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This is the supplementary material of Multi-State Modelling of Customer Churn.3

1 Five-State Transition Framework and Data Imbalance4

Figure 1 shows the original five-state transition diagram of the application to data from LGPIF.5

Figure 1: A five-state transition diagram of the application to data from LGPIF. BC refers to
building and content insurance, IM refers to contractor’s equipment insurance, while Car refers
to vehicle coverage.

Table 1 lists the five-state transition counts and empirical transition probabilities from 20066

to 2013. We can see the numbers of several types of transition are very small. For example,7

the number of transitions from state 3 to state 2 is 0, which means that this type of transition8

has not occurred from 2006 to 2013 among all policyholders. The transitions in the minority9

are statistically rare events. Consequently, when a multi-state model is estimated on a random10

sample of the customer population, the majority transitions will dominate the statistical analysis,11

which may decrease the predictive accuracy on the minority transitions. This is a typical issue12

of data imbalance, and has been addressed through “balanced sampling” in the literature on13

traditional customer churn probability prediction; see Lemmens & Croux (2006). However, in14

this paper, we focus on using the second-order MLR model to study multi-state customer churn15

1



analysis rather than achieving a high degree of predictive accuracy, so we merged states 2, 3,16

and 4 in Figure 1 into one state in the paper to ensure that there is sufficient data to model all17

transition probabilities reasonably well.18

Table 1: Five-state transition counts and empirical transition probabilities in percent (in paren-
theses) from 2006 to 2013.

State of destination
State of origin State 1 State 2 State 3 State 4 Churn

State 1 2552 (94.14%) 4 (0.15%) 74 (2.73%) 3 (0.11%) 78 (2.88%)
State 2 11 (4.40%) 217 (87.80%) 1 (0.40%) 9 (3.60%) 12 (4.80%)
State 3 34 (0.94%) 0 (0.00%) 3479 (95.87%) 5 (0.14%) 111 (3.06%)
State 4 3 (0.25%) 7 (0.59%) 29 (2.45%) 1112 (94.08%) 31 (2.62%)

2 Explanatory Variables in Customer Churn Analysis in Gen-19

eral Insurance20

Premium information is found to be the key driver of customer churn, with the majority of21

literature finding that policyholders are more likely to churn after they experience the premium22

increase (Brockett et al. 2008, Haugen & Moger 2016, Jeong et al. 2018, De la Llave et al. 2019,23

Leiria et al. 2021). Premium information is also a frequently used predictor when applying24

machine learning techniques to predict customer churn rates (see for instance Bolancé et al.25

2016, Paredes 2018, Scriney et al. 2020).26

The claim experience is a special feature in general insurance. In life insurance, when a27

policyholder makes a claim, it often means that the policyholder has died and the life insurance28

contract is terminated. However, in general insurance, it is common to see a policyholder makes29

several claims in a single period, in which case customers will normally face a higher premium30

for the next period after they had made one or more claims in the previous period. Conversely,31

customers may receive a bonus which reduces the premium for the next period if they did not32

make any claim in the previous period. Jeong et al. (2018) and Frees et al. (2021) provide33

evidence of a strong association between claim occurrence and customer churn. Furthermore,34

numerous studies have shown that making a claim increases the probability of customer churn35

and reduces the overall lifetime of a contract (see for example Guillen et al. 2003, Brockett et al.36

2008, Guillen et al. 2009, Haugen & Moger 2016).37

Finally, contract information refers to a broad range of information that can be found in38

signed contracts between policyholders and insurers, including the geographic location of the39

insured object (e.g., Haugen & Moger 2016, Paredes 2018, Staudt & Wagner 2018, De la Llave40
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et al. 2019, Frees et al. 2021), policyholder characteristics (e.g., Paredes 2018, Staudt & Wagner41

2018, Frees et al. 2021), and other useful information such as the date of renewal.42

3 Endogeneity and Exogeneity43

In economic models, variables are commonly divided into two main categories: endogenous44

variables, i.e., variables that a model tries to explain, and exogenous variables, i.e., variables45

that a model takes as given (Mankiw 2003). Identifying whether a variable is exogenous versus46

endogenous poses a challenge for insurers. There are two main forms of exogeneity, depending47

on the level of independence shown by the variable. A strictly exogenous variable is completely48

unaffected by the output of a model in the past, present, and future. A sequentially exogenous49

(also called predetermined) variable is not affected by past instances of the model’s output,50

but future instances may be affected by current or future instances of the model’s output. If a51

variable is neither strictly exogenous nor sequentially exogenous, it is called endogenous. In the52

context of multi-state customer churn analysis, the endogenous variable is the transition among53

different states of a contract held by a policyholder, i.e., the values of yit in the paper. In order54

to decide if a new variable is strictly exogenous or sequentially exogenous, we have to decide if55

the current or future customers’ transition decision would cause the new variable to change in56

the future.57

As we have seen in the existing literature, premium information is known to be statistically58

related to the customer churn, e.g., the higher the premium, the higher is the churn rate, and59

there is a causal relationship among the claim, the premium, and the probability of customer60

churn. To determine whether claims occurrence and frequency and premiums are strictly ex-61

ogenous or sequentially exogenous in a multi-state transition model, we need to consider the62

moral hazard and adverse selection under the insurance context. Adverse selection is the ten-63

dency of policyholders in high-risk positions to purchase and renew insurance contracts. Moral64

hazard occurs if policyholders act in a more risky way after they enter insurance contracts. In65

the absence of moral hazard and adverse selection, a premium can be simply regarded as the66

insurance company actuary’s summary measure of several risk factors with realistic considera-67

tions, and a claim is only affected by strictly exogenous factors such as climate and economic68

change. In this case, a customer’s current or future purchasing decision will not affect his or her69

future premiums and claims, so both claims and premiums are strictly exogenous. On the other70

hand, if we take into account moral hazard and adverse selection, then policyholders who keep71

purchasing insurance contracts are more likely to make claims in the future, and high insurance72

claims in one year lead to high premiums in subsequent years. From this perspective, both73

premiums and claims evolve over time, and so both of them should be regarded as sequentially74
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exogenous. For the purposes of this paper, we treat all variables as strictly exogenous, and we75

do so to be consistent with the existing literature on traditional customer churn analysis (see for76

instance Guillen et al. 2003, Brockett et al. 2008, among others). We also refer the reader to77

Pinquet (2000) for a discussion of exogeneity in an insurance rating context, and Chapter 6 of78

Frees (2004) for an overview of exogeneity in longitudinal models.79

4 Robust Standard Errors of the Second-Order MLR Model80

We provide robust standard errors using Stata 17; see Table 2. Generally, the formula for the81

robust estimator of variance is given in Stata (2022) as82

V̂ = V̂

(
M∑
j=1

u′
juj

)
V̂

where M is the total number of observations, V̂ = (−∂2lnL/∂β2)−1 (the conventional estimator83

of variance), and uj (a row vector) is the contribution from the j-th observation to ∂lnL/∂β.84

For the second-order MLR model, we need to select a reference state and set the coefficients85

corresponding to this reference state to zero for reasons of parameter identifiability e.g., in the86

paper, s = 1 and βqr1 = 0 for all (q, r). For the transition with state of origin (q, r) and state of87

destination s, we define88

ηqrs =


exp(x⊤

qrβqrs)
1+

∑Q

s′=2
exp(x⊤

qrβqrs′)
, 1 < s ≤ Q,

1

1+
∑Q

s′=2
exp(x⊤

qrβqrs′)
, s = 1.

To calculate the score vector and Hessian matrix later, we will use the fact that for all89

1 < l, s ≤ Q90

∂

∂βqrs

ηqrl = ηqrl[1(s = l)− ηqrs]xqr.

We write the score = (sc1,1,2, . . . , sc1,1,Q, sc1,2,2, . . . , sc1,2,Q, . . . , scQ−1,Q−1,2, . . . , scQ−1,Q−1,Q).91

For example, in the application to data from LGPIF of the paper, score = (sc1,1,2, sc1,1,3, . . . , sc2,2,3).92

Any scq,r,s can be calculated as93

scq,r,s =
∂

∂βqrs

lnL

=

Mqr∑
j=1

[1(yj = s)− ηj,qrs]xj,qr,

where Mqr is the observed number of transitions with states of origin (q, r), yj is the state of94

4



destination for the j-th transition among Mqr transitions, and xj,qr is the vector of corresponding95

covariates used in the second-order MLR model.96

The Hessian matrix is a block diagonal matrix, with (r, s)-th block given by97

blrs =
∂2

∂βqrs∂βqrl

lnL

= −
Mqr∑
j=1

ηj,qrs[1(yj = l)− ηj,qrl]xj,qrx
⊤
j,qr.

If we compare the coefficients in Table 2 below with those in Table 3 of the paper, we can98

see the coefficients are slightly different in several cases, which is due to the use of different99

softwares (R in the paper and Stata in the supplementary material).100

Table 2: Summary of the second-order MLR model with robust standard errors (in parentheses.)

State of destination to partial-coverage (s = 2) to churn (s = 3)

State of origin: (1,1)
Intercept −19.76∗∗∗ (1.88) −19.88∗∗∗ (1.36)
Entity(ScToVi) 16.25∗∗∗ (0.34) 15.36∗∗∗ (0.25)
Entity(CiMi) 17.18∗∗∗ (0.39) 16.25∗∗∗ (0.53)
RateBC −2.86∗∗∗ (1.03) 0.30 (0.60)
RateIM 1.37∗ (0.79) 0.76 (0.61)
RateCar −0.39∗∗∗ (0.13) −0.04 (0.13)
I(ClaimBC) 0.20 (0.34) −0.64∗ (0.38)
I(ClaimIM) −0.47 (1.02) −14.66∗∗∗(0.31)
TotalCoverage −0.88∗∗ (0.31) −0.66∗(0.51)
RatioPremium 0.81 (1.07) 0.93∗(0.51)

State of origin: (2,1)
Intercept −18.02∗∗∗ (0.58)
Entity(ScToVi) 16.34∗∗∗ (0.76)
I(ClaimCar) −16.63∗∗∗ (0.67)

State of origin: (1,2)
Intercept 16.68∗∗∗ (0.90) 16.65∗∗∗ (1.12)
Entity(ScToVi) −17.06∗∗∗ (1.01) −16.82∗∗∗ (0.95)
RateIM 1.19∗ (0.77) −0.07 (0.66)

State of origin: (2,2)
Intercept 19.75∗∗∗ (0.18) 16.29∗∗∗ (0.33)
Entity(CiScToVi) −14.75∗∗∗ (0.28) −14.63∗∗∗ (0.37)
FrequencyBC 0.02 (0.09) −0.72∗∗∗ (0.22)
RatioPremium 3.25∗∗ (1.39) 3.56∗∗ (1.40)
I(FinaCris) −0.90∗∗ (0.41) −0.42 (0.46)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5 Goodness-of-Fit Tests101

Due to the fact that multinomial models have more than one groups of coefficients, assessing102

Goodness-of-Fit (GoF) is more challenging, and is still an area of intense research. The most103

approachable method to assess model confidence is the Hosmer-Lemeshow (HL) test (Hosmer104

& Lemesbow 1980), which is extended in Fagerland et al. (2008) for MLR models. In a MLR105

model setting, we have data of the form (x1, y1), (x2, y2), . . . , (xn, yn), where yi is a k-vector106

that indicates which class the i-th observation belongs to (exactly one entry contains a one and107

the rest are zero), xi is the vector of explanatory variables for the i-th observation, and n is108

the number of observations. After we fit a MLR model that estimates a vector of predicted109

probabilities for k classes p̂(xi) =
(
p̂1(xi), p̂2(xi), . . . , p̂k(xi)

)
, the predicted values (1− p̂1(xi)110

assuming the class 1 is the reference level) are arrayed from the lowest to the highest, and then111

separated into several groups of approximately equal size. Let Ohj and Ehj denote the sum of112

the observed frequencies and estimated frequencies for j-th class in h-th group. The HL statistic113

is calculated as114

Cg =

g∑
h=1

k∑
j=1

(Ohj − Ehj)
2

Ehj

,

where g is number of groups (normally is set to be 10). Under the null hypothesis that the115

fitted model is the correct model and the sample is sufficiently large, we expect Cg to have an116

approximate χ2 distribution with (g − 2)× (k − 1) degrees of freedom.117

Besides the HL test, the deviance and Pearson chi-square tests for the binary logistic regres-118

sion can also be extended to MLR models. The deviance can be written as119

D = −2
n∑

i=1

k∑
j=1

yij log

(
p̂j(xi)

yij

)
,

where yij is an indicator for j-th class in vector yi, and we treat zero times the log of anything as120

zero. Under the null hypothesis that the fitted model is the correct model, the distribution of D121

is chi-squared with (n− p)× (k− 1) degrees of freedom, where p is the number of explanatory122

variables including intercept.123

The Pearson chi-square is calculated as124

χ2 =
n∑

i=1

k∑
j=1

(
yij − p̂j(xi)

)2
p̂j(xi)

.

Under the null hypothesis that the fitted model is the correct model, the distribution of χ2 is125

chi-squared with (n− p)× (k − 1) degrees of freedom.126

In Table 3, we show the results of the three tests for the second-order MLR model in the127
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application to data from LGPIF. In all cases, p-values are high, so there is no evidence showing128

that the second-order MLR model is a poor fit.129

Table 3: Goodness-of-fitting tests for the second-order MLR model.

Pearson Chi-Square Deviance HL (10 groups)

Statistic df p-value Statistic df p-value Statistic df p-value

Second-order MLR 9258.0 10846 1 2191.6 10846 1 15.5 16 0.49

6 Exploratory Variables of an "Average" Policyholder130

The values of exploratory variables of an average policyholder are listed in Table 4.131

Table 4: The state-specific values of exploratory variables of an "average" policyholder.
Exploratory variable Full-coverage Partial-coverage
Entity(ScToVi) 1 1
Entity(CiMi) 0 0
RateBC 0.537 0.652
RateIM 2.214 1.660
RateCar 3.600 0.169
I(ClaimBC) 0 0
I(ClaimIM) 0 0
I(ClaimCar) 0 0
TotalCoverage 0.666 0.285
RatioPremium 0.034 0.018

7 One-versus-All Binary Logistic Regression132

It is worth comparing MLR models to another, an obvious approach that could be used for133

multi-state customer churn analysis, namely fitting multiple sets of binary logistic regression134

(BLR) models based on either a one-versus-all (also known as one-versus-rest) or one-versus-135

one approach. Recall that in traditional customer churn analysis, BLR models are fitted to a136

binary response for identifying the explanatory variables driving the probability of customer137

churn. With multi-state data, one can extend this approach by fitting separate BLR models for138

each transition, including the transition to churn.139

We illustrate this with a one-versus-all, second-order BLR model approach as follows. Con-140

sider the example discussed in the right panel of Figure 1 of the paper, where there are three pos-141

sible states a policyholder can transition to at time t (full-coverage or state 1, partial-coverage142

7



or state 2, churn or state 3). Then for each state of origin (q, r) where q = {1, 2}, r = {1, 2},143

a one-vs-all, second-order BLR model would construct the following three separate logistic144

regression models:145

P (yi,t = 1|yi,t−2 = q, yi,t−1 = r) = logit−1
(
x⊤
i,t−1,qr1βqr1

)
,

P (yi,t = 2|yi,t−2 = q, yi,t−1 = r) = logit−1
(
x⊤
i,t−1,qr2βqr2

)
, (1)

P (yi,t = 3|yi,t−2 = q, yi,t−1 = r) = logit−1
(
x⊤
i,t−1,qr3βqr3

)
,

where logit−1(x) = exp(x)/(1 + exp(x)) denotes the inverse link function. It is important to146

emphasise that in equation (1), three sets of BLR models are fitted for each state of origin. This147

contrasts to the MLR model in equation (2) of the paper, i.e., for each state of origin, only a148

single model needs to be fitted for all transition probabilities. Indeed, this reflects a fundamental149

difference between a MLR modelling approach and a one-versus-all BLR modelling approach150

for multi-state analysis: in the latter, transition probabilities from the same state of origin are151

independently modelled, and thus need not and in general do not sum to one. That is, in equation152

(1) there is no guarantee that P (yi,t = 1|yi,t−2 = q, yi,t−1 = r) + P (yi,t = 2|yi,t−2 = q, yi,t−1 =153

r) + P (yi,t = 3|yi,t−2 = q, yi,t−1 = r) = 1. One consequence of this is that the transition154

probabilities from BLR models do not properly reflect the conditional or marginal effects of155

covariates in multi-state customer analysis, and we discuss this point further in Section 4.3 of156

the paper. Also, it is clear that, conditional on a state of origin (q, r), the coefficients in a157

one-versus-all BLR model only affect that particular corresponding transition probability. In158

contrast, for the MLR modelling approach in equation (2) of the paper, the coefficients βqrs159

affect all transition probabilities, as they occur in both the numerator and the denominator of160

the regression function. This is again nothing more than a direct consequence of the sum to one161

constraint.162

In this paper, we choose to use MLR models instead of a set of separate BLR models for163

the purposes of multi-state customer churn analysis, as the former naturally considers the de-164

pendence among the transition probabilities. Indeed, MLR models precisely quantify the effect165

of covariates on transitions to a multitude of states, and thus offers a more complete picture of166

dynamic changes in the needs of policyholders over time. That being said, it is important to167

acknowledge that if the primary question of interest is related to studying specific transitions in-168

stead of all transitions jointly, then the one-versus-all BLR modelling approach is suited for this.169

For example, if the primary focus was studying the state of destination as churn, then building170

a BLR model based on the third line of equation (1) would be a more direct way of answering171

this question since it explicitly and only models the probability of customer churn versus not172

churn. However, it is also possible to use the MLR model to answer the same question, albeit173

with more mathematical calculations.174
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8 Scenarios by Conducting Traditional Customer Churn Anal-175

ysis and Multi-state Customer Churn Analysis176

We visualise the scenarios of future path for traditional and multi-state customer churn analysis177

in Figure 2.178

Figure 2: Scenarios of future path for CLV calculation: three scenarios for traditional customer
churn analysis (left panel) versus seven scenarios for multi-state customer churn analysis (right
panel).

9 Models in Out-of-Sample Validation179

9.1 Support Vector Machine180

Support vector machine (SVM) is one of the most popular supervised learning algorithms,181

which is used for classification as well as regression problems (Noble 2006). However, primar-182

ily, it is used for classification problems in machine learning. The goal of the SVM algorithm is183

to create the best line or decision boundary that can segregate n-dimensional space into classes184

so that people can easily put the new data points in the correct category in the future. How-185

ever, one disadvantage of SVM is that it does not output probabilities natively, but probability186

calibration methods can be used to convert the output to class probabilities. Various methods187

exist, including Platt scaling (particularly suitable for SVMs) and isotonic regression. In this188

paper, we use the default probabilities provided in svm function in e1071 package (Meyer189

et al. 2021). The default probability model for SVM classification fits a logistic distribution190
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using maximum likelihood to the decision values of all binary classifiers, and computes the191

a-posteriori class probabilities for the multi-class problem using quadratic optimisation.192

The SVM is an approximate implementation of a theoretical bound on the generalisation193

performance that is independent of the dimensionality of the feature space. To build a non-194

linear SVM classifier, we can use either the polynomial kernel or the radial kernel function. In195

this paper, we use the radial kernel function. There are two hyperparameters to be tuned when196

we use the radial kernel function. C, the “cost” of the radial kernel, controls the complexity197

of the boundary between support vectors. The radial kernel also requires setting a smoothing198

parameter, sigma. The caret (Kuhn 2021) package can be used to tune the radial hyperpa-199

rameters of SVM radial kernel function models by setting method = “svmRadial”. We200

use 10-fold cross validation to find the optimal hyperparameters that can maximise accuracy201

in the original training set and balanced training set. Accuracy is the ratio of the number of202

correctly classified instances to the total number of instances. The result of optimal hyperpa-203

rameters is summarised in Table 5.204

Table 5: Tuning results of SVM classifiers.

Original training set Balanced training set
C 1 4096
sigma 0.0326 0.0337

9.2 Gradient Boosting Machine205

Gradient boosting machine (GBM) combines the predictions from multiple decision trees (weak206

learners) to generate the final predictions (Friedman 2001). Additionally, each new tree takes207

into account the errors or mistakes made by the previous trees. So, every successive decision208

tree is built on the errors of the previous trees. This is how the trees in a gradient boosting209

machine algorithm are built sequentially.210

The hyperparameters of a GBM model to be tuned are interaction.depth, n.trees,211

shrinkage, and n.minobsinnode. The definition of these hyperparameters can be found212

in gbm (Greenwell et al. 2020) package. interaction.depth specifies the maximum213

depth of each tree (i.e., the highest level of variable interactions allowed). n.trees speci-214

fies the total number of trees to fit. shrinkage is a shrinkage parameter applied to each tree215

in the expansion (also known as the learning rate or step-size reduction). n.minobsinnode216

specifies the minimum number of observations in the terminal nodes of the trees. GBM model217

is tuned by 5-fold CV to minimise logLoss using caret (Kuhn 2021) package by setting218

distribution="multinomial", method="gbm", and metric="logLoss". logLoss219

computes the minus log-likelihood of the multinomial distribution (without the constant term):220
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−logLoss =
−1

n

n∑
i=1

k∑
j=1

yij log(pij),

where the y values are binary indicators for the classes and p are the predicted class probabilities,221

n is number of observations, and k is number of classes.222

The result of optimal hyperparameters in the original training set and balanced training set223

is summarised in Table 6.224

Table 6: Tuning results of GBMs.

Original training set Balanced training set
interaction.depth 3 2
n.trees 400 5000
shrinkage 0.01 0.01
n.minobsinnode 10 10
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