
New loss reserve models with persistence effects to forecast trapezoidal
losses in run-off triangles

Farha Usman 1 and Jennifer S.K. Chan 2

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Appendix
A. To simulate random variables Y from GB2 distribution for reserve forecast, we make use

of the fact that GB2 distribution is transformed from a beta distribution such that

if U =
(Y
b
)a

1 + (Y
b
)a
∼ Beta(p, q), Y ∼ GB2(a, b, p, q). (31)

Hence the simulation procedures are

Y = b
( U

1− U

)1/a

=
µΓ(p)Γ(q)

Γ(p+ 1/a)Γ(q − 1/a)

(
U

1− U

)1/a

where U ∼ Beta(p, q)

(32)
using (17). We note that the inverse method Y = F−1

GB2(U), U ∼ Uniform(0, 1) fails as
the distribution function FGB2(·) has no closed inverse function.

To implement the Bayesian inference, we use the Stan package running under the R
environment. As GB2 distribution is not a built-in distribution in Stan, we define the
distribution by defining its log density called beta2 log using (18) as below

functions{
real beta2_log(real x, real a, real mu, real p, real q) {
return log(fabs(a))+(a*p-1)*log(x)+lgamma(p+q)
-(a*p)*log((mu*tgamma(p)*tgamma(q))/(tgamma(p+(1/a))*tgamma(q-(1/a))))
-lgamma(p)-lgamma(q)-(p+q)*log(1+pow((x*tgamma(p+(1/a))*tgamma(q-(1/a)))
/(mu*tgamma(p)*tgamma(q)),a));

} }

where tgamma() is a gamma function and lgamma() is a log-gamma function. Then the
model is specified as y ∼ beta2(a,mu,p,q) where y and mu are the observation vector
and mean vector respectively.

B. The generalized gamma (GG) distribution has two shape parameters with the density:

fGG(y; a, λ, p) =
ayap−1e−( yλ)

a

λapΓ(p)
(33)

where λ is the scale parameter, a and p are the shape parameters (ν = (a, p)), and E(Y ) =

µ = λΓ(p+1/a)
Γ(p)

. Expressing the scale parameter

λ =
µΓ(p)

Γ(p+ 1/a)
(34)
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in terms of µ, the density in (33) can be written as

fGG(y; a, µ, p) =
ayap−1e−[ yΓ(p+1/a)

µΓ(p) ]
a[

µΓ(p)
Γ(p+1/a)

]ap
Γ(p)

. (35)

The GG distribution nests Weibull (p = 1), gamma (a = 1), and exponential (a = p = 1)
distributions as special cases and lognormal as a limiting distribution (b = (σ2a2)1/a,
p = (aµ+ 1)/(σ2a2), a→ 0).

To simulate random variables Y from GG distribution for reserve forecast, we make use
of the fact that GG distribution is transformed from a gamma distribution such that if
U = (Y

λ
)a ∼ Gamma(p, 1), Y ∼ GG(p, λ, a). Hence, the simulation procedures are

Y = λU1/a =
µΓ(p)

Γ(p+ 1/a)
U1/a where U ∼ Gamma(p, 1). (36)

Again, GG distribution is not a built-in distribution in Stan. We define the distribution
directly by defining its log density called ggamma log using (35), similar to the case of
GB2 distribution. Then the model is specified as y ∼ ggamma(p,mu,a).

C. Weibull distribution has the density and distribution functions given by respectively

fW(y; a, λ) =
aya−1

λa
e−(y/λ)a and FW(y; a, λ) = 1− exp

[
−
(y
λ

)a]
(37)

where λ is the scale parameter, a is the shape parameter (ν = a), and E(Y ) = µ =
λΓ(1 + 1/a). Expressing the scale parameter λ = µ

Γ(1+1/a)
in terms of µ, the density in

(37) can be written as

fW(y; a, µ) =
aya−1Γ(1 + 1/a)a

µa
exp

{
−

[
yΓ
(
1 + 1

a

)
µ

]a}
. (38)

To simulate random variables Y from Weibull distribution for reserve forecast, we can use
the inverse method since the distribution function in (37) has close form inverse. Hence,
the simulation procedures are

U ∼ uniform(0, 1), Y = F−1
W (U) = λ[− ln(1− U)]1/a. (39)

Since Weibull distribution is a built-in function in Stan, the model is specified as y ∼
Weibull(a,lam) where lam=mu/tgamma(1+1/a).

D. To simulate random variables Y from EE distribution for reserve forecast, we can use the
inverse method so that if U ∼ uniform(0, 1),

Y = F−1
EE (U) =

µ

eΓ
(

1
a

+ 1, 1
)
− 1

{[
1− log(1− U)

] 1
a−1

}
substituting λ = µ

[
eΓ
(

1
a

+ 1, 1
)
−1
]−1 in (20). Alternatively, we can use the fact that

EE distribution is transformed from a standard exponential distribution with pdf fE(u) =

e−u such that if U = −
[
1 −

(
1 + Y

λ

)a] ∼ Exp(1), Y ∼ EE(a, µ). Hence the simulation
procedures are

Y =
µ

eΓ
(

1
a

+ 1, 1
)
−1

[
(U + 1)1/a − 1

]
where U ∼ Exp(1). (40)
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Again, EE distribution is not a built-in distribution in Stan. We define the distribution
directly by defining its log pdf called eexp log using (21). Then the model is specified
as y ∼ eexp(a,mu).

E. Both GB2 and GG are distributions generated from Gamma distributions. Let Z1 and Z2

be gamma distributed random variables with scale parameter 1 and shape parameter p and
q respectively. Then

b

(
Z1

Z2

)1/a

∼ GB2(a, b, p, q) and b (Z1)1/a ∼ GG(a, b, p) (41)

Thus, the tail of Z1/Z2 will be thinner (heavier) relative to the tail of Z1 alone as the
parameter q is large (near or less than one).

F. To calculate the log of GB2 density for any (i, j) cell at 90% quantile as an example can
be computed using the commands u90=qbeta(0.90,p,q); z90=ln(u90/(1-u90));
y90=b exp(z90/a); ld90=logf.gb2(y90,a,b,p,q) applying some built-in R func-
tions where the parameter estimates of a, p and q and b for the (i, j) cell are given by the
posterior mean. For GG distribution, we use the commands

y90=qggamma(0.90,alpha=a,scale=lam,psi=p);
ld90=dggamma(y90,alpha=a,scale=lam,psi=p,log=T)

where lam for the (i, j) cell is given by (34).
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