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Abstract. We present proofs of the results formulated and discussed in the main

body of the article, together with accompanying technical lemmas and their proofs.

S.1 Proofs

To prove Theorem 2.1, we need a lemma.

Lemma S.1.1. Suppose that conditions (C1) and (D1) are satisfied. Then for k1,n and k2,n

defined by equations (2.4), we have

P
(
Ykj,n:n /∈ Wε

)
→ 0, j ∈ {1, 2}, (S.1)

when n→∞, where

Wε =
(
VaRp−ε(Y ),V@Rp+ε(Y )

)
. (S.2)
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Proof. We only prove statement (S.1) for k2,n because analogous arguments work for k1,n as

well. We start with the equation

P
(
Yk2,n:n /∈ Wε

)
= P

(
Yk2,n:n ≤ VaRp−ε(Y )

)
+ P

(
Yk2,n:n ≥ V@Rp+ε(Y )

)
. (S.3)

We shall next show that

P
(
Yk2,n:n ≤ VaRp−ε(Y )

)
→ 0 (S.4)

when n→∞, and analogous arguments can be used to show that the right-most probability

in equation (S.3) also converges to 0. Hence, we shall only prove statement (S.4) and start

with

P
(
Yk2,n:n ≤ VaRp−ε(Y )

)
= P

(
#{i : Yi ≤ VaRp−ε(Y )} ≥ k2,n

)
= P

(
nGn(VaRp−ε(Y )) ≥ [n(p+ ∆2,n)]

)
≤ P

(
nGn(VaRp−ε(Y )) ≥ n(p+ ∆2,n)− 1

)
= P

(
Gn(VaRp−ε(Y )) ≥ (p+ ∆2,n)− 1/n

)
≤ P

(
G(VaRp−ε(Y )) ≥ (p+ ∆2,n)− κn − 1/n

)
, (S.5)

where

κn = sup
y∈R
|Gn(y)−G(y)|.

By the Glivenko-Cantelli theorem, κn converges to 0 almost surely, and hence in probability.

By condition (D1), ∆2,n converges to 0. Consequently, the right-hand side of bound (S.5)

converges to 0 because G(VaRp−ε(Y )) < p due to G being strictly increasing to the left of

VaRp(Y ) (see Figure 2.1). This finishes the proof of Lemma S.1.1.

Proof of Theorem 2.1. For any δ > 0, Lemma S.1.1 implies that, when n→∞,

P
(∣∣EARp,n − EARp(X | Y )

∣∣ > δ
)

=

∫∫
Wε×Wε

Π(y1, y2)dFk1,n,k2,n(y1, y2) + o(1) (S.6)

where Fk1,n,k2,n denotes the joint cdf of the order statistics Yk1,n−1:n and Yk2,n+1:n, and

Π(y1, y2) = P
(∣∣EARp,n − EARp(X | Y )

∣∣ > δ | Yk1,n−1:n = y1, Yk2,n+1:n = y2

)
.
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We have the bound

Π(y1, y2) ≤ P
(∣∣∣EARp,n − E

(
X | Y ∈ (y1, y2]

)∣∣∣ > δ/2 | Yk1,n−1:n = y1, Yk2,n+1:n = y2

)
+ P

(∣∣∣E(X | Y ∈ (y1, y2]
)
− EARp(X | Y )

∣∣∣ > δ/2 | Yk1,n−1:n = y1, Yk2,n+1:n = y2

)
.

(S.7)

No matter what y1, y2 ∈ Wε are, as long as ε > 0 is sufficiently small, the event inside the

right-most probability is impossible due to the continuity of the regression function g in a

neighborhood of VaRp(Y ). Hence, the aforementioned probability vanishes. We are left to

show that the penultimate probability on the right-hand side of bound (S.7) converges to 0

for all y1, y2 ∈ Wε. The Lebesgue dominated convergence theorem will then finish the proof

that the integral on the right-hand side of equation (S.6) converges to 0.

To better understand the event inside the penultimate probability on the right-hand side

of bound (S.7), we write

EARp,n − E
(
X | Y ∈ (y1, y2]

)
=

1

k2,n − k1,n + 1

k2,n∑
i=k1,n

(
Xi,n − E

(
X | Y ∈ (y1, y2]

))
. (S.8)

Conditionally on Yk1,n−1:n = y1 and Yk2,n+1:n = y2, the order statistics Yk1,n:n, . . . , Yk2,n:n

are distributed (e.g., Arnold et al., 2008; David and Nagaraja, 2003) as the order statistics

Ỹ1:k2,n−k1,n+1, . . . , Ỹk2,n−k1,n+1:k2,n−k1,n+1 of a sample Ỹ1, . . . , Ỹk2,n−k1,n+1 of size (k2,n − k1,n + 1)

from the distribution

G̃(y) =


0, y < y1,

G(y)−G(y1)
G(y2)−G(y1)

, y1 ≤ y < y2,

1, y ≥ y2.

(S.9)

The following two notes give technical insights into the definition of G̃ and in this way facilitate

further steps that will complete the proof of Theorem 2.1.

Note S.1.1 (Ignoring the gap). It is possible that there can be a region inside the interval

Wε (recall its definition (S.2)) where the cdf G is horizontal (see Figure 2.1). If both y1 and

y2 fall into the region, then G(y2) − G(y1) = 0 and thus an issue with the definition of G̃

arises. However, this is not a problem because when G(y2)−G(y1) = 0, the random variable

Y does not (almost surely) place any points between y1 and y2, and such cases can therefore

be ignored. Indeed, conditional expectations are always defined up to sets of measure 0.
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Note S.1.2 (Sewing the gap). In the previous note we argued that the gap
(
VaRp(Y ),V@Rp(Y )

)
in the distribution of Y -values can be ignored. An alternative approach would be to “sew”

the gap, which means replacing the original random variables Yi by

Y sewn
i = Yi1{Yi≤VaRp(Y )} + (Yi − Ap)1{Yi>V@Rp(Y )},

where the size of the gap Ap is defined by

Ap = V@Rp(Y )− VaRp(Y ).

Obviously, if Ap = 0, then Y sewn
i = Yi, but irrespective of whether Ap = 0 or Ap > 0, the

cdf of Y sewn
i is strictly increasing in a neighbourhood of VaRp(Y ). It remains to observe that

the order statistics arising from Y sewn
i ’s are the same as those arising from Yi’s, and so when

instead of the original pairs (Xi, Yi) we work with the pairs (Xi, Y
sewn
i ), i = 1, . . . , n, the gap-

related issues disappear, because the gap vanishes, while all the concomitant-based estimators

remain the same.

Continuing the proof of Theorem 2.1, we note that the random variables Xk1,n,n, . . . , Xk2,n,n

are distributed as concomitants corresponding to the order statistics Yk1,n:n, . . . , Yk2,n:n. Hence,

conditionally on Yk1,n−1:n = y1 and Yk2,n+1:n = y2, the right-hand side of equation (S.8) is

distributed as the average of centered i.i.d. random variables. We can now streamline the rest

of the proof.

Let Zk1,n , . . . , Zk2,n be independent copies of a random variable Z whose cdf FZ(x) =

P(Z ≤ x) is given by

FZ(x) = P
(
X ≤ x | Y ∈ (y1, y2]

)
. (S.10)

For any fixed y1, y2 ∈ Wε and conditionally on Yk1,n−1:n = y1 and Yk2,n+1:n = y2, the right-hand

side of equation (S.8) has the same distribution as

ζn :=

k2,n∑
i=k1,n

ξi,n,

where

ξi,n =
Zi − E(Zi)

k2,n − k1,n + 1
.

We have an array ξk1,n,n, . . . , ξk2,n,n, n ≥ 1, of random variables, which are independent for

every given n, and they are all identically distributed irrespective of n. Hence, when n changes,
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only the number k2,n− k1,n + 1 of random variables changes, but not their distributions. Note

that by condition (D2), we have

k2,n − k1,n + 1 = [n(p+ ∆2,n)]− [n(p−∆1,n)] + 1

∼ n
(
∆2,n + ∆1,n

)
→∞

when n→∞. Our task becomes to show that, when n→∞,

ζn
P→ 0. (S.11)

For this, we follow the arguments of Borovkov (1988, pp. 217–219).

We first split each summand of ζn into two parts: ξi,n = ξ′i,n+ξ′′i,n, where ξ′i,n = ξi,n1{|ξi,n|≤1}

and ξ′′i,n = ξi,n1{|ξi,n|>1}. Hence,

ζn = ζ ′n + ζ ′′n :=

k2,n∑
i=k1,n

ξ′i,n +

k2,n∑
i=k1,n

ξ′′i,n

and so

E(|ζn|) ≤ E(|ζ ′n − Eζ ′n|) + E(|ζ ′′n − Eζ ′′n|)

≤
√
V(ζ ′n) + 2E(|ζ ′′n|)

≤

√√√√ k2,n∑
i=k1,n

E((ξ′i,n)2) + 2

k2,n∑
i=k1,n

E(|ξ′′i,n|)

≤
√
Dn + 2Dn, (S.12)

where

Dn =

k2,n∑
i=k1,n

E
(
|ξ′i,n|

)
+

k2,n∑
i=k1,n

E
(
(ξ′′i,n)2

)
=

k2,n∑
i=k1,n

E
(

min
{
|ξi,n|, ξ2

i,n

})
.
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For any 0 < λ ≤ 1, we write

Dn ≤
k2,n∑
i=k1,n

E
(
|ξi,n|1{|ξi,n|>λ}

)
+

k2,n∑
i=k1,n

E
(
ξ2
i,n1{|ξi,n|≤λ}

)

≤
k2,n∑
i=k1,n

E
(
|ξi,n|1{|ξi,n|>λ}

)
+ λ

k2,n∑
i=k1,n

E
(
|ξi,n|1{|ξi,n|≤λ}

)
. (S.13)

Taking into account that ξk1,n,n, . . . , ξk2,n,n are identically distributed, we estimate the

second sum on the right-hand side of bound (S.13) as follows:

k2,n∑
i=k1,n

E
(
|ξi,n|1{|ξi,n|≤λ}

)
≤ (k2,n − k1,n + 1)E(|ξk1,n,n|)

= E(|Z − EZ|)

≤ 2E(|Z|)

= 2E
(
X | Y ∈ (y1, y2]

)
. (S.14)

Since y1, y2 ∈ Wε, condition (C2) implies that the right-hand side of (S.14) does not exceed a

constant that does not depend on the individual pairs (y1, y2), although possibly depend on

the neighbourhood Wε. Since λ > 0 can be made as small as needed, we can make the second

sum on the right-hand side of bound (S.13) as small as needed.

As for the first sum on the right-hand side of bound (S.13), we write the equation

k2,n∑
i=k1,n

E
(
|ξi,n|1{|ξi,n|>λ}

)
= E

(
|Z − EZ|1{|Z−EZ|>(k2,n−k1,n+1)λ}

)
. (S.15)

Since E(|Z|) is bounded by a finite constant that does not depend on the points (y1, y2) ∈ Wε

due to continuity of g in the neighbourhood Wε, and since (k2,n − k1,n + 1) tends to ∞, the

expectation on the right-hand side of equation (S.15) converges to 0 when n→∞.

Hence, by letting n → ∞, the first sum on the right-hand side of bound (S.13) asymp-

totically vanishes, and then by letting 0 < λ → 0, the second sum on the right-hand side of

bound (S.13) asymptotically vanishes as well. Consequently, Dn → 0 when n → ∞, and so

bound (S.12) implies E(|ζn|) → 0 when n → ∞. We can now use the Markov inequality to

conclude the proof of statement (S.11) and in this way finish the proof of Theorem 2.1.

Before we commence the proof of Theorem 2.2, we need a lemma.
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Lemma S.1.2. Suppose that conditions (C1) and (D1)–(D2) are satisfied. Then for every

ε > 0 we can find a constant C > 0 such that

P
(
Ykj,n:n /∈ WC∆n

)
≤ ε, j ∈ {1, 2}, (S.16)

for all sufficiently large n, where k1,n and k2,n are defined by equations (2.4), and the interval

WC∆n is given by equation (S.2) but with ε replaced by C∆n, where

∆n = ∆1,n + ∆2,n

Proof. We shall only prove statement (S.16) for j = 1, as the proof for j = 2 is analogous.

We have

P
(
Yk1,n:n /∈ WC∆n

)
= P

(
Yk1,n:n ≤ VaRp−C∆n(Y )

)
+ P

(
Yk1,n:n ≥ V@Rp+C∆n(Y )

)
. (S.17)

We shall only prove that the first probability on the right-hand side of equation (S.17) does

not exceed ε for all sufficiently large constants C, as the same holds for the second probability.

We have

P
(
Yk1,n:n ≤ VaRp−C∆n(Y )

)
= P

(
Uk1,n:n ≤ G(VaRp−C∆n(Y ))

)
, (S.18)

where Uk1,n:n is the uniform on [0, 1] order statistic such that Yk1,n:n on the original probability

space (Ω,A,P) has the same distribution as G−1(Uk1,n:n) on a possibly different probability

space (Ω∗,A∗,P∗), but we skip the asterisk from P∗ for simplicity. Due to condition (C1), we

have G(VaRp−C∆n(Y )) = p− C∆n for all sufficiently large n. We are thus left to verify

P
(
Uk1,n:n ≤ p− C∆n

)
≤ ε. (S.19)

With p1,n := E(Uk1,n:n), which is equal to k1,n/(n+ 1), we have

P(Uk1,n:n ≤ p− C∆n) = P(Uk1,n:n − p1,n ≤ p− p1,n − C∆n).
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Since

0 < p− p1,n = p− [n(p−∆1,n)]

n+ 1

≤ p− n(p−∆1,n)− 1

n+ 1

= ∆1,n +
p−∆1,n + 1

n+ 1

≤ ∆n + 2n−1

≤ 3∆n

for all sufficiently large n, we have the bound

P(Uk1,n:n ≤ p− C∆n) ≤ P(Uk1,n:n − p1,n ≤ −(C − 3)∆n).

Since without loss of generality we can choose C > 3, with the help of the Chebyshev inequality

and the formula

V
(
Uk1,n:n

)
=
p1,n(1− p1,n)

n+ 2

for the variance of the order statistic Uk1,n:n, we obtain

P(Uk1,n:n ≤ p− C∆n) ≤ p1,n(1− p1,n)

(n+ 2)(C − 3)2∆2
n

≤ p1,n(1− p1,n)

(C − 3)2(lim inf
√
n∆n)2

=
p(1− p)

(C − 3)2(lim inf
√
n∆n)2

+ o(1) (S.20)

when n→∞. Given condition (D2), by choosing a sufficiently large C we can make the ratio

on the right-hand side of equation (S.20) smaller than ε. With this, we complete the proof of

Lemma S.1.2.

Proof of Theorem 2.2. The asymptotic behaviors of the estimators defined by (2.1) and

(2.3) are the same, and so we only work with ÊARp,n. Denote

Tn =
√
Nn

(
ÊARp,n − EARp(X | Y )

)
. (S.21)

Theorem 2.2 follows if, for every t ∈ R,

E
(

exp
{
itTn

})
→ exp

{
− σ2t2/2

}
, (S.22)

8



where σ2 is defined by equation (2.6). To prove statement (S.22), we fix any ε > 0 and let

C > 0 be such that statement (S.16) holds. We have the following asymptotic representation

for the characteristic function of Tn:∫∫
WC∆n×WC∆n

E
(

exp
{
itTn

}
| Yk1,n−1:n = y1, Yk2,n+1:n = y2

)
dFk1,n,k2,n(y1, y2) + rn, (S.23)

where Fk1,n,k2,n is the joint cdf of Yk1,n−1:n and Yk2,n+1:n, and the remainder term rn satisfies

the bound

|rn| ≤ P
(

(Yk1,n:n, Yk2,n:n) /∈ WC∆n ×WC∆n

)
≤ 2ε

for all sufficiently large n. As for the conditional expectation under the integral sign in

expression (S.23), we have

E
(

exp
{
itTn

}
| Yk1,n−1:n = y1, Yk2,n+1:n = y2

)
= E

(
exp

{
it
√
Nn

(
ÊARp,n − EARp(X | Y )

)}
| Yk1,n−1:n = y1, Yk2,n+1:n = y2

)
= E

(
exp

{
it
√
Nn

(
ÊARp,n − E

(
X | Y ∈ (y1, y2]

))}
| Yk1,n−1:n = y1, Yk2,n+1:n = y2

)
× exp

{
it
√
Nn

(
E
(
X | Y ∈ (y1, y2]

)
− EARp(X | Y )

)}
. (S.24)

For the right-most difference of two expectations, we have

E
(
X | Y ∈ (y1, y2]

)
− EARp(X | Y ) =

1

G(y2)−G(y1)
E
(
g(Y )1{Y ∈(y1,y2]}

)
− EARp(X | Y )

=
1

G(y2)−G(y1)

∫ G(y2)

G(y1)

(
EARτ (X | Y )− EARp(X | Y )

)
dτ.

Since y1, y2 ∈ WC∆n , the integration interval is covered by the interval[
G
(
VaRp−C∆n(Y )

)
, G
(
VaRp+C∆n(Y )

)]
(S.25)

whose length, for all sufficiently large n, is equal to 2C∆n due to condition (C1). Using

condition (C3), we obtain

√
Nn

(
E
(
X | Y ∈ (y1, y2]

)
− EARp(X | Y )

)
≤ c
√
n∆n ∆α

n

= c
√
n∆2α+1

n
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for a constant c that does not depend on n. By condition (D3), we have

∆n = o
(
n−1/(2α+1)

)
,

and so the exponent on the right side of equation (S.24) converges to 1 when n→∞.

Consequently, to complete the proof of statement (S.22), we need to show that, for all

y1, y2 ∈ WC∆n , we have

E
(

exp
{
it
√
Nn

(
ÊARp,n − E

(
X | Y ∈ (y1, y2]

))}
| Yk1,n−1:n = y1, Yk2,n+1:n = y2

)
→ exp

{
− σ2t2/2

}
(S.26)

when n→∞. For this, we first note the asymptotic equivalence of

√
Nn

(
ÊARp,n − E

(
X | Y ∈ (y1, y2]

))
and

1√
k2,n − k1,n + 1

k2,n∑
i=k1,n

(
Xi,n − E

[
X
∣∣Y ∈ (y1, y2]

])
. (S.27)

Conditionally on the events Yk1,n−1:n = y1 and Yk2,n+1:n = y2, quantity (S.27) has the same

distribution as

Sn :=
1√

k2,n − k1,n + 1

k2,n∑
i=k1,n

(
Zi − E(Z)

)
,

where Zi, i = k1,n, . . . k2,n, are independent copies of a random variable Z whose cdf is given by

equation (S.10). We shall next show that Sn converges to a centered normal random variable

with the variance σ2 = V
(
X | Y = VaRp(Y )

)
.

Note that the cdf FZ depends on the points y1 and y2, which are in the neighbourhood

WC∆n that depends on n. Hence, some care is needed when showing that the aforementioned

asymptotic normality of Sn holds. We use the approach based on the characteristic function,

an thus start with the equation

E
(

exp{itSn}
)

=

(
ϕZ

(
t√

k2,n − k1,n + 1

))k2,n−k1,n+1

, (S.28)

where

ϕZ(t) = E
(

exp{it(Z − EZ)}
)
.
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Hence,

log
(
E exp

(
itSn

))
= (k2,n − k1,n + 1) log

(
1− t2V(Z)

k2,n − k1,n + 1
+ o

(
t2

k2,n − k1,n + 1

))
= (k2,n − k1,n + 1)

(
− t2V(Z)

2(k2,n − k1,n + 1)
+ o

(
t2

k2,n − k1,n + 1

))
= −t

2σ2

2
+ o(1), (S.29)

provided that V(Z)→ σ2 when n→∞, which we check next.

Using condition (C2) and in particular the continuity of τ 7→ g(VaRτ (Y )) = EARτ (X | Y ),

we have

EZ = E
(
X | Y ∈ (y1, y2]

)
=

1

G(y2)−G(y1)
E
(
g(Y )1{Y ∈(y1,y2]}

)
=

1

G(y2)−G(y1)

∫ G(y2)

G(y1)

EARτ (X | Y )dτ

= EARp(X | Y ) + o(1),

where the right-most asymptotic equation holds because the integration interval is covered by

interval (S.25) whose length, due to condition (C1), is equal 2C∆n for all sufficiently large n

and thus converges to 0 when n→∞.

Likewise, using condition (C4) and in particular the continuity of τ 7→ g2(VaRτ (Y )) =

E(X2 | Y = VaRτ (Y )), we have

EZ2 = E
(
X2 | Y ∈ (y1, y2]

)
=

1

G(y2)−G(y1)
E
(
g2(Y )1{Y ∈(y1,y2]}

)
=

1

G(y2)−G(y1)

∫ G(y2)

G(y1)

g2(VaRτ (Y ))dτ

= E
(
X2 | Y = VaRp(Y )

)
+ o(1).

Combining the two asymptotic expressions that we have just derived for the first two

moments of Z, we arrive at the following asymptotic expression for the variance

V(Z) = E
(
X2 | Y = VaRp(Y )

)
−
(
E
(
X | Y = VaRp(Y )

))2
+ o(1)

= σ2 + o(1)

when n→∞. This establishes statement (S.26) and concludes the proof of Theorem 2.2.
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Proof of Theorem 2.3. The proof of statement (2.7) follows the same arguments as the

proof of consistency of ÊARp,n given in Theorem 2.1.
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