
Appendix

A Data

Table A.1: Overview of countries included in the analysis

HMD code HMD data
Country (abbreviation) Region availability # inclusions

Australia AUS America, Australia, Japan 1921 - 2018 4
Austria AUT Western Europe 1947 - 2017 3
Belarus BLR Eastern Europe 1959 - 2018 2
Belgium BEL Western Europe 1841 - 2018 4
Bulgaria BGR Eastern Europe 1947 - 2017 3
Canada CAN America, Australia, Japan 1921 - 2016 4
Czechia CZE Eastern Europe 1950 - 2018 3
Denmark DNK Scandinavia 1835 - 2019 4
Estonia EST Eastern Europe 1959 - 2017 2
Finland FIN Scandinavia 1878 - 2018 4
France FRATNP Western Europe 1816 - 2017 4
East Germany DEUTE Eastern Europe 1956 - 2017 2
West Germany DEUTW Western Europe 1956 - 2017 2
Hungary HUN Eastern Europe 1950 - 2017 3
Iceland ISL Scandinavia 1838 - 2018 4
Ireland IRL Great Britain 1950 - 2017 3
Italy ITA Southern Europe 1872 - 2017 4
Japan JPN America, Australia, Japan 1947 - 2018 3
Latvia LVA Eastern Europe 1959 - 2017 2
Lithuania LTU Eastern Europe 1959 - 2017 2
Luxembourg LUX Western Europe 1960 - 2017 2
Netherlands NLD Western Europe 1850 - 2016 4
Norway NOR Scandinavia 1846 - 2018 4
Poland POL Eastern Europe 1958 - 2016 2
Portugal PRT Southern Europe 1940 - 2018 3
Slovakia SVK Eastern Europe 1950 - 2017 3
Spain ESP Southern Europe 1908 - 2016 4
Sweden SWE Scandinavia 1751 - 2018 4
Switzerland CHE Western Europe 1876 - 2016 4
England & Wales GBRTENW Great Britain 1841 - 2016 4
Scotland GBR SCO Great Britain 1855 - 2016 4
Northern Ireland GBR NIR Great Britain 1922 - 2016 4
USA USA America, Australia, Japan 1933 - 2017 4

B Tree-Based Machine Learning Methods

B.1 Decision Trees

The decision tree method was first proposed by Breiman et al. 1984, and it can be

applied to both regression and classification problems. According to Hastie et al.

(2009), a decision tree is a nonparametric model that repeatedly splits the data into

groups according to a set of feature/input variables, F , in order to identify regions

(subsets of the data) that are homogeneous in terms of the response variable, m. At

every node, the algorithm identifies a set of possible splits for the feature variables.
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It then chooses the feature variable and split point that maximizes the homogeneity

of the response along each branch. Each branch creates new nodes that again can

be split. The splitting continues until a stopping criterion is reached. For regression

trees, the response variable is predicted using the mean response observed in each of

the terminal nodes (i.e., in each region of the data).

Following, e.g., Hastie et al. (2009), suppose that data at a given node n can be

represented by Q
n
, and that there are θ = (f, sn) candidate splits, each consisting of

a feature variable f and a threshold/split point sn. For each θ, Qn is partitioned into

two subsets:

Qn
left (θ) = (F ,m) |f ≤ sn, (1)

Qn
right (θ) = Qn\Qn

left (θ) . (2)

The optimal split is chosen such that it minimizes the impurity at that node,

θ∗ = arg min
θ
Imp (Qn, θ) =

Nn
left

Nn
MSE

(
Qn
left (θ)

)
+
Nn
right

Nn
MSE

(
Qn
right (θ)

)
, (3)

where Nn
left and Nn

right are the total number of observations in each of the two subsets,

Nn = Nn
left +Nn

right, and

MSE (Qn (θ)) =
1

Nn

∑
i∈Nn

(mi − m̄n)2 , (4)

with m̄n = 1
Nn

∑
i∈Nn mi being the mean response in node n. These steps are repeated

until a stopping criterion is met (e.g, maximum number of terminal nodes). The

response is then predicted by m̄n within each terminal node.

In contrast to the traditional stochastic mortality models that only include year,

age, and cohort in the set of features, F , this methodology allows the researcher to

include any variable in F that he/she believes affects mortality.
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B.2 Random Forests

Algorithm 1: Random forests for regression
(Algorithm 15.1 in Hastie et al. 2009)

1. For k = 1, ..., K:

1.1. Draw a bootstrap sample from the training data.

1.2. Construct a regression tree (denoted by Tk) from the bootstrap sample

by recursively repeating the following steps for each node, n, of the tree,

until a stopping criterion (e.g., maximum number of terminal nodes) is

reached.

1.2.1. Randomly select Fn feature variables from the F total number of

features in F .

1.2.2. Choose the optimal feature and split point among the set of possible

splits for the Fn features according to (3).

1.2.3. Split the node into two daughter nodes according to the choice in

1.2.2.

2. Output the ensemble of regression trees {Tk}k=1,...,K .

In step 1.2.2. of Algorithm 1, splitting a categorical variable (like country) is

different from splitting a numerical or logical variable. For categorical variables, the

split point is represented by an integer, whose base-2 (binary) representation defines

the identities of the categories that go to the left (ones) and right (zeros).
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B.3 Stochastic Gradient Boosting

Algorithm 2: Stochastic gradient boosting for regression
(See Friedman 2001 and Friedman 2002)

1. Initialize m̂0 (F) = arg minγ
∑N

i=1 L (mi, γ), given a loss function L (m, γ) as

a function of the response variable, m, and the predicted values, γ.

2. For k = 1, ..., K:

2.1. For i = 1, ..., N compute the pseudo residuals

ri,k = −
[
∂L (mi, m̂ (Fi))

∂m̂ (Fi)

]
m̂=m̂k−1

. (5)

2.2. Randomly select a subsample of the training data of size p ·N , with p

being a constant, pre-specified subsampling rate.

2.3. Fit a regression tree to the ri,k values creating terminal regions Rj,k,

j = 1, 2, ..., Jk using only the subsample from the previous step.

2.4. For j = 1, 2, ..., Jk compute the output value

γj,k = arg min
γ

∑
Fi∈Rj,k

L (mi, m̂k−1 (Fi) + γ) . (6)

2.5. Update m̂k (F) = m̂k−1 (F) + ν
∑Jk

j=1 γj,kI (F ∈ Rj,k), where ν is a con-

stant, pre-specified learning rate.

3. Output m̂ (F) = m̂K (F).

The optimal number of trees/iterations and the learning rate depend on each other.

Smaller values of the learning rate almost always improves the predictive performance,

but is associated with higher computational costs (more iterations are required). For

small values of the learning rate and large number of iterations, the error rate is very

flat. Thus, Friedman (2001) suggests that one should choose a small value for the

learning rate while setting the number of iterations as large as is computationally

feasible. For more details about the trade-off between number of trees and the learning

rate, see Friedman (2001).
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C Stochastic Mortality Models

The Augmented Common Factor (ACF) model developed by Li and Lee (2005) is an

extended version of the Lee-Carter (LC) model built to handle multiple populations

(e.g., men and women, different countries, etc.). In the ACF model, common mortality

tendencies across populations are identified using a common factor approach, while

at the same time, mortality schedules are allowed to vary between populations. The

superscript i refers to a particular population. Thus, αix and βixκ
i
t are population-

specific, while BxKt is specific to the ‘pooled’ population. The model is fit by first

estimating the common factors, Bx and Kt, from a LC model of the pooled population,

Table A.2: Stochastic mortality models considered in this paper

Model and reference Formula Identifiability constraints

Lee-Carter (LC) ηx,t = αx + βxκt
∑

t∈T κt = 0,
∑

x∈X βx = 1

Lee and Carter 1992

Augmented Common ηix,t = αi
x +BxKt + βi

xκ
i
t, ∀i ∈ R

∑
t∈T Kt = 0,

∑
x∈X Bx = 1,

Factor (ACF)
∑

t∈T κ
i
t = 0,

∑
x∈X β

i
x = 1, ∀i ∈ R

Li and Lee 2005

Cairns-Blake-Dowd (CBD) ηx,t = κ
[1]
t + κ

[2]
t (x− x̄)

Cairns et al. 2006

Renshaw-Haberman (RH) ηx,t = αx + βxκt + γt−x
∑

t∈T κt = 0,
∑

x∈X βx = 1,

Renshaw and Haberman 2006,
∑

t−x∈C γt−x = 0
Haberman and Renshaw 2011

Age-Period-Cohort (APC) ηx,t = αx + κt + γt−x
∑

t∈T κt = 0,
∑

t−x∈C γt−x = 0,

Currie 2006
∑

t−x∈C (t− x) γt−x = 0

M6 ηx,t = κ
[1]
t + κ

[2]
t (x− x̄) + γt−x

∑
t−x∈C γt−x = 0,

Cairns et al. 2009
∑

t−x∈C (t− x) γt−x = 0

M7 ηx,t = κ
[1]
t + κ

[2]
t (x− x̄)

∑
t−x∈C γt−x = 0,

Cairns et al. 2009 + κ
[3]
t

(
(x− x̄)− σ̂2

x

)
+ γt−x

∑
t−x∈C (t− x) γt−x = 0,∑
t−x∈C (t− x)2 γt−x = 0

(Full) Plat ηx,t = αx + κ
[1]
t + κ

[2]
t (x̄− x)

∑
t∈T κ

[1]
t = 0,

∑
t∈T κ

[2]
t = 0,

Plat 2009 + κ
[3]
t (x̄− x)+ + γt−x

∑
t∈T κ

[3]
t = 0,

∑
t−x∈C γt−x = 0,∑

t−x∈C (t− x) γt−x = 0,∑
t−x∈C (t− x)2 γt−x = 0

(Reduced) Plat ηx,t = αx + κ
[1]
t + κ

[2]
t (x̄− x) + γt−x

∑
t∈T κ

[1]
t = 0,

∑
t∈T κ

[2]
t = 0,

Plat 2009
∑

t−x∈C γt−x = 0,∑
t−x∈C (t− x) γt−x = 0,∑
t−x∈C (t− x)2 γt−x = 0

Notes: T is the set of calendar years, X is the set of ages, C is the set of cohorts, and R is the set of regions. Each
model is fit and forecast in its pure form, as well as in combination with random forest, using Procedure 1.
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which in this paper is regions (see Table A.1 in Appendix A). Next, αix is estimated for

each population as the average log-mortality rate at each age. Finally, βix, and κit are

estimated for each population by applying the singular value decomposition (SVD) to

the residual matrix lnmi
x,t − αix −BxKt.

D The Model Confidence Set Procedure

Formally, the MCS procedure starts from an initial set of models,M0, consisting of all

models described in Section 3. Assuming the total number of models is M , the MCS

procedure then delivers a SSM, M̂∗
1−α, consisting of M∗ ≤ M models, given a user

specified confidence level 1 − α. Let Li,t be the loss function associated with model i

at time t. The loss differential between model i and model j, dij,t, can then be defined

as

dij,t = Li,t − Lj,t, i, j = 1, ...,M, t = 1, ..., T. (7)

The loss function applied in this paper is the squared error loss,

Li,t =
(

lnmt − l̂nm
i

t

)2

. (8)

The null hypothesis of equal predictive ability can be formulated based on the expected

value of (7),

H0,M : E (dij) = 0, for all i, j = 1, ...,M

HA,M : E (dij) 6= 0, for some i, j = 1, ...,M.
(9)

At each iteration of the MCS procedure, the hypothesis in (9) is tested for the remaining

models.

Hansen et al. (2011) construct the t-statistic,

tij =
d̄ij√

v̂ar
(
d̄ij
) for i, j ∈M, (10)

where d̄ij = T−1
∑T

t=1 dij,t is the relative sample loss between model i and model j,

and v̂ar
(
d̄ij
)

is the estimated variance of d̄ij. Using (10), Hansen et al. (2011) argue

that the null hypothesis in (9) maps naturally into the test statistic

TR,M = max
i,j∈M

|tij| , (11)

which has a non-standard, asymptotic distribution that can be estimated with boot-

strap methods (see Kilian 1999; White 2000; Hansen 2003, 2005; Clark and McCracken
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2005). With the test statistic, TR,M, the model to be eliminated can be identified via

the elimination rule

eR,M = arg max
i∈M

sup
j∈M

tij, (12)

because the model, eR,M, is such that for some j ∈M, teR,M,j = TR,M.

The algorithm behind the MCS procedure is summarized in the following:

Algorithm 3: The Model Confidence Set procedure

(Step 1 through 3, page 5 in Bernardi and Catania 2018)

1. Set M =M0 (where M0 is the initial set of models).

2. Test H0,M : E (dij) = 0 for all i, j ∈M, given the confidence level α. If H0,M

cannot be rejected, terminate the algorithm and set M̂∗
1−α =M. If instead

H0,M is rejected, eliminate the worst-performing model from M according

to the elimination rule in (12).

3. Go to step 2 using the reduced set of models.

E Robustness Checks

E.1 Forecasting Comparison Based on RMSE and MAPE

Table A.3 shows in percentage the frequency at which each model achieves the smallest

root mean square error (RMSE) on the test set compared to all competing models.

Similarly, Table A.4 shows in percentage the frequency at which each model achieves

the smallest mean absolute percentage error (MAPE) on the test set compared to all

competing models. The results are displayed for the two different age ranges: 59-89

and 20-89. In both tables, darker shadings are used to mark larger percentages.
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Table A.3: Lowest RMSE for each training and test set combination

Forecast horizon: 30 years 16 years

Fitting period: 1936-1986 1961-1986 1950-2000 1975-2000

Age range: 59-89 20-89 59-89 20-89 59-89 20-89 59-89 20-89

LC 0% 0% 2% 2% 0% 0% 2% 0%
ACF 0% 0% 2% 0% 0% 0% 0% 3%
CBD 3% 3% 0% 3% 0% 20% 2% 12%
APC 0% 18% 3% 5% 0% 2% 2% 2%
RH 0% 0% 0% 2% 0% 0% 2% 0%
M6 0% 0% 0% 0% 0% 0% 0% 0%
M7 0% 0% 0% 0% 0% 0% 0% 3%
Plat (full) 3% 3% 5% 3% 2% 0% 0% 5%
Plat (reduced) 0% 9% 0% 6% 2% 2% 2% 0%
Pure RF 6% 21% 26% 29% 30% 6% 23% 18%
Pure GB 47% 12% 42% 20% 16% 12% 14% 5%
RF/ARIMA 6% 0% 0% 3% 0% 8% 0% 3%
RF/LC 0% 6% 2% 0% 2% 0% 0% 0%
RF/ACF 12% 3% 3% 2% 2% 2% 5% 8%
RF/CBD 0% 0% 0% 2% 0% 0% 0% 0%
RF/APC 0% 6% 3% 2% 0% 6% 5% 0%
RF/RH 0% 0% 0% 3% 0% 0% 0% 0%
RF/M6 0% 0% 0% 2% 0% 0% 0% 0%
RF/M7 0% 0% 0% 0% 0% 0% 0% 0%
RF/Plat (full) 3% 0% 0% 0% 2% 2% 0% 6%
RF/Plat (reduced) 3% 0% 0% 2% 0% 4% 0% 6%
GB/ARIMA 3% 0% 0% 3% 4% 8% 2% 3%
GB/LC 6% 6% 2% 2% 0% 0% 3% 0%
GB/ACF 6% 6% 11% 6% 6% 8% 11% 2%
GB/CBD 0% 0% 2% 2% 0% 0% 8% 0%
GB/APC 3% 3% 0% 3% 26% 2% 18% 14%
GB/RH 0% 3% 0% 0% 4% 6% 0% 0%
GB/M6 0% 0% 0% 0% 0% 4% 5% 3%
GB/M7 0% 3% 0% 2% 0% 2% 0% 2%
GB/Plat (full) 0% 0% 0% 0% 4% 0% 2% 5%
GB/Plat (reduced) 0% 0% 0% 2% 0% 6% 0% 3%

# country-gender combinations 34 66 50 66
Notes: Within each column, the percentages are calculated as the frequency at which each model achieves the
lowest RMSE across all country-gender combinations. Each column adds up to 100%, since only one model can
have the lowest RMSE. The larger the percentage, the darker is the shade marking the cell.
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Table A.4: Lowest MAPE for each training and test set combination

Forecast horizon: 30 years 16 years

Fitting period: 1936-1986 1961-1986 1950-2000 1975-2000

Age range: 59-89 20-89 59-89 20-89 59-89 20-89 59-89 20-89

LC 0% 0% 0% 5% 0% 0% 6% 0%
ACF 0% 3% 0% 0% 0% 0% 0% 2%
CBD 0% 3% 0% 8% 2% 6% 2% 3%
APC 0% 18% 3% 2% 0% 4% 2% 2%
RH 0% 0% 0% 2% 0% 0% 0% 0%
M6 0% 0% 0% 0% 0% 0% 2% 0%
M7 0% 0% 0% 0% 0% 2% 0% 2%
Plat (full) 0% 0% 5% 3% 2% 0% 0% 3%
Plat (reduced) 0% 3% 3% 2% 0% 4% 2% 5%
Pure RF 12% 24% 24% 35% 38% 8% 17% 24%
Pure GB 44% 12% 39% 14% 10% 24% 14% 5%
RF/ARIMA 3% 3% 0% 3% 0% 10% 0% 2%
RF/LC 0% 3% 5% 0% 4% 0% 0% 2%
RF/ACF 12% 3% 5% 0% 2% 0% 3% 2%
RF/CBD 3% 0% 0% 3% 0% 0% 0% 0%
RF/APC 0% 3% 2% 3% 2% 6% 5% 3%
RF/RH 0% 0% 2% 3% 0% 2% 0% 0%
RF/M6 0% 0% 0% 0% 0% 2% 2% 3%
RF/M7 0% 0% 2% 0% 0% 0% 0% 0%
RF/Plat (full) 9% 0% 2% 0% 2% 4% 2% 5%
RF/Plat (reduced) 3% 0% 0% 0% 0% 0% 0% 6%
GB/ARIMA 0% 0% 0% 3% 4% 6% 3% 3%
GB/LC 6% 6% 2% 2% 2% 0% 3% 0%
GB/ACF 9% 3% 8% 8% 4% 2% 12% 2%
GB/CBD 0% 0% 0% 0% 0% 0% 5% 0%
GB/APC 0% 12% 0% 3% 18% 2% 18% 15%
GB/RH 0% 0% 2% 0% 6% 4% 3% 3%
GB/M6 0% 0% 0% 2% 0% 2% 2% 0%
GB/M7 0% 3% 0% 2% 0% 2% 0% 2%
GB/Plat (full) 0% 0% 0% 0% 4% 2% 2% 8%
GB/Plat (reduced) 0% 3% 0% 2% 0% 8% 0% 3%

# country-gender combinations 34 66 50 66
Notes: Within each column, the percentages are calculated as the frequency at which each model achieves the lowest
MAPE across all country-gender combinations. Each column adds up to 100%, since only one model can have the
lowest MAPE. The larger the percentage, the darker is the shade marking the cell.
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E.2 Head-to-Head Forecasting Comparisons

This appendix provides additional details about the head-to-head comparison in Sec-

tion 5.2. The head-to-head comparisons are based on the fitting period 1961-1986 with

a forecast horizon of 30 years (both age ranges). For the Lee-Carter comparison, we

also include the Levantesi and Pizzorusso (2019) random forests and gradient boosting

improved Lee-Carter models. The procedure for estimating these models is similar to

our approach with respect to the fitting part (although using a different transforma-

tion) but differs with respect to the forecasting part. In particular, the transformation

step (step 2 of Procedure 1 in Section 3.2) is replaced with

2. Construct ψLCx,t = Dx,t

D̂LC
x,t

, where Dx,t is the actual number of deaths, and D̂LC
x,t is

the estimated number of deaths according to the LC model.

Next, they fit ψLCx,t using random forests or gradient boosting (similarly to step 3 of

Procedure 1) and obtain the fitted values of the random forests/gradient boosting

estimator, ψLC,ML
x,t where ML refers to either RF or GB. Forecasting of the random

forests/gradient boosting estimator is based on the original LC framework, as opposed

to the random forests/gradient boosting framework. Thus, step 4 of Procedure 1 is

replaced with

4. Fit and forecast lnψLC,ML
x,t using the LC framework, resulting in the following LC

model improved by random forests/gradient boosting:

l̂nm
LC,ML

x,t = l̂nm
LC

x,t + lnψLC,ML
x,t =

(
αLCx + αψx

)
+ βLCx κLCt + βψx κ

ψ
t , (13)

where both κLCt and κψt are forecast using random walks with drift.

These models are denoted “RF/LC (ψ)” or “GB/LC (ψ)” in Table 3 in Section 5.2

and in Table A.5.
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Table A.5: RMSE for 30-year Lee-Carter forecasts with fitting period 1961-1986 for a
selection of countries

Age range: 59-89

Italy France Denmark USA

Female Male Female Male Female Male Female Male

LC 0.1554 0.3463 0.1269 0.2172 0.1999 0.3229 0.0899 0.1623
RF/LC (r) 0.1593 0.3502 0.1289 0.2212 0.1993 0.3303 0.0882 0.1660
GB/LC (r) 0.1577 0.3489 0.1278 0.2203 0.2000 0.3347 0.0899 0.1626
RF/LC (ψ) 0.1566 0.3474 0.1274 0.2179 0.2034 0.3249 0.0898 0.1624
GB/LC (ψ) 0.1565 0.3474 0.1276 0.2182 0.2053 0.3259 0.0897 0.1625

Age range: 20-89

Italy France Denmark USA

Female Male Female Male Female Male Female Male

LC 0.1563 0.3134 0.1745 0.2942 0.3966 0.4154 0.1682 0.1767
RF/LC (r) 0.1644 0.3105 0.1659 0.2774 0.3768 0.3937 0.1848 0.1671
GB/LC (r) 0.1536 0.3117 0.1636 0.2767 0.3594 0.3790 0.1880 0.1668
RF/LC (ψ) 0.1559 0.3129 0.1688 0.2889 0.3938 0.4099 0.1698 0.1748
GB/LC (ψ) 0.1539 0.3128 0.1729 0.2916 0.3974 0.4144 0.1701 0.1748

Notes: Boldface indicates lowest RMSE within a column.

E.3 Forecasting Comparison using the distRforest Package

for Random Forests

In this appendix, we produce forecasting results when the random forests algorithm

used for estimating the RF variants of the stochastic mortality models is based on

the R package distRforest (see Henckaerts 2019). The distRforest package is an

extension of the rpart package (see Therneau and Atkinson 2019) that implements

random forests with distribution-based loss functions. In particular, the distRforest

package allows for a random forests implementation on count data using the Poisson

distribution. The results are produced for the 30-year forecast with fitting period

1961-1986. We consider both age ranges (59-89 and 20-89).

The procedure differs slightly from Procedure 1 in Section 3.2. In particular, the

number of deaths are modeled as in Deprez et al. (2017), i.e.

D (x, t) ∼ Poisson (E (x, t) · q (x, t) · qRF (x, t)) (14)

The procedure for estimating and forecasting this model using the stochastic mortality

models presented in Table A.2 is similar to Procedure 1, but replacing step 2 with

2. Construct ψmodelx,t = Dx,t

D̂model
x,t

, where Dx,t is the actual number of deaths, and D̂model
x,t

is the estimated number of deaths according to some stochastic mortality model.

while step 4 is replaced with

4. Obtain the random forests forecast values ψ̂model,RFx,t and construct the random

forests improved forecasts l̂nm
model,RF

x,t+h = ln
[
m̂model
x,t+h · ψ̂

model,RF
x,t+h

]
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Table A.6: Lowest RMSE and superior set of models for 30-year forecast with fitting
period 1961-1986 using distRforest for random forest models

Lowest RMSE Superior set of models

Age range: 59-89 20-89 59-89 20-89

LC 2% 2% 3% 5%
ACF 2% 0% 3% 6%
CBD 0% 3% 0% 14%
APC 0% 2% 0% 2%
RH 0% 2% 0% 3%
M6 0% 0% 0% 0%
M7 0% 0% 0% 2%
Plat (full) 5% 0% 6% 2%
Plat (reduced) 0% 8% 2% 8%
Pure RF 26% 29% 27% 35%
Pure GB 35% 20% 39% 24%
RF/ARIMA 0% 3% 2% 6%
RF/LC 2% 0% 3% 0%
RF/ACF 9% 3% 15% 5%
RF/CBD 0% 2% 2% 3%
RF/APC 3% 3% 6% 3%
RF/RH 0% 2% 0% 2%
RF/M6 0% 2% 2% 2%
RF/M7 0% 0% 0% 0%
RF/Plat (full) 0% 3% 3% 6%
RF/Plat (reduced) 0% 0% 2% 2%
GB/ARIMA 0% 3% 2% 5%
GB/LC 2% 2% 2% 3%
GB/ACF 12% 5% 12% 9%
GB/CBD 2% 2% 2% 5%
GB/APC 3% 5% 5% 9%
GB/RH 0% 2% 0% 5%
GB/M6 0% 0% 2% 0%
GB/M7 0% 2% 0% 2%
GB/Plat (full) 0% 0% 3% 3%
GB/Plat (reduced) 0% 2% 2% 3%

Notes: Within each column, the percentages are calculated as the frequency at which each
model achieves the lowest RMSE (columns 2-3) or is part of the SSM (columns 4-5) across all
country-gender combinations. The larger the percentage, the darker is the shade marking the
cell.

Additionally, the random forests algorithm uses the Poisson deviance (rather than

MSE) when making variable split decisions. Table A.6 shows results based on the

two performance measures: RMSE (columns 2-3) and MCS (columns 4-5). Comparing

these results to the original results in Table A.3, columns 4-5 in Appendix E.1 and

Table 2, columns 4-5 in Section 5 reveals that using the Poisson deviance and the

procedure described above does not change the results significantly.

E.4 Forecasting Comparison when Including/Accounting for

Mortality Shocks

In this appendix, we compare mortality forecasts that accounts for mortality shocks

in the estimation phase. The results were produced for the 30-year forecast horizon

with fitting period 1936-1986 for both age ranges. For the random forests and gradient
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Table A.7: Lowest RMSE and superior set of models for 30-year forecast with fitting
period 1936-1986 when accounting for mortality shocks

Lowest RMSE Superior set of models

Age range: 59-89 20-89 59-89 20-89

LC 0% 3% 6% 6%
ACF 0% 0% 6% 3%
CBD 6% 12% 6% 18%
APC 3% 6% 3% 9%
RH 0% 0% 0% 6%
M6 0% 0% 0% 0%
M7 0% 0% 0% 0%
Plat (full) 0% 3% 0% 3%
Plat (reduced) 0% 12% 0% 15%
Pure RF 12% 26% 15% 35%
Pure GB 35% 12% 35% 18%
RF/ARIMA 6% 3% 6% 6%
RF/LC 3% 6% 6% 6%
RF/ACF 18% 0% 18% 0%
RF/CBD 0% 3% 0% 6%
RF/APC 0% 0% 0% 3%
RF/RH 0% 0% 0% 3%
RF/M6 0% 0% 0% 3%
RF/M7 0% 0% 0% 0%
RF/Plat (full) 0% 0% 3% 3%
RF/Plat (reduced) 0% 0% 0% 0%
GB/ARIMA 0% 0% 0% 0%
GB/LC 0% 0% 3% 3%
GB/ACF 12% 6% 15% 9%
GB/CBD 3% 0% 3% 0%
GB/APC 0% 9% 0% 15%
GB/RH 3% 0% 3% 6%
GB/M6 0% 0% 0% 3%
GB/M7 0% 0% 0% 0%
GB/Plat (full) 0% 0% 0% 3%
GB/Plat (reduced) 0% 0% 0% 6%

Notes: Within each column, the percentages are calculated as the frequency at which each
model achieves the lowest RMSE (columns 2-3) or is part of the SSM (columns 4-5) across all
country-gender combinations. The larger the percentage, the darker is the shade marking the
cell.

boosting models, we include three mortality shock dummies in the set of features

corresponding to World War II (1939-1945), the Asian Flu (1957-1958), and the Hong

Kong Flu (1968-1969). The stochastic mortality models were fit for the entire period,

but the refitting of the time components (κt-s) was based on 1972-1986 (15 years),

thereby avoiding any of the mortality shocks mentioned above when refitting κt. Table

A.7 presents the results based on the two performance measures: RMSE (columns 2-

3) and MCS (columns 4-5). Comparing these results to the original results in Table

A.3, columns 4-5 in Appendix E.1 and Table 2, columns 4-5 in Section 5 reveals that

including/accounting for mortality shocks does not change the results significantly.
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E.5 Forecasting Comparison when Excluding the Cohort Vari-

able for RF and GB Estimation

In this appendix, we compare mortality forecasts when excluding cohort from the set of

features used for estimating and forecasting by random forests and gradient boosting.

The results are produced for the 30-year forecast with fitting period 1961-1986. We

consider both age ranges (59-89 and 20-89). Table A.8 presents the results based on the

two performance measures: RMSE (columns 2-3) and MCS (columns 4-5). Comparing

these results to the original results in Table A.3, columns 4-5 in Appendix E.1 and

Table 2, columns 4-5 in Section 5 reveals that excluding the cohort variable does not

change the results significantly.

Table A.8: Lowest RMSE and superior set of models for 30-year forecast with fitting
period 1961-1986 without the cohort variable for RF and GB

Lowest RMSE Superior set of models

Age range: 59-89 20-89 59-89 20-89

LC 0% 3% 5% 3%
ACF 2% 0% 2% 3%
CBD 0% 3% 2% 11%
APC 0% 5% 2% 5%
RH 0% 2% 0% 5%
M6 0% 2% 2% 2%
M7 0% 0% 2% 0%
Plat (full) 5% 3% 6% 6%
Plat (reduced) 0% 5% 2% 8%
Pure RF 23% 26% 27% 35%
Pure GB 44% 24% 45% 27%
RF/ARIMA 0% 3% 2% 6%
RF/LC 0% 0% 2% 2%
RF/ACF 5% 5% 11% 11%
RF/CBD 0% 2% 2% 3%
RF/APC 0% 2% 0% 2%
RF/RH 0% 2% 0% 5%
RF/M6 0% 0% 2% 2%
RF/M7 2% 0% 3% 0%
RF/Plat (full) 2% 0% 2% 2%
RF/Plat (reduced) 0% 3% 2% 6%
GB/ARIMA 0% 3% 2% 6%
GB/LC 5% 0% 6% 2%
GB/ACF 8% 3% 11% 6%
GB/CBD 0% 0% 2% 5%
GB/APC 6% 3% 8% 5%
GB/RH 0% 2% 0% 2%
GB/M6 0% 0% 0% 0%
GB/M7 2% 2% 3% 2%
GB/Plat (full) 0% 0% 3% 2%
GB/Plat (reduced) 0% 2% 2% 5%

Notes: Within each column, the percentages are calculated as the frequency at which each
model achieves the lowest RMSE (columns 2-3) or is part of the SSM (columns 4-5) across all
country-gender combinations. The larger the percentage, the darker is the shade marking the
cell.
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F Random Forests Additional Results

F.1 50 Most Frequent Country Combinations

Table A.9: 50 most frequent 4-way groupings of countries for random forests. Fitting
period: 1961-1986, age range: 59-89

4-way grouping 10-group freq. Total freq. %total

BGR BLR CZE HUN 159 742 23%
BGR BLR CZE LTU 135 699 22%
BGR BLR CZE LVA 137 715 22%
BGR BLR CZE SVK 153 742 23%
BGR BLR HUN LTU 195 763 24%
BGR BLR HUN LVA 185 766 24%
BGR BLR HUN POL 112 654 20%
BGR BLR HUN SVK 236 827 26%
BGR BLR LTU LVA 155 723 23%
BGR BLR LTU SVK 192 765 24%
BGR BLR LVA SVK 187 775 24%
BGR CZE HUN LTU 142 712 22%
BGR CZE HUN LVA 146 736 23%
BGR CZE HUN POL 120 693 22%
BGR CZE HUN SVK 166 780 24%
BGR CZE LTU LVA 123 687 21%
BGR CZE LTU SVK 132 709 22%
BGR CZE LVA POL 116 670 21%
BGR CZE LVA SVK 142 740 23%
BGR CZE POL SVK 114 692 22%
BGR HUN LTU LVA 155 722 23%
BGR HUN LTU SVK 194 772 24%
BGR HUN LVA POL 118 670 21%
BGR HUN LVA SVK 192 791 25%
BGR HUN POL SVK 123 697 22%
BGR LTU LVA SVK 151 725 23%
BGR LVA POL SVK 115 672 21%
BLR CZE HUN LTU 135 698 22%
BLR CZE HUN LVA 140 716 22%
BLR CZE HUN SVK 153 739 23%
BLR CZE LTU LVA 122 681 21%
BLR CZE LTU SVK 127 693 22%
BLR CZE LVA SVK 135 719 22%
BLR HUN LTU LVA 150 713 22%
BLR HUN LTU SVK 185 757 24%
BLR HUN LVA POL 112 648 20%
BLR HUN LVA SVK 183 770 24%
BLR LTU LVA SVK 148 716 22%
CZE DEUTE HUN LVA 112 684 21%
CZE DEUTE LTU POL 112 650 20%
CZE DEUTE LVA POL 118 696 22%
CZE HUN LTU LVA 133 694 22%
CZE HUN LTU POL 112 644 20%
CZE HUN LTU SVK 134 705 22%
CZE HUN LVA POL 122 678 21%
CZE HUN LVA SVK 144 739 23%
CZE HUN POL SVK 116 699 22%
CZE LTU LVA SVK 122 692 22%
CZE LVA POL SVK 113 677 21%
HUN LTU LVA SVK 153 723 23%
HUN LVA POL SVK 118 674 21%
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F.2 All Fitting Periods and Both Age Ranges
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(a) Age range: 59-89, Fitting period: 1936-1986
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(e) Age range: 59-89, Fitting period: 1950-2000
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(f) Age range: 20-89, Fitting period: 1950-2000
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(g) Age range: 59-89, Fitting period: 1975-2000
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(h) Age range: 20-89, Fitting period: 1975-2000

Figure A.1: Distribution of year split points for random forests
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(h) Age range: 20-89, Fitting period: 1975-2000

Figure A.2: Distribution of age split points for random forests
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(h) Age range: 20-89, Fitting period: 1975-2000

Figure A.3: Distribution of cohort split points for random forests
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Table A.10: Most frequent 4-way groupings of countries for random forests. Fitting
period: 1936-1986, age range: 59-89

4-way grouping
10-group
freq.

Total
freq.

%total

CHE ESP FIN FRATNP 226 345 11%

CHE ESP FIN ITA 159 343 11%

CHE ESP FRATNP ITA 210 344 11%

CHE FIN FRATNP ITA 160 362 11%

DNK GBRNIR GBRSCO GBRTENW 159 474 15%

DNK GBRNIR GBRSCO NOR 177 562 18%

DNK GBRSCO GBRTENW NOR 159 485 15%

Table A.11: Most frequent 4-way groupings of countries for random forests. Fitting
period: 1950-2000, age range: 59-89

4-way grouping 10-group freq. Total freq. %total

BGR DNK HUN NLD 221 458 14%

BGR DNK HUN SVK 244 480 15%

BGR DNK NLD SVK 224 467 15%

BGR HUN NLD SVK 230 474 15%

DNK HUN NLD SVK 232 497 16%

Table A.12: Most frequent 4-way groupings of countries for random forests. Fitting
period: 1975-2000, age range: 59-89

4-way grouping 10-group freq. Total freq. %total

BGR HUN POL SVK 227 605 19%

DNK EST HUN POL 210 611 19%

DNK EST LTU LVA 213 668 21%

DNK HUN LVA POL 201 613 19%

DNK HUN POL SVK 224 630 20%
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Table A.13: Most frequent 4-way groupings of countries for random forests. Fitting
period: 1936-1986, age range: 20-89

4-way grouping
10-group
freq.

Total
freq.

%total

AUS CAN DNK USA 141 448 14%

BEL FIN FRATNP GBRTENW 161 326 10%

BEL FIN FRATNP NLD 143 266 8%

BEL FRATNP GBRTENW NLD 168 322 10%

CAN DNK SWE USA 139 450 14%

Table A.14: Most frequent 4-way groupings of countries for random forests. Fitting
period: 1961-1986, age range: 20-89

4-way grouping 10-group freq. Total freq. %total

BGR BLR HUN LTU 112 835 26%

BGR BLR HUN SVK 112 853 27%

BGR CZE HUN SVK 96 862 27%

BGR HUN LTU SVK 94 805 25%

BLR HUN LTU SVK 104 818 26%

Table A.15: Most frequent 4-way groupings of countries for random forests. Fitting
period: 1950-2000, age range: 20-89

4-way grouping 10-group freq. Total freq. %total

BGR DNK HUN NLD 206 526 16%

BGR DNK HUN NOR 190 500 16%

BGR DNK HUN SVK 209 518 16%

BGR HUN NLD SVK 190 508 16%

DNK HUN NLD SVK 193 540 17%

Table A.16: Most frequent 4-way groupings of countries for random forests. Fitting
period: 1975-2000, age range: 20-89

4-way grouping 10-group freq. Total freq. %total

BGR BLR EST LVA 284 494 15%

BGR BLR LTU LVA 287 521 16%

BGR EST HUN LVA 283 491 15%

BLR EST LTU LVA 321 537 17%

EST HUN LTU LVA 310 609 19%
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G Gradient Boosting Results: Opening the Box

Figure A.4 plots the relative influence (see Friedman 2001) of each variable in the

gradient boosting model. The relative influence is provided by the gbm package in R.

The gradient boosting settings used to fit the gradient boosting model (6,000 trees

and maximum tree depth of 4) resulted in a total of 30,000 terminal conditions to be

analyzed.
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Figure A.4: Relative influence of each variable in the gradient boosting model for all
fitting periods and both age ranges
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(c) Age range: 59-89, Fitting period: 1961-1986
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(d) Age range: 20-89, Fitting period: 1961-1986
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(f) Age range: 20-89, Fitting period: 1950-2000
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(g) Age range: 59-89, Fitting period: 1975-2000
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(h) Age range: 20-89, Fitting period: 1975-2000

Figure A.5: Distribution of year split points for gradient boosting
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(d) Age range: 20-89, Fitting period: 1961-1986
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(f) Age range: 20-89, Fitting period: 1950-2000
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(g) Age range: 59-89, Fitting period: 1975-2000
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(h) Age range: 20-89, Fitting period: 1975-2000

Figure A.6: Distribution of age split points for gradient boosting
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(h) Age range: 20-89, Fitting period: 1975-2000

Figure A.7: Distribution of cohort split points for gradient boosting
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Table A.17: Most frequent 4-way groupings of countries for gradient boosting. Fitting
period: 1936-1986, age range: 59-89

4-way grouping
10-group
freq.

Total
freq.

%total

DNK GBRNIR GBRSCO GBRTENW 1426.00 4492.00 15%

DNK GBRNIR GBRSCO NOR 1114.00 4272.00 14%

DNK GBRSCO GBRTENW NOR 1240.00 4573.00 15%

GBRNIR GBRSCO GBRTENW NLD 1180.00 4128.00 14%

GBRNIR GBRSCO GBRTENW NOR 1258.00 4452.00 15%

Table A.18: Most frequent 4-way groupings of countries for gradient boosting. Fitting
period: 1961-1986, age range: 59-89

4-way grouping
10-group
freq.

Total
freq.

%total

BGR BLR EST LVA 990.00 5597.00 19%

BGR BLR HUN SVK 1067.00 6164.00 21%

BGR BLR LTU LVA 1262.00 6296.00 21%

BGR BLR LTU SVK 979.00 5713.00 19%

BLR EST LTU LVA 1022.00 5545.00 18%

Table A.19: Most frequent 4-way groupings of countries for gradient boosting. Fitting
period: 1950-2000, age range: 59-89

4-way grouping
10-group
freq.

Total
freq.

%total

BGR CZE HUN SVK 538.00 3923.00 13%

BGR DNK HUN SVK 546.00 3491.00 12%

BGR HUN IRL SVK 511.00 3050.00 10%

BGR HUN ISL SVK 689.00 1947.00 6%

ESP GBRNIR GBRTENW IRL 626.00 3914.00 13%
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Table A.20: Most frequent 4-way groupings of countries for gradient boosting. Fitting
period: 1975-2000, age range: 59-89

4-way grouping
10-group
freq.

Total
freq.

%total

BGR BLR EST LTU 732.00 4151.00 14%

BGR BLR EST LVA 664.00 4061.00 14%

BGR BLR LTU LVA 794.00 4658.00 16%

BLR EST LTU LVA 891.00 4800.00 16%

BLR ISL LTU LVA 663.00 2512.00 8%

Table A.21: Most frequent 4-way groupings of countries for gradient boosting. Fitting
period: 1936-1986, age range: 20-89

4-way grouping
10-group
freq.

Total
freq.

%total

BEL FIN FRATNP GBRTENW 1673.00 3106.00 10%

BEL FIN FRATNP NLD 1838.00 2928.00 10%

BEL FIN GBRTENW NLD 1462.00 2617.00 9%

BEL FRATNP GBRTENW NLD 1509.00 3118.00 10%

FIN FRATNP GBRTENW NLD 1579.00 2691.00 9%

Table A.22: Most frequent 4-way groupings of countries for gradient boosting. Fitting
period: 1961-1986, age range: 20-89

4-way grouping
10-group
freq.

Total
freq.

%total

BGR BLR HUN LTU 644.00 5617.00 19%

BLR EST LTU LUX 675.00 2383.00 8%

BLR EST LTU LVA 1270.00 5048.00 17%

BLR EST LUX LVA 676.00 2397.00 8%

BLR LTU LUX LVA 752.00 2862.00 10%
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Table A.23: Most frequent 4-way groupings of countries for gradient boosting. Fitting
period: 1950-2000, age range: 20-89

4-way grouping
10-group
freq.

Total
freq.

%total

BGR DNK HUN SVK 619.00 3614.00 12%

BGR HUN IRL SVK 615.00 3464.00 12%

BGR HUN ISL SVK 794.00 2532.00 8%

ESP GBRNIR IRL ISL 606.00 1945.00 6%

ESP GBRNIR IRL PRT 713.00 3618.00 12%

Table A.24: Most frequent 4-way groupings of countries for gradient boosting. Fitting
period: 1975-2000, age range: 20-89

4-way grouping
10-group
freq.

Total
freq.

%total

BGR BLR EST LVA 1229.00 4408.00 15%

BGR BLR HUN LVA 1155.00 4877.00 16%

BGR BLR LTU LVA 1214.00 4722.00 16%

BLR EST LTU LVA 1476.00 4577.00 15%

EST HUN LTU LVA 1337.00 4779.00 16%
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