1 Online supplementary material

In this material, we present additional numerical results and an empirical illustration with

financial data.

1.1 Numerical example

In our numerical evaluation, we present two illustrations. In the first experiment, we use the
range based risk measures for calculating the risk premium in an insurance setup. Table 1
describes the parameterizations in each scenario evaluated in this numerical example. In the

article document, we report the results from the described scenarios.
Insert Table 1

In our second experiment, we perform an extensive numerical risk prediction study. For this
experiment, we use the AR(p)-GARCH(q,s) model as a data generating process (DGP). Our
chosen parameterizations are described in detail in Table 2. In the article document, we present
the descriptive statistics of forecast obtained from the VaR, ES, Expectile, and SDR, and the

range based risk measure generated from these functionals.
Insert Table 2

In addition to the descriptive part of the risk predictions, we evaluate the risk forecasts
through absolute bias (Bias), relative bias (R. Bias), root-mean-square error (RMSE)!, and
model risk measures. Similar evaluation criteria are also used in the studies of Ozun et al.
(2010), Telmoudi et al. (2016), and Syuhada et al. (2021). Y represents a vector of risk forecasts
obtained by risk or range based risk measures. To quantify model risk, we consider the following

worst-case model risk measures:
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where I are the models used to estimate the distribution function of X, i.e., AR(1)-GARCH(1,1)
model with different specifications for the distribution of z¢; y; 41 is the risk forecast obtained

by model i € I in each Monte Carlo replication; and ¥ 11 = %21‘1:1 Yit+1 is average risk

'In the numerical example, we focus on traditional metrics (Bias, R. Bias, and RMSE) instead of scores
functions to assess risk forecasts because, in the simulation environment, we know the real risk value. Score
functions are suitable for evaluating risk predictions obtained with real data, where we do not know the real risk
value.



forecast in each Monte Carlo replication. MR1 is proposed by Krajcovicova et al. (2019). This
measure gives an average relative distance of each forecast y; ;41 from ;1. MR2, which is
proposed by Miiller and Righi (2020) and explored by Berkhouch et al. (2022), quantifies the
downside model risk. For both measures, lower values imply a lower model risk. The third
measure, LR1, is defined by Kellner and Résch (2016). The 97,41 in the denominator is used
for the purpose of scaling in order to allow comparisons between the results of the risk and
range measures. The higher the value of this measure, the more dispersed are the risk forecasts
quantified by I. Following the idea of Kellner and Rosch (2016), we present LR2, which allows
the comparison of the downside model risk of the different measures. The last two measures

can assume negative values, being desired results closer to zero for both criteria.
Insert Table 3.

In Table 3, we describe the bias, relative bias, and RMSE of risk forecasts. We verify that
the models with criteria closer to zero in some cases coincide for R, and p. For instance, in
Scenario 1 (Table 3), for SDR®, SDR”, and Rgpre the distribution with best results is the sged.
In cases where the model with the best value for both criteria does not match for p® and p?, the
performance of R, generally is in line with the result obtained for p at one of two significance
levels. Moreover, in most scenarios, we observed that the sign of the relative and absolute bias
of the range based risk measures correspond with the tail measure used to generate it.

We identify that for data generated with n = 8 (Student-¢ distribution), the best result
for three criteria does not correspond with the data generating process. This result holds for
both p and R,. For RMSE, the GARCH with ged (Scenario 1 and 3) and std (Scenario 2)
have the best values, while for Bias and R.Bias, we verify ged (Scenario 1 and 2) and sged
(Scenario 3) are the distributions with both criteria closer to zero. Similar results are found
for scenario with n = 250. Based on a simulation study, Telmoudi et al. (2016) found that for
GARCH models, the best fitting model is not necessarily the true model of the data generating
process. According to the authors, this is because the choice of the z; distribution results in an
estimation risk?. On the other hand, for = 800, we perceive that the data generating process
coincides with the model with the best result for absolute and relative bias, and RMSE. For
these scenarios, the GARCH with normal distribution has the best results for both criteria. For
data with n = 800, we have a sample with less extreme values than those observed with n = 8.
For this reason, the normal distribution is better suited to model the data distribution.

For the different measures considered in the study, the absolute and relative bias of the
predictions obtained by the GARCH with norm and snorm distributions are negative. This
result indicates that, on average, the risk forecasts from both models tend to underestimate the
risk. Thus, the capital requirement computed from these models can be insufficient to absorb
unexpected losses, especially in periods of crisis. The literature shows that GARCH models,
in general, are negatively biased, which explains the negative bias of risk predictions. See, for
example, the results of Hwang and Valls Pereira (2006). In the multivariate sense, Miiller and
Righi (2018) identify negative Bias and R. Bias for the VaR, ES, and Expectile forecasts quan-

2The estimation risk occurs when pointwise estimate may not correspond to the true risk measure value. In
some studies, this risk is named a model risk. See Farkas et al. (2020).



tified by DCC-GARCH (Dynamic Conditional Correlation-Generalized Autoregressive Condi-
tional Heteroskedastic). On the other hand, we realized that for the other specifications of z,
the absolute and relative bias tend to be positive, i.e., the risk is overestimated. Although the
impact of overestimating risk is less than underestimating, the high level of capital requirements
limits the leverage of financial institutions, which can compromise financial intermediation in
the market.

Relative bias is helpful because it allows us to perform bias analysis concerning the true
risk forecast value. Due to this statistic standardizing the bias makes it possible to carry
out a comparative analysis between the results of the different risk and range measures. We
perceive that VaR and Expectile, in general, have the relative bias closest to zero among the
tail measures. This result is valid mainly in scenarios generated with 1 = 800, i.e., normal
distribution. For scenarios generated with n = 8, we verified that for GARCH, considering
normal and skewed normal distribution, VaR and Expectile display the R. Bias close to zero. In
contrast, for GARCH with ged and sged, we see that the SDR and Expectile with best values for
this criterion. On the other hand, we observed the worst result for ES in most cases. Concerning
range measures, we identify results similar to the tail measures used to generate them. So, we
have to Rvar (consequently the RVaR also) and Rgxpectile With best results regarding R. Bias,
while Rgg shows the worst results. Among the justifications that could be given for this, it refers
to the fact that the R, estimation is also subject to the estimation errors of the tail measure

(p) used to generate it.
Insert Table 4.

Finally, we expose in Table 4 model risk estimates. This analysis intends to see how the risk
forecasts changes as different probability distributions are used. Higher values for the model
risk measures imply a more significant difference. LR1 and LR2 for being standardized allow
us to compare the values obtained for the different measures. It can be observed that in almost
all cases, the estimates for ES® seem to vary to a higher degree among different probability
distributions in comparison to other risk measures. This result corroborates the findings of
Kellner and Résch (2016), which show that ES about VaR presents a greater probability of
regulatory arbitrage®. Among the reasons given by the authors for this result, it refers to
the fact that the ES estimation considers all tail beyond the a-quantile and not just a single
quantile value (VaR case). We also visualize that lower significance levels imply higher values
for LR1 and LR2. This result is possibly in line with the fact that lower significance levels
quantify the risk of more extreme and less likely events®, which can be modeled less accurately
by some probability distributions. Moreover, we observe that the results from Expectile® and
Rvare (and RVaR) are competitive with VaR. Thus, we can conclude that these measures are
less affected by the change in the probability distribution, which implies fewer changes in the

risk forecasts and, by consequence, the capital determination. Besides that, we conclude that

3In a sense used, regulatory arbitrage refers to two institutions with the same portfolio and using different
internal models, approved by the regulator, and so quantify different amounts of capital requirement. As they
keep the same portfolio, they must hold the same or at least almost the same amount of regulatory capital.

4This is valid for scenarios generated with 1 = 8. For 7 = 800 there is a lower probability of extreme values.
This implies, as observed results, that distributions that consider asymmetry and heavy tails do not adjust well
to this type of distribution.



the greater relative dispersion of the Expectile forecasts does not imply a greater dispersion
of the capital determination obtained by the measure when considering different probability

distributions for z;.

2 Capital determination

We consider the VaR, ES, SDR, and Expectile, the range based measures generated from these
measures, i.e., Rvar, Res, Rspr, and Regpectile, and RVaR. We use procedures similar to nu-
merical analysis to predict the risk. Our financial position X refers to log-returns of S&P 500
market index’, i.e., zy = (In P, —In P,_1), where P refers to the closing price at time ¢ and ¢ — 1.
The analyzed period comprises data from January 4, 2010, to December 31, 2019, totaling 2526
observations. We consider this period because it includes periods of easing and turbulence, such
as the Furozone Crisis.

We note that the average of log-returns is closer to zero (0.041%). The skewness is negative
(-0.508), i.e., the tail in the left side of the distribution is longer. The excess kurtosis (4.592) is
higher than 0. Thus, the distribution is leptokurtic, i.e., it is taller and more concentrated than
the normal distribution. The Jarque Bera test (Jarque and Bera, 1980) rejects at a significance
level of 1% the null hypothesis that the series follows a normal distribution. We also notice the
presence of volatility clusters (see returns evolution in Figure 1). These characteristics, that is,
asymmetry, heavy tails, non-normality, and volatility clusters, are common in financial returns
(Cont, 2001).

We quantify the risk forecast of S&P 500 log-returns using an AR(1)-GARCH(1,1) model
because this model order is competitive according to the Akaike information criterion (AIC)
(Akaike, 1974). So, as in the numerical part, we consider seven different probability distributions
for z; and a rolling window estimation of 250 and 1000 observations. The out-of-sample period
comprehends December 12, 2013, to December 31, 2019. To quantify capital determination, we
select a portfolio value equal to 1. In this way, capital determination value coincides with the
risk forecasts.

Consider X a vector with returns for the out-of-sample period (7') and Y a vector with
risk forecasts for T'. For evaluation of point forecasts, in addition to descriptive statistics, we
calculate, for each risk and range measure, realized loss and realized cost. The realized loss is

obtained as:

T
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where £F is the realized loss of tail measures and £% from range based measures. S? is the
score function of VaR, Expectile, ES, RVaR, and SDR. The VaR, Expectile, ES, and RVaR

scores are defined in the article document. For SDR we consider an approximation of ES*(Y)

SWe select S&P 500 because is a important index market and is frequently employed in literature; see Righi
and Ceretta (2015)



score function, where Y = X — SD*(X). S is the range based score. Realized loss values
closer to zero indicate better performance of the risk forecast model.

We quantify the realized cost in the following way:

T
1 _
Cost(X,Y) := Costg,.(X,Y) = T § : (@1 — Y1) T g1 + (@1 — Yeg1) L]
=1

where x441 € X and y,11 € Y. Besides, g;11 € G represents costs from risk overestimation and
lyy1 € L costs from risk underestimation. G and L are positive random variables. The Cost is
based on the robust risk measurement approach proposed by Righi et al. (2020) and explored
by Miiller and Righi (2020) to assess risk estimates. It allows us to identify the model with
the best trade-off between the costs from risk overestimation and underestimation. We use as
overestimation and underestimation cost the yield rates of the U.S. Treasury Bill with a maturity
of three months (T-bill) and the Overnight London Interbank Offered Rate (LIBOR), based on
U.S. Dollar, respectively®. T-bill is a risk-free investment with high liquidity where the surplus
on the capital need could be applied safely. The LIBOR represents a rate for providential loans
when the capital need is not sufficient. We convert both rates to a daily frequency. We also
quantify model risk using the measures defined in (1). We describe these results in the following
subsection.

We now present the results regarding capital determination obtained by our approach’.
Due to the similarity of the results considering the rolling estimation windows of 250 and 1000
observations and brevity, we present the results considering a rolling estimation window of 1000
observations. Results with 250 observations as a rolling estimation window are available under
request. In the first moment, we assess the descriptive statistics of forecasts, and then we

analyze the realized loss, realized cost, and model risk.
Insert Table 5.

In general, we can see that the descriptive statistics are in line with those observed in the
numerical analysis. According to Table 5, we note that the average values of the range based risk
measures are between the average capital determination obtained for o and £ by tail measures,
i.e., the inequality p®(X) > R,(X) > p?(X), a < B < 1, is maintained using financial data. We
verify that the inequality also remains for the standard deviation in most cases. As expected,
the average results of capital determination computed by Ryar are lower than those of Rgg.
The Rgg is based on ES, which quantifies the expected loss beyond VaR losses, so its value is
greater than VaR for the same significance level. Rgpr displays higher values compared to Ryar
and Rgg, which is natural because SDR is a combination of ES and Shortfall Deviation. For
RExpectile is observed lower values since Expectile is comparable to ES and VaR in more extreme
levels than those used in this study (Bellini et al., 2018). On the other hand, we realize that
its forecasts with financial data, like that of Expectile® and Expectile®, also have the largest

relative standard deviation. This result is connected to the fact that the Expectile is more

5We downloaded the database from Federal Reserve Economic Data (https://fred.stlouisfed.org/).
"In the empirical analysis, we keep the results of Ryvare and RVaR, because here we are considering the loss
functions to evaluate the forecasts, which, because they are different for both measures, result in different values.


https://fred.stlouisfed.org/

sensitive to the magnitude of extreme losses of the distribution than the quantile measures,
such as VaR (Xie et al., 2014; Yao et al., 2021). This feature makes it interesting to use this
measure, especially in catastrophic moments that are usually of concern to practitioners and

policymakers.
Insert Figure 1.

Figure 1 presents the historical evolution of forecasts of risk and range based risk measures
considering an AR(1)-GARCH(1,1) with skewed generalized error and o = 1.0% and 8 = 2.5%°.
Illustrations for the other distributions and significance levels have been omitted for brevity and
are available under request. We verify that the evolution of range measures is similar to that of
the measure used to generate it, which corroborates with the descriptive statistics of empirical
and numerical analysis. Also, risk based measures follow the evolution of losses S&P 500 and

capture periods of greater variability.
Insert Table 6.

As Table 6, the models with the lower realized loss for range based risk measures also tend
to perform better for the measure used to generate it. For the cases where the model with the
lowest value does not match for p® and p?, R? follows the results of one of these measures. This
result corroborates the results observed for Bias, R. Bias, and RMSE obtained in the numerical
experiment. In addition, through this result, we can conclude that the performance of a given
model changes according to the significance level. Financial data tend to have more extreme
observations than expected for normal distributions. As lower significance levels are associated
with more extreme observations, different distributions can more accurately accommodate the
characteristics of the financial data for each level. By a illustration, see ES%5% and ES9%,
for which the sged and ged, respectively, have the lower realized loss, while for Rgge the lower
value is given by GARCH with ged distribution.

We identify that the model with the lowest realized loss coincides for Rgg and Ry,r. For
instance, we have GARCH sged and ged with lower realized loss for a = 1.0% and 8 = 2.5%,
and o = 2.5% and 3 = 5.0%, respectively. The similarity between these two measures can be
explained by the direct connection between VaR and ES. For the same significance levels, VaR
and ES also present (in general) the same model as the best candidate according to the realized
loss. The similarity in the performance of models to predict VaR and ES is also documented
in previous research, for example, Meng and Taylor (2020). For Rgpgr, we verify lower values
for the model with sged and jsu distribution for z;. Concerning the Rgxpectile, We see only for
a = 2.5% and 8 = 5.0% similar results to Rgs and Ryar for both rolling estimation window.
Thus, as per our results, the superiority of one model does not hold to predict VaR, ES, and
Expectile. These results do not corroborate with the findings of Miiller and Righi (2018).

We also verify in Table 6 that the models with the lowest realized cost do not coincide with
the models with the lowest realized loss. We perceive that GARCH with normal distribution

had a better realized cost in many scenarios. We can give one possible explanation for this

8We chose to illustrate the predictions obtained considering the skewed generalized error distribution because
it performed well according to the loss realized for o = 1.0% and 8 = 2.5%.



difference by the fact that the realized loss computed from elicitable functions, especially for VaR
and Expectile, penalizes more heavily the observations for which we note returns showing risk
estimates exceedance. Moreover, unlike Cost, elicitable loss functions only consider forecasting
errors rather than the costs associated with such errors. Realized cost becomes interesting
in choosing the model used for capital determination once more expensive capital costs may
increase expenditures. These results allow us to conclude that the model that presents the best
relationship between costs from risk overestimation and underestimation does not correspond
with the model recommended by traditional tests used to select risk models, i.e., elicitable loss

functions.
Insert Table 7.

In Table 7, we describe model risk estimates of capital determination. We focused on
analyzing LR1 and LR2 because it allows for comparing different risk and range measures.
VaR? presents lower values for both LR1 and LR2. Based on LR1, we conclude that VaR”
results in a less dispersed amount of capital determination when considering different probability
distributions. LR2 points out that this dispersion is also lower when we look only at the capital
determination obtained below the average capital value quantified by the VaR. The results of
Ryvar also tend to be competitive with VaR. Thus, the bank that uses these measures for capital
determination may have an advantage based on regulatory arbitrage of banks that employed the
ES with the worst results as a regulatory risk forecast measure. A reason for the worst result
of ES is that it considers the entire left tail to quantify the risk. Each probability distribution
models differently (albeit with a small difference) the most extreme events, common in financial
series. This implies a greater sensitivity of the ES results to different models or probability
distributions (Kellner and Rosch, 2016). Although we consider losses beyond a threshold in the
case of range risk measures, we do not model the most extreme losses, usually associated with
difficulties in estimating ES. For this reason, the range measures, in general, have lower model
risk values than ES?. This result, in line with the good results of the Ry, in the numerical
example, suggests that our range measures are good candidates for determining capital and

contribute to a balance in the regulatory environment among banking institutions.
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Table 1: Parameters of the Weibull distribution, window estimation (n), and confidence intervals
(o and ), which we use in the Monte Carlo Simulation to determine risk premium in an
insurance setup.

Scenarios | Scale Shape o B n
1 1 0.5 97.50% 99.00% 1,000
2 1 0.5 95.00% 97.50% 1,000
3 1 0.5 95.00% 99.00% 1,000
4 1 1.5 97.50% 99.00% 1,000
5 1 1.5 95.00% 97.50% 1,000
6 1 1.5 95.00% 99.00% 1,000
7 1 3 97.50% 99.00% 1,000
8 1 3 95.00% 97.50% 1,000
9 1 3 95.00% 99.00% 1,000
10 1 0.5 97.50% 99.00% 250
11 1 0.5 95.00% 97.50% 250
12 1 0.5 95.00% 99.00% 250
13 1 1.5 97.50% 99.00% 250
14 1 1.5 95.00% 97.50% 250
15 1 1.5 95.00% 99.00% 250
16 1 3 97.50% 99.00% 250
17 1 3 95.00% 97.50% 250
18 1 3 95.00% 99.00% 250

Table 2: Parameters of the AR(1)-GARCH(1,1) model, window estimation (n), and significance
levels (« and (3), which we use in the Monte Carlo Simulation to quantify risk forecasts.

Scenarios | ¢ ag a1 by n « I} n
1 0.50 4.00E—-06 0.10 0.85 8.00 1.00% 2.50% 1,000
2 0.50 4.00E —-06 0.10 0.85 8.00 2.50% 5.00% 1,000
3 0.50 4.00E —06 0.10 0.85 8.00 1.00% 5.00% 1,000
4 0.50 4.00E—-06 0.10 0.85 800.00* 1.00% 2.50% 1,000
5 0.50 4.00E —06 0.10 0.85 800.00 2.50% 5.00% 1,000
6 0.50 4.00E —06 0.10 0.85 800.00 1.00% 5.00% 1,000
7 0.50 4.00E—-06 0.10 0.85 8.00 1.00% 2.50% 250
8 0.50 4.00E —06 0.10 0.85 8.00 2.50% 5.00% 250
9 0.50 4.00E —06 0.10 0.85 8.00 1.00% 5.00% 250
10 0.50 4.00E —-06 0.10 0.85 800.00 1.00% 2.50% 250
11 0.50 4.00E —06 0.10 0.85 800.00 2.50% 5.00% 250
12 0.50 4.00E—06 0.10 0.85 800.00 1.00% 5.00% 250

Note: *As performed by Christoffersen and Gongalves (2005) we consider a wider n to represent the normal distribution. ¢1, ag, a1, and
b1, are parameters of AR(1)-GARCH(1,1) model for p = ¢ = s = 1, and 7 represents the parameter of Student’s t-distribution. « and 8
represent the significance levels, and n the estimation window.
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Table 4: Model risk estimates of risk forecasts quantified in Monte Carlo simulations, considering
Scenarios 1 to 6 from Table 2. To quantify model risk, we consider MR1, MR2, LR1 and LR2.
The values are multiplied by 100.

Scenario 1 Scenario 2 Scenario 3

1 2 1 2 1 2 1 2 1 2 1 2
VaR”™ 0.122 0.061 5.952 2.976 0.052 0.026 3.222 1.611 0.124 0.062 5.967 2.983
VaR? 0.051 0.026 3.295 1.647 0.051 0.025 4.185 2.093 0.050 0.025 7.324 3.662
Rvare 0.073 0.036 4.142 2.071 0.047 0.024 3.323 1.662 0.050 0.025 3.242 1.621
ES® 0.311 0.155 11.552 5.776 0.152 0.076 7.146 3.573 0.315 0.157 11.627 5.813
ES? 0.158 0.079 7.421 3.711 0.079 0.040 4.494 2.247 0.083 0.042 4.723 2.361
REse 0.217 0.109 9.183 4.591 0.109 0.054 5.655 2.828 0.153 0.077 7.282 3.641
SDR1 0.299 0.150 9.986 4.993 0.142 0.071 5.806 2.903 0.303 0.152 10.052 5.026
SDR” 0.147 0.074 6.010 3.005 0.072 0.036 3.442 1.721 0.076 0.038 3.596 1.798
Rspre 0.206 0.103 7.683 3.841 0.100 0.050 4.435 2.217 0.142 0.071 5.869 2.934

Expectile® | 0.098 0.049 6.793 3.396 0.043 0.022 4.204 2.102 0.100 0.050 6.828 3.414

Expectile® | 0.044 0.022 3.990 1.995 0.027 0.013 2.020 1.010 0.027 0.014 2.390 1.195
RExpectilee | 0.064  0.032  6.652 3.326 0.032 0.016 3.769 1.884 0.044 0.022 3.934 1.967

Scenario 4 Scenario 5 Scenario 6

1 2 1 2 1 2 1 2 1 2 1 2
VaR”™ 0.119 0.060 5.696 2.848 0.051 0.026 3.196 1.598 0.116 0.058 5.901 2.950
VaR? 0.051 0.025 3.194 1.597 0.049 0.024 4.221 2.111 0.045 0.023 4.445 2.223
Rvare 0.071 0.036 3.961 1.980 0.045 0.023 3.260 1.630 0.044 0.022 3.084 1.542
ES® 0.303 0.152 11.215 5.607 0.158 0.079 7.354 3.677 0.296 0.148 11.495 5.748
ES? 0.155 0.077 7.131 3.565 0.081 0.041 4.601 2.301 0.077 0.039 4.641 2.320
REge 0.212 0.106 8.866 4.433 0.112 0.056 5.805 2.903 0.144 0.072 7.198 3.599
SDR1 0.292 0.146 9.680 4.840 0.147 0.074 5.975 2.988 0.285 0.142 9.935 4.967
SDR”? 0.143 0.072 5.771 2.886 0.074 0.037 3.517 1.758 0.069 0.035 3.498 1.749
Rspre 0.201 0.100 7.413 3.706 0.103 0.051 4.555 2.278 0.133 0.067 5.789 2.894

Expectile® | 0.096 0.048 6.440 3.220 0.044 0.022 4.212 2.106 0.093 0.047 6.708 3.354

Expectile’ | 0.044 0.022 7.149 3.575 0.026 0.013 3.930 1.965 0.024 0.012 5.682 2.841
RExpectilee | 0.063 0.031 6.735 3.368 0.032 0.016 3.443 1.722 0.040 0.020 4.550 2.275

Note: This table shows the numerical results of model risk estimates. The results are based on 1,000 Monte Carlo replications considering.

Data generation process of returns corresponds to AR(1)-GARCH(1,1), considering Normal and Student/s t-distribution. As significance
levels, we use 1%, 2.5%, and 5%. Table 2 presents the considered scenarios. For risk estimation we consider an AR(1)-GARCH(1,1) model,
where z¢ follows normal (norm), skewed normal (snorm), Student-¢ (std), skewed Student-t (sstd), generalized error (ged), skewed generalized
error (sged), or Johnson SU (jsu) distributions. Values in bold indicate risk and range measures with the lowest model risk, according to LR1
and LR2.
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Table 7: Model risk estimates of capital determination obtained considering a rolling window
estimation of 1000 observations. To quantify model risk, we consider MR1, MR2, LR1 and LR2.
The values are multiplied by 100.

a=1% and 8 =2.5% a=25% and B8 =5% a=1% and = 5%

MRI MR2 LRI LR2 [ MRI MR2 LRI LR2 | MRI MR2 LRI LR2
RVaR*® 0.070 0.035 4.082 2.041 | 0.040 0.020 3.024 1.512 | 0.049 0.024 3.302 1.651
VaR® 0.099 0.049 5.089 2.544 | 0.052 0.026 3.398 1.699 | 0.099 0.049 5.089 2.544
VaR? 0.052 0.026 3.398 1.699 | 0.034 0.017 3.015 1.507 | 0.034 0.017 3.015 1.507
Rvare 0.070 0.035 4.082 2.041 | 0.040 0.020 3.024 1.512 | 0.049 0.024 3.302 1.651
ES® 0.197 0.099 8.328 4.164 | 0.113 0.057 5.729 2.865 | 0.197 0.099 8.328 4.164
ES? 0.113 0.057 5.729 2.865 | 0.071 0.035 4.223 2.111 | 0.071 0.035 4.223 2.111
REse 0.146 0.073 6.805 3.403 | 0.088 0.044 4.860 2.430 | 0.109 0.054 5.601 2.800
SDR*~ 0.191 0.096 7.174 3.587 | 0.108 0.054 4.740 2.370 | 0.191 0.096 7.174 3.587
SDR” 0.108 0.054 4.740 2.370 | 0.067 0.033 3.380 1.690 | 0.067 0.033 3.380 1.690
Rspre 0.140 0.070 5.736 2.868 | 0.084 0.042 3.943 1.971 | 0.104 0.052 4.611 2.306
Expectile® | 0.072 0.036 5.101 2.551 | 0.042 0.021 3.886 1.943 | 0.092 0.046 6.458 3.229
Expectileﬁ 0.042 0.021 3.899 1.950 | 0.027 0.014 3.314 1.657 | 0.040 0.020 4.583 2.292
RExpectilee | 0.053  0.027 4.375 2.188 | 0.033 0.017 3.531 1.765 | 0.055 0.028 5.122 2.561

Note: This table shows model risk estimates of capital determination. For estimation, we consider a rolling window estimation of 1000
observations. As significance levels, we use 1%, 2.5%, and 5%. For risk estimation, we considered an AR(1)-GARCH(1,1) model, where z¢
follows normal (norm), skewed normal (snorm), Student-t (std), skewed Student-t (sstd), generalized error (ged), skewed generalized error
(sged), or Johnson SU (jsu) distributions. Values in bold indicate the risk and range measures with the lowest model risk, according to LR1
and LR2.
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Figure 1: Evolution of risk and range based risk forecasts for S&P 500 log-returns from December
12, 2013, to December 31, 2019 (out-of-sample period). The estimates are obtained using AR(1)-
GARCH(1,1) with skewed generalized error and a = 1.0% and 8 = 2.5% for a rolling window
estimation of 1000 observations. The risk values are with the sign adjusted. Returns and risk
estimates are multiplied by 100.

15



	Online supplementary material 
	Numerical example

	Capital determination

