
Online Appendix - Optimal VIX-linked Structure for the Target
Benefit Pension Plan

Appendix A. Notations

Here is the list of all notations used in this paper, and the benchmarks parameters values

used in the analysis. The model parameters are based on the "SV0" and "SVJ0" calibrations in

Pan (2002).

Economic variables

S 0(t) time-t value of the risk-free asset

S 1(t) time-t value of the risky asset

ν(t) time-t value of the instantaneous variance of the risky asset

Nt time-t value of the Poisson process represents the jump component

Zn return of the n-th jump

L(t) time-t value of the salary

VIXt time-t value of the volatility index

VIX2 benchmark squared volatility index (limt→∞ E
Q[VIX2

t ])

π(t) amount invested in the risky asset at time t

X(t) asset level at time t

Dynamic Parameters

r 0.02 0.02 risk-free rate

λ 4.4 3.1 risk premia for the return

θ 0 27.1 jump intensity

µz - -0.003 mean of the jump return (µQz = −0.18)

σz - 0.0325 standard deviation of the jump return

ρν -0.57 -0.52 correlation between the diffusion terms of volatility and equity

κν 5.3 7.1 speed of mean reversion for the variance process

ν̄ 0.0242 0.0134 unconditional mean of the variance process

σν 0.38 0.28 variance of the variance process
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κl -0.027 - speed of mean reversion for the salary process

L̄(t) 0 exp(ψt) unconditional mean of the salary process

ψ - 0.027 expected growth rate of the average wage index

σl 0 - volatility of the salary process

ρlν 0 - correlation between the diffusion terms of salary and volatility

ρlS 0 - correlation between the diffusion terms of salary and equity

Pension Plan

c(t) 0.1 - contribution rate at time t

b(t) benefit (replacement rate) at time t

R(t) R = 1865 - # of retirees at time t

A(t) A = 3851 - # of active workers at time t

ny(t) nA(t) = 100 - # of employees aged y

H(t) 25, 379 actuarial liability value at time t in the real term

ϕ 0.025 - discount rate for liability valuation

b̂ 0.65 - benchmark replacement rate for liability valuation

Preference Parameters

γr 50 - risk aversion parameter for the retirement income

γT
0.03×γr
R(T ) - risk aversion parameter for the terminal asset level

ϱ 1 - weight given to the preference of the terminal asset level

ζ 0 - discount rate for time preference

Table A.1: List of mathematical symbols, superscript Q represents the parameter under the risk neutral measure,

the numbers in the second column represent the benchmark scenario, and the numbers in the third column are used

for sensitivity tests.

Appendix B. State-price Density, Admissible Set, and Derivation of Theorem 3.1

Appendix B.1. State-price Density

This part provides the state-price density that links the data-generating process (1) with the

risk-neutral dynamics (3).

Consider a candidate state-price density K of the form

K(t) = exp (−rt) ε
(
−

∫ t

0
φT (u)dW(u)

)
exp

 Nt∑
n=1

ZKn

 ,
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where ε(·) denotes the stochastic exponential i.e., ε(Xt) = exp(Xt − [Xt, Xt]/2) with [Xt, Xt]

being the total quadratic-variation process, W(t) = [WS (t),Wν(t)]T , and φ(t) = [φ1(t), φ2(t)]T

are the market prices of the Brownian shocks in the price and volatility defined by

φ1(t) = λ
√
ν(t), φ2(t) = −

λρν√
1 − ρν

√
ν(t),

with λ being a constant coefficient. For this specification of the market price of risk, the time-t

instantaneous risk premium associated with the diffusive price shock is λ · ν(t).

The jump risks are priced by the jump component in the state-price density. Whenever the

underlying price jumps, the state-price density also jumps. The jump sizes ZKn are assumed to

be i.i.d. normal with mean µK and variance σ2
K

, and assumed to be independent of WS and

Wν and inter-jump times. The random jump sizes ZKn and Zn are allowed to be correlated with

constant ρK , but assumed to be independent across different jump times. Treating µK , σK , and

ρK as free parameters, the most general form of jump-risk premia is obtained. We constrain the

mean relative jump size in the state-price density to be zero, i.e., µK +
σ2
K

2 = 0. This constraint

is translated to a zero jump-timing risk premium. If we turn off the correlation between ZKn and

Zn by letting ρK = 0, the jump-size risk premium is zero.

For K to be a state-price density, the deflated processes SK0 = K · S 0 and SK = K · S are

required to be a local martingale. Applying Ito’s formula, we have

dSK (t) =
( √

ν(t) − φ1(t)
)

SK (t) dWS (t) − φ2(t)SK (t) dWν(t) + [exp(ZKNt
+ ZNt) − 1]SK (t−) dNt

− θν(t)µQSK (t) dt,

dSK0 (t) = −φ1(t)SK0 (t) dWS (t) − φ2(t)SK0 (t) dWν(t) + [exp(ZKNt
) − 1]SK0 (t−) dNt.

Similar to Pan (2002), we have that SK (t) and SK0 (t) are local martingales. If SK0 (t) is actually

a martingale, then SK0 (t) uniquely defines an equivalent martingale measure Q. Letting

WQ(t) = [WQ

S (t),WQ
ν (t)]T =W(t) +

∫ t

0
φ(u)du,

one can show that the dynamics of (S , ν) under Q are indeed in the form of the risk-neutral

dynamics (3). Moreover, the Poisson process Nt has the same distribution under both the risk-

neutral measure Q and the physical measure P.

Appendix B.2. Admissible Set

Definition Appendix B.1. A strategy (π, b) is called an admissible strategy, i.e., (π, b) ∈ Π, if

it satisfies the following conditions:
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(i) (π, b) is F-progressively measurable;

(ii) Et,x,ν,l

[∫ T

0
π2(t)ν(t)dt

]
< ∞;

(iii) Equation (4) has a unique strong solution for any (t, x, ν, l) ∈ [0,T ] × R × R × R.

Appendix B.3. Derivation of Theorem 3.1

The associate HJB equation for the value function H(t, x, v, l) is

sup
(b,π)∈Π

{
− ζH + Ht + [rx + πλν − πθµQν + clA(t) − blR(t)]Hx + κν(ν̄ − ν)Hν + κl(L̄(t) − l)Hl

+
1
2
π2νHxx +

1
2
σ2
ννHνν +

1
2
σ2

l νHll + πσννρνHxν + πσlνρlS Hxl

+ σlσνν(ρlSρν + ρlν
√

1 − ρ2
ν)Hlν + θνE[H(t, x + π(eZn − 1), ν, l) − H(t, x, ν, l)] + R(t)U(bl; γr)

}
= 0.

(B.1)

With the conjecture that

H(t, x, ν, l) = −
ϱ

γT
e−γT [A(t)x+Ā(t)ν+Â(t)l+Ã(t)]

and with the terminal conditions A(T ) = 1, Ā(T ) = Â(T ) = Ã(T ) = 0, the first-order condition

implies that the optimal replacement rate b∗ is

b∗(t) = −
1
γrl

ln(ϱA(t)) +
γT

γrl
[A(t)x + Ā(t)ν + Â(t)l + Ã(t)], (B.2)

and the optimal investment strategy π∗ satisfies

−(λ − θµQ) + π∗γT A(t) + σνρνγT Ā(t) + σlρlSγT Â(t) − θE[e−γT A(t)π∗(eZn−1)(eZn − 1)] = 0.

(B.3)

Substitute the optimal replacement rate and the investment strategy into the HJB equation and

by separating the variables, we obtain the following ODE system,

At(t) + rA(t) −
R(t)γT A2(t)

γr
= 0,

Āt(t) + π∗(λ − θµQ)A(t) − κνĀ(t) −
1
2

(π∗)2γT A2(t) −
1
2
σ2
νγT Ā2(t) −

1
2
σ2

l γT Â2(t)

−π∗σνρνγT A(t)Ā(t) − π∗σlρlSγT A(t)Â(t) − σlσν(ρlSρν + ρlν
√

1 − ρ2
ν)γT Ā(t)Â(t)

−
θ

γT
E[e−γT A(t)π∗(eZn−1) − 1] −

R(t)γT A(t)Ā(t)
γr

= 0,

Ât(t) + cA(t)A(t) − κlÂ(t) −
R(t)γT A(t)Â(t)

γr
= 0,

ζ

γT
+ Ãt(t) + κνν̄Ā(t) + κlL̄(t)ϱÂ(t) +

R(t)A(t)
γr

ln(ϱA(t)) −
R(t)γT A(t)Ã(t)

γr
−
R(t)A(t)
γr

= 0,

(B.4)

with A(T ) = 1, Ā(T ) = Â(T ) = Ã(T ) = 0.
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Appendix C. Explicit Forms of A(t), Â(t) and Ā(t)

Appendix C.1. Solution of A(t) and Â(t)

Since A(t) is the solution of a Riccati equation, its explicit form can be derived as

A(t) =
e(T−t)r

1 + γT
γr

∫ T

t
e(T−s)rR(s) ds

. (C.1)

In addition, the explicit solution for Â(t) can be derived as

Â(t) =
∫ T

t
c
A(s)
R(s)

× (βA(s) + κl) ×
γr

γT
e−

∫ s
t βA(u)+κlduds. (C.2)

Appendix C.2. Solution of Ā, when jump risk and salary risk are ignored

Ignoring the jump and the salary risks, the ODE equation for Ā(t) can be simplified to

Āt(t) − (λσνρν + κν + βA(t))Ā(t) −
1
2
σ2
ν(1 − ρ

2
ν)γT Ā2(t) +

λ2

2γT
= 0. (C.3)

The explicit solution of Ā(t) can be derived as:

Ā(t) =



ν1 − ν1e−
σ2
ν (1−ρ2

ν )γT (ν1−ν2)
2 (T−t)

1 − ν1
ν2

e−
σ2
ν (1−ρ2

ν )γT (ν1−ν2)
2 (T−t)

, ρν , ±1,

λ2

2γT

∫ T

t
e−

∫ w
0 (λσν+κν+βA(s))dsdw · e−

∫ t
0 (λσν+κν+βA(s))ds, ρν = 1, λσνρν + κν , −βA(t),

λ2

2γT

∫ T

t
e−

∫ w
0 (−λσν+κν+βA(s))dsdw · e−

∫ t
0 (−λσν+κν+βA(s))ds, ρν = −1, λσνρν + κν , −βA(t),

λ2

2γT
(T − t), ρν = ±1, λσνρν + κν = −βA(t),

(C.4)

where

ν1,2 =
−λσνρν − κν − βA(t) ±

√
(λσνρν + κν + βA(t))2 + λ2σ2

ν(1 − ρ2
ν)

σ2
ν(1 − ρ2

ν)γT
.

Appendix D. Contribution Rate as a Control Variable

Define the value function G(t, x, v, l) as

G(t, x, v, l) = sup
(π,c,b)∈Π̄

Et,x,v,l

[ ∫ T

t
e−ζ(s−t) ×

[
A(s) × U((1 − c(s)) × L(s); γa)

+ R(s) × U(b(s) × L(s); γr)
]
ds + ϱ × e−ζ(T−t) × U(X(T ); γT )

]
,

(D.1)
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where γa is the risk aversion parameters for the active members, Π̄ is the corresponding admis-

sible set and the pension asset now has the following dynamics

dX(t) =
[
rX(t) + π(t)ν(t)(λ − θµQ) + (c(t)A(t) − b(t)R(t)) × L(t)

]
dt

+ π(t)
√
ν(t) dWS (t) + π(t) d

 Nt∑
n=1

(eZn − 1)

 .
The associate HJB equation for the objective function (D.1) is

sup
(π,c,b)∈Π̄

{
− ζG +Gt + [rx + πλν − πθµQν + clA(t) − blR(t)]Gx + κν(ν̄ − ν)Hν + κl(L̄(t) − l)Gl

+
1
2
π2νGxx +

1
2
σ2
ννGνν +

1
2
σ2

l νGll + πσννρνGxν + πσlνρlS Gxl

+ σlσνν(ρlSρν + ρlν
√

1 − ρ2
ν)Hlν + θνE[G(t, x + π(eZn − 1), ν, l) −G(t, x, ν, l)]

+A(t)U((1 − c)l; γa) + R(t)U(bl; γr)
}
= 0.

(D.2)

Similar to H(t, x, ν, l), with the conjecture on G(t, x, ν, l) as

G(t, x, ν, l) = −
ϱ

γT
e−γT [B(t)x+B̄(t)ν+B̂(t)l+B̃(t)]

and the boundary conditions B(T ) = 1, B̄(T ) = B̂(T ) = B̃(T ) = 0, we can obtain the optimal

contribution rate c∗, the optimal replacement rate b∗ and the optimal investment strategy π∗ as

c∗(t) = 1 +
1
γal

ln(ϱB(t)) −
γT

γal
[B(t)x + B̄(t)ν + B̂(t)l + B̃(t)], (D.3)

b∗(t) = −
1
γrl

ln(ϱB(t)) +
γT

γrl
[B(t)x + B̄(t)ν + B̂(t)l + B̃(t)], (D.4)

−(λ − θµQ) + π∗γT B(t) + σνρνγT B̄(t) + σlρlSγT Â(t) − θE[e−γT B(t)π∗(eZn−1)(eZn − 1)] = 0.

(D.5)

Substituting back to the HJB equation, and by separating the variables, we have the following

6



ODE system,

Bt(t) + rB(t) −
A(t)γT B2(t)

γa
−
R(t)γT B2(t)

γr
= 0,

B̄t(t) + π∗(λ − θµQ)B(t) − κνB̄(t) −
1
2

(π∗)2γT B2(t) −
1
2
σ2
νγT B̄2(t) −

1
2
σ2

l γT B̂2(t)

−π∗σνρνγT B(t)B̄(t) − π∗σlρlSγT B(t)B̂(t) − σlσν(ρ11ρν + ρlν
√

1 − ρ2
ν)γT B̄(t)B̂(t)

−
θ

γT
E[e−γT B(t)π∗(eZn−1) − 1] −

A(t)γT B(t)B̄(t)
γa

−
R(t)γT B(t)B̄(t)

γr
= 0,

B̂t(t) − κlB̂(t) +A(t)B(t) −
A(t)γT B(t)B̂(t)

γa
−
R(t)γT B(t)B̂(t)

γr
= 0,

ζ

γT
+ B̃t(t) + κνν̄B̄(t) + κlL̄(t)ϱB̂(t) +

A(t)B(t)
γa

ln(ϱB(t)) −
A(t)γT B(t)B̃(t)

γa
−
A(t)B(t)

γa

+
R(t)B(t)
γr

ln(ϱB(t)) −
R(t)γT B(t)B̃(t)

γr
−
R(t)B(t)
γr

= 0

(D.6)

with B(T ) = 1, B̄(T ) = B̂(T ) = B̃(T ) = 0.

Appendix E. Optimal Target Benefit Design without Stochastic Volatility

Assume the risky asset follows the Geometric Brownian Motion, which the volatility is a

constant and the jump risk is excluded,

dS (t)
S (t)

= (r + µ) dt + σS dWS (t).

Then, the pension asset has the following SDE,

dX(t) =
[
rX(t) + π(t)µ + (cA(t) − b(t)R(t))L(t)

]
dt + π(t)σS dWS (t).

With the same objective function as Problem 5, and define the value function as H(t, Xt = x),

then following the same procedure as before, we have

H(t, x) = −
ϱ

γT
e−γT [A(t)x+Ã(t)],

where A(t) and Ã(t) satisfy the following ODE system,

At(t) + rA(t) −
R(t)γT A2(t)

γr
= 0,

ζ

γT
+ Ãt(t) + cL(t)A(t)A(t) +

µ2

2σ2
SγT
+
R(t)A(t)
γr

ln(ϱA(t)) −
R(t)γT A(t)Ã(t)

γr
−
R(t)A(t)
γr

= 0,

(E.1)
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with A(T ) = 1, Ã(T ) = 0. By abuse of notation, A(t) and Ã(t) defined in this section are

unrelated to A(t) and Ã(t) in other sections.

The optimal replacement rate b∗ is

b∗(t) = −
1

γrL(t)
ln(ϱA(t)) +

γT

γrL(t)
[A(t)X(t) + Ã(t)], (E.2)

and the optimal investment strategy π∗ is

π∗(t) =
µ

σ2
SγT A(t)

. (E.3)

Multiply b∗ with the salary index L(t), and with some rearrangement, we can show that

benefit(t) = b̄ × L(t) + βA(t)
(

X(t) − AL(t)
R(t)

)
,

where

βA(t) =
γT

γr
A(t)R(t),

b̄(t) = −
1
γr

ln(ϱA(t)) +
γT

γr
Ã(t) +

γT

γr
AL(t).

Immediately we observe that the ODE for A(t) is the same with and without the stochastic

volatility and the jump risk, and therefore the value of βA(t) is the same under these models.

References and Notes

Pan J (2002). “The jump-risk premia implicit in options: Evidence from an integrated time-

series study.” Journal of Financial Economics, 63(1), 3–50.

8


	Notations
	State-price Density, Admissible Set, and Derivation of Theorem 3.1 
	State-price Density
	Admissible Set
	Derivation of Theorem 3.1

	Explicit Forms of A(t), (t) and (t)
	Solution of A(t) and (t) 
	Solution of , when jump risk and salary risk are ignored

	Contribution Rate as a Control Variable
	Optimal Target Benefit Design without Stochastic Volatility

