Supplementary materials for optimal commissions and subscriptions in mutual aid platforms

Yixing Zhao ${ }^{a}$, Yan Zeng ${ }^{b, *}$
${ }^{a}$ School of Finance, Guangdong University of Foreign Studies, Guangzhou, 510006, PR China
${ }^{b}$ Lingnan (University) College, Sun Yat-sen University, Guangzhou, 510275, PR China

Appendix A. Proofs of theorems and equations

The model under limiting case. Considering the limiting case is reasonable in mutual aid platform because most mutual aid plans require at least one million participants. Some top mutual platforms have over 100 million participants (See table 1).

Table 1: Number of participants in mutual aid platforms

Platform	Number of participants (million)
Xianghubao	104.7
Waterdrop Mutual Aid	103.1
Qingsong Mutual Aid	80.0
e Mutual Aid	3.4
Kangai Gongshe	2.6

The variance of the percentage of population suffering the illness is $\frac{(1-p) p}{1,000,000}$, which is a relatively small number compared to a percentage p. Thus, it is sufficient to consider the continuous model as the limiting case. Therefore, equations in the model can be viewed as the limiting case as well. As discussed above, we consider that our model in under the limiting case. Thus, $\frac{l_{i}}{m_{i}}$, which is the percentage of participants who join the plan, is also under the limiting case. Recall that m_{i} is the total mass of type- i potential participants. If we restrict $\sum_{i=1}^{n} m_{i}=1, m_{i}$ can be regarded as the proportion of type- i potential participants among all participants. Suppose $N_{i, T}$ is the population of type- i potential participants and N_{T} is the population of all potential participants. We further assume that $N_{i} / N_{i, T}=l_{i} / m_{i}$, which means the percentages of participants who join the plan among all type- i participants are the same under both limiting case and non-limiting case. We further have

$$
\begin{equation*}
\frac{N_{i, T}}{N_{T}} \rightarrow m_{i} \quad \text { as all } N_{i} \rightarrow \infty \tag{1}
\end{equation*}
$$

[^0]Thus, the equation

$$
\sum_{j \in \mathcal{N}}\left(N_{i}-\boldsymbol{n}_{i}\right) S_{i}=\sum_{j \in \mathcal{N}} \boldsymbol{n}_{i} I_{i}
$$

can be revised as

$$
\sum_{i \in \mathcal{N}} N_{i, T} \frac{l_{i}}{m_{i}}\left(1-\frac{\boldsymbol{n}_{i}}{N_{i}}\right) S_{i}=\sum_{i \in \mathcal{N}} N_{i, T} \frac{l_{i}}{m_{i}} \frac{\boldsymbol{n}_{i}}{N_{i}} I_{i} .
$$

Dividing both sides of the equation by N_{T} and taking the limit we have

$$
\sum_{i \in \mathcal{N}} m_{i} \frac{l_{i}}{m_{i}}\left(1-p_{i}\right) s_{i}=\sum_{i \in \mathcal{N}} m_{i} \frac{l_{i}}{m_{i}} p_{i} I_{i},
$$

which yields

$$
\sum_{i \in \mathcal{N}} l_{i}\left(1-p_{i}\right) s_{i}=\sum_{i \in \mathcal{N}} l_{i} p_{i} I_{i} .
$$

Therefore, we can consider our continuous model as the limiting case and expressions such as $\left(1-p_{i}\right) s_{i}$ and $l_{i} p_{i} I_{i}$ are used in our model. Our results are based on such modeling framework.

The generalization of the model. Our model is also valid under the limiting case when loss amounts and benefit amounts are random variables rather than constants. Now we suppose that \boldsymbol{X}_{i} are random variables for all i. Then $\boldsymbol{X}_{i}=\boldsymbol{I}_{i}$ are also random variables. Let $\boldsymbol{I}_{i, j}$ be the random loss of j-th participant in the group- i. If we further assume that $\boldsymbol{I}_{i, j}$ are iid with finite second moment for all $j=1, \ldots, \boldsymbol{n}_{i}$. Then the total payment amount from type-i becomes $\sum_{j=1}^{\boldsymbol{n}_{i}} \boldsymbol{I}_{i, j}$ which is a compound rv with

$$
\begin{aligned}
\mathbb{E}\left[\sum_{j=1}^{\boldsymbol{n}_{i}} \boldsymbol{I}_{i, j}\right] & =E\left[\boldsymbol{n}_{i}\right] E\left[\boldsymbol{I}_{i}\right]=N_{i} p_{i} \mathbb{E}\left[\boldsymbol{I}_{i}\right] \\
\operatorname{Var}\left(\sum_{j=1}^{\boldsymbol{n}_{i}} \boldsymbol{I}_{i, j}\right) & =N_{i} p_{i} \operatorname{Var}\left(\boldsymbol{I}_{i}\right)+N_{i} p_{i}\left(1-p_{I}\right) \mathbb{E}\left[\boldsymbol{I}_{i}\right]^{2} \leq N_{i} p_{i} \mathbb{E}\left[\boldsymbol{I}_{i}^{2}\right] .
\end{aligned}
$$

Furthermore,

$$
\mathbb{E}\left[\frac{1}{N_{i} p_{i}} \sum_{j=1}^{\boldsymbol{n}_{i}} \boldsymbol{I}_{i, j}\right]=E\left[\boldsymbol{I}_{i}\right], \quad \operatorname{Var}\left(\frac{1}{N_{i} p_{i}} \sum_{j=1}^{\boldsymbol{n}_{i}} \boldsymbol{I}_{i, j}\right) \leq \frac{\mathbb{E}\left[\boldsymbol{I}_{i}^{2}\right]}{N_{i} p_{i}} \rightarrow 0, \quad N_{i} \rightarrow \infty .
$$

By Chebyshev's inequality, we have

$$
\operatorname{Pr}\left(\left|\frac{1}{N_{i} p_{i}} \sum_{j=1}^{\boldsymbol{n}_{i}} \boldsymbol{I}_{i, j}-E\left[\boldsymbol{I}_{i}\right]\right| \geq c\right) \leq c^{-2} \operatorname{Var}\left(\frac{1}{N_{i} p_{i}} \sum_{j=1}^{\boldsymbol{n}_{i}} \boldsymbol{I}_{i, j}\right) \rightarrow 0, \quad \forall c>0 .
$$

Therefore, in one risk group case, we still have

$$
S_{i}=\frac{1}{N_{i}-\boldsymbol{n}_{i}} \sum_{j=1}^{\boldsymbol{n}_{i}} \boldsymbol{I}_{i, j}=\frac{N_{i} p_{i}}{N_{i}-\boldsymbol{n}_{i}} \frac{1}{N_{i} p_{i}} \sum_{j=1}^{\boldsymbol{n}_{i}} \boldsymbol{I}_{i, j}=\frac{p_{i}}{1-\frac{\boldsymbol{n}_{i}}{N_{i}}} \frac{1}{N_{i} p_{i}} \sum_{j=1}^{\boldsymbol{n}} \boldsymbol{I}_{i, j} \rightarrow \frac{p \mathbb{E}\left[\boldsymbol{I}_{i}\right]}{1-p_{i}}, \quad N_{i} \rightarrow \infty
$$

Similar argument can also be applied to the cases with multiple risk groups. Therefore, our model is valid under the limiting case when loss amounts are either constants or random variables.

The limit s_{i} of S_{i}. Note that S_{i} is a function of random variables r_{i}, which is the random percentage of participants suffering the illness, given by the following equation

$$
S_{i}=\frac{w_{i} \sum_{j \in \mathcal{N}} l_{j} r_{j} I_{j}}{\sum_{j \in \mathcal{N}} l_{j}\left(1-r_{j}\right) w_{j}}, \quad \forall i \in \mathcal{N}
$$

Moreover, we have $r_{i}=\frac{\boldsymbol{n}_{i}}{N_{i}}$, where \boldsymbol{n}_{i} is the random number of illed participants, as illustrated in the Appendix. When the number of participants N_{i} goes infinity, $r_{i}=\frac{\boldsymbol{n}_{i}}{N_{i}}$ converges to p_{i} almost surely for all i. That is

$$
\operatorname{Pr}\left(\lim _{N_{i} \rightarrow \infty} r_{i}=p_{i}\right)=1
$$

We can also note that s_{i} is a function of p_{i}, which is expressed as

$$
s_{i}=\frac{w_{i} \sum_{j \in \mathcal{N}} l_{j} p_{j} I_{j}}{\sum_{j \in \mathcal{N}} l_{j}\left(1-p_{j}\right) w_{j}}, \quad \forall i \in \mathcal{N}
$$

We recall the continuous mapping theorem. Let $\left\{X_{n}\right\}$ and X be random variables and g be a continuous function with $\operatorname{Pr}\left(X \in D_{g}\right)=0$, where D_{g} is the set of discontinuity points. The continuous mapping theorem states that if $X_{n} \xrightarrow{\text { a.s. }} X$ then $g\left(X_{n}\right) \xrightarrow{\text { a.s. }} g(X)$. Consider the function $g_{i}\left(x_{1}, \ldots, x_{n}\right)=$ $\frac{w_{i} \sum_{j \in \mathcal{N}} l_{j} x_{j} I_{j}}{\sum_{j \in \mathcal{N}} l_{j}\left(1-x_{j}\right) w_{j}}$. We have $S_{i}=g_{i}\left(r_{1}, \ldots, r_{n}\right)$ and $s_{i}=g_{i}\left(p_{1}, \ldots, p_{n}\right)$. By the continuous mapping theorem, we have $S_{i} \xrightarrow{\text { a.s. }} s_{i}$, that is

$$
\operatorname{Pr}\left(\lim _{\forall N_{i} \rightarrow \infty} S_{i}=s_{i}\right)=1
$$

Proof of Equation (6). We assume that w_{i} is the weight factor of the type- i participants' payments. Thus, we have

$$
\frac{S_{i}}{S_{j}}=\frac{w_{i}}{w_{j}}, \quad \forall i, j \in \mathcal{N}
$$

Then, we let $S_{i}=\frac{w_{i}}{w_{1}} S_{1}$ and plug it into Equation (5) and obtain

$$
S_{1}=\frac{w_{1} \sum_{j \in \mathcal{N}} l_{j} r_{j} I_{j}}{\sum_{j \in \mathcal{N}} l_{j}\left(1-r_{j}\right) w_{j}} .
$$

Similarly, for all $i \in \mathcal{N}$, we have

$$
S_{i}=\frac{w_{i} \sum_{j \in \mathcal{N}} l_{j} r_{j} I_{j}}{\sum_{j \in \mathcal{N}} l_{j}\left(1-r_{j}\right) w_{j}} .
$$

Proof of (9). Under the equivalence principle, $p_{i} I_{i}=\left(1-p_{i}\right) s_{i}, i=1,2$. Under the uniform distribution, $F^{-1}(1-q)=(1-q) \bar{v}$. Then, Equation (1) can be reduced to

$$
p_{i} I_{i} \alpha+\beta=\left(1-l_{i}\right) \bar{v}, \quad i=1,2 .
$$

This reduction yields

$$
l_{1,1}=1-\frac{p_{1} I \alpha+\beta}{\bar{v}}, \quad l_{1,2}=1-\frac{p_{2} I \alpha+\beta}{\bar{v}} .
$$

Proof of Equations (10). Note that $s_{1}=s_{2}=\frac{p_{1} I_{1} l_{1}+p_{2} I_{2} l_{2}}{\left(1-p_{1}\right) l_{1}+\left(1-p_{2}\right) l_{2}}$. We consider two cases. In the first case, $\left(1-p_{2}\right) s_{2}(1+\alpha)+\beta-p_{2} I_{2} \leq \bar{v}$. In this case, not all type-2 participants participate in the plan. Thus, Equation (1) still holds. From Equation (1), we have

$$
\begin{aligned}
& \left(1-p_{1}\right)(1+\alpha) \frac{p_{1} I_{1} l_{1}+p_{2} I_{2} l_{2}}{\left(1-p_{1}\right) l_{1}+\left(1-p_{2}\right) l_{2}}+\beta-p_{1} I_{1}=\left(1-l_{1}\right) \bar{v} \\
& \left(1-p_{2}\right)(1+\alpha) \frac{p_{1} I_{1} l_{1}+p_{2} I_{2} l_{2}}{\left(1-p_{1}\right) l_{1}+\left(1-p_{2}\right) l_{2}}+\beta-p_{2} I_{2}=\left(1-l_{2}\right) \bar{v}
\end{aligned}
$$

After simplification, we have

$$
\begin{align*}
& \frac{\left(1-p_{1}\right)^{2}+\left(1-p_{2}\right)^{2}}{\left(1-p_{1}\right)} \bar{v} l_{1}^{2}+ \\
& {\left[\left(1-p_{1}\right)\left(p_{1} I \alpha+\beta-\bar{v}\right)+\left(1-p_{2}\right)\left(p_{2} I(1+\alpha)+\bar{v}-\beta+p_{2} I-\frac{1-p_{2}}{1-p_{1}}\left(\bar{v}-\beta+p_{1} I\right)\right)\right] l_{1}+} \\
& \frac{\left(1-p_{1}\right)}{\bar{v}}\left(p_{2} I(1+\alpha)-\frac{1-p_{2}}{1-p_{1}}\left(\bar{v}-\beta+p_{1} I\right)\right)\left(p_{2} I(1+\alpha)+\bar{v}-\beta+p_{2} I-\frac{1-p_{2}}{1-p_{1}}\left(\bar{v}-\beta+p_{1} I\right)\right)=0, \\
& \frac{\left(1-p_{1}\right)^{2}+\left(1-p_{2}\right)^{2}}{\left(1-p_{2}\right)} \bar{v} l_{2}^{2}+ \tag{2}\\
& {\left[\left(1-p_{2}\right)\left(p_{2} I \alpha+\beta-\bar{v}\right)+\left(1-p_{1}\right)\left(p_{1} I(1+\alpha)+\bar{v}-\beta+p_{1} I-\frac{1-p_{1}}{1-p_{2}}\left(\bar{v}-\beta+p_{2} I\right)\right)\right] l_{2}+} \\
& \frac{\left(1-p_{2}\right)}{\bar{v}}\left(p_{1} I(1+\alpha)-\frac{1-p_{1}}{1-p_{2}}\left(\bar{v}-\beta+p_{2} I\right)\right)\left(p_{1} I(1+\alpha)+\bar{v}-\beta+p_{1} I-\frac{1-p_{1}}{1-p_{2}}\left(\bar{v}-\beta+p_{2} I\right)\right)=0 .
\end{align*}
$$

Let

$$
\begin{gathered}
a_{1}=\frac{\left(1-p_{1}\right)^{2}+\left(1-p_{2}\right)^{2}}{\left(1-p_{1}\right)} \bar{v}, \\
b_{1}=\left(1-p_{1}\right)\left(p_{1} I \alpha+\beta-\bar{v}\right)+\left(1-p_{2}\right)\left(p_{2} I(1+\alpha)+\bar{v}-\beta+p_{2} I-\frac{1-p_{2}}{1-p_{1}}\left(\bar{v}-\beta+p_{1} I\right)\right), \\
c_{1}=\frac{\left(1-p_{1}\right)}{\bar{v}}\left(p_{2} I(1+\alpha)-\frac{1-p_{2}}{1-p_{1}}\left(\bar{v}-\beta+p_{1} I\right)\right)\left(p_{2} I(1+\alpha)+\bar{v}-\beta+p_{2} I-\frac{1-p_{2}}{1-p_{1}}\left(\bar{v}-\beta+p_{1} I\right)\right), \\
a_{2}=\frac{\left(1-p_{1}\right)^{2}+\left(1-p_{2}\right)^{2}}{\left(1-p_{2}\right)} \bar{v}, \\
b_{2}=\left(1-p_{2}\right)\left(p_{2} I \alpha+\beta-\bar{v}\right)+\left(1-p_{1}\right)\left(p_{1} I(1+\alpha)+\bar{v}-\beta+p_{1} I-\frac{1-p_{1}}{1-p_{2}}\left(\bar{v}-\beta+p_{2} I\right)\right)
\end{gathered}
$$

and

$$
c_{2}=\frac{\left(1-p_{2}\right)}{\bar{v}}\left(p_{1} I(1+\alpha)-\frac{1-p_{1}}{1-p_{2}}\left(\bar{v}-\beta+p_{2} I\right)\right)\left(p_{1} I(1+\alpha)+\bar{v}-\beta+p_{1} I-\frac{1-p_{1}}{1-p_{2}}\left(\bar{v}-\beta+p_{2} I\right)\right) .
$$

If $b_{1}^{2}<4 a_{1} c_{1}$ or $b_{2}^{2}<4 a_{2} c_{2}$, Equation (2) does not have real roots, indicating that population equilibrium cannot be reached. Thus, suppose that $b_{1}^{2} \geq 4 a_{1} c_{1}$ and $b_{2}^{2} \geq 4 a_{2} c_{2}$. By solving the above equations and omitting the negative roots, we obtain

$$
l_{2,1}=\frac{-b_{1}+\sqrt{b_{1}^{2}-4 a_{1} c_{1}}}{2 a_{1}}, \quad l_{2,2}=\frac{-b_{2}+\sqrt{b_{2}^{2}-4 a_{2} c_{2}}}{2 a_{3}} .
$$

In the second case, $\left(1-p_{2}\right) s_{2}(1+\alpha)+\beta-p_{2} I_{2}>\bar{v}$. In this case, all type-2 participants participate in the plan, i.e., $l_{2,2}=1$. Then, we have

$$
\begin{aligned}
&\left(1-p_{1}\right) \bar{v} l_{1}^{2}+\left(\left(1-p_{1}\right)\left(p_{1} I \alpha-\bar{v}+\beta\right)+\left(1-p_{2}\right) \bar{v}\right) l_{1}+ \\
&\left(1-p_{1}\right) p_{2} I(1+\alpha)-\left(1-p_{2}\right)\left(\bar{v}+p_{1} I-\beta\right)=0 .
\end{aligned}
$$

Let

$$
\begin{gathered}
a_{3}=\left(1-p_{1}\right) \bar{v} \\
b_{3}=\left(1-p_{1}\right)\left(p_{1} I \alpha-\bar{v}+\beta\right)+\left(1-p_{2}\right) \bar{v}
\end{gathered}
$$

and

$$
c_{3}=\left(1-p_{1}\right) p_{2} I(1+\alpha)-\left(1-p_{2}\right)\left(\bar{v}+p_{1} I-\beta\right) .
$$

We obtain

$$
l_{2,1}=\frac{-b_{3}+\sqrt{b_{3}^{2}-4 a_{3} c_{3}}}{2 a_{3}}, \quad l_{2,2}=1 .
$$

Proof of Theorem 1. According to problem (P1), we write the corresponding Lagrangian function \mathcal{L} as

$$
\mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\mu})=\sum_{i \in \mathcal{N}} \alpha_{i} l_{i} p_{i} I_{i}+\sum_{i \in \mathcal{N}} \beta_{i} l_{i}+\sum_{i \in \mathcal{N}} \lambda_{i} \alpha_{i}+\sum_{i \in \mathcal{N}} \mu_{i} \beta_{i}
$$

where $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ are KKT multipliers with $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$. According to the stationary condition, we calculate the derivatives of \mathcal{L} with respect to α_{i}, β_{i} and have

$$
\begin{gather*}
\frac{\partial \mathcal{L}}{\partial \alpha_{i}}=l_{i} p_{i} I_{i}+\alpha_{i} p_{i} I_{i} \frac{\partial l_{i}}{\partial \alpha_{i}}+\beta_{i} \frac{\partial l_{i}}{\partial \alpha_{i}}+\lambda_{i}=0, \quad \forall i \in \mathcal{N} \tag{3}\\
\frac{\partial \mathcal{L}}{\partial \beta_{i}}=\alpha_{i} p_{i} I_{i} \frac{\partial l_{i}}{\partial \beta_{i}}+\beta_{i} \frac{\partial l_{i}}{\partial \beta_{i}}+l_{i}+\mu_{i}=0, \quad \forall i \in \mathcal{N} \tag{4}
\end{gather*}
$$

From the complimentary slackness conditions, we have

$$
\begin{equation*}
\lambda_{i} \alpha_{i}=0, \quad \mu_{i} \beta_{i}=0, \quad \forall i \in \mathcal{N} \tag{5}
\end{equation*}
$$

and

$$
\lambda_{i} \geq 0, \quad \mu_{i} \geq 0, \quad \forall i \in \mathcal{N}
$$

Under the fair risk exchange scheme, we have $p_{i} I_{i}=\left(1-p_{i}\right) s_{i}$. The expression for l_{i} can be rewritten as

$$
l_{i}=m_{i}\left[1-F_{i}\left(\alpha_{i} p_{i} I_{i}+\beta_{i}\right)\right]
$$

Thus,

$$
\frac{\partial l_{i}}{\partial \alpha_{i}}=-m_{i} p_{i} I_{i} F_{i}^{\prime}\left(\alpha_{i} p_{i} I_{i}+\beta_{i}\right) \quad \frac{\partial l_{i}}{\partial \beta_{i}}=-m_{i} F_{i}^{\prime}\left(\alpha_{i} p_{i} I_{i}+\beta_{i}\right) \quad \forall i \in \mathcal{N}
$$

where F_{i}^{\prime} is the first-order derivative of F_{i}. Plugging into Equations (3) and (4) yields

$$
\begin{equation*}
l_{i} p_{i} I_{i}-m_{i} p_{i} I_{i}\left(\alpha_{i} p_{i} I_{i}+\beta_{i}\right) F_{i}^{\prime}\left(\alpha_{i} p_{i} I_{i}+\beta_{i}\right)+\lambda_{i}=0, \quad \forall i \in \mathcal{N} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
-m_{i}\left(\alpha_{i} p_{i} I_{i}+\beta_{i}\right) F_{i}^{\prime}\left(\alpha_{i} p_{i} I_{i}+\beta_{i}\right)+l_{i}+\mu_{i}=0, \quad \forall i \in \mathcal{N} \tag{7}
\end{equation*}
$$

Case (i): If $\alpha_{i}>0$ and $\beta_{i}>0$, we have $\lambda_{i}=\mu_{i}=0$. Both equations (6) and (7) generate

$$
\begin{equation*}
-m_{i}\left(\alpha_{i} p_{i} I_{i}+\beta_{i}\right) F_{i}^{\prime}\left(\alpha_{i} p_{i} I_{i}+\beta_{i}\right)+l_{i}=0 \tag{8}
\end{equation*}
$$

Note that $\alpha_{i} p_{i} I_{i}+\beta_{i}=F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)$ and

$$
\begin{aligned}
\frac{\mathrm{d} F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)}{\mathrm{d} l_{i}} & =-\frac{1}{m_{i}}\left[F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)\right]^{\prime} \\
& =-\frac{1}{m_{i} F_{i}^{\prime}\left(F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)\right)} \\
& =-\frac{1}{m_{i} F_{i}^{\prime}\left(\alpha_{i} p_{i} I_{i}+\beta_{i}\right)}
\end{aligned}
$$

Thus, from Equation (8), we have

$$
\begin{equation*}
F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)+l_{i} \frac{\mathrm{~d} F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)}{\mathrm{d} l_{i}}=0 . \tag{9}
\end{equation*}
$$

Thus, the optimal participant population $l_{i}{ }^{*}$ can be determined by

$$
\begin{equation*}
F_{i}^{-1}\left(1-\frac{l_{i}^{*}}{m_{i}}\right)+l_{i}^{*} \frac{\mathrm{~d} F_{i}^{-1}\left(1-\frac{l_{i}{ }^{*}}{m_{i}}\right)}{\mathrm{d} l_{i}{ }^{*}}=0 \tag{10}
\end{equation*}
$$

, and the optimal commission rate α_{i}^{*} and subscription β_{i}^{*} are provided by

$$
\begin{equation*}
\alpha_{i}^{*} p_{i} I_{i}+\beta_{i}^{*}=F_{i}^{-1}\left(1-\frac{l_{i}^{*}}{m_{i}}\right) . \tag{11}
\end{equation*}
$$

Case (ii): If $\alpha_{i}=0$ and $\beta_{i}>0$, then $\lambda_{i} \geq 0$ and $\mu_{i}=0$. From Equations (6) and (7), we have

$$
\begin{equation*}
-m_{i} \beta_{i} F_{i}^{\prime}\left(\beta_{i}\right)+l_{i}=-\frac{\lambda_{i}}{p_{i} I_{i}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
-m_{i} \beta_{i} F_{i}^{\prime}\left(\beta_{i}\right)+l_{i}=0 \tag{13}
\end{equation*}
$$

By comparing Equations (12) and (13), we have $\lambda_{i}=0$. Note that Equation (8) degenerates to Equation (13) when $\alpha_{i}=0$. Thus, Equation (10) still applies in this case, and Equation (11) is rewritten as

$$
\begin{equation*}
\beta_{i}^{*}=F_{i}^{-1}\left(1-\frac{l_{i}^{*}}{m_{i}}\right) . \tag{14}
\end{equation*}
$$

Case (iii): If $\alpha_{i}>0$ and $\beta_{i}=0$, we can still have $\lambda_{i}=0$ and $\mu_{i}=0$ by following similar steps as in case (ii). Therefore, we can have

$$
\begin{equation*}
\alpha_{i}^{*}=\frac{F_{i}^{-1}\left(1-\frac{l_{i}^{*}}{m_{i}}\right)}{p_{i} I_{i}} . \tag{15}
\end{equation*}
$$

Proof of Proposition 1. If $i=j$, the derivative of s_{i} with respect to l_{i} is given by

$$
\frac{\partial s_{i}}{\partial l_{i}}=w_{i} \frac{p_{i} I_{i}\left(\sum_{i \in \mathcal{N}} l_{i}\left(1-p_{i}\right) w_{i}\right)-\left(1-p_{i}\right) w_{i}\left(\sum_{i \in \mathcal{N}} l_{i} p_{i} I_{i}\right)}{\left(\sum_{i \in \mathcal{N}} l_{i}\left(1-p_{i}\right) w_{i}\right)^{2}}
$$

Let $\frac{\partial s_{i}}{\partial l_{i}}>0$, and we have

$$
p_{i} I_{i} \sum_{i \in \mathcal{N}} l_{i}\left(1-p_{i}\right) w_{i}-\left(1-p_{i}\right) w_{i} \sum_{i \in \mathcal{N}} l_{i} p_{i} I_{i}>0,
$$

which yields

$$
\frac{p_{i} I_{i}}{\left(1-p_{i}\right)}>\frac{w_{i} \sum_{i \in \mathcal{N}} l_{i} p_{i} I_{i}}{\sum_{i \in \mathcal{N}} l_{i}\left(1-p_{i}\right) w_{i}}=s_{i} .
$$

If $i \neq j$, the derivative of s_{i} with respect to l_{i} is given by

$$
\frac{\partial s_{i}}{\partial l_{j}}=w_{i} \frac{p_{j} I_{j}\left(\sum_{i \in \mathcal{N}} l_{i}\left(1-p_{i}\right) w_{i}\right)-\left(1-p_{j}\right) w_{j}\left(\sum_{i \in \mathcal{N}} l_{i} p_{i} I_{i}\right)}{\left(\sum_{i \in \mathcal{N}} l_{i}\left(1-p_{i}\right) w_{i}\right)^{2}}, \quad \text { for } i \neq j
$$

Let $\frac{\partial s_{i}}{\partial l_{j}}>0$, and we have

$$
p_{j} I_{j} \sum_{i \in \mathcal{N}} l_{i}\left(1-p_{i}\right) w_{i}-\left(1-p_{j}\right) w_{j} \sum_{i \in \mathcal{N}} l_{i} p_{i} I_{i}>0,
$$

which yields

$$
\frac{p_{j} I_{j}}{\left(1-p_{j}\right)}>\frac{w_{j} \sum_{i \in \mathcal{N}} l_{i} p_{i} I_{i}}{\sum_{i \in \mathcal{N}} l_{i}\left(1-p_{i}\right) w_{i}}=s_{j} .
$$

Proof of Proposition 2. We consider the following function:

$$
G_{i}\left(\alpha_{i}, \beta_{i}, \boldsymbol{l}\right)=\left(1-p_{i}\right)\left(1+\alpha_{i}\right) w_{i} \sum_{j \in \mathcal{N}} l_{j} p_{j} I_{j}-\left(F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)-\beta_{i}+p_{i} I_{i}\right) \sum_{j \in \mathcal{N}} l_{j}\left(1-p_{j}\right) w_{j}=0 .
$$

Calculating the derivative of G_{i} with respect to α_{i} yields

$$
\frac{\partial G_{i}}{\partial \alpha_{i}}=\left(1-p_{i}\right) w_{i} \sum_{j \in \mathcal{N}} l_{j} p_{j} I_{j}>0 .
$$

Calculating the derivative of G_{i} with respect to β_{i} gives

$$
\frac{\partial G_{i}}{\partial \beta_{i}}=\sum_{j \in \mathcal{N}} l_{j}\left(1-p_{j}\right) w_{j}>0 .
$$

Calculating the derivative of G_{i} with respect to l_{i} yields

$$
\begin{aligned}
\frac{\partial G_{i}}{\partial l_{i}} & =\left(1-p_{i}\right)\left(1+\alpha_{i}\right) w_{i} p_{i} I_{i}-\left(F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)-\beta_{i}+p_{i} I_{i}\right)\left(1-p_{i}\right) w_{i}-F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)^{\prime} \sum_{j \in \mathcal{N}} l_{j}\left(1-p_{j}\right) w_{j} \\
& =\left(1-p_{i}\right)\left(1+\alpha_{i}\right) w_{i}\left(p_{i} I_{i}-\left(1-p_{i}\right) s_{i}\right)-F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)^{\prime} \sum_{j \in \mathcal{N}} l_{j}\left(1-p_{j}\right) w_{j}
\end{aligned}
$$

Note that F_{i}^{-1} is an increasing function; thus, $F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)$ is a decreasing function of l_{i}. Therefore, we have $F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)^{\prime} \leq 0$, which leads to $\frac{\partial G_{i}}{\partial l_{i}}>0$, and we have

$$
\frac{\partial l_{i}}{\partial \alpha_{i}}=-\frac{\partial G_{i} / \partial \alpha_{i}}{\partial G_{i} / \partial l_{i}}<0 \quad \text { and } \quad \frac{\partial l_{i}}{\partial \beta_{i}}=-\frac{\partial G_{i} / \partial \beta_{i}}{\partial G_{i} / \partial l_{i}}<0
$$

Calculating the derivative of G_{i} with respect to $l_{j}(j \neq i)$ yields

$$
\begin{aligned}
\frac{\partial G_{i}}{\partial l_{j}} & =\left(1-p_{i}\right)\left(1+\alpha_{i}\right) w_{i} p_{j} I_{j}-\left(F_{i}^{-1}\left(1-\frac{l_{i}}{m_{i}}\right)-\beta_{i}+p_{i} I_{i}\right)\left(1-p_{j}\right) w_{j} \\
& =\left(1-p_{i}\right)\left(1+\alpha_{i}\right) w_{i}\left(p_{j} I_{j}-\left(1-p_{j}\right) s_{j}\right) .
\end{aligned}
$$

If $\frac{p_{j} I_{j}}{\left(1-p_{j}\right)} \geq s_{j}$, we have $\frac{\partial G_{i}}{\partial l_{j}} \geq 0$, which leads to

$$
\frac{\partial l_{j}}{\partial \alpha_{i}}=-\frac{\partial G_{i} / \partial \alpha_{i}}{\partial G_{i} / \partial l_{j}} \leq 0 \quad \text { and } \quad \frac{\partial l_{j}}{\partial \beta_{i}}=-\frac{\partial G_{i} / \partial \beta_{i}}{\partial G_{i} / \partial l_{j}} \leq 0
$$

If $\frac{p_{j} I_{j}}{\left(1-p_{j}\right)}<s_{j}$, we have $\frac{\partial G_{i}}{\partial l_{j}}<0$, which leads to

$$
\frac{\partial l_{j}}{\partial \alpha_{i}}=-\frac{\partial G_{i} / \partial \alpha_{i}}{\partial G_{i} / \partial l_{j}}>0 \quad \text { and } \quad \frac{\partial l_{j}}{\partial \beta_{i}}=-\frac{\partial G_{i} / \partial \beta_{i}}{\partial G_{i} / \partial l_{j}}>0
$$

Proof of Corollary 1. Calculating derivatives of both sides of Equation (19) with respect to p_{i} and I_{i}, respectively, yields

$$
\frac{\partial \alpha_{i}^{*}}{\partial p_{i}}=-\frac{F^{-1}\left(1-\frac{l_{i}^{*}}{m_{i}}\right)}{p_{i}^{2} I_{i}}, \quad \frac{\partial \alpha_{i}^{*}}{\partial I_{i}}=-\frac{F^{-1}\left(1-\frac{l_{i}^{*}}{m_{i}}\right)}{p_{i} I_{i}^{2}} .
$$

Note that $F^{-1}\left(1-\frac{l_{i}{ }^{*}}{m_{i}}\right) \geq 0$ since F^{-1} is a distribution function. Thus, we have

$$
\frac{\partial \alpha_{i}^{*}}{\partial p_{i}} \leq 0, \quad \frac{\partial \alpha_{i}^{*}}{\partial I_{i}} \leq 0
$$

Calculating derivatives of both sides of Equation (20) with respect to p_{i} and I_{i}, respectively, yields

$$
\frac{\partial \beta_{i}^{*}}{\partial p_{i}}=0, \quad \frac{\partial \beta_{i}^{*}}{\partial I_{i}}=0 .
$$

Proof of Theorem 2. From Equation (21), we have

$$
\begin{equation*}
l_{1}=m_{1}\left(1-\frac{\alpha p_{1} I_{1}+\beta}{\bar{v}_{1}}\right), \quad l_{2}=m_{2}\left(1-\frac{\alpha p_{2} I_{2}+\beta}{\bar{v}_{2}}\right) . \tag{16}
\end{equation*}
$$

Plugging them into Equation (22) yields
$\mathcal{L}=-\left(\frac{m_{1} p_{1}^{2} I_{1}^{2}}{\bar{v}_{1}}+\frac{m_{2} p_{2}^{2} I_{2}^{2}}{\bar{v}_{2}}\right) \alpha^{2}-2\left(\frac{m_{1} p_{1} I_{1}}{\bar{v}_{1}}+\frac{m_{2} p_{2} I_{2}}{\bar{v}_{2}}\right) \alpha \beta-\left(\frac{m_{1}}{\bar{v}_{1}}+\frac{m_{2}}{\bar{v}_{2}}\right) \beta^{2}+\left(m_{1} p_{1} I_{1}+m_{2} p_{2} I_{2}\right) \alpha+\left(m_{1}+m_{2}\right) \beta$.
Calculating the derivative of \mathcal{L} with respect to α and setting it to 0 yields

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \alpha}=-2\left(\frac{m_{1} p_{1}^{2} I_{1}^{2}}{\bar{v}_{1}}+\frac{m_{2} p_{2}^{2} I_{2}^{2}}{\bar{v}_{2}}\right) \alpha-2\left(\frac{m_{1} p_{1} I_{1}}{\bar{v}_{1}}+\frac{m_{2} p_{2} I_{2}}{\bar{v}_{2}}\right) \beta+\left(m_{1} p_{1} I_{1}+m_{2} p_{2} I_{2}\right)=0 . \tag{17}
\end{equation*}
$$

Calculating the derivative of \mathcal{L} with respect to β and setting it to 0 yields

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \beta}=-2\left(\frac{m_{1} p_{1} I_{1}}{\bar{v}_{1}}+\frac{m_{2} p_{2} I_{2}}{\bar{v}_{2}}\right) \alpha-2\left(\frac{m_{1}}{\bar{v}_{1}}+\frac{m_{2}}{\bar{v}_{2}}\right) \beta+\left(m_{1}+m_{2}\right)=0 . \tag{18}
\end{equation*}
$$

If $\left(\bar{v}_{1}-\bar{v}_{2}\right)\left(p_{1} I_{1}-p_{2} I_{2}\right)>0$ and $\left(p_{1} I_{1} / \bar{v}_{1}-p_{2} I_{2} / \bar{v}_{2}\right)\left(p_{1} I_{1}-p_{2} I_{2}\right)>0$, by solving Equations (17) and (18), we have

$$
\alpha^{*}=\frac{1}{2} \frac{\bar{v}_{1}-\bar{v}_{2}}{p_{1} I_{1}-p_{2} I_{2}}, \quad \beta^{*}=\frac{1}{2} \frac{p_{1} I_{1} \bar{v}_{2}-p_{2} I_{2} \bar{v}_{1}}{p_{1} I_{1}-p_{2} I_{2}} .
$$

If $\left(\bar{v}_{1}-\bar{v}_{2}\right)\left(p_{1} I_{1}-p_{2} I_{2}\right) \leq 0$ or $\left(p_{1} I_{1} / \bar{v}_{1}-p_{2} I_{2} / \bar{v}_{2}\right)\left(p_{1} I_{1}-p_{2} I_{2}\right) \leq 0\left(p_{1} I_{1} \neq p_{2} I_{2}\right)$, the optimal solution is on the boundary. We consider two cases: $\alpha=0$ or $\beta=0$. We find that the revenue reaches its maximum when $\alpha=0$ and have the optimal solution

$$
\alpha^{*}=0, \quad \beta^{*}=\frac{\bar{v}_{1} \bar{v}_{2}}{2} \frac{m_{1}+m_{2}}{m_{1} \bar{v}_{2}+m_{2} \bar{v}_{1}} .
$$

If $p_{1} I_{1}=p_{2} I_{2}$, we plug it into Equation (17) and have

$$
\alpha^{*} p_{1} I_{1}+\beta^{*}=\frac{\bar{v}_{1} \bar{v}_{2}}{2} \frac{m_{1}+m_{2}}{m_{1} \bar{v}_{2}+m_{2} \bar{v}_{1}} .
$$

If $\left(\bar{v}_{1}-\bar{v}_{2}\right)\left(p_{1} I_{1}-p_{2} I_{2}\right)>0$ and $\left(p_{1} I_{1} / \bar{v}_{1}-p_{2} I_{2} / \bar{v}_{2}\right)\left(p_{1} I_{1}-p_{2} I_{2}\right)>0$, plugging Equation (26) into Equation (16) yields

$$
l^{*}{ }_{1}=\frac{m_{1}}{2}, \quad l^{*}{ }_{2}=\frac{m_{2}}{2} .
$$

Otherwise, plugging Equation (28) into Equation (16) yields

$$
l^{*}{ }_{1}=\frac{m_{1}}{2}\left(1+\frac{m_{2}\left(\bar{v}_{1}-\bar{v}_{2}\right)}{m_{1} \bar{v}_{2}+m_{2} \bar{v}_{1}}\right), \quad l^{*}{ }_{2}=\frac{m_{2}}{2}\left(1+\frac{m_{1}\left(\bar{v}_{2}-\bar{v}_{1}\right)}{m_{1} \bar{v}_{2}+m_{2} \bar{v}_{1}}\right) .
$$

If $\left(\bar{v}_{1}-\bar{v}_{2}\right)\left(p_{1} I_{1}-p_{2} I_{2}\right)>0$ and $\left(p_{1} I_{1} / \bar{v}_{1}-p_{2} I_{2} / \bar{v}_{2}\right)\left(p_{1} I_{1}-p_{2} I_{2}\right)>0$, plugging Equation (29) into Equation (22) yields

$$
V_{o p t, 1}=\frac{m_{1} \bar{v}_{1}}{4}+\frac{m_{2} \bar{v}_{2}}{4} .
$$

Otherwise, plugging Equation (30) into Equation (22) yields

$$
V_{o p t, 2}=\frac{\bar{v}_{1} \bar{v}_{2}}{4} \frac{\left(m_{1}+m_{2}\right)^{2}}{m_{1} \bar{v}_{2}+m_{2} \bar{v}_{1}} .
$$

We have

$$
\begin{aligned}
V_{\text {opt }, 1}-V_{\text {opt }, 2} & =\frac{m_{1} \bar{v}_{1}}{4}+\frac{m_{2} \bar{v}_{2}}{4}-\frac{\bar{v}_{1} \bar{v}_{2}}{4} \frac{\left(m_{1}+m_{2}\right)^{2}}{m_{1} \bar{v}_{2}+m_{2} \bar{v}_{1}} \\
& =\frac{1}{4} \frac{m_{1}^{2} \bar{v}_{1} \bar{v}_{2}+m_{1} m_{2} \bar{v}_{1}^{2}+m_{1} m_{2} \bar{v}_{2}^{2}+m_{2}^{2} \bar{v}_{1} \bar{v}_{2}-m_{1}^{2} \bar{v}_{1} \bar{v}_{2}-2 m_{1} m_{2} \bar{v}_{1} \bar{v}_{2}-m_{2}^{2} \bar{v}_{1} \bar{v}_{2}}{m_{1} \bar{v}_{2}+m_{2} \bar{v}_{1}} \\
& =\frac{m_{1} m_{2}}{4} \frac{\left(\bar{v}_{1}+\bar{v}_{2}\right)^{2}}{m_{1} \bar{v}_{2}+m_{2} \bar{v}_{1}}>0 .
\end{aligned}
$$

[^0]: *Corresponding author. Tel.: +86 20 84110516; fax: +86 20 84114823. E-mail addresses: zengy36@mail.sysu.edu.cn.

