Ratemaking in a Changing Environment, ASTIN Bulletin

Online Appendices

Appendix A: Summary statistics at the policy and claim level

Table 1 summarizes the distribution of the claim frequency and severity, which are the two continuous outcomes of interest at the policy level. The Spearman correlation coefficient shows that the two outcomes are correlated. The table also shows that the coverage and deductible distributions are right-skewed, and we deal with the skewness by taking logarithmic transformations on these variables. The high correlation coefficient for coverage suggests it will be a significant predictor in the claim frequency and severity model. In addition, the table summarizes the transaction frequency to the settlement of a reported claim and the average payment amounts; the Spearman correlation coefficient shows that they are correlated. Moreover, the correlation coefficient between deductible and the transaction frequency and severity indicates it may be used as a predictor.

Table 1: Summary statistics for outcomes at the policy level (claim frequency and severity) and claim level (transaction frequency and severity), and continuous covariates (deductibles, and coverages).

Policy Level									
	Min.	Median	Average	Max.	Claim	Claim			
					Frequency	Severity			
					(ρ_S)	(ρ_S)			
Claim Frequency	0	0	0.893	231	-	0.964			
Claim Severity	0	0	9,649	12,922,218	0.964	-			
Deductible	500	1,000	3,407	100,000	0.051	0.090			
Coverage(000'S)	0.4	11,493	11,493	2,444,797	0.404	0.396			
Claim Level									
	Min.	Median	Average	Max.	Transaction	Transaction			
					Frequency	Payment			
					(ρ_S)	(ρ_S)			
Transaction Frequency	1	1	1.221	11	-	0.301			
Transaction Payment (Average per claim)	8.2	2,609	11,757	1,174,293	0.301	-			
Deductible	500	1,000	6,739	100,000	0.095	0.132			
Coverage(000'S)	102.3	58,046	295,660	2,444,797	-0.019	-0.079			

Table 2 shows the summary statistics of the claim frequency and severity at the policy level and the transaction frequency and severity at the claim level for the categorical variables in the dataset. The table suggests a high variation in the claim frequency and average severity of the claims across the categorical variables at the policy level. At the claim level, the transaction frequency does not vary much, but there is a substantial variation with the average severity.

	1 2		2 0		
	Policy	Level	Claim Level		
Variable	Average	Average	Average	Average	
	Frequency	Severity	Frequency	Severity	
Entity Type					
Village	0.349	2,977	1.196	7,776	
City	1.607	12,015	1.222	9,276	
County	3.330	17,453	1.169	13,089	
Misc	0.172	4,110	1.127	14,328	
School	0.931	25,963	1.231	15,604	
Town	0.092	1,204	1.126	6,351	
Region					
Northeastern	0.561	7,835	1.189	12,840	
Northern	0.410	10,682	1.229	13,879	
Southeastern	1.389	30,123	1.206	15,605	
Southern	1.196	5,820	1.263	7,921	
Western	0.483	5,210	1.216	7,989	
Alarm Credit					
No Alarm Credit	0.226	2,427	1.237	7,873	
Alarm Credit 5%	0.290	3,508	1.183	10,566	
Alarm Credit 10%	0.275	3,016	1.165	10,250	
Alarm Credit 15%	1.059	15,869	1.212	11,326	
Alarm Credit (Combination)	2.212	29,923	1.233	14,476	

Table 2: Summary statistics at the policy and claim level by categorical variables.

Appendix B: Algorithm to construct the simulation data.

We employ Algorithm 1 to construct the simulation data.

Algorithm 1 Data-generating process for MPP.

```
Number of policyholders J, parameters for claim frequency \{\alpha, \beta_{11}, \beta_{12}\}, parameters for reporting delay
                   distribution {\gamma_{10}, \gamma_{11}, \gamma_{12}, \kappa}, parameters for transaction frequency {b, \tau_{11}, \tau_{12}}, parameters for transaction payment {\phi_{10}, \phi_{11}, \phi_{12}, \sigma}, probability of settlement \eta, and ratemaking time \tau.
      Input:
                      Complete reported data - policy-level (PL = \{(S_j, N_j, x_{j1}, x_{j2}); j = 1, ..., J\}),
                      claim-level (CL = \{ (P_{ji}^{ULT}, x_{j1}, x_{j2}, \delta_{ji}, M_{ji}(\tau), M_{ji}); N_j > 0, i = 1, ..., N_j \} ),
                      and transaction-level (TL = \{(P_{jik}, x_{j1}, x_{j2}, M_{ji}(\tau)); M_{ji} > 0, k = 1, ..., M_{ji}\})
      Output:
                      Datasets at ratemaking date - policy-level (PL^R = \{PL; k \le M_{ji}(\tau)\}),
                      claim-level (CL^R = \{CL; k \leq M_{ji}(\tau)\}),
                      and transaction-level (TL^R = \{TL; k \leq M_{ji}(\tau)\})
1: for Policyholder j = 1, ..., J do
2:
         Generate x_{j1} \sim \text{Bernouli}(0.3), x_{j2} \sim \text{Normal}(0, 1);
3:
          Generate N_i^T \sim \text{Poisson}(\psi_i); \psi_j = \exp(\log \alpha + x'_{j1}\beta_{11} + x'_{j2}\beta_{12});
         Generate U_i \sim \text{Weibull}(N_i^T, \theta_i, \kappa); \theta_i = \exp(\gamma_{10} + x'_{j1}\gamma_{11} + x'_{j2}\gamma_{12});
4:
5: Generate v_i \sim \text{Uniform}(N_i^T, 0, \tau);
6:
         Generate N_i \sim \text{Count}(U_i + v_i \leq \tau);
7:
         if N_i > 0 then
8:
                for i = 1, ..., N_i do
9:
                     Generate M_{ji} \sim \text{Poisson}(\lambda_{ji}); \lambda_{ji} = \exp(\log b + x'_{j1}\pi_{11} + x'_{j2}\pi_{12});
10:
                        if M_{ii} > 0 then
11:
                             for k = 1, ..., M_{ji} do
12:
                                  Generate P_{jik} \sim \text{Gamma}\left(\frac{\exp(\mu_{jik})}{\sigma}, \sigma\right);
13:
                                  where \mu_{jik} = \exp(\phi_{10} + x'_{j1}\phi_{11} + x'_{j2}\phi_{12});
14:
                             end for
                             return \left\{ P_{ji}^{ULT} = P_{ji1} + \ldots + P_{jiM_{ji}} \right\};
15:
16:
                             Generate \delta_{ji} \sim \text{Bernouli}(\eta)
17:
                             for \delta_{ii} = 0 do
18:
                                  M_{ji}(\tau) \sim \text{Discrete Uniform}(0, M_{ji})
19:
20:
21:
                             end for
                        else
                             P_{jik} = 0, P_{ii}^{ULT} = 0, M_{ji}(\tau) = 0 \text{ and } \delta_{ji} = 1
22:
23:
                        end if
                   end for
24:
                   return \left\{S_j = P_{j1}^{ULT} + \ldots + P_{jN_i}^{ULT}\right\};
25:
26:
              else
                   S_{j} = 0
27: end if
28: end for
                      PL = \left\{ (S_j, N_j, x_{j1}, x_{j2}) \right\}; PL^R = \left\{ PL; k \le M_{ji}(\tau) \right\};
29: return CL = \left\{ (P_{ji}^{ULT}, x_{j1}, x_{j2}, \delta_{ji}, M_{ji}(\tau), M_{ji}) \right\}; CL^{R} = \left\{ CL; k \le M_{ji}(\tau) \right\}
                      TL = \left\{ (P_{jik}, x_{j1}, x_{j2}, M_{ji}(\tau)) \right\}; TL^{R} = \left\{ TL; k \le M_{ji}(\tau) \right\}
```

Appendix C: Loss Cost Prediction Using the Frequency-Severity Model

A rating formula based on the Frequency-Severity model will be achieved by the product of exponentiated estimates from the claim frequency, and severity models. The following rating formula calculates the predicted loss cost:

Loss Cost =
$$e_j \exp(\ln \hat{\alpha}_T + \mathbf{x}'_j \hat{\boldsymbol{\beta}}) \times \exp(\mathbf{x}'_j \hat{\boldsymbol{\phi}})$$

= Exposure
×Expected number of claims
×Expected payment per claim. (1)

Where e_j is the exposure variable and x_j are rating factors for the new contract. $\{\hat{\alpha}_T\}$ are the fitted trend parameters from the most recent policy year for the reported claim. Also, $\{\hat{\beta}, \hat{\phi}\}$ are the fitted parameters for rating variables from the claim frequency model, and the severity model building blocks. Here, the Poisson model is used to model the claim frequency, and a gamma GLM with a logarithmic link is used to model the loss amounts from claims.

References