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1 Details on Experiment 1

We use a NADAM optimizer with a default learning rate of 0.001 and a batch size of 1,000.
To eliminate a possible increase in the reconstruction error on the training set (due to a
learning rate which might be potentially too high), we apply an early stopping rule with
zero delta and patience of 15 epochs on the validation set equal to the training set. See
TensorFlow for R (2022) for details on implemention of early stopping - delta and patience
parameters. When the autoencoder of type MCA is applied, the results do not depend on
any hyperparameters, since the GSVD algorithm is applied to derive the representation of
the categorical features. We also recall, for two vectors a and b the cosine similarity measure
is defined as

cos(θ) =
a · b

||a|| · ||b||
,

and it is one of the measures commonly used to measure similarity of words in text mining
problems, see e.g. Blier-Wong et al. (2021). In this experiment we do not control over-fitting
of the autoencoders. Over-fitting in reconstruction errors is controlled in Experiment 2 by
optimizing the number of epochs used for training the autoencoders.

2 Details on Experiment 2

In Table 2.1 we present hyperparameters optimized in the experiment and their best values
chosen with cross-validation. We use a NADAM optimizer and a batch size of 1,000 to
train our neural networks. The set of 100,000 observations is randomly split into five cross-
validation (CV) sets containing a training, a validation and a test set to the proportions 3:1:1.
The training process is conducted for combinations of hyperparameters on five different CV
sets. For A1, A1 CANN, A2 and A2 MCA, we train the neural networks for all possible
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Network A1
no. of neurons [25, 20, 11], [35, 24, 10], [33, 32, 32]
learning rate 10−4, 10−3, 10−2

Network A2
no. of neurons [30, 30, 30], [30, 20, 10], [20, 15, 10]
learning rate 10−4, 10−3, 10−2

1st AE
for the categorical input

epochs 15, 50, 100, 200, 300
learning rate 5 · 10−5, 5 · 10−4, 5 · 10−3

corruption without noise, sample, zero,
no. of features corrupted 1, 2, 3 (out of 6)

2nd AE
for the numerical input

epochs 15, 50, 100, 200, 300
learning rate 5 · 10−5, 5 · 10−4, 5 · 10−3

corruption without noise, gaussian, zero
sigma noise 0.1, 0.25, 0.5
no. of features corrupted 1, 3, 5 (out of 11)

Table 2.1: Hyperparameters optimized in the experiment.

configurations of the hyperparameters in Table 2.1. For A2 1AE and A2 2AEs, we proceed
as follows:

� We train the 1st AE for the categorical input. Next, we train the network for the
supervised task by initializing the weights of the joint embedding with the weights
from the encoder from the 1st AE. All other weights in the network are initialized with
the Xavier initialization and the bias terms are initially set to zero. The calibrations
are performed with all possible configurations of the hyperparameters for the 1st AE
and the network in Table 2.1,

� We identify the best two sets of the hyperparameters for the 1st AE and the network,

� We train the 1st AE for the categorical input and the 2nd AE for the numerical input.
Next, we train the network for the supervised task by initializing the parameters of the
joint embedding and the first hidden layer of the sub-network with three hidden layers
with the parameters from the encoders from the 1st and the 2nd AE. All other weights
in the network are initialized with the Xavier initialization and the bias terms are
initially set to zero. The calibrations for the 1st AE and the network are performed
with the two configurations of the hyperparameters identified in the previous step.
The calibrations for the 2nd AE are performed with all possible configurations of the
hyperparameters in Table 2.1,

� For the set of the hyperparameters of the 1st AE and the network already chosen, we
identify the best hyperparameters for the 2nd AE, and we choose the best configuration
of the hyperparameters.

For each CV set (with 60,000 observations in the training set, 20,000 in the validation set and
20,000 in the test set), we train, if required, our autoencoders on the training set and apply
an early stopping rule on the validation set equal to the training set (see Experiment 1). We
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train our neural network for the supervised learning task on the training set with 1000 epochs
(with proper initialization from the autoencoders if required), apply an early stopping rule
for training the network on the validation set and, finally, we evaluate the predictive power
of the trained network by calculating the Poisson loss (the Poisson deviance) on the test set.
The decision about the best hyperparameters was made based on the average value of the
Poisson loss on the five CV test sets. The early stopping algorithm is applied with patience
equal to 15 epochs and delta equal to zero.

In Figure 2.1 we present the average Poisson loss values on the five CV training and
test sets for all neural networks trained in this step of the experiment. We can see that
there are many A2 AE networks, which is the notation used for all A2 1AE and A2 2AEs,
with many possible configurations of the hyperparameters, which lead to a lower loss on
the test set than the loss which could be achieved with the other architectures and training
processes of the network, in particular, better than A1. Of course, the number of A2 AE
trained in this experiment is much higher than the number of other networks due to a larger
number of hyperparameters for A2 AE and a much higher number of possible configurations
of the hyperparameters. The purpose of Figure 2.1 is to show that our new architecture of a
neural network pre-trained with (denoising) autoencoders should have better generalization
properties if only reasonable, not necessarily optimal, hyperparameters can be identified.

Figure 2.1: Average Poisson loss values on the CV training and test sets for all networks
trained in the experiment.

The best hyperparameters we selected are presented in Tables 2.2-2.3 below.
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Architecture No. of neurons Learning rate Loss

A1 [25, 20, 11] 10−3 31.133
A1 CANN [35, 24, 10] 10−3 31.134
A2 [20, 15, 10] 10−4 31.111
A2 MCA [30, 20, 10] 10−4 31.113

Table 2.2: Best hyperparameters and average Poisson loss values on the CV test sets.

No. of
neurons A2

Learning rate
A2

AE
Noise
type AE

Noise
level AE

Learning rate
AE

Epochs
AE

Loss

[20, 15, 10] 10−4 1st zero 2 5 · 10−4 100 31.069
[20, 15, 10] 10−4 2nd — — 5 · 10−3 100 31.061

Table 2.3: Best hyperparameters for A2 1AE and A2 2AEs and average Poisson loss values
on the CV test sets.

3 Bias of A1 and A2

As discussed in Wüthrich (2020), bias in predictions at a portfolio level may be an issue
when using neural networks for actuarial pricing. For each calibration from 100 calibrations
from the second step of Experiment 2, we predict the claim frequencies for all observations
in the test set and calculate the mean predicted claim frequency on the test set weighted
with the exposures. The mean prediction should match the sample mean claim frequency on
the test set. The results are presented in Figure 3.1. We can observe that the architecture
A1 has almost no bias, and the architecture A2 yields slight upward bias in the predictions
on the test set. We can also observe that the standard deviation of the mean predicted claim
frequency is smaller for A2 compared to A1, in particular, it is equal to 0.2096 for A1 and
0.0653 for A2 2AEs, which illustrates that we also gain stability in the predictions when we
apply the autoencoders for pre-training the neural network.

It is advised in the actuarial literature that predictions from neural networks should be
corrected for bias with autocalibrated predictors, see e.g. Ciatto et al. (2022). The authors
suggest to autocalibrate predictors on a validation set. Such autocalibration of a predictor
removes the bias of the predictor on the validation set but the predictor is still biased on
a test set if the sample means in the validation and the test sets are different (as is the
case here). We autocalibrate the predictors learned with A1 and A2 2AEs and denote the
autocalibrated predictors with A1 auto and A2 2AEs auto. The autocalibrated predictors
have no bias on the validation set and very similar bias on the test set, see Figure 3.2.
By comparing A2 2AEs auto with A1 auto, we can compare the predictive power of our
predictors with the same bias. The results are presented in Figure 3.2. We conclude that
A2 2AEs auto is superior compared to A1 auto.

4



0.093

0.096

0.099

A1 A1_CANN A2 A2_MCA A2_1AE A2_2AEs
Model

M
ea

n 
pr

ed
ic

tio
n

Figure 3.1: Distributions of the mean predicted claim frequency on the test set (for each
network the dotted line represents the average of the mean predicted claim frequency in 100
calibrations). The green dotted line represents the sample mean claim frequency.

30.30

30.35

30.40

30.45

30.50

A1_auto A2_2AEs_auto
Model

Lo
ss

 fu
nc

tio
n

0.094

0.096

0.098

A1_auto A2_2AEs_auto
Model

M
ea

n 
pr

ed
ic

tio
n

Figure 3.2: Distributions of the Poisson loss and distributions of the mean predicted claim
frequency on the test set (for each network the dotted line represents the average value in
100 calibrations). The green dotted line represents the sample mean claim frequency.

4 Optimal dimension of the joint embedding in A2 2AEs

We study a range of possible dimensions of the joint embedding for the six categorical features
and evaluate their performance with cross-validation, as in the first step of Experiment 2.
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The average values of the Poisson loss on the five CV test sets are presented in Figure 4.1.
The average Poisson loss values are similar for dimensions in the range from 4 to 12. We
focus on the dimension of the numerical representation of the categorical features in this
range and we repeat the calibrations 100 times for each dimension, as in the second part
of Experiment 2. We observe that the average Poisson loss values on the test set in 100
calibrations are very similar for dimensions 6-10 (around 30.34).
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Figure 4.1: Average Poisson loss values on the CV test sets.
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