
Online Appendix: Not part of the paper

D Proof of Equation (2.5)

First note that
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Therefore, using the latter equation,
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E Properties of risk allocation approaches

This work considers mappings A allocating the risk ϱ(Z) to the various components Z(j), j = 1, . . . , J .

Denote such allocation by

A(Z(1), . . . , Z(J)) =
(
A1

(
Z(1), . . . , Z(J)

)
, . . . ,AJ

(
Z(1), . . . , Z(J)

))
.

Allocation principles (2.13) and (2.14) satisfy the following properties defined in Schilling et al. (2020):

ϱ(Z) =

J∑
j=1

Aj

(
Z(1), . . . , Z(J)

)
(Additive aggregation)

and for any permutation π(1), . . . π(J) of {1, . . . , J} and any j = 1, . . . , J ,

Aπ(j)

(
Z(1), . . . , Z(J)

)
= Aj

(
Z(π(1)), . . . , Z(π(J))

)
. (Order invariance)

F Futures price calculation

Define

P̃t,t+n ≡ EQ

exp
∆ t+n−1∑

j=t

rj

 ∣∣∣∣∣∣ Ft

 .

It can be shown first that

Fut
(j)
t,t+n = S

(j)
t P̃t,t+n.
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Indeed, assuming the relationship holds for t+ 1, the Tower Law implies

Fut
(j)
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[
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[
S
(j)
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∣∣Ft+1

]
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]
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where the passage from (F.1) to (F.2) stems from the conditional independence with respect to Ft

as can be seen from (B.2). Moreover, define X (i)
n,t ≡

∑n−1
ℓ=0 x

(i)
t+ℓ. Augustyniak et al. (2021) show
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(3)
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G Guarantee equity Greek letters

To show the last equality in (3.16), the chain rule entails

∂Πt

∂S
(j)
t

=
∂Πt

∂At

∂At

∂Ft

∂Ft

∂S
(j)
t

= ∆
(guar,A)
t

At

Ft

∂Ft

∂S
(j)
t

(G.1)

where ∂At
∂Ft

= At
Ft

comes from the fact that the policy account A is fully invested in the mutual fund F .

Furthermore, the following result translates the Greek with respect to the underlying fund into Greeks

with respect to equity indices.

Lemma G.1. For any j = 1, 2,

∂Ft

∂S
(j)
t

=
θ
(S)
j Ft

S
(j)
t

. (G.2)

Proof of Lemma G.1: Equation (3.7) implies
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∆
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θ
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j
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S
(j)
0

)θ
(S)
j

=
θ
(S)
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S
(j)
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. □

Substituting (G.2) into (G.1) thereby shows (3.16).

H Testing the stability of simulations

The experiment presented in the fifth column of Table 4, i.e. the 20-year GMMB policy without ratchets

applied on the Assumption mixed fund is absence of hedging, is repeated five times with different
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random seeds to assess the stability of the simulation framework. Results are presented in Table 6.

Although allocation values exhibit non-negligible fluctuations across runs, they produce qualitatively

similar results.

Table 6: Impact of the seed on risk allocation results

Assumption mixed fund

20-year maturity — No ratchets

Run 1 2 3 4 5

Total expected loss decomposition

Expected loss; E (−GLtot) − 0.049 − 0.052 − 0.052 − 0.049 − 0.048

Equity AEQtot
− 4.093 − 3.385 − 3.938 − 4.082 − 3.216

Interest rate AIRtot − 4.984 − 4.491 − 4.723 − 4.886 − 4.238

Mortality AMOtot − 5.559 − 5.165 − 5.367 − 5.578 − 5.076

Time AΘ̃tot
14.587 12.990 13.977 14.497 12.482

Total variance decomposition

Total risk; Var (−GLtot) 0.0055 0.0052 0.0049 0.0060 0.0063

Equity AEQtot
0.4582 0.5945 0.4493 0.6394 0.5924

Interest rate AIRtot 0.0839 0.1778 0.1056 0.1626 0.1640

Mortality AMOtot 0.0711 0.1368 0.0844 0.1280 0.1260

Time AΘ̃tot
−0.6076 −0.9039 −0.6345 −0.9240 −0.8761

Total CVaR95% decomposition

Total risk; CVaR95% (−GLtot) 0.16 0.16 0.15 0.18 0.19

Equity AEQtot
14.00 27.51 16.10 21.94 22.82

Interest rate AIRtot − 3.15 9.21 4.13 4.73 7.55

Mortality AMOtot − 0.24 4.39 0.43 0.73 2.53

Time AΘ̃tot
−16.74 −40.95 −20.53 −27.22 −32.71

Notes: For 5 different runs based on different random seeds, risk allocations A to time decay (−Θ̃tot), interest rate

risk (−C̃(IR)
tot ), equity risk (−C̃(EQ)

tot ) and mortality risk (−C̃(MO)
tot ) applied on a 20-year maturity GMMB policy without

ratchets on the Assumption mixed fund described in Section 3.3. Three risk measures are considered for the allocation:
the expectation, the variance and the CVaR95%; allocation principles for such measures are presented in Section 2.4. No
hedging is applied.

I Impact of moneyness on time decay contribution

The magnitude and direction of contributions from the sources of risk vary not only with respect to

time, but also with respect to the moneyness of the contract. Fig. 3 illustrates such phenomenon by
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showing realized values of the discounted time decay contribution Θ̃t versus the account value At−1 for

two time points t = 2 and t = 110, this once again for the case of the 20-year GMMB without ratchet

on the Assumption mixed fund (no hedging applied). The figure clearly shows that when the contract is

in-the-money, i.e. the account value is lower than the strike, the decrease of time-to-maturity tends to

improve profitability (positive Θ̃t) due to smaller likelihood of having to pay large benefits. Conversely,

the passage of time for an out-of-the-money contract reduces possibilities for profitable increases in fees,

thereby leading to negative values for Θ̃t.
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Figure 3: Realized values of the discounted time decay contribution Θ̃t versus the account value At−1

for two time points t = 2 and t = 110 in the simulation for the 20-year GMMB without ratchet on the
Assumption mixed fund.

J Decomposing interest rate risk

To further shed light on the contribution of interest rate risk, an additional analysis separating the

contribution of each of the three interest rate factors is provided. Define

(
AΘ̃tot

,A
IR

(1)
tot
,A

IR
(2)
tot
,A

IR
(3)
tot
,AEQtot

,AMOtot

)
≡ A

(
−Θ̃tot,−C̃(1)

tot ,−C̃(2)
tot ,−C̃(3)

tot ,−C̃(EQ)
tot ,−C̃(MO)

tot

)
(J.1)

where C̃(i)
tot is the component related to {z(r)t,i }Tt=1, i = 1, 2, 3, i.e. assuming that the first element of the

sources of risk vector (4.1) is split into three separate components, each of which is associated to one of

36



the three term structure factors. For the same set of simulations presented in Table 4, the breakdown of

risk according to (J.1) is presented in Table 7. Such results provide interesting additional explanations

about why the allocation of risk to interest rates is low for the RBC bond fund. For instance, when

considering the CVaR95% risk measure, each term structure factor has a high associated allocation in

absolute value, but some of the allocations are of opposite sign, creating a nullifying effect reducing the

net total allocation to interest rate risk. This can partially be explained for instance by the negative

correlation between innovations of the first interest rate factor, and those of factors 2 and 3, see the

matrix Γ in Table 1. Interestingly, when comparing risk allocation to equity and mortality in Table 4

and Table 7, it can be seen they are of roughly of similar magnitude regardless of whether interest rate

contributions are grouped or separated by factor. However, they are not strictly equal, which highlights

that the choice of risk groups does impact the risk allocation results. Conversely, the total risk and the

portion of risk allocated to the passage of time are strictly identical regardless of the grouping.
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Table 7: Total risk allocation for GMMB policies in absence of hedging, with interest rate contributions
split between each term structure factor

RBC bond fund Assumption mixed fund

Maturity 10 years 20 years 20 years 10 years 20 years 20 years

With ratchet? No No Yes No No Yes

Total expected loss decomposition

Expected loss; E (−GLtot) 0.029 0.029 0.030 −0.056 − 0.046 −0.078

Equity AEQtot
0.104 −1.109 −0.510 1.522 − 0.858 2.700

Factor 1 interest rate risk A
IR

(1)
tot

−1.120 −5.303 −0.575 −0.072 − 2.790 −1.819

Factor 2 interest rate risk A
IR

(2)
tot

0.122 −1.216 −0.748 −0.214 − 3.070 −2.040

Factor 3 interest rate risk A
IR

(3)
tot

−0.554 −0.774 −2.258 −0.065 − 2.587 −1.652

Mortality AMOtot −0.064 −1.405 −0.879 −0.220 − 3.068 −2.023

Time AΘ̃tot
1.540 9.836 4.999 −1.006 12.328 4.757

Total variance decomposition

Total risk; Var (−GLtot) 0.0027 0.0013 0.0022 0.0095 0.0062 0.010

Equity AEQtot
0.0515 0.0477 0.0856 0.5405 0.5778 1.080

Factor 1 interest rate risk A
IR

(1)
tot

0.1135 0.0619 0.0205 0.0758 0.0932 0.246

Factor 2 interest rate risk A
IR

(2)
tot

0.0388 0.0282 0.0682 0.0515 0.0794 0.205

Factor 3 interest rate risk A
IR

(3)
tot

−0.0809 0.0210 0.0895 0.0936 0.1239 0.297

Mortality AMOtot 0.0106 0.0113 0.0438 0.0527 0.0808 0.204

Time AΘ̃tot
−0.1307 −0.1688 −0.3054 −0.8047 −0.9490 −2.023

Total CVaR95% decomposition

Total risk; CVaR95% (−GLtot) 0.16 0.11 0.16 0.23 0.19 0.20

Equity AEQtot
3.35 3.34 5.37 17.00 24.13 31.94

Factor 1 interest rate risk A
IR

(1)
tot

1.64 −7.69 −2.54 2.05 3.60 6.17

Factor 2 interest rate risk A
IR

(2)
tot

1.76 1.02 4.57 1.19 1.91 4.36

Factor 3 interest rate risk A
IR

(3)
tot

−3.32 4.14 4.82 2.66 5.55 8.20

Mortality AMOtot 0.45 −0.02 3.13 1.18 2.00 4.19

Time AΘ̃tot
−3.73 −0.69 −15.18 −23.86 −37.00 −54.66

Notes: Risk allocations defined by (J.1) applied on GMMB policies on the RBC bond fund or the Assumption mixed fund
mentioned in Section 3.3 in absence of hedging. Three risk measures are considered for the allocation: the expected value,
the variance and the CVaR95%; allocation principles for such measures are presented in Section 2.4. Two policy maturities
are considered: 10 years and 20 years. For 20-year policies, results with and without the inclusion of ratchets in accordance
with the specification (3.1) are presented.
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K List of symbols

� T : number of time periods at the onset until the contract maturity.

� ∆: length of a monthly time period in years (1/12),

� (Ω,F ,P): probability space composed of the sample set Ω, the event space F and the physical

probability measure P,
� Q: risk-neutral probability measure,

� Ft: sigma-algebra giving available information at time t,

� CFt: time-t contract inflow to the insurer,

� rt: annualized risk free short rate from t to t+ 1,

� Πt: time-t contract fair value,

� Dt1,t2 stochastic risk-free discount factor to discount between times t1 and t2,

� X: risk factors stochastic process,

� Y: risk factor shocks stochastic process,

� Ut: function mapping previous risk factors and risk factor shocks into next-period risk factors,

� f : function mapping current time and risk factors into the contract fair value,

� V ϕ
t : hedging portfolio value at time t,

� Hϕ
t : hedging gains between t− 1 and t,

� GLt: total gains by the insurer between t− 1 and t, including hedging gains,

� GLtot: sum of discounted gains by the insurer over the entire contract duration,

� r̃, C̃F t, H̃
ϕ
t , G̃Lt: functions mapping the risk factors into the risk-free rate, or into the time-t

insurer inflow, hedging gains or gain and loss,

� D: the set of subsets of {1, . . . , d},
� YS

t ≡ 1S ◦Yt where 1S is a dummy vector with ones in elements of indices in S ⊆ D,
� Θt: time-t time decay contribution to the gain and loss,

� C(j)
t : time-t source of risk j’s contribution to the gain and loss,

� Θ̃t and C̃(j)
t : discounted version of contributions Θt and C(j)

t ,

� Θ̃tot and C̃(j)
tot : discounted contributions summed over all time steps,

� VaRα and CVaRα: Value-at-Risk and Conditional Value-at-Risk of level α,

� ϱ: risk measure,

� Aj : allocation of total risk to source of risk j,

� At: time-t variable annuity underlying account value,

� Ft: time-t value of underlying fund F ,

� ω: periodic fee rate charged to the policyholder,

� tax: probability of the policy remaining active t months given the policyholder was aged x months

at the onset,

� tpx probability that the policyholder survives t months given he is aged x months,

� L: function mapping the contract moneyness level into a one-period lapse probability,

� Lann: annualized version of L,
� mt: time-t moneyness of the policy,

39



� Feet: period-t fee charged to the policyholder,

� Lapse penaltyt: lapse penalty for a lapse on period t,

� P(t): lapse penalty rate for a lapse on period t,

� qLx,t−1: proportion of policyholders active at t− 1 who lapse their policy in the next period

� λL
t and λL

t : forces of lapsation and mortality on period t,

� Gt: GMMB guaranteed amount at time t,

� ζt+1: number of times in the current year that the guaranteed amount was increased prior to time

t+ 1

� Benefit: GMMB benefit paid to the policyholder at maturity if he is active,

� x
(i)
t : time-t value of the ith term structure factor,

� κi, µi, σi speed of reversion, long-term mean and volatility of x
(i)
t under measure P,

� κ̃i, µ̃i speed of reversion and long-term mean of x
(i)
t under measure Q,

� z
(r)
t,i , z

(S)
t,j , z

(F )
t : time-t P-innovations for term structure factor i, equity index j and the underlying

fund,

� z̃
(r)
t,i , z̃

(S)
t,j , z̃

(F )
t : time-t Q-innovations for term structure factor i, equity index j and the underlying

fund,

� Γ: contemporaneous correlation matrix for innovations z
(r)
t,i , i = 1, 2, 3,

� ρ: contemporaneous correlation matrix for innovations z
(S)
t,j , j = 1, 2,

� R
(S)
t+1,j , R

(F )
t+1 log-returns for equity index j and the underlying fund between t and t+ 1,

� S
(j)
t time-t value of equity index j,

� λ
(S)
j , ω

(S)
j , α

(S)
j , β

(S)
j , γ

(S)
j : GARCH parameters for the equity index j model,

� ω(F ), α(F ), β(F ), γ(F ): GARCH parameters for the underlying fund basis risk model,

� (θ0, θ1, θ2, θ3), (θ
(S)
1 , θ

(S)
2 ): linear loading parameters for the fund returns on term structure factor

shocks and equity returns,

� h
(S)
t,j , h

(F )
t : time-t volatility for equity index j and the basis risk part of the underlying fund,

� Y(x): age in years (integer) of a policyholder aged x months,

� ax, bx: Lee-Carter mortality model parameters,

� σε: function mapping policyholder age into Lee-Carter innovations ε volatility,

� γ1, γ2, δ1, δ2: dynamic lapse model parameters,

� ut, εt, νt: random variables driving the mortality process,

� ϕ
(i)
t number of long positions on traded instrument i in the hedging portfolio between t−1 and t,

� δ
(i)
t : price variation of a unitary position in instrument i between t− 1 and t

� Fut
(j)
t,t+n: time-t price for the futures on equity index j maturing at t+ n,

� ∆
(guar,A)
t : time-t guarantee value sensitivity (Delta) to the account value,

� ∆
(fut,S,j,n)
t : time-t price sensitivity (Delta) of the futures on index j with time-to-maturity n to

its underlying asset value.
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