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Appendix A. Proofs of theorems and equations

The model under limiting case. Considering the limiting case is reasonable in mutual aid platform because

most mutual aid plans require at least one million participants. Some top mutual platforms have over 100

million participants (See table 1).

Table 1: Number of participants in mutual aid platforms

Platform Number of participants (million)

Xianghubao 104.7
Waterdrop Mutual Aid 103.1
Qingsong Mutual Aid 80.0

e Mutual Aid 3.4
Kangai Gongshe 2.6

The variance of the percentage of population suffering the illness is (1−p)p
1,000,000 , which is a relatively

small number compared to a percentage p. Thus, it is sufficient to consider the continuous model as the

limiting case. Therefore, equations in the model can be viewed as the limiting case as well. As discussed

above, we consider that our model in under the limiting case. Thus, li
mi

, which is the percentage of

participants who join the plan, is also under the limiting case. Recall that mi is the total mass of type-i

potential participants. If we restrict
∑n

i=1mi = 1, mi can be regarded as the proportion of type-i potential

participants among all participants. Suppose Ni,T is the population of type-i potential participants and

NT is the population of all potential participants. We further assume that Ni/Ni,T = li/mi, which means

the percentages of participants who join the plan among all type-i participants are the same under both

limiting case and non-limiting case. We further have

Ni,T

NT
→ mi as all Ni →∞. (1)
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Thus, the equation ∑
j∈N

(Ni − ni)Si =
∑
j∈N

niIi

can be revised as ∑
i∈N

Ni,T
li
mi

(
1− ni

Ni

)
Si =

∑
i∈N

Ni,T
li
mi

ni

Ni
Ii.

Dividing both sides of the equation by NT and taking the limit we have

∑
i∈N

mi
li
mi

(1− pi) si =
∑
i∈N

mi
li
mi
piIi,

which yields ∑
i∈N

li (1− pi) si =
∑
i∈N

lipiIi.

Therefore, we can consider our continuous model as the limiting case and expressions such as (1−pi)si
and lipiIi are used in our model. Our results are based on such modeling framework.

The generalization of the model. Our model is also valid under the limiting case when loss amounts and

benefit amounts are random variables rather than constants. Now we suppose that Xi are random

variables for all i. Then Xi=Ii are also random variables. Let Ii,j be the random loss of j-th participant

in the group-i. If we further assume that Ii,j are iid with finite second moment for all j = 1, . . . ,ni .

Then the total payment amount from type-i becomes
∑ni

j=1 Ii,j which is a compound rv with

E

 ni∑
j=1

Ii,j

 = E[ni]E[Ii] = NipiE[Ii]

V ar

 ni∑
j=1

Ii,j

 = NipiV ar(Ii) +Nipi(1− pI)E[Ii]
2 ≤ NipiE[I2i ].

Furthermore,

E

 1

Nipi

ni∑
j=1

Ii,j

 = E[Ii], V ar

 1

Nipi

ni∑
j=1

Ii,j

 ≤ E[I2i ]

Nipi
→ 0, Ni →∞.

By Chebyshev’s inequality, we have

Pr

∣∣∣∣∣∣ 1

Nipi

ni∑
j=1

Ii,j − E[Ii]

∣∣∣∣∣∣ ≥ c
 ≤ c−2V ar

 1

Nipi

ni∑
j=1

Ii,j

→ 0, ∀c > 0.
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Therefore, in one risk group case, we still have

Si =
1

Ni − ni

ni∑
j=1

Ii,j =
Nipi

Ni − ni

1

Nipi

ni∑
j=1

Ii,j =
pi

1− ni
Ni

1

Nipi

n∑
j=1

Ii,j →
pE[Ii]

1− pi
, Ni →∞.

Similar argument can also be applied to the cases with multiple risk groups. Therefore, our model is valid

under the limiting case when loss amounts are either constants or random variables.

The limit si of Si. Note that Si is a function of random variables ri, which is the random percentage of

participants suffering the illness, given by the following equation

Si =
wi
∑

j∈N ljrjIj∑
j∈N lj(1− rj)wj

, ∀i ∈ N .

Moreover, we have ri = ni
Ni

, where ni is the random number of illed participants, as illustrated in the

Appendix. When the number of participants Ni goes infinity, ri =
ni

Ni
converges to pi almost surely for

all i. That is

Pr

(
lim

Ni→∞
ri = pi

)
= 1.

We can also note that si is a function of pi, which is expressed as

si =
wi
∑

j∈N ljpjIj∑
j∈N lj(1− pj)wj

, ∀i ∈ N .

We recall the continuous mapping theorem. Let {Xn} and X be random variables and g be a con-

tinuous function with Pr(X ∈ Dg) = 0, where Dg is the set of discontinuity points. The continuous

mapping theorem states that if Xn
a.s.−−→ X then g(Xn)

a.s.−−→ g(X). Consider the function gi(x1, . . . , xn) =
wi
∑

j∈N ljxjIj∑
j∈N lj(1− xj)wj

. We have Si = gi(r1, . . . , rn) and si = gi(p1, . . . , pn). By the continuous mapping

theorem, we have Si
a.s.−−→ si,that is

Pr

(
lim
∀Ni→∞

Si = si

)
= 1.

Proof of Equation (6). We assume that wi is the weight factor of the type-i participants’ payments. Thus,

we have
Si
Sj

=
wi

wj
, ∀i, j ∈ N .

Then, we let Si = wi
w1
S1 and plug it into Equation (5) and obtain

S1 =
w1
∑

j∈N ljrjIj∑
j∈N lj(1− rj)wj

.
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Similarly, for all i ∈ N , we have

Si =
wi
∑

j∈N ljrjIj∑
j∈N lj(1− rj)wj

.

Proof of (9). Under the equivalence principle, piIi = (1− pi)si, i = 1, 2. Under the uniform distribution,

F−1(1− q) = (1− q)v̄. Then, Equation (1) can be reduced to

piIiα+ β = (1− li)v̄, i = 1, 2.

This reduction yields

l1,1 = 1− p1Iα+ β

v̄
, l1,2 = 1− p2Iα+ β

v̄
.

Proof of Equations (10). Note that s1 = s2 = p1I1l1+p2I2l2
(1−p1)l1+(1−p2)l2 . We consider two cases. In the first case,

(1 − p2)s2(1 + α) + β − p2I2 ≤ v̄. In this case, not all type-2 participants participate in the plan. Thus,

Equation (1) still holds. From Equation (1), we have

(1− p1)(1 + α)
p1I1l1 + p2I2l2

(1− p1)l1 + (1− p2)l2
+ β − p1I1 = (1− l1)v̄,

(1− p2)(1 + α)
p1I1l1 + p2I2l2

(1− p1)l1 + (1− p2)l2
+ β − p2I2 = (1− l2)v̄.

After simplification, we have

(1− p1)2 + (1− p2)2

(1− p1)
v̄l1

2+[
(1− p1)(p1Iα+ β − v̄) + (1− p2)

(
p2I(1 + α) + v̄ − β + p2I −

1− p2
1− p1

(v̄ − β + p1I)
)]
l1+

(1− p1)
v̄

(
p2I(1 + α)− 1− p2

1− p1
(v̄ − β + p1I)

)(
p2I(1 + α) + v̄ − β + p2I −

1− p2
1− p1

(v̄ − β + p1I)
)

= 0,

(1− p1)2 + (1− p2)2

(1− p2)
v̄l2

2+[
(1− p2)(p2Iα+ β − v̄) + (1− p1)

(
p1I(1 + α) + v̄ − β + p1I −

1− p1
1− p2

(v̄ − β + p2I)
)]
l2+

(1− p2)
v̄

(
p1I(1 + α)− 1− p1

1− p2
(v̄ − β + p2I)

)(
p1I(1 + α) + v̄ − β + p1I −

1− p1
1− p2

(v̄ − β + p2I)
)

= 0.

(2)
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Let

a1 =
(1− p1)2 + (1− p2)2

(1− p1)
v̄,

b1 = (1− p1)(p1Iα+ β − v̄) + (1− p2)
(
p2I(1 + α) + v̄ − β + p2I −

1− p2
1− p1

(v̄ − β + p1I)
)
,

c1 =
(1− p1)

v̄

(
p2I(1 + α)− 1− p2

1− p1
(v̄ − β + p1I)

)(
p2I(1 + α) + v̄ − β + p2I −

1− p2
1− p1

(v̄ − β + p1I)
)
,

a2 =
(1− p1)2 + (1− p2)2

(1− p2)
v̄,

b2 = (1− p2)(p2Iα+ β − v̄) + (1− p1)
(
p1I(1 + α) + v̄ − β + p1I −

1− p1
1− p2

(v̄ − β + p2I)
)

and

c2 =
(1− p2)

v̄

(
p1I(1 + α)− 1− p1

1− p2
(v̄ − β + p2I)

)(
p1I(1 + α) + v̄ − β + p1I −

1− p1
1− p2

(v̄ − β + p2I)
)
.

If b21 < 4a1c1 or b22 < 4a2c2, Equation (2) does not have real roots, indicating that population equilibrium

cannot be reached. Thus, suppose that b21 ≥ 4a1c1 and b22 ≥ 4a2c2. By solving the above equations and

omitting the negative roots, we obtain

l2,1 =
−b1 +

√
b21 − 4a1c1

2a1
, l2,2 =

−b2 +
√
b22 − 4a2c2

2a3
.

In the second case, (1 − p2)s2(1 + α) + β − p2I2 > v̄. In this case, all type-2 participants participate in

the plan, i.e., l2,2 = 1. Then, we have

(1− p1)v̄l12 + ((1− p1)(p1Iα− v̄ + β) + (1− p2)v̄)l1+

(1− p1)p2I(1 + α)− (1− p2)(v̄ + p1I − β) = 0.

Let

a3 = (1− p1)v̄,

b3 = (1− p1)(p1Iα− v̄ + β) + (1− p2)v̄

and

c3 = (1− p1)p2I(1 + α)− (1− p2)(v̄ + p1I − β).

We obtain

l2,1 =
−b3 +

√
b23 − 4a3c3

2a3
, l2,2 = 1.
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Proof of Theorem 1. According to problem (P1), we write the corresponding Lagrangian function L as

L(α,β,λ,µ) =
∑
i∈N

αilipiIi +
∑
i∈N

βili +
∑
i∈N

λiαi +
∑
i∈N

µiβi,

where λ and µ are KKT multipliers with λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn). According to the

stationary condition, we calculate the derivatives of L with respect to αi, βi and have

∂L
∂αi

= lipiIi + αipiIi
∂li
∂αi

+ βi
∂li
∂αi

+ λi = 0, ∀i ∈ N , (3)

∂L
∂βi

= αipiIi
∂li
∂βi

+ βi
∂li
∂βi

+ li + µi = 0, ∀i ∈ N . (4)

From the complimentary slackness conditions, we have

λiαi = 0, µiβi = 0, ∀i ∈ N , (5)

and

λi ≥ 0, µi ≥ 0, ∀i ∈ N .

Under the fair risk exchange scheme, we have piIi = (1− pi)si. The expression for li can be rewritten as

li = mi

[
1− Fi

(
αipiIi + βi

)]
.

Thus,
∂li
∂αi

= −mipiIiF
′
i

(
αipiIi + βi

) ∂li
∂βi

= −miF
′
i

(
αipiIi + βi

)
∀i ∈ N ,

where F ′i is the first-order derivative of Fi. Plugging into Equations (3) and (4) yields

lipiIi −mipiIi(αipiIi + βi)F
′
i

(
αipiIi + βi

)
+ λi = 0, ∀i ∈ N (6)

and

−mi(αipiIi + βi)F
′
i

(
αipiIi + βi

)
+ li + µi = 0, ∀i ∈ N . (7)

Case (i): If αi > 0 and βi > 0, we have λi = µi = 0. Both equations (6) and (7) generate

−mi(αipiIi + βi)F
′
i

(
αipiIi + βi

)
+ li = 0. (8)
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Note that αipiIi + βi = F−1i

(
1− li

mi

)
and

dF−1i

(
1− li

mi

)
dli

= − 1

mi

[
F−1i

(
1− li

mi

)]′
= − 1

miF ′i

(
F−1i

(
1− li

mi

))
= − 1

miF ′i
(
αipiIi + βi)

.

Thus, from Equation (8), we have

F−1i

(
1− li

mi

)
+ li

dF−1i

(
1− li

mi

)
dli

= 0. (9)

Thus, the optimal participant population li
∗ can be determined by

F−1i

(
1− li

∗

mi

)
+ li

∗
dF−1i

(
1− li

∗

mi

)
dli∗

= 0 (10)

, and the optimal commission rate α∗i and subscription β∗i are provided by

α∗i piIi + β∗i = F−1i

(
1− li

∗

mi

)
. (11)

Case (ii): If αi = 0 and βi > 0, then λi ≥ 0 and µi = 0. From Equations (6) and (7), we have

−miβiF
′
i

(
βi
)

+ li = − λi
piIi

(12)

and

−miβiF
′
i

(
βi
)

+ li = 0 (13)

By comparing Equations (12) and (13), we have λi = 0. Note that Equation (8) degenerates to Equation

(13) when αi = 0. Thus, Equation (10) still applies in this case, and Equation (11) is rewritten as

β∗i = F−1i

(
1− li

∗

mi

)
. (14)

Case (iii): If αi > 0 and βi = 0, we can still have λi = 0 and µi = 0 by following similar steps as in case

(ii). Therefore, we can have

α∗i =
F−1i

(
1− li

∗

mi

)
piIi

. (15)
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Proof of Proposition 1. If i = j, the derivative of si with respect to li is given by

∂si
∂li

= wi
piIi(

∑
i∈N li(1− pi)wi)− (1− pi)wi(

∑
i∈N lipiIi)

(
∑

i∈N li(1− pi)wi)2
.

Let ∂si
∂li

> 0, and we have

piIi
∑
i∈N

li(1− pi)wi − (1− pi)wi

∑
i∈N

lipiIi > 0,

which yields
piIi

(1− pi)
>

wi
∑

i∈N lipiIi∑
i∈N li(1− pi)wi

= si.

If i 6= j, the derivative of si with respect to li is given by

∂si
∂lj

= wi
pjIj(

∑
i∈N li(1− pi)wi)− (1− pj)wj(

∑
i∈N lipiIi)

(
∑

i∈N li(1− pi)wi)2
, for i 6= j.

Let ∂si
∂lj

> 0, and we have

pjIj
∑
i∈N

li(1− pi)wi − (1− pj)wj

∑
i∈N

lipiIi > 0,

which yields
pjIj

(1− pj)
>

wj
∑

i∈N lipiIi∑
i∈N li(1− pi)wi

= sj .

Proof of Proposition 2. We consider the following function:

Gi(αi, βi, l) = (1− pi)(1 + αi)wi

∑
j∈N

ljpjIj −
(
F−1i

(
1− li

mi

)
− βi + piIi

)∑
j∈N

lj(1− pj)wj = 0.

Calculating the derivative of Gi with respect to αi yields

∂Gi

∂αi
= (1− pi)wi

∑
j∈N

ljpjIj > 0.
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Calculating the derivative of Gi with respect to βi gives

∂Gi

∂βi
=
∑
j∈N

lj(1− pj)wj > 0.

Calculating the derivative of Gi with respect to li yields

∂Gi

∂li
= (1− pi)(1 + αi)wipiIi −

(
F−1i

(
1− li

mi

)
− βi + piIi

)
(1− pi)wi − F−1i

(
1− li

mi

)′∑
j∈N

lj(1− pj)wj

= (1− pi)(1 + αi)wi(piIi − (1− pi)si)− F−1i

(
1− li

mi

)′∑
j∈N

lj(1− pj)wj .

Note that F−1i is an increasing function; thus, F−1i

(
1− li

mi

)
is a decreasing function of li. Therefore, we

have F−1i

(
1− li

mi

)′
≤ 0, which leads to ∂Gi

∂li
> 0, and we have

∂li
∂αi

= −∂Gi/∂αi

∂Gi/∂li
< 0 and

∂li
∂βi

= −∂Gi/∂βi
∂Gi/∂li

< 0.

Calculating the derivative of Gi with respect to lj (j 6= i) yields

∂Gi

∂lj
= (1− pi)(1 + αi)wipjIj −

(
F−1i

(
1− li

mi

)
− βi + piIi

)
(1− pj)wj

= (1− pi)(1 + αi)wi(pjIj − (1− pj)sj).

If
pjIj

(1−pj) ≥ sj , we have ∂Gi
∂lj
≥ 0, which leads to

∂lj
∂αi

= −∂Gi/∂αi

∂Gi/∂lj
≤ 0 and

∂lj
∂βi

= −∂Gi/∂βi
∂Gi/∂lj

≤ 0.

If
pjIj

(1−pj) < sj , we have ∂Gi
∂lj

< 0, which leads to

∂lj
∂αi

= −∂Gi/∂αi

∂Gi/∂lj
> 0 and

∂lj
∂βi

= −∂Gi/∂βi
∂Gi/∂lj

> 0.

Proof of Corollary 1. Calculating derivatives of both sides of Equation (19) with respect to pi and Ii,

respectively, yields

∂α∗i
∂pi

= −
F−1

(
1− li

∗

mi

)
p2i Ii

,
∂α∗i
∂Ii

= −
F−1

(
1− li

∗

mi

)
piI2i

.
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Note that F−1
(

1− li
∗

mi

)
≥ 0 since F−1 is a distribution function. Thus, we have

∂α∗i
∂pi
≤ 0,

∂α∗i
∂Ii
≤ 0.

Calculating derivatives of both sides of Equation (20) with respect to pi and Ii, respectively, yields

∂β∗i
∂pi

= 0,
∂β∗i
∂Ii

= 0.

Proof of Theorem 2. From Equation (21), we have

l1 = m1

(
1− αp1I1 + β

v̄1

)
, l2 = m2

(
1− αp2I2 + β

v̄2

)
. (16)

Plugging them into Equation (22) yields

L = −
(
m1p

2
1I

2
1

v̄1
+
m2p

2
2I

2
2

v̄2

)
α2−2

(
m1p1I1
v̄1

+
m2p2I2
v̄2

)
αβ−

(
m1

v̄1
+
m2

v̄2

)
β2+(m1p1I1+m2p2I2)α+(m1+m2)β.

Calculating the derivative of L with respect to α and setting it to 0 yields

∂L
∂α

= −2

(
m1p

2
1I

2
1

v̄1
+
m2p

2
2I

2
2

v̄2

)
α− 2

(
m1p1I1
v̄1

+
m2p2I2
v̄2

)
β + (m1p1I1 +m2p2I2) = 0. (17)

Calculating the derivative of L with respect to β and setting it to 0 yields

∂L
∂β

= −2

(
m1p1I1
v̄1

+
m2p2I2
v̄2

)
α− 2

(
m1

v̄1
+
m2

v̄2

)
β + (m1 +m2) = 0. (18)

If (v̄1− v̄2)(p1I1− p2I2) > 0 and (p1I1/v̄1− p2I2/v̄2)(p1I1− p2I2) > 0, by solving Equations (17) and (18),

we have

α∗ =
1

2

v̄1 − v̄2
p1I1 − p2I2

, β∗ =
1

2

p1I1v̄2 − p2I2v̄1
p1I1 − p2I2

.

If (v̄1− v̄2)(p1I1− p2I2) ≤ 0 or (p1I1/v̄1− p2I2/v̄2)(p1I1− p2I2) ≤ 0 (p1I1 6= p2I2), the optimal solution is

on the boundary. We consider two cases: α = 0 or β = 0. We find that the revenue reaches its maximum

when α = 0 and have the optimal solution

α∗ = 0, β∗ =
v̄1v̄2

2

m1 +m2

m1v̄2 +m2v̄1
.
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If p1I1 = p2I2, we plug it into Equation (17) and have

α∗p1I1 + β∗ =
v̄1v̄2

2

m1 +m2

m1v̄2 +m2v̄1
.

If (v̄1 − v̄2)(p1I1 − p2I2) > 0 and (p1I1/v̄1 − p2I2/v̄2)(p1I1 − p2I2) > 0, plugging Equation (26) into

Equation (16) yields

l∗1 =
m1

2
, l∗2 =

m2

2
.

Otherwise, plugging Equation (28) into Equation (16) yields

l∗1 =
m1

2

(
1 +

m2(v̄1 − v̄2)
m1v̄2 +m2v̄1

)
, l∗2 =

m2

2

(
1 +

m1(v̄2 − v̄1)
m1v̄2 +m2v̄1

)
.

If (v̄1− v̄2)(p1I1−p2I2) > 0 and (p1I1/v̄1−p2I2/v̄2)(p1I1−p2I2) > 0, plugging Equation (29) into Equation

(22) yields

Vopt,1 =
m1v̄1

4
+
m2v̄2

4
.

Otherwise, plugging Equation (30) into Equation (22) yields

Vopt,2 =
v̄1v̄2

4

(m1 +m2)
2

m1v̄2 +m2v̄1
.

We have

Vopt,1 − Vopt,2 =
m1v̄1

4
+
m2v̄2

4
− v̄1v̄2

4

(m1 +m2)
2

m1v̄2 +m2v̄1

=
1

4

m2
1v̄1v̄2 +m1m2v̄

2
1 +m1m2v̄

2
2 +m2

2v̄1v̄2 −m2
1v̄1v̄2 − 2m1m2v̄1v̄2 −m2

2v̄1v̄2
m1v̄2 +m2v̄1

=
m1m2

4

(v̄1 + v̄2)
2

m1v̄2 +m2v̄1
> 0.
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