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1. Policy iteration for the simple model

If the state space is not too large and explicit expressions for the transition probabilities
are available, then we may solve both the optimisation problem with a constraint on the
action space and with a terminal state numerically using policy iteration. For the simple
model, the surplus dynamics is

Gt+1 = Gt +
1

2
N(Pt + Pt−1)− (β0 + β1N)− PCt+1 + IEt+1,

where IEt+1 = 0 if Gt ≤ 0 and otherwise distributed according to (7) in [2]. The constraint
(11) in [2] here means that Pt must be sufficiently large to satisfy

(1 + ξ1{Gt>0})Gt +
1

2
N(Pt + Pt−1)− (β0 + β1N + µN) ≥ 0.

The transition probabilities are given by

P(St+1 = (k, p) | St = (g, q), Pt = p)

= P(IEt+1 +Gt − PCt+1 = k + (β0 + β1N)− 1

2
N(p+ q) | (Gt, Pt−1, Pt) = (g, q, p))

=

{
P
(
PCt+1 = g −m

)
, g ≤ 0,∑

{l:m+l≥0} P(PCt+1 = l) P
(
IEt+1 +Gt = m+ l | Gt = g

)
, g > 0,

where m = k+ (β0 +β1N)−N(p+ q)/2. Due to the truncation of the surplus process, the
transition probabilities are adjusted follows: For g ≤ 0, we have

P(Sn+1 = (k, p) | Sn = (g, q), Pn = p) = P
(
In+1 = g − k − βN +

1

2
N(p+ q)

)
.

Let kmin and kmax be the minimum and maximum allowed surplus values. Then

P(Sn+1 = (k, p) | Sn = (g, q), Pn = p)

=


∑

l≤kmin
P(In+1 = g − l − βN + 1

2N(p+ q)), k = kmin,

P(In+1 = g − k − βN + 1
2N(p+ q)), if k ∈ (kmin, kmax),∑

l≥kmax
P(In+1 = g − l − βN + 1

2N(p+ q)), k = kmax.
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For g > 0, we have

P(Sn+1 = (k, p) | Sn = (g, q), Pn = p)

=
∑

{l:f(k,p,q)+l≥0}

P(In+1 = l) P
(
IEn+1 +Gn = f(k, p, q) + l | Gn = g

)
,

where f(k, p, q) = k + βN −N(p+ q)/2. Let Ĩn+1 be defined as follows:

P(Ĩn+1 = l) =

{
P(In+1 = l), l < lmax,∑

l≥lmax
P(In+1 = l), l = lmax,

where lmax is the the (1− 10−10)-quantile of Pois(Nµ). Then

P(Sn+1 = (k, p) | Sn = (g, q), Pn = p)

=


∑lmax

l=0 P(Ĩn+1 = l)
∑

k≤kmin
P
(
IEn+1 +Gn = f(k, p, q) + l | Gn = g

)
, k = kmin,∑lmax

l=0 P(Ĩn+1 = l) P
(
IEn+1 +Gn = f(k, p, q) + l | Gn = g

)
, k ∈ (kmin, kmax),∑lmax

l=0 P(Ĩn+1 = l)
∑

k≥kmax
P
(
IEn+1 +Gn = f(k, p, q) + l | Gn = g

)
, k = kmax.

2. Q-learning

For Q-learning, the iterative update in search for the optimal action-value function is

Q(St, At)← Q(St, At) + αt
(
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

)
.(1)

Given that all state-action pairs continue to be updated, it has been shown in [5] that
Q-learning converges to the true optimal action-value function if the step size parameter
0 ≤ αt ≤ 1 satisfies the following stochastic approximation conditions

∞∑
k=1

αtk(s,a) =∞,
∞∑
k=1

α2
tk(s,a) <∞, for all s ∈ S, a ∈ A(s),(2)

where tk(s, a) is the time step when a visit in state s is followed by taking action a for the
kth time.

2.1. Numerical illustration of Q-learning for simple model. We use the following
step size parameter after the kth time a visit in state s is followed by taking action a,

αtk(s,a) =
1

k0.5+θ
, θ = 0.001.

This ensures that the stochastic approximation conditions (2) are satisfied, while still
allowing for larger step sizes compared to the more standard choice αt(s, a) = 1/t. For the
behaviour policy, we set ε = 0.2. The starting state is chosen uniformly at random from
the state space. Q(s, a) is initialised to zero for all s ∈ S and a ∈ A(s) to encourage initial
exploration. Since all rewards are negative the true action-value function must be negative
for all state-action pairs, hence setting the initial value to zero will encourage that all
actions are tried early on. This technique for setting the initial values is called “optimistic
initial values” in [4, Ch. 2.6]. To further encourage exploration of the state space, since
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discounting will lead to rewards after a large number of steps having a very limited effect on
the total reward, we run each episode for at most 100 steps, before resetting to a starting
state, again selected uniformly at random from S.

Figure 1 shows the optimal policy for the simplified model using Q-learning. As can be
seen in the figures, the Q-learning algorithm has not fully converged to the true optimal
policy, despite having been run for a very large number of iterations. This is not too
surprising when one considers the fraction of time spent in each state under the optimal
policy, see Figure 1 in [2]. The ε-greedy policy and restarting each episode after at most
100 steps ensures that exploration continues when using Q-learning, hence the fraction of
time spent in each state during the Q-learning algorithm will not be quite as extreme as
in Figure 1 in [2], but there are still many states that will be visited very rarely. Consider
e.g. the probability of getting a negative surplus after charging a very high premium (i.e.
ending up in the upper right corner of Figure 1 in [2]); the claims payment in the period
needs to be quite extreme for this state to be visited, unless the process starts in this
state. We have used a step size that guarantees convergence of the algorithm, however, it
is possible that a suitably chosen constant step size might lead to the algorithm converging
faster.

Figure 1. Approximate optimal policy for simplified model with terminal
state using Q-learning.

3. Softmax policy is Lipschitz continuous

Let qs,a ∈ R denote the element of q that correspond to state s ∈ S, a ∈ A, i.e. for

the case where we use linear function approximation, qs,a = w>x(s, a). Furthermore, let

qs = (qs,a)a∈A ∈ R|A|. An example of a Lipschitz continuous policy is the softmax policy.
In this case, the policy improvement operator is given by Γ(q) = (σ(qs))s∈S , where σ is the
softmax function,

σ(qs) =
exp

{
1
τ qs
}∑

a∈A exp
{
1
τ qs,a

} .
To see that this policy improvement operator is Lipschitz continuous, first note that the
softmax function σ is 1/τ -Lipschitz. The softmax function σ is differentiable, hence (see
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e.g. [3, Thm 9.19])

‖σ(qs)− σ(q′s)‖2 ≤ sup
qs
‖Dσ(qs)‖2‖qs − q′s‖2,

where Dσ(qs) denotes the Jacobian matrix of σ with respect to qs, and ‖Dσ(qs)‖2 is the
spectral norm of Dσ(qs). Let σa denote the component of σ(qs) that corresponds to action
a ∈ A. Then

∂σa
∂qs,a

=
1

τ
σa(1− σa),

∂σa
∂qs,a′

= −1

τ
σaσa′ , for a 6= a′.

It is easy to verify that Dσ(qs) is positive semi-definite [1, p. 74]. Hence all eigenvaues of
Dσ(qs) are non-negative, and

‖Dσ(qs)‖2 = λmax(Dσ(qs)) ≤
∑
i

λi(Dσ(qs)) = tr(Dσ(qs)) =
1

τ

∑
i

σi(1− σi)

≤ 1

τ

∑
i

σi =
1

τ
,

where λmax(Dσ(qs)), λi(Dσ(qs)), and tr(Dσ(qs)) denote respectively the largest eigenvalue,
the ith eigenvalue, and the trace of Dσ(qs). Now,

‖Γ(q)− Γ(q′)‖22 =
∑
s∈S
‖σ(qs)− σ(q′s)‖22 ≤

∑
s∈|S|

1

τ2
‖qs − q′s‖22 =

1

τ2
‖q − q′‖22,

i.e. Γ is Lipschitz continuous with constant L = 1/τ .

4. Benchmark policies

4.1. Best constant policy. When using a constant policy p irrespective of state, St =
(Gt, p) for all t > 0, for the simple model. We want to find p that minimises

E

[ T∑
t=0

γth(p, St+1)

]
= E

[ T−1∑
t=0

γtc(p) + γT (1 + η)c(maxA)

]
(3)

= E

[
c(p)

1− γT

1− γ
+ γT (1 + η)c(maxA)

]
=

c(p)

1− γ
+

(
(1− η)c(maxA)− c(p)

1− γ

)
E[γT ],

where E[γT ] =
∑∞

t=1 P(T = t)γt and

P(T ≤ t) =
∑

s′∈S+\S

P(St = s′) = P(Gt < minG).

Since the state space is finite, we can label the states 0, 1, . . . , |G||A| (where state 0 rep-
resents all terminal (absorbing) states. Let P = (pij : i, j ∈ {0, 1, . . . , |G||A|}), where
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pij = P(St = j | St−1 = i), and λ = (λ0, λ1, . . . , λ|G||A|)
>, where λj = P(S0 = j) and

λ0 = 0. Then

P(Gt = k) =
∑
j

(λ>P t){j:Gt=k}.

Based on this we can compute (3) for each p (computing E[γT ] by truncating the sum
at some large value) from which we determine that p = 7.4 minimises (3), for the simple
model.

For the intermediate and realistic model, we are not able to compute the best constant
policy as above due to the dimension of the state space. Instead we can simulate the
total expected discounted reward per episode for different values of the constant policy p.
Based on these simulations we can again conclude that p = 7.4 minimises (3) also for the
intermediate model. For the realistic model p = 11.5 minimises (3).

4.2. Myopic policy for MDP with constraint. The myopic policy is the policy that
maximises immediate (next-step) rewards. For the model with a constraint on the action
space, the myopic policy is the solution to the following optimisation problem

minimise
p

E[c(p) | S0 = s, P0 = p] subject to E[G1 | S0 = s, P0 = p] ≥ 0.

Since c is an increasing function, it is easy to compute the myopic policy; it is given by the
lowest premium level that satisfies the constraint. For the simple model we have

Gt+1 = Gt +
1

2
N(Pt + Pt−1)− β1N − β0 − PCt+1 + IEt+1.

Hence, for each s = (g, q), we need to find the lowest premium level p = π(g, q) that
satisfies

(1 + ξ1{g>0})g +
1

2
N(p+ q)− (β0 + (β1 + µ)N) ≥ 0,

hence

π(g, q) = min
{
p ∈ A : p ≥ 2

(
β1 + µ+

β0 − (1 + ξ1{g>0})g

N
− q
)}
.

The myopic policy for the MDP with a constraint on the action space can be seen in Figure
2 for the simple model.

For the intermediate model we have

Gt+1 = Gt +
1

2
(Nt+1Pt +NtPt−1)− (α2µ+ β1)

1

2
(Nt+1 +Nt) + α2µ

1

2
(Nt +Nt−1)− β0

− PCt+1 + IEt+1.

Hence, for each s = (g, q, n0, n−1), we want to find the lowest premium level p = π(g, q, n0, n−1)
that satisfies

(1 + ξ1{g>0})g +
1

2
apb(p− β1 − µ) +

1

2
n0(q − β1 − µ)− β0 ≥ 0.(4)

Note that π(g, q, n0, n−1) does not depend on n−1. Let P(g, q, n0) be the set of pre-
mium levels such that (4) is satisfied. Note that for our choice of A and S, there exist
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(g, q, n0, n−1) ∈ S such that P(g, q, n0) ∩ A = ∅. Hence we let the myopic policy for the
intermediate model with a constraint on the action space be given by

π(g, q, n0, n−1) =

{
min{p ∈ A : p ∈ P(g, q, n0)}, P(g, q, n0) ∩ A 6= ∅,
maxA, P(g, q, n0) ∩ A = ∅,

i.e. if no p ∈ A satisfies the constraint, then the maximum premium level is chosen.
For the realistic model we have

Gt+1 = Gt +
1

2
(Nt+1Pt +NtPt−1)− β1

1

2
(Nt+1 +Nt)− β0

+ IEt+1 − ICt+1 + RPt+1.

Hence, for each s = (g, q, n0, n−1, c1, c2, . . . , c9), we want to find the lowest premium level
p = π(g, q, n0, n−1, c1, c2, . . . , c9) that satisfies

(1 + ξ1{g>0})g +
1

2
apb
(
p− β1 − c0

J−1∏
k=1

fk

)
+

1

2
n0

(
q − β1 − c0

J−1∏
k=1

fk

)
− β0 ≥ 0.(5)

Note that π(g, q, n0, n−1, c1, c2, . . . , c9) does not depend on n−1, c1, c2, . . . , c9.

4.3. Myopic policy for MDP with terminal state. For the model with a terminal
state, for each state s ∈ S we want to find p ∈ A that minimises

(6)
E[h(p, S1) | S0 = s, P0 = p] = c(p) P(G1 ≥ minG | S0 = s, P0 = p)

+ c(maxA)(1 + η) Pπ(G1 < minG | S0 = s, P0 = p),

hence for this model the myopic policy is not quite as easy to compute as for the case when
we have a constraint on the action space, since we now need to determine

P(G1 ≥ minG | S0 = s, P0 = p) =
∞∑

k=minG
P(G1 = k | S0 = s, P0 = p)

instead of the expectation in (20) in [2]. From Section 1 we see that for the simple model

P(G1 = k | S0 = (g, q), P0 = p)

=

{
P
(
PC1 = g −m

)
, g ≤ 0,∑

{l:m+l≥0} P(PC1 = l) P
(
IE1 +G0 = m+ l | G0 = g

)
, g > 0,

where m = k + (β0 + β1N)−N(p+ q)/2. Based on this we can compute the expectation
in (6) for each premium level. The myopic policy for the MDP with a terminal state can
be seen in Figure 2 for the simple model.

5. Details for the realistic model

To analyse the difference between the approximate optimal policy and the best bench-
mark policy, we simulate 300 episodes for a few different starting states, two of which can be

seen in Figure 3. For both starting states, C−1,1 = c0 ·2 ·105, and C−j,j = c0 ·2 ·105
∏j−1
k=1 fk

for j = 2, . . . , 9. Note that each star in the figures correspond to one or more ter-
minations at that time point. The total number of terminations (of 300 episodes) are:
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Figure 2. Left: myopic policy for simple model with constraint. Right:
myopic policy for simplified model with terminal state.

j 0 1 2 3 4 5 6 7 8 9
µ̂j 13.249 0.662 0.199 0.111 0.075 0.039 0.027 0.014 0.016 0.001
ν̂j 0.154 0.096 0.067 0.016 0.022 0.017 0.012 0.004 0.008 0

f̂j - 1.947 1.223 1.118 1.078 1.040 1.028 1.015 1.016 1.001
α̂j+1 0.0316 0.300 0.137 0.089 0.066 0.036 0.026 0.014 0.016 0.001

Table 1. Parameter estimates for the model for the cumulative claims
payments in (8) in [2].

j 1 2 3 4 5 6 7 8 9
min(Ct,j) 0.234 0.416 0.489 0.546 0.586 0.608 0.624 0.633 0.642
max(Ct,j) 2.094 4.417 5.596 6.265 6.777 7.063 7.266 7.372 7.493

Table 2. Truncation of cumulative claims payments, in 106.

S0 = (−3 · 105, 3, 2 · 105, 2 · 105, C−1,1, . . . , C−9,9): Fourier 3: 6, interval policy: 67, best
constant: 257. S0 = (3 · 106, 21, 1.75 · 105, 1.75 · 105, C−1,1, . . . , C−9,9): Fourier 3: 1, in-
terval policy: 0, best constant: 0. Comparing the two policies, we see that the inter-
val policy on average tends to charge a lower premium, and the fluctuation in the pre-
mium level over time appears to be comparable. However, for the strained starting state
S0 = (−3 · 105, 3, 2 · 105, 2 · 105, C−1,1, . . . , C−9,9), the interval policy leads to many more
immediate terminations (67 instead of 6 for the approximate policy), and in the starting
state with a much higher surplus, S0 = (3 · 106, 21, 1.75 · 105, 1.75 · 105, C−1,1, . . . , C−9,9),
the approximate policy outperforms the interval policy, despite having one termination at
approximately year 30, due to the higher initial premium level set by the interval policy,
and the higher variation in the premium level at the first few time steps for the interval
policy.
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Figure 3. Realistic model. First row: policy with 3rd order Fourier basis.
Second row: interval policy. Left: starting state S0 = (−3 · 105, 3, 2 · 105, 2 ·
105, C−1,1, . . . , C−9,9). Right: starting state S0 = (3 ·106, 21, 1.75 ·105, 1.75 ·
105, C−1,1, . . . , C−9,9). The red line shows the best constant policy. Each
star indicates at least one termination at that time step.
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