
Supplementary Material to Multi-population Mortality Modelling: A
Bayesian Hierarchical Approach

Jianjie Shi∗1, Yanlin Shi2, Pengjie Wang1, and Dan Zhu†1

1Department of Econometrics and Business Statistics, Monash University, Australia
2Department of Actuarial Studies and Business Analytics, Macquarie University, Australia

July 27, 2023

A The Precision Sampler: Computational Complexity

Another significant contribution of our paper is introducing the precision sampling for the Lee-Carter type model
when estimated via Bayesian MCMC. Assuming the model specification of linearity and Gaussianality, an alternative
approach to sampling latent states κt is to use Kalman Filter. Yet, due to the precision matrix’s sparsity, as shown
by Figure 1, one can greatly reduce the computational complexity in modelling mortality rates via state-space
models.
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Figure 1: A simplified κt’s precision matrix: non-zero elements are drawn in red whereas zeroes are just blanks
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We compare computational complexities under several scenarios with different dimensions in both ages and time.
We could observe that precision sampler is much faster than the commonly-used Kalman Filter, especially when
the dimension of age is large.

Table 1: Computational time (in seconds) for 10000 iterations under different scenarios.

Kalman Filter Precision Sampler
1986 ∼ 2016 1956 ∼ 2016 1986 ∼ 2016 1956 ∼ 2016

0 ∼ 30 3954 7046 2211 8250
0 ∼ 60 20410 35578 4623 13684
0 ∼ 100 74399 134695 13885 32431

In this section, we also compare the mixing performances of Kalman Filter and precision sampler. To illustrate
it, we apply both methods to the mortality data with ages from 0 to 60 and years from 1986 to 2016. The effective
sample size for the simulated parameters is reported. The effective sample size is the sample size required to give
the same numerical variance as the MCMC sample if that sample were a simple random sample. It can be seen,
from the comparison, that the proposed precision sampler improves the MCMC mixing than the Kalman Filter.

Table 2: Effective sample size of some selected parameters for 10000 iterations (after burn-in period)

Kalman Filter Precision Sampler
κ7

2016 74 150
µ60

a 5284 6758
µ60

b 1530 1374
Σ60,60

a 7837 7117

Σ60,60
b 948 512
Ω60 2526 2624
b7 2822 2815

Π7,7 8886 9110

Σ7,7
k 3240 5229

In addition, we also present trace plots for these selected parameters below.
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Figure 2: Trace plots (after burn-in period) of selected parameters (Precision Sampler)
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Figure 3: Trace plots (after burn-in period)) of selected parameters (Kalman Filter)
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B State-Space Representations of Lee-Carter Model and Li & Lee
Model

To obtain comparable results, both the LC models and the Li & Lee models have been reformulated according to
the state-space representations suggested by Pedroza (2006).

Specifically, the single-factor LC model, applicable to each distinct population denoted as i, is predicated on the
following assumptions:

yi
t = αi + βiκi

t + ϵi
t, ϵi

t ∼ N(0, Ωi)

κi
t = bi + κi

t−1 + ξi
t, ξi

t ∼ N(0, σ2
κ,i)

where Ωi = diag{gx0,i, · · · , gω,i}. While the two-factor LC model assumes that

yi
t = αi + βi

1κi
1t + βi

2κi
2t + ϵi

t, ϵi
t ∼ N(0, Ωi)

κi
1t = bi

1 + κi
1,t−1 + ξi

1t, ξi
1t ∼ N(0, σ2

1,κ,i)

κi
2t = bi

2 + Bi
2κi

2,t−1 + ξi
2t, ξi

2t ∼ N(0, σ2
2,κ,i)

Similarly, the single-factor Li & Lee model, as posited by Li and Lee (2005), advocates for the use of a common
age effect, denoted as β, along with a common factor, κt, to model the log mortality rates. Specifically, the model
is as follows:

yi
t = αi + βκt + ϵi

t, ϵi
t ∼ N(0, Ω)

κt = b + κt−1 + ξt, ξt ∼ N(0, σ2
κ)

This model is referred to as the common factor model in their original publication. In contrast, the two-factor Li
& Lee model, which is also referred to as the augmented common factor model, is formulated as:

yi
t = αi + β1κ1t + βi

2κi
2t + ϵi

t, ϵi
t ∼ N(0, Ω)

κ1t = b1 + κ1,t−1 + ξ1t, ξ1t ∼ N(0, σ2
1,κ)

κ2t = b2 + B2κ2,t−1 + ξ2t, ξ2t ∼ N(0, Σ2,κ)

where κ2t = (κ1
2t, · · · , κI

2t)′ adheres to a VAR(1) model. The Li & Lee model can be regarded as a particular instance
of the multi-level dynamic factor model, and Bai and Wang (2015) comprehensively discusses the constraints for
its identification.

C Marginal Likelihood

Suppose we have two different models Mi (i = 1, 2) to explain data y, and Mi depends on parameters θi. For
each model Mi, we can derive the marginal likelihood as π(y|Mi) =

∫
π(y|θi, Mi)π(θi|Mi)dθi where π(y|θi, Mi) and

π(θi|Mi) are the corresponding likelihood and prior distribution. Then to compare M1 and M2, it is common to
use the posterior odds ratio, which is simply the ratio of posterior model probabilities:

π(M1|y)
π(M2|y) = π(y|M1)

π(y|M2)
π(M1)
π(M2)

where π(Mi) is referred to as the prior model probabilities for Mi. Especially, when π(M1) = π(M2), the posterior
odds ratio becomes simply the ratio of marginal likelihood and is called Bayes factor. In this case, π(y|M1) >

π(y|M2) is equivalent to π(M1|y) > π(M2|y), providing the evidence in favour of model M1 over M2. For a more
detailed discussion of the marginal likelihood and Bayesian model comparison, please see Koop (2003).
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However, evaluating the marginal likelihood is usually a computationally challenging task. The most commonly-
used Bayesian information criteria (or BIC) is just used to approximate twice the log of the marginal likelihood
(Schwarz, 1978). To address the computational issue, Newton and Raftery (1994) proposed a simple way to calculate
marginal likelihood by using the posterior harmonic mean of the likelihood, i.e.,

1
π(y) =

∫
π(θ|y)
π(y|θ) dθ = E

(
1

π(y|θ)

∣∣∣∣ y

)
.

where π(θ|y) is the posterior distribution of parameter θ given the observed data y, π(y|θ) is the likelihood function
and π(y) is the marginal likelihood. This suggests that π(y) can be approximated by the sample harmonic mean of
the likelihood:

1
π(y) = 1

R

R∑
i=1

(
1

π(y|θi)

∣∣∣∣ y

)
based on R draws {θi} from the posterior distribution π(θ|y).

D Simulating from the Posterior Predictive Distribution

Assume that historical data and future log mortality rates distribute independently, given all the latent random
states and parameters, the posterior predictive distribution of {yT +s}h

s=1 is

p({yT +s}h
s=1|FT ) =

∫
p({yT +s}h

s=1|{κT +s}h
s=1, {αi}I

i=1, {βi}I

i=1, θ) · p({κT +s}h
s=1|{κt}T

t=1, θ)·

p({κt}T
t=1, {αi}I

i=1, {βi}I

i=1, θ|FT )dκtdαidβidθ,

(1)

where FT represents the information set up to time T .
Specifically, the empirical posterior predictive distribution of yT +s is obtained via the following steps:

1. Sample a realisation of {κt}T
t=1, {αi}I

i=1, {βi}I

i=1 and θ from their empirical posterior distribution;

2. Given those simulated values at Step 1, sample a realisation of {κT +s}h
s=1 from its conditional predictive

distribution p({κT +s}h
s=1|{κt}T

t=1, θ);

3. Given the simulated values at Steps 1 and 2, sample a realisation of {yT +s}h
s=1 from its conditional predictive

distribution
p({yT +s}h

s=1|{κT +s}h
s=1, {αi}I

i=1, {βi}I

i=1, θ); and

4. Repeat steps 1-3, until the required number of simulations is fulfilled.
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E In-sample Results for the Two-factor Model 4
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Figure 4: Temporal plots of estimated first latent factor κi
1t for all the G7 countries (solid line: posterior mean of;

grey area: 99% credible interval)
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Figure 5: Temporal plots of estimated first latent factor κi
2t for all the G7 countries (solid line: posterior mean of;

grey area: 99% credible interval)

7



0 10 20 30 40 50 60 70 80 90

age

-8

-7

-6

-5

-4

-3

-2

-1

7
a

7
a
 by Age Groups

Figure 6: Estimated age effects µa (solid line: posterior mean; grey area: 99% credible interval)
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Figure 7: Estimated age effects µ1,b and µ2,b (solid line: posterior mean; grey area: 99% credible interval)
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Figure 8: Estimated age effects αi’s (solid line: posterior mean; grey area: 99% credible interval)
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Figure 9: Plots of estimated age effects βi
1’s (solid line: posterior mean; grey area: 99% credible interval)
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Figure 10: Plots of estimated age effects βi
2’s (solid line: posterior mean; grey area: 99% credible interval)
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Figure 11: Comparison of estimated age effects αi’s for all G7 countries

0 10 20 30 40 50 60 70 80 90

age

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-
1,

x

-
1,x

 of G7 Countries (Posterior Mean)

USA
Japan
Germany
UK
France
Italy
Canada

0 10 20 30 40 50 60 70 80 90

age

-4

-3

-2

-1

0

1

2

3

4

-
2,

x

-
2,x

 of G7 Countries (Posterior Mean)

USA
Japan
Germany
UK
France
Italy
Canada

Figure 12: Comparison of estimated age effects βi
1’s and βi

2’s for all G7 countries
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of modulus)
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F Average Lengths of Prediction Intervals

Table 3: Average Lengths of the 95% prediction intervals produced by the single-factor mortality models

Horizons Model 1 Model 2 Model 3 Lee-Carter Li & Lee

λ2 0.1 0.01 0.00001 0.1 0.01 0.00001 0.1 0.01 0.00001 / /

h=1 0.3155 0.3174 0.3174 0.353 0.3546 0.3545 0.553 0.5536 0.5538 0.3057 0.4595

h=2 0.3305 0.3347 0.332 0.3668 0.3702 0.3673 0.562 0.5629 0.5613 0.3227 0.4624

h=3 0.3463 0.3527 0.3447 0.3819 0.387 0.3785 0.5716 0.5723 0.5681 0.3387 0.4654

h=4 0.3633 0.3716 0.356 0.3985 0.4056 0.3886 0.5827 0.5827 0.5743 0.3541 0.4688

h=5 0.3826 0.3924 0.3667 0.4176 0.4262 0.398 0.5953 0.5943 0.5802 0.3687 0.4725

h=6 0.4038 0.4153 0.3765 0.4394 0.4502 0.407 0.6094 0.6078 0.5859 0.3826 0.4763

h=7 0.4277 0.44 0.386 0.4647 0.4778 0.4159 0.6264 0.6225 0.5915 0.3964 0.4806

h=8 0.4534 0.4673 0.3945 0.493 0.5082 0.4247 0.6447 0.6394 0.597 0.41 0.4849

h=9 0.4727 0.4975 0.4033 0.5109 0.5419 0.4331 0.6588 0.6582 0.6023 0.4222 0.4896

h=10 0.4917 0.5323 0.413 0.5332 0.5822 0.443 0.6745 0.6801 0.6077 0.4359 0.4946

Table 4: Average Lengths of the 95% prediction intervals produced by the two-factor mortality models

Horizons Model 4 Lee-Carter Li & Lee

λ2 0.1 0.01 0.00001 / /

h=1 0.2715 0.2715 0.2735 0.4078 0.4476

h=2 0.2961 0.2943 0.2957 0.5302 0.6913

h=3 0.3199 0.3144 0.3129 0.6555 1.1

h=4 0.3456 0.3335 0.3277 0.8153 1.8788

h=5 0.3759 0.3519 0.3405 1.0232 3.4736

h=6 0.4113 0.3709 0.3526 1.3337 6.8664

h=7 0.453 0.3907 0.364 1.7489 14.2252

h=8 0.5032 0.4104 0.3749 2.2675 30.8982

h=9 0.526 0.4301 0.3846 3.1303 71.7165

h=10 0.5563 0.4503 0.3943 4.1759 195.9341
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G Long-run Predictions of Mortality Rates Using Model 2
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(c) λ2 = 0.00001

Figure 14: Point forecasts of log mortality rates at age 65 for all G7 countries
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(b) λ2 = 0.01
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(c) λ2 = 0.00001

Figure 15: Point forecasts of log mortality rates at age 65 for all G7 countries

Here we also present the points forecasts of life expectancy at birth (e0) for all the G7 countries. Since e0 is
determined by mortality rates of all ages, it is a useful statistic to represent the overall forecasts of a population.
The results under different shrinkage hyper-parameters are plotted. As expected, by using the strong prior (λ2 =
0.00001), all G7 countries demonstrate increasing e0 in (nearly) parallel fashions in the long run. Although as seen
from Figure 15, life expectancies are not strictly parallel to each other, especially for Japan. This is because we
choose to impose a strong shrinkage prior rather than using a restricted model specification. Thus, the final result
balances the trade-off between the short/medium-term prediction accuracy and the long-term coherence. Although
not shown here, Model 2 has similar results of life expectancies as Model 1. It means that, to ensure long-term
coherence, the co-integration relationship in the VECM plays a more important role than the common age effect.
It can be expected that using the more restricted VECM form displayed in the end of Section 3.1 could obtain more
coherent forecasts in the long run.
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