during the imbibition, yielding expansion.  

The short time of exposure to ambient humidity before starting the measurement is not likely to 

have allowed significant adsorption of water vapor to take place, so the existence of a water 

meniscus after drying is the more likely explanation for the observed expansion. Due to the small 

magnitude of the swelling, it is difficult to determine the nature of the expansion; nevertheless, it 

must be taken into account for the analysis of the warping experiment.  

2. Dilatation experiments using the Dynamic Mechanical Analyzer  

 The deformation of stone samples during drying-induced crystallization of sodium sulfate 



salts was measured with a Dynamic Mechanical Analyzer (DMA 7e, Perkin Elmer). The goal of 

these experiments was to evaluate the stress induced in the stone by the crystallization of 

thenardite during the preliminary drying at 105 ºC. CCL samples (15 x 6 x 6 mm) were 

submerged in water at 60 ºC and then dried in the DMA furnace. The length change of the 

sample was measured as the sample dried during heating to 95 ºC; following an isothermal hold, 

the sample was cooled to 30 ºC. The same (dry) sample was then submerged in a 40 %w/w 

sodium sulfate solution (viz., the saturation concentration at 30 ºC) at 60 ºC for 1 hour and dried 

inside the DMA using the same temperature cycle. The pore filling by thenardite in the stone was 

11.97 vol% at the end of the experiment. This pore filling is higher than in the samples used for 

the warping experiment (section 4.4) saturated with the same solution and dried at 105 ºC for 

several weeks (9.32 ± 0.75 vol%), suggesting that trapped water has remained in the DMA 

samples due to the short duration of the drying. That is, some of the pores are partially or 

completely blocked by salt, so that the solution is very slow to escape. 

 Figure A shows the measured strain of one CCL sample saturated with water and dried in 

the DMA (labeled as H2O). The dotted line gives the strain of the same sample, but saturated 

with sodium sulfate solution (labeled as SS40). The strain passes through a maximum at 95 ºC 

and then partially relaxes as crystals grow on their unconfined surfaces (i.e., the crystals 

consume the supersaturation by growing parallel to the pore wall). The final strain difference for 

a sample first saturated with water and then with solution is 120 ± 10 µm/m (obtained from 4 

experiments) and it does not relax completely during the isothermal hold (there is only a small 

relaxation at 95 ºC), showing that the thenardite crystals exert a non-negligible crystallization 

pressure. There are two possible explanations for this. There might be a residual film of confined 

solution that becomes discontinuous by severe drying, whose supersaturation is responsible for 



the constant crystallization pressure. (See Figure 8 in ref. 4) This is supported by the incomplete 

drying of the samples in the DMA. On the other hand, a constant strain might be caused if the 

crystallization pressure reached the disjoining pressure during the drying (i.e., the maximal 

crystallization pressure), causing the crystals to come into direct contact with the pore wall, 

thereby stopping the growth. In that case, the crystals would also remain under pressure, which 

would be equal to the disjoining pressure. From our experimental results we cannot distinguish 

between these possibilities. 

 Although the measured strain difference at the highest thenardite content (~120 µm/m) is 

smaller than the failure strain of CCL (see table 1), the distribution of thenardite is most probably 

non-uniform (see section 3.2) and therefore higher local deformations and local damage cannot 

be excluded during the drying-induced crystallization of thenardite.  



 

Figure A. Strain measured by DMA during the drying of a CCL sample first saturated at 60 ˚C 

with water (H2O) and during the drying of the same sample saturated with sodium sulfate 

solution 40 %w/w (SS40). The drying period at 95 ˚C is followed by cooling to 30 ˚C. The 

temperature cycles of the two experiments are indistinguishable in the diagram.  

 

3. Solution of the bending problem 

 The general linear elastic solution of the bending problem can be found in ref. 5. We 

define the free strain εf as the linear strain that the stone would exhibit if it were not constrained 

by the glass. We use the relation between the curvature due to bending wxx and the free strain εf 



given by: 
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where z is the position along the thickness (see Figure 1 of the text), εf the free strain as a 

function of z, wxx the curvature due to the bending (in 1/m), E the Young modulus of the material 

at location z, v the Poisson ratio of the material at location z and h the thickness of the glass-stone 

composite glued with epoxy. This solution is applied to the particular case of a tri-material strip, 

allowing for differences in the elastic properties and free strain in each material (Es, νs for the 

stone, Eepx, νepx for the epoxy layer and Eg, νg for the glass, see Fig. B). The measured deflection 

∆exp is related to the curvature wxx by: 

 

 wxx = −
8Δ exp

L2
 (4) 

 

where L is the length of the span of the composite (i.e., the distance between the supports). 

It has been shown that the initial zero deflection corresponds to a stressed state of the stone 

owing to thenardite crystallized during drying. The superposition of the contraction during 



thenardite dissolution (positive deflection) and the expansion during mirabilite crystallization 

(negative deflection) leads to the measured deflection. To determine the absolute deflection 

owing to mirabilite exerting pressure on the pore wall, it is necessary to determine the 

“unstressed” reference state, which is reached after the complete dissolution of thenardite. Since 

there is no certainty about when this happens, the reference state is assumed to be the point of 

maximal positive deflection in the measurement. The difference between the measured deflection 

and the reference deflection is used to determine the curvature wxx with eq. (4). 

 Given a known salt distribution, the integrals fn and gn can be evaluated analytically. We 

assume that the free strain εf is uniform (and non-zero) within the crystallization front, so  
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where LI is the position of the glass-stone interface (in m), zs,1 the start of the crystallization front 

(close to the wet surface) (in m), zs,2 the end of the crystallization front (in m), dEpx the thickness 

of the epoxy layer (in m), E*
s the Young modulus of stone with salt in the pores and ν* the 

Poisson ratio of stone with salt in the pores. Thus, Young’s modulus of stone with salt in the 

pores (E*
s) has to be considered only in zs,1 < z < zs,2 as a function of the salt content. The 

influence of salt on Poisson’s ratio is neglected (ν*~νs). 



Figure B. Schematic of the glass-stone composite with length L = 100 mm, thickness h ≈ 13 

mm. The midplane (z = 0) is situated at h/2  and the neutral axis for bending at z0. Crystallization 

occurs between zs,1 and zs,2. The liquid is in contact with the bottom of the stone plate (with 

properties Es and νs) and the glass plate (properties Eg and νg) is on top. 

 The change in Young’s modulus with salt content Es
* ±  can be estimated with the maximal 

(or minimal) bounds for the bulk modulus K s
* ±

 and shear modulus Gs
*±  according to Hashin6. 

Hashin also describes how to determine the general bounds K s
* ±  and Gs

*±  for an isotropic 

particulate composite with more than 2 components as a function of the component volume 

fractions and their corresponding bulk and shear moduli. In our case, the system consists of 

matrix (i.e., nonporous stone), solution, salt crystals, and air; the bulk and shear contributions of 

air and solution are negligible. The following data were used to estimate the bounds of the 

mechanical properties of the salt-bearing stone. The bulk and shear moduli of the thenardite 

crystals are Kc = 43.4 GPa and Gc = 22.3 GPa, respectively 7, which means that Ec = 57.1 GPa 

and νc = 0.28. For mirabilite we estimate a bulk modulus of Kc ≈ 22 GPa by comparison with 

other highly hydrated salts for which the bulk modulus is known. For example, epsomite 

(MgSO4.7H2O) and ikaite (CaCO3.6H2O) have bulk moduli of 21.3 and 21.5 GPa respectively8,9 

and assuming νc = 0.28 (which is the Poisson’s ratio of thenardite), the shear modulus of 



mirabilite is Gc ≈ 11 GPa. For the matrix of IL (non-porous calcite), Hart and Wang10 determined 

experimentally the bulk modulus Km = 72.6 GPa. According to Mavko et al., 11 the shear 

modulus of calcite is Gm = 30.2 ± 1.8 GPa. 

 The measured Young’s moduli of the salt-free and thenardite-bearing stones (see section 

4.1 of the text) are not well described by either of the bounds estimated with Hashin’s model, 

presumably because the cementing is not as stiff as the grains, but they fall well within the 

estimated bounds. Therefore, we used this model to predict the linear change of Young’s 

modulus with the amount of mirabilite E*+
s reaching a maximal increase of 19.8 % for CCL and 

16.8 % for IL at a degree of pore-filling of 100%, and assuming elastic behavior (and therefore 

excluding damage).  

 The analytical solution of the mechanical problem, eqs. (1)-(6), is evaluated with the only 

assumption being that the deformation εf within the crystallization front is uniform. Firstly, the 

curvature wxx is computed with eq. (4) from the measured deflection. If the distribution of 

mirabilite in the stone plates during the warping experiment is known, the free strain εf can be 

determined with eq. (1) together with fn and gn defined in eqs. (5) and (6), respectively.  

We assume an energy criterion that predicts failure when the strain energy imposed by the in-

pore crystallization pressure:  

 
   
Wc =

σ *2

2K
 (7) 

exceeds the failure strain energy obtained in a uniaxial tensile strength test, which is given by:  

 
  
Wu =

σT
2
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If the failure criterion is Wc ≥ Wu, then failure is expected when 



    3(1− 2ν )σ *2 ≥ σT
2  (9) 

 We made a numerical assessment of the distribution of mirabilite in the warping plates 

during rewetting of thenardite with the reactive transport model, ASTra 12. The rewetting process 

is governed by the advective transport of the solution or water through the pores and the kinetics 

of dissolution of thenardite and crystallization of mirabilite.  

 The permeability of a porous material is influenced by the crystals precipitated in the 

pores (i.e., by pore clogging). At pore-filling ratios smaller than 5%, the effect of the reduced 

porosity on the capillary uptake is negligible. However, at larger salt contents and/or when 

mirabilite precipitates, pore clogging becomes more effective at reducing the permeability. To 

account for the influence of crystals in the pores, the pore size distribution is modified by 

assuming the volume occupied by mirabilite crystals during rewetting is uniform throughout all 

pore sizes and reduces the pore space. By applying Mualem’s model,13 the permeability can be 

expressed as a function of the reduced porosity at a given salt content. In this way, the influence 

of the precipitated salt on the capillary transport is considered in the numerical simulation of the 

rewetting process.  

 The kinetics of thenardite dissolution and mirabilite crystallization are estimated as a 

function of the supersaturation ratio, β. According to Nielsen14 and Espinosa et al. 15 kinetic laws 

of the following type can be used for the rates of crystallization and dissolution of salts in porous 

materials: 

 
dnc
dt

= Kcr ⋅ β − 1( )gcr >0  (10) 

and 

 
dnc
dt

= −Kdis ⋅ 1− β( )gd is  < 0  (11) 



 

where Kcr, gcr are the kinetic constants for crystallization, and Kdis, gdis for dissolution, nc the 

amount of precipitated salt and t the time. 

 A parametric study using the numerical model indicates that the dissolution rate of 

thenardite and the crystallization of mirabilite strongly influence each other, as well as the final 

distribution of mirabilite in the sample. Thus, slow dissolution of thenardite retards the 

crystallization of mirabilite, since the supersaturation with respect to mirabilite is smaller, while 

rapid dissolution of thenardite maintains the concentration equal to the solubility of thenardite. 

On the other hand, fast crystallization of mirabilite accelerates the dissolution of thenardite, since 

the solution quickly becomes significantly under-saturated with respect to thenardite. So far it 

has not been possible to determine the limiting step for the overall transformation in a pore 

experimentally. Hence, the rate of the dissolution-crystallization reaction given by eqs. (13) and 

(14) was fitted to the results of the synchrotron analysis shown in Figure 3 of the text.  
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