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Abstract

One of the most fundamental tasks in non-life insurance, done on regular basis, is risk
reserving assessment analysis, which amounts to predict stochastically the overall loss re-
serves to cover possible claims. The most common reserving methods are based on dif-
ferent parametric approaches using aggregated data structured in the run-off triangles.
In this paper, we propose a rather non-parametric approach, which handles the underly-
ing loss development triangles as functional profiles and predicts the claim reserve dis-
tribution through permutation bootstrap. Three competitive functional-based reserving
techniques, each with slightly different scope, are presented; their theoretical and practi-
cal advantages—in particular, effortless implementation, robustness against outliers, and
wide-range applicability—are discussed. Theoretical justifications of the methods are de-
rived as well. An evaluation of the empirical performance of the designed methods and
a full scale comparison with standard (parametric) reserving techniques are carried on sev-
eral hundreds of real run-off triangles against the known real loss outcomes. An important
objective of the paper is also to promote the idea of natural usefulness of the functional
reserving methods among the reserving practitioners.

Keywords: claims reserving, non-life insurance, reserving risk, functional data, development profiles,

consistency, permutation bootstrap

1 Introduction

Loss reserving techniques based on the run-off triangles remain an ongoing theme in the ac-
tuarial literature. The parametric techniques relying on aggregated data and based on loss
development factors (Mack, 1993; Renshaw and Verrall, 1998; Clark, 2003), or regression mod-
els (Kremer, 1984; Murphy, 1994; Verrall, 1996) remain still the most widely used ones, perhaps
due to their transparent as well as favorable theoretical properties (Pešta and Hudecová, 2012).
However, a demand for methods that would combine quality of prediction and ease of use
with certain robustness (Pešta and Okhrin, 2014; Verdonck and Debruyne, 2011) and capability
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of handling even non-typical data (“outliers” that nonetheless occur in industry), for meth-
ods widely applicable to all kinds of run-off triangles without hinging on often unrealistic or
questionable formal assumptions (Hudecová and Pešta, 2013), still remains.

In this paper, we propose three methods with these characteristics in mind. They are of
a non-parametric character, as methods of this type tend to be; such methods may be also
somewhat hard to subjugate to existing stochastic canons—so before a time-consuming quest
for potential theoretical underpinning is undertaken, it is worthy to gauge their overall promise
by a somewhat extensive study on historical data, in the spirit of the strategy championed by
Meyers and Shi (2011a) under the moniker of retrospective testing, known also in the wider ac-
tuarial and finance circles as backtesting (for the Solvency II actuarial context, see Popescu and
Suciu, 2020). We thus evaluate the performance of the proposed methods in that way—but not
exclusively: we investigate also some of their properties mathematically, if only in a restricted
(compared to their intended broad applicability domain), nonetheless customary in the liter-
ature, “chain ladder stochastic setting”. Our mathematical investigation shows, among other
things, that the proposed methods can lead to consistent estimates. Our testing on historical
data shows that they compete favorably with the existing methodology.

To be frank on the last point, we have to say that we compare the proposed method to few,
but standard ones; more extensive comparison would be considerably beyond the scope of this
paper at this time. In addition to those listed above, the existing methods include also semi-
parametric or non-parametric smoothing techniques (England and Verrall, 2001); Bayesian ap-
proaches, like that of Bornhuetter and Ferguson (1972), and the Cape-Cod method (Bühlmann,
1983), trying to incorporate also prior information, or utilizing some claim information for
reporting delays (Jewell, 1989, 1990; for different perspective, see Clark, 2016); methods that
emerged after reviews of Taylor (2000), England and Verrall (2002), and Wüthrich and Merz
(2008) include those based on stochastic processes (Pigeon et al., 2014; Godecharle and Anto-
nio, 2015; Badescu et al., 2019), generalized estimating equations (GEE; Hudecová and Pešta,
2013), generalized linear mixed models (GLMM; Gerthofer and Pešta, 2017), copula modeling
(Zhao and Zhou, 2010; Pešta and Okhrin, 2014), micro reserving methods based on individ-
ual claim developments (Antonio and Plat, 2014; Maciak et al., 2021), and machine learning
techniques (Kim et al., 2008; Wüthrich, 2018; Delong et al., 2021).

The starting point in the motivation of our methods is the focus on functional development
profiles corresponding to the given run-off triangles. However, contrary to Clark (2003) and
others, the profiles are treated in strictly non-parametric manner. Certain analogy with chain
ladder autoregression philosophy could be also traced therein, but then in the additive, rather
than multiplicative manner. Further developments of this line of thoughts are discussed below.
Here we only stress that all our proposed point prediction methods are supplanted by intuitive
bootstrap extensions, yielding thus the overall loss reserve distributions as well.

The paper is structured as follows. Section 2 briefly reviews the actuarial terminology re-
lated to the loss reserving and related standard reserving techniques. Section 3 motivates and
introduces the three proposed functional profile methods. Their theoretical properties are dis-
cussed, aiming at their coherent justification, in specific frameworks corresponding to real-data
scenarios in Section 4. The related bootstrap enhancements are described in Section 5. Sec-
tion 6 studies the empirical behavior of the proposed methods, comparing them also to some
traditional ones, on the data from the actuarial practice: the database of several hundreds of
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completed run-off triangles, confronting thus the predictions with already known real-life out-
comes. Some practical recommendations are elucidated as a consequence. Other comments
and conclusions are relegated to Section 7, while all proofs are collected in the supplementary
material.

2 Overview of the triangle-based methods

Speaking of run-off or loss development triangles, we have in mind the standard setting in which
these record aggregated, cumulative claim amounts, Yi,j. Each of Yi,j’s is the cumulative amount
claims, that is, the sum of all claims that occurred in an accident period (which is typically
a year) i = 1, . . . , n and up to development periods (routinely years too) j = 1, . . . , n + 1´ i.
For the accident occurring in the current (the most recent) period/year n, there is only one
development period, the current year as well. For the accident happening in the previous
year there are two development periods, the previous and current years—and so on, up to the
accident year i = 1, for which there are n development years. All the Yi,j’s, observable only for
i + j ď n + 1, are organized in a form of a right-angled isosceles triangle, as is the one shown in
Table 1.

Accident Development year j

year i 1 2 ¨ ¨ ¨ n´ 1 n

1 Y1,1 Y1,2 ¨ ¨ ¨ Y1,n´1 Y1,n

2 Y2,1 Y2,2 ¨ ¨ ¨ Y2,n´1
. . .

...
...

... Yi,n+1´i

n´ 1 Yn´1,1 Yn´1,2

n Yn,1

Table 1: An example of the run-off triangle with the observed cumulative claim amounts Yi,j

for i = 1, . . . , n and j = 1, . . . , n + 1´ i.

For a given run-off triangle, our task is to predict its “other half”: the yet unobserved ran-
dom variables Yi,j on the (shorter and shorter) diagonals for i = 2, . . . , n and j = n´ i+ 2, . . . , n.
The interest of an insurance company lies particularly in the last column tYi,nu

n
i=2, which repre-

sents the unknown ultimate cumulative amounts for the accident years i = 2, . . . , n. Sufficient
funds have to be allocated to meet this end. The overall claims reserve is thus defined as

řn
i=1 Yi,n

minus the amount already paid, the latter represented by the last observed diagonal. As this re-
serve consists of yet unobserved items, it has to be predicted. Beyond a mere point prediction,
it is also important to predict (accounting for the uncertainty in the whole prediction process)
the overall reserve distribution, to properly assess the reserving risk. A straightforward way to
achieve this distribution are resampling methods like bootstrap.

In what follows, we briefly describe some traditional point prediction methods in claims
reserving. The corresponding distributional predictions via bootstrap strategies are discussed
in Section 5. All these methods are some variation or version of the chain ladder methodology.
We use them for comparisons in Section 6.
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2.1 Average development ratios

Basic building blocks in the chain ladder methodology are development ratios (factors). The
stochastic underpinning of this methodology assumes that the cumulative claims (Yi,1, . . . , Yi,n)

are independent between the lines of the run-off triangle, accident years i = 1, . . . , n. The “main
assumption of the chain ladder stochastic model” (Mack, 1993; Mack and Venter, 2000)

E[Yi,j+1|Yi,j, . . . , Yi,1] = f jYi,j for i = 1, . . . , n and j = 1, . . . , n´ 1 (1)

is then postulated, introducing the development factors—unknown parameters f j’s. As (1)
implicates that the f j’s do not depend on i, the Markov style assumption (1) complements the
independence of rows by a “weak” identical distribution assumption—identical in terms of the
moments involved in (1); everything is then also conditional on the initial values, the historical
claim amounts from the same accident year. Since tYi,ju

n
j=1 are cumulative claim amounts,

one can assume for certain claims triangles and the character of the loss data that Yi,j+1 ě Yi,j

almost surely for all i, j. Consequently, an additional restriction f j ě 1 could be imposed, which
would create a submartingale structure on the underlying processes. The method described
here estimates the unknown development factors f j as the average development ratios

sf j =
1

n´ j

n´j
ÿ

i=1

f̂i,j =
1

n´ j

n´j
ÿ

i=1

Yi,j+1

Yi,j
, j = 1, . . . , n´ 1; (2)

averaging over the specific development ratios f̂i,j := Yi,j+1/Yi,j.

The estimates of the parameters f j are used to predict the unobserved quantities in the run-
off triangle: first, the immediately adjacent empty diagonal,

pYi,j = sf j´1Yi,j´1 for i = 2, . . . , n and j = n´ i + 2, (3)

and then the subsequent diagonals

pYi,j = sf j´1
pYi,j´1 for i = 3, . . . , n and j ě n´ i + 3, . . . , n. (4)

In the actuarial jargon, “the triangle is completed to a square”, a “squared triangle”. The overall
predicted reserve is then obtained as

R =
n
ÿ

i=2

pYi,n ´

n
ÿ

i=2

Yi,n+1´i. (5)

The reserving approach based on the averaged development ratios is straightforward and the
unknown distribution of R can be effectively resampled.

2.2 Volume weighted average development ratios

The standard chain ladder approach to loss reserving modifies the previous method of estimat-
ing the development factors f j by using volume weighted average development ratios instead: each
specific development factor f̂i,j = Yi,j+1/Yi,j is weighted by the cumulative amount Yi,j from
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the same accident year and the same development year, resulting in the estimate

f̆ j =

řn´j
i=1 Yi,j f̂i,j
řn´j

i=1 Yi,j
=

řn´j
i=1 Yi,j+1
řn´j

i=1 Yi,j
for j = 1, . . . , n´ 1. (6)

The “completion of the square”, the predictions of claims reserves, and the overall reserve is
then done analogously as in the previous method, that is, using the estimates (6) instead of (2)
in prescriptions (3) and (4).

From the stochastic point of view, this approach is motivated, apart from the previously
listed assumptions, by a specific assumption of Mack (1994, 1999), which is further discussed
in Section 4. From the practical point of view, Verdonck and Debruyne (2011) pointed out that
the method of average development ratios may suffer from an undesirable sensitivity to cer-
tain atypical claim amounts; volume weighted average development ratios may mitigate this.
Early elaborations of the optimality for the estimators (2) and (6) within the autoregression
framework were given by Kremer (1984). Further investigations and comparisons can be also
found in Mack and Venter (2000) or Hürlimann (2009). For a broader overview, we refer to Tay-
lor (2000, Chapter 7). For more properties of both methods described above, see also Bühlmann
(1983), Wüthrich and Merz (2008), and Pešta and Hudecová (2012).

2.3 Overdispersed Poisson and gamma models

Other very common reserving methods are based on the overdispersed Poisson (ODP) and
gamma models, which work in the framework of generalized linear models (McCullagh and
Nelder, 1989). A distribution from the family of exponential dispersion models is assumed to be
convenient for the incremental claims. In our setting, the run-off triangles are formed by the
differences Xi,j = Yi,j ´Yi,j´1 for all observed Yi,j (with the convention Yi,0 ” 0). The expected
values of Xi,j are then assumed to follow the generalized linear model with the logarithmic link
function

log(E[Xi,j]) = γ + αi + β j, (7)

where αi P R relates to the accident year i and β j P R stands for the development period j;
γ P R is the intercept. For the sake of more flexibility regarding the volatility in the model,
the overdispersion parameter φ ą 0 is introduced, modeling the variance of the incremental
amounts: Var (Xi,j) = φµδ

i,j, where µi,j = E(Xi,j) and δ = 1 in the case of the ODP model, or
δ = 2 in the case of the gamma model.

In the application part (Section 6), we focus on the ODP models, not on the gamma models.
Although it could look otherwise, it is well known (Mack and Venter, 2000) that ODP yields
the point predictions, which are identical to those obtained by the method of volume weighted
average development ratios. (In practice, a tiny difference can be sometimes observed, due to
the different numerical algorithms used.) The latter mentioned method is nothing else than the
standard chain ladder method reviewed in Section 2.2. There is one important detail, however:
the equality of the predictions hold true only if ODP is able to yield any predictions at all.
If some of the incremental claims are negative (which is not that uncommon in practice and
may result from returned erroneous, fraudulent, or reimbursed claims), the methodology of
generalized linear models fails to produce any result. The method of volume weighted average
development ratios delivers point predictions in any case. However, we still consider ODP
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a distinct method, because the different philosophy of the ODP approach results in a different
way of obtaining the distributional predictions. The details are given in Section 5. For the
sake of comparison, we compute point predictions by the ODP method via its definition (using
generalized linear models) whenever possible (that is, whenever all incremental claims are
non-negative); otherwise, we use the chain ladder alternative.

3 The proposed methods

As mentioned in the introduction, the building block of all of the proposed methods are so-
called functional development profiles, “patterns of loss emergence” (Clark, 2003). The pre-
diction of losses can be then seen as a completion, “reconstruction” (provided we were in the
future when all predicted cumulative claim amounts are already known) of these profiles. To
this end, however, we do not model them parametrically, but rather seek how to do it in non-
parametric ways.

3.1 Development profiles

As an example, let us consider two different insurance portfolios with run-off triangles ob-
served completely (which will occur at time 2n ´ 1; in our examples n = 10). The squared

Accid. Development year j

year i 1 2 3 4 5 6 7 8 9 10

1 5244 9228 10823 11352 11791 12082 12120 12199 12215 12215

2 5984 9939 11725 12346 12746 12909 13034 13109 13113 13115

3 7452 12421 14171 14752 15066 15354 15637 15720 15744 15786

4 7115 11117 12488 13274 13662 13859 13872 13935 13973 13972

5 5753 8969 9917 10697 11135 11282 11255 11331 11332 11354

6 3937 6524 7989 8543 8757 8901 9013 9012 9046 9164

7 5127 8212 8976 9325 9718 9795 9833 9885 9816 9815

8 5046 8006 8984 9633 10102 10166 10261 10252 10252 10252

9 5129 8202 9185 9681 9951 10033 10133 10182 10182 10183

10 3689 6043 6789 7089 7164 7197 7253 7267 7266 7266

(a) Complete run-off triangle for portfolio 1

Accid. Development year j

year i 1 2 3 4 5 6 7 8 9 10

1 794 1277 1848 2080 2352 2441 2442 2452 2452 2452

2 847 1427 1796 2084 2322 2331 2367 2393 2393 2459

3 701 1317 1912 2147 2196 2285 2290 2291 2359 2359

4 808 1423 1844 1993 2091 2093 2110 2122 2142 2142

5 756 1465 1819 1993 2096 2160 2206 2216 2219 2217

6 771 1266 1489 1685 1822 1836 1857 1910 1919 1918

7 723 1562 1895 2115 2266 2314 2314 2313 2313 2313

8 862 1397 1679 1775 1858 1858 1859 1863 1863 1863

9 930 1523 1971 2150 2197 2224 2292 2332 2341 2341

10 825 1312 1556 1724 1825 1854 1872 1872 1872 1872

(b) Complete run-off triangle for portfolio 2
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(c) Development profies for portfolio 1
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(d) Development profies for portfolio 2

Figure 1: Complete “squared” run-off triangles for two different portfolios. Each curve corre-
sponds to one row in the run-off triangle; solid lines are observed, dotted not observed run-off
functional profiles for two representative portfolios.
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triangles together with their observed and unobserved (“true reserves”) functional develop-
ment profiles can be seen in Figure 1. At time n (indicated by the darker part of the tables), the
solid lines represent the observed claims; dotted lines are the ones to be observed only in the
future, not at time n. One run-off triangle (the top left panel) serves as a representative of the
non-crossing and widely separated development profiles, whereas the other one (the top right
panel) stands as a protagonist of the quite opposing group of run-off triangles, which have
frequent crossings.

The predicted development profiles based on the observed run-off triangles (at time n) for the
two parametric methods reviewed in Sections 2.1 and 2.2 are shown in Figure 2. The predictions
are plotted in red; the prediction effectiveness—called Prediction%—is given in terms of the
percentage ratio between the predicted reserve and the “true reserve”. The closer this value is
to 100%, the better.
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(a) Portfolio 1: Average ratios
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(b) Portfolio 2: Average ratios
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(c) Portfolio 1: Volume weighted / ODP
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(d) Portfolio 2: Volume weighted / ODP

Figure 2: The prediction based on the average development ratios (top panels) and the volume
weighted development ratios (bottom panels). The two prediction approaches are similar for
both portfolios. Under positive increments (which is all the case here), the ODP method is
equivalent in point prediction to the volume weighted average development ratios.
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3.2 PARALLAX: Parallel approximation of missing fragments

Two of the proposed methods are motivated by relatively straightforward graphical strategies.
The first of them looks for the most similar development profile (in the `1 metric) among the
profile fragments already observed. Such profile is then used to predict the future claims by
adding it to the most recent claim (obtaining thus, in a sense, a parallel predicted profile), see
Algorithm 1.

Algorithm 1: PARALLAX

1 Input: Run-off triangle tYi,j : i = 1, . . . , n, j = 1, . . . , n + 1´ iu
2 begin

3 ‚ Set the observed as the predicted pYi,j = Yi,j for i = 1, . . . , n and j = 1, . . . , n + 1´ i
4 for i = 2, . . . , n do

5 for j = n + 1´ i, . . . , n´ 1 do

6 ‚ Find the most similar development profile

p`i,j = arg min
`Pt1,...,n´ju

ˇ

ˇ

ˇ

pYi,j ´Y`,j

ˇ

ˇ

ˇ
(8)

7 ‚ Predict the unobserved (future) Yi,j+1 such that

pYi,j+1 = pYi,j +
(

Y
p`i,j,j+1 ´Y

p`i,j,j

)
, (9)

8 Output: Complete run-off triangle tpYi,j : i = 1, . . . , n, j = 1, . . . , nu

A preliminary comparison of the results of this algorithm applied to the run-off triangles
from Figure 1 reveals that the algorithms appear to be more accurate than the standard meth-
ods, in terms of the overall reserve prediction. For the first triangle, the performance is pretty
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(a) PARALLAX for portfolio 1

●

2 4 6 8 10

10
00

15
00

20
00

25
00

Development Year

C
um

ul
at

iv
e 

C
la

im
s

Prediction% 114.3

(b) PARALLAX for portfolio 2

Figure 3: The estimated functional profiles of the run-off triangles for two portfolios from Fig-
ure 1 using the parallel approximation PARALLAX. The reserve effectiveness is given as a per-
centage proportion of the estimated reserve and the true liability.
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much similar (we achieve 107% of the true reserve compared to 109% or 108% given by the
naı̈ve average development ratio approaches). More evident difference occurs for the sec-
ond triangle where both standard approaches overestimate the true reserve (giving 124% and
123%), while we predict the reserve slightly over 114%; see Figure 3. This can be perhaps ex-
plained by the fact that neither average development ratios nor the volume weighted average
development ratios can reflect the true underlying variability within the accident year specific
development factors. Our algorithm instead seeks the most similar pattern within the observed
loss development triangle, which then yields more accurate predictions.

Of course, this is just a preliminary comparison concerning two haphazardly selected run-
off triangles. A more complex comparison can be found in Section 6.

3.3 REACT: Approximation by the most recent accident year

The second proposed method can be viewed as a simplification of the first one. Its central
principle is that regarding the future, the most relevant are the current and the previous year.
The algorithm thus takes the development trend from the previous accident year and uses it to
predict the next consecutive development, cf. Algorithm 2.

Algorithm 2: REACT

1 Input: Run-off triangle tYi,j : i = 1, . . . , n, j = 1, . . . , n + 1´ iu
2 begin

3 ‚ Set the observed as the predicted pYi,j = Yi,j for i = 1, . . . , n and j = 1, . . . , n + 1´ i
4 for i = 2, . . . , n do

5 for j = n + 1´ i, . . . , n´ 1 do

6 ‚ Predict the unobserved (future) Yi,j+1 such that

pYi,j+1 = pYi,j + (pYi´1,j+1 ´
pYi´1,j) (10)

7 Output: Complete run-off triangle tpYi,j : i = 1, . . . , n, j = 1, . . . , nu

Obviously, the underlying principle of focusing on immediate rather than distant past may
not be accepted universally. The fact that the algorithm seemingly “ignores” the earlier data
may be interpreted as a drawback rather than virtue—especially if there is a strong belief in
some stationary stochastic mechanism “generating” the data. On the other hand, the propo-
nents of the principle may argue that the focus on recent data implicitly takes into account
things like similar business strategy, company policy, client allocation, or comparative trading
volumes (see, for instance, page 60 of Clark, 2003). Such aspects, in particular, affect common
portfolios where the overall trading volume follows some increasing/decreasing trend over
the last years.

The preliminary comparison of the results visualized in Figure 4 shows now the prediction
effectiveness of almost 105% and slightly less than 109% for the first and the second run-off
triangles from Figure 1, respectively. That is, the algorithm outperforms not only the standard
techniques, but also our previous functional approach, PARALLAX. A more extensive compar-
ison on other run-off triangles, however, suggests that while there are portfolios that are more
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(a) REACT for portfolio 1
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(b) REACT for portfolio 2

Figure 4: The estimated functional profiles of the run-off triangles for two portfolios from Fig-
ure 1 using the most recent accident year approximation REACT. The reserve effectiveness is
given as a percentage proportion of the estimated reserve and the true liability.

appropriate for the parallel approximation, PARALLAX (those with more volatile claims and
unstable developments—side effects of natural disasters, etc.), there are also portfolios depend-
ing on the most recent accident year (for instance, portfolios with some significant trend in the
incurred claims over the last years)—for which REACT scores instead.

3.4 MACRAME: Markov chain fragment approximation

Working on the previous methods in the actuarial context, we came across similar ideas treated
from a different perspective, that of statistical techniques for partially observed functional data.
In the context of functional data with observation missing at random, Delaigle and Hall (2013)
used a similar graphical representation, and proposed methods analogous to ours.

While our situation differs from theirs, because the pattern of missingness in our triangu-
lar data is not random but deterministic (structured and fully determined by the underlying
actuarial nature), the follow-up ideas of Delaigle and Hall (2016), who estimated the missing
functional fragments within a Markov chain and then used the estimated transition probabil-
ities to complete the unobserved parts, inspired the extension of our methodology, also via
Markov chain approach. It may be of some interest that these connections are putting our
efforts somewhat in the context of statistical functional data analysis—although it should be
noted that the latter area is otherwise vast, and thus beyond our ambitions to cover here. In
the actuarial literature, the idea of the Markov chain for the claims reserving problems was
considered, in the context of granular data, by Hesselager (1994).

Our third algorithm is thus based on viewing the lines of the run-off triangles as specific
finite Markov chains. In this vein, it first forms another, same-size run-off triangle tUi,ju, which
should mimic the original incremental run-off triangle tXi,ju and whose entries are all in the
same finite set S corresponding to a grid ´8 = g0 ď g1 ď ¨ ¨ ¨ ď gm´1 ď gm = +8. The
details about how S is determined are discussed below. The values Ui,j’s, which are assigned
to be some uk P [gk´1, gk) if gk´1 ă gk and Xi,j P [gk´1, gk), are then assumed to behave as
the outcomes of a homogeneous Markov chain with state space S, with the same distribution for
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every i-th line (every accident year) in the triangle. This means, in particular, that the transition
probabilities p(s1, s2) = P[Ui,j+1 = s2|Ui,j = s1] are the same for all i, j and for any s1, s2 P S.
They can thus be estimated by the ratio

pp(s1, s2) =

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1, Ui,j+1 = s2u

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1u

(11)

and they form the estimated transition probability matrix pP = tpp`1,`2u
|S|,|S|
`1=1,`2=1 P R|S|ˆ|S|, where

pp`1,`2 = pp(S(`1), S(`2)) and S(`) is the `-th smallest element of S. However, for the run-off trian-
gles with extremely short developments (e.g., fully developed profiles in the second or third
development period with mostly zero increments), it may be convenient to exaggerate the state
in which the run-off triangle is already fully developed. For this purpose, we propose to use
a transition probability matrix being defined as a convex combination

rP := (1´ δn)pP + δnI0 (12)

of the original matrix pP and an additional exaggeration matrix I0, which is either a stochastic
matrix with the column corresponding to the state 0 P S consisting of all ones and the remaining
entries are zero if 0 P S, or it is a zero matrix otherwise, i.e., I0 := tι`1,`2u

|S|,|S|
`1=1,`2=1 P R|S|ˆ|S| and

ι`1,`2 = 1tS(`2) = 0u. The mixing coefficient from (12) is defined as

δn :=

$

&

%

1
n
ř

sPS pp(s, 0), 0 P S;

0, 0 R S.

Note that for the triangles with not fully developed pay-off profiles, it holds that δn = 0 and,
thus, the original transition probability matrix pP is used.

The estimated transition probabilities rp(s1, s2) (i.e., the elements of rP) are then utilized to
predict the values of the original incremental run-off triangle tXi,ju from the current “diagonal”
state Ui,n+1´i, i = 2, . . . , n, through the (conditional) expected value

pXi,n+2´i =
|S|
ÿ

`=1

rp(Ui,n+1´i, s`)s`, i = 2, . . . , n. (13)

The predictions of the further missing states of the “converted” run-off triangle tUi,ju (from the
original triangle tXi,ju) are then obtained through the Markov property as

pXi,n+1´i+h =
|S|
ÿ

`1=1

|S|
ÿ

`2=1

. . .
|S|
ÿ

`h=1

rp(Ui,n+1´i, s`1)rp(s`1 , s`2) . . . rp(s`h´1 , s`h)s`h , 2 ď h ă i ď n.

The tenability of treating the lines of the converted triangle tUi,ju as Markov chains is sup-
ported in the chain ladder context by the widely accepted “main assumption of the chain lad-
der model” (1)—which implies E[Xi,j+1|Xi,j, . . . , Xi,1] = ( f j´ 1)

řj
k=1 Xi,k and is, as was already

remarked, a sort of “Markov property for moments”. Also, as the Ui,j’s are (deterministic)

11
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functions of the Xi,j’s, the independence and the Markov properties formulated for the latter
are inherited by the former. The only objection here may be raised against the homogeneity of
the underlying Markov chains. Indeed, the f j’s in (1) are not considered equal for different j.
However, one should keep in mind that the transition probabilities of the pertinent Markov
chains are more elaborate structure than the simple multipliers f j’s. Due to the generally row-
wise decreasing nature of the incremental amounts, different transition probabilities are likely
to apply in later than in the earlier stages of claims development (so assuming that the whole
transition matrix remains the same does not result in much loss of generality).

Considering originally the general Markov model in a general situation, without assuming
homogeneity, we realized that the stochastic theory would deliver desired conclusions, once
consistent estimates of the transition probabilities are available. That turned out, however, to
be a problem: the general situation admits too many transition probabilities, too many un-
known parameters; the subsequent estimates depend effectively on very few observations and
are inevitable too volatile. While these obstacles could be perhaps overcome by alternative esti-
mation scenarios like compound estimation (estimating transition probabilities from a group of
run-off triangles with similar characteristics), or by stabilizing the estimates via using a priori
expert information, we defer these alternatives rather to future research and, at this point, we
adopt the homogeneity assumption—if perhaps only as an approximation rather than a faithful
reflection of reality. In fact, the conversion of the continuous setting to Markov chain on finite
number of states is yet another approximation aspect here. Treating the underlying Markov
chains as homogeneous turned out to be a crucial stabilizing component—not only regarding
the estimates, but also leading to better predictions.

The usual estimators of transition probabilities in Markov chain models are the intuitive
ones, coming up as maximum likelihood estimators: a transition probability is estimated by
the simple ratio of observed transitions under question to all transitions observed from the
particular state. Under the homogeneity assumption, the numerator and the denominator are
aggregated over the whole observed Markov chain. A close inspection of (11) reveals that
the estimators defined there are slightly different: they include an additional weighing term
1/(n ´ j), both in the numerator and the denominator. Intuitively, this term is connected to
the number of observations in the j-th column of a run-off triangle. The deeper reasons for its
inclusion follows from Theorem 5 which shows that such a modification is necessary in our
specific setting of missing observations in a run-off triangle: to obtain estimators of transition
probabilities that are consistent.

While the scheme of the MACRAME algorithm 3 remains the same for any selection of the
Markov states, the choice of the grid points ´8 = g0 ď g1 ď ¨ ¨ ¨ ď gm´1 ď gm = +8, this tech-
nical detail may be important in practical applications. While it is convenient to have as many
states as possible (for the sake of the fine approximation of the true development process), the
size of the data available to estimate the transition probabilities prevents the number of states
from becoming too large. We found the following guidelines helpful:

(i) in order to have the 1–1 transformation effect both in time and the incremental amounts,
the number of grid points should be the same as the number of the development periods,
m = n;

(ii) the incremental values excluding the first column tx(i+j´3)(i+j´2)/2+i := Xi,j : j ą 1; i +

12
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j ď n+ 1u are ordered and equidistantly split into m intervals according to the grid points

gk := x(Q kn(n´1)
2m

U

+1
), k = 1, . . . , m´ 1;

(iii) the states are medians of the incremental values belonging to these intervals, i.e.,

S :=
 

uk := median(Xi,j P [gk´1, gk) : j ą 1, i + j ď n + 1), k = 1, . . . , m
(

,

where median of an empty set is omitted.

Note that some of the intervals [gk´1, gk) can be empty sets, because several Xi,j’s can have the
same value, and therefore t := |S| ď m. The above stated procedure is completely data-driven,
where neither nuisance parameters nor tuning constants are involved. Consequently, we assign
the obtained value uk as the realization of the Markov process tUi,juj such that Ui,j := uk when
Xi,j P [gk´1, gk).

There are, obviously, many different ways to tackle the states’ selection: different interval
lengths can be used, more states can be defined—all this constitutes additional topics for further
investigation. For instance, a kind of expert judgement can also intervene here: if there is
a reasonable belief or conviction about the shape of the curves representing the incremental
profiles (based on historical observations or long-term knowledge), the intervals (and, hence,
states) can be then constructed accordingly. Nonetheless, we used the above formulated choice
of the Markov states in our implementation (Algorithm 3)—which was then applied again to
the two portfolios from Figure 1. The prediction effectiveness achieves 101.5% for the first
portfolio and slightly less than 106% for the second one—which is the best result so far: not
only surpasses our first two methods, but beats the standard ones as well. On the top of that,

Algorithm 3: MACRAME

1 Input: Run-off triangle tYi,j : i = 1, . . . , n, j = 1, . . . , n + 1´ iu, the sequence of grid

points tgku
m´1
k=1 (g0 := ´8, gm := +8), and the set of states S = ts1, . . . , stu

2 begin

3 ‚ Calculate incremental claims Xi,j = Yi,j ´Yi,j´1 for all observed Yi,j (where Yi,0 ” 0)

4 ‚ Set pXi,j = Xi,j and pYi,j = Yi,j for i = 1, . . . , n and j = 1, . . . , n + 1´ i
5 ‚ Use the states S and transform pXi,j into Ui,j for i = 1, . . . , n and j = 1, . . . , n + 1´ i

such that Ui,j = s, if pXi,j P [gk´1, gk) and S Q s P [gk´1, gk)

6 for s, s1 P S do

7 ‚ Calculate the transition probability estimates rp(s, s1) in terms of (11) and (12)

8 for i = 2, . . . , n do

9 for h = 1, . . . , i´ 1 do

10 ‚ Predict the unobserved Xi,n+1´i+h as pXi,n+1´i+h = c(Ui,n+1´i)
J
rPhs, where

s = (s1, . . . , st)J and c(Ui,n+1´i)
J = (1tUi,n+1´i = s1u, . . . ,1tUi,n+1´i = stu)

11 ‚ Compute the predicted cumulative amount
pYi,n+1´i+h = pXi,n+1´i+h + pYi,n´i+h

12 Output: Complete run-off triangle tpYi,j : i = 1, . . . , n, j = 1, . . . , nu

13
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(a) MACRAME for portfolio 1
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(b) MACRAME for portfolio 2

Figure 5: The estimated functional profiles of the run-off triangles for two portfolios from Fig-
ure 1 using the Markov chain reserving method MACRAME. The reserve effectiveness is given
as a percentage proportion of the estimated reserve and the true liability.

the more extensive analysis in Section 6 reveals that MACRAME may also have its merits for
less typical run-off triangles.

4 Rigorous results in theoretical setting

As indicated in the introduction, the proposed methods apply to all kinds of loss development
triangular data and require no formal assumptions. Nonetheless, their favorable behavior in
certain tractable stochastic situations may reinforce the belief in their effectiveness. In other
words, if they behave well in certain ideal circumstances, there is a hope that they would be-
have well also in less ideal ones.

This section provides some results in this line of inquiry. Hereafter, all cumulative claim
amounts Yi,j’s are thus considered to be random variables on a probability space (Ω,F,P) for
all i, j P N.

The standing assumption for all methods, inherited from the chain ladder methodology,
is the assumption of independence. It means that the processes of cumulative claim amounts
corresponding to a different accident (origin) period are independent, because claims from dif-
ferent accident periods are naturally considered as independent. The validity and limitations
of this assumption has been a subject of numerous discussions. Notwithstanding, it is a cor-
nerstone of pretty much every theoretical analysis of claims reserving techniques.

Assumption I. The processes tYi,jujPN are independent for all i P N.

The following assumption incorporates the already discussed “main assumption” (1), to-
gether with the assumption regarding variance, also standard in the chain ladder theory (Mack,
1993).

Assumption C. For all i, j P N, E[Yi,j+1|Yi,j, . . . , Yi,1] = f jYi,j and Var [Yi,j+1|Yi,j, . . . , Yi,1] = σ2
j Yi,j,

where f j ą 0 and σ2
j ą 0.
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The stochastic consistency of the proposed methods will be formulated and proved in terms
of conditional convergence in mean square in probability. We refer to Belyaev (1995) for more details.
Suppose that Z is a random variable, tZnu

8
n=1 is a sequences of random variables, W is a set

of random variables, and tWnu
8
n=1 is a sequence of sets of random variables. All the random

entities have finite mean on a probability space (Ω,F,P). The conditional probability given some
W is defined as PW [¨] := EP[1(¨)|W ], where 1(¨) is the indicator function. The conditional
expectation given some W then corresponds to EW [¨] ” EP[¨|W ].

Definition 1 (Conditional convergence in Lp in probability). For p ě 1, to say that Zn converges

to Z in Lp(Wn) as n tends to infinity in probability P, i.e., Zn
Lp(Wn)
ÝÝÝÝÑ

nÑ8
Z in probability P, means

@ε ą 0 : lim
nÑ8

P [EWn |Zn ´ Z|p ą ε] = 0.

Let T(n)
i,j = tYk,` : k ď i, ` ď j, k + ` ď n + 1u, be a “cut triangle”, a part of the observed

run-off triangle with the calendar period less or equal to n + 1 containing the cumulative claim
amounts up to the i-th accidental and j-th development period only. Note that tYi,1, . . . , Yi,ju Ă

T(n)
i,j for every i + j ď n + 1. Under Assumptions I and C, the chain ladder method provides

unbiased estimators of the development factors f j in the form of

f̆ (n)j =

řn´j
i=1 Yi,j+1
řn´j

i=1 Yi,j
. (14)

The conditional mean square error of the chain ladder estimator then becomes

E

[
!

f̆ (n)j ´ f j

)2ˇ
ˇ

ˇ
T(n)

n+1´j,j

]
= Var

T(n)
n+1´j,j

f̆ (n)j =
σ2

j
řn´j

i=1 Yi,j
[P]-a.s., (15)

which in turn establishes the conditional convergence in means square for the chain ladder
method when

řn´j
i=1 Yi,j Ñ8 [P]-a.s. as n Ñ8 (Pešta and Hudecová, 2012).

4.1 PARALLAX

The following assumption expresses stochastic stability for the cumulative claim amounts from
the same development period after several (n) observation (calendar) periods. For the PARAL-
LAX algorithm it is analogous to the assumption for the chain ladder method requiring that
řn´j

i=1 Yi,j Ñ 8 [P]-a.s. as n Ñ 8 for every j P N. It is an “internal consistency criterion” which
in turn implies stochastic consistency, consistency in terms of the convergence of f̆ (n)j in the
chain ladder methodology—Pešta and Hudecová (2012) showed that it is in fact necessary and
sufficient there.

Assumption P.
Y
p`n+κ´j,j ,j

E
!

Yn+κ´j,j

ˇ

ˇT(n)
n+κ´j,j´κ+1

)

P
ÝÝÝÑ
nÑ8

1 and
Y1/2
p`n+κ´j,j ,j

E
!

Yn+κ´j,j

ˇ

ˇT(n)
n+κ´j,j´κ+1

)

P
ÝÝÝÑ
nÑ8

0 for all j, κ P N.

This assumption states that the closest observed value Y
p`n+κ´j,j,j

from the historical data
Y1,j, . . . , Yn´j,j for the j-th development period to the cumulative claim amount Yn+κ´j,j has
to be close to the conditional expectation of Yn+κ´j,j (given the observed data) in the sense that
their ratio tends to one in probability. Basically, it reflects a belief that there exists some his-
torical value, which resembles the unknown one that is going to be used for predicting the
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consecutive cumulative row amount Yn+κ´j,j+1. Furthermore, the square root of the closest
historical cell is naturally negligible in probability to the conditional expectation of the value
that is going to be involved in prediction of the consecutive Yn+κ´j,j+1. For κ = 1, Assump-

tion P reduces to Y
p`n+1´j,j,j

/Yn+1´j,j
P

ÝÝÝÑ
nÑ8

1 and Y
p`n+1´j,j,j

/Y2
n+1´j,j

P
ÝÝÝÑ
nÑ8

0 for all j P N, because

Yn+1´j,j P σ
(

T(n)
n+1´j,j

)
, where σ(¨) stands for the corresponding σ-algebra.

For the PARALLAX algorithm now, the estimator of the chain ladder development factor f j

becomes row specific

pf (n)i,j := 1 +
Y
p`i,j,j+1 ´Y

p`i,j,j

pYi,j
(16)

for i + j ě n + 1, if pYi,j ‰ 0; otherwise it is set to one. Essentially, the estimator pf (n)i,j is calculated
from a trapezoid

tYk,` : 1 ď k ď i, n + 1´ i ď ` ď j + 1, k + ` ď n + 1u = T(n)
i,j+1zT

(n)
i,n´i Ă T(n)

i,j+1,

whereas the traditional chain ladder estimator f̆ (n)j is computed only from the two-column rect-

angle tYk,`u
n´j,j+1
k=1,`=j Ă R(n´j)ˆ2. This means that more data entries are always involved in every

prediction step of the PARALLAX technique compared to the chain ladder, which makes the
PARALLAX more adaptive to the input data. In the following theorem, the consistency of the
PARALLAX method, together with the related conditional mean square error is established.
The result is analogous to that for the chain ladder method reviewed in the preamble of Sec-
tion 4.

Theorem 1. Under Assumptions I, C, and P,

pf (n)i,j

L2

(
T(n)

i,j

)
ÝÝÝÝÝÑ

nÑ8
f j

in probability P for any j P N such that i = n + κ´ j, where κ P N is a fixed constant. The conditional
mean square error of the PARALLAX estimator of f j is

E

[
!

pf (n)i,j ´ f j

)2ˇ
ˇ

ˇ
T(n)

i,j

]
=

σ2
j Y

p`i,j,j

Y2
n+1´j,j

+ ( f j ´ 1)2

(
Y
p`i,j,j

Yn+1´j,j
´ 1

)2

[P]-a.s.,

when κ = 1, and, for κ ą 1, it becomes

E

[
!

pf (n)i,j ´ f j

)2ˇ
ˇ

ˇ
T(n)

i,j

]

=
σ2

j Y
p`i,j,j

Y2
i,n+1´i

śj´1
k=n+1´i

!

pf (n)i,k

)2 + ( f j ´ 1)2

#

Y
p`i,j,j

Yi,n+1´i
śj´1

k=n+1´i
pf (n)i,k

´ 1

+2

[P]-a.s.

Considering the search for the most similar development profile in (8), the following ap-
proximations become feasible

Y
p`i,j,j

Yn+1´j,j
« 1 and

σ2
j Y

p`i,j,j

Y2
n+1´j,j

«
σ2

j

Yn+1´j,j
.
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Hence, the conditional mean square error of the PARALLAX development factors’ estimators
can be approximated by

E

[
!

pf (n)n+1´j,j ´ f j

)2ˇ
ˇ

ˇ
T(n)

n+1´j,j

]
«

σ2
j

Yn+1´j,j
,

which in many practical cases will be greater than the conditional mean square error of the
chain ladder development factors’ estimators (15), since we usually have Yn+1´j,j ă

řn´j
i=1 Yi,j

[P]-almost surely. Nonetheless, the PARALLAX estimators differ for every row i, which brings
additional adaptability and causes that the conditional mean square errors of the PARALLAX
and the chain ladder estimators are not directly comparable.

The claims triangle growing height-wise can be considered merely a technical affirmation.
If it is desired to keep the size of the triangle fixed, one can deal with convergence in terms of an
exposure measure. Based on the underlying individual claim dynamics, it is natural to explicitly
introduce the accident year specific exposures ni that corresponds to the number of contracts or
the number of claims for the accident year i (Verrall et al., 2010; Huang et al., 2015; Huang et al.,
2016; Wahl et al., 2019). Suppose that every Yi,j can be decomposed as a random sum having
Ni,j summands of the independent and identically distributed individual payments tCi,j,kuk,

i.e., Yi,j =
řNi,j

k=1 Ci,j,k. If Ni,j’s have the same expectation for all j’s, then Wald’s first equality
yields EYi,j = ENi,1ECi,j,1. The following assumption incorporates such a property.

Assumption E. EYi,j = niηj for all i, j P N.

The reason for considering the parameter ηj being independent of i comes from the chain
ladder Assumption C, which implies f j = EYi,j+1/EYi,j (due to the tower property) and it is
supposed that the development factor f j itself is independent of i. Hence, f j = ηj+1/ηj.

The consequent consistency result provides a large-exposure approximation, where the
asymptotics is not in the dimension of the claims triangle (n), but in the volume of its cells.

Theorem 2. Under Assumptions I, C, and E, for any j P t1, . . . , n´ 1u and i P tn + 1´ j, . . . , nu,

pf (n)i,j
P

ÝÝÝÑ
niÑ8

f j,

if ni/n1 Ñ 1 and VarYi,1/n2
i Ñ 0 as ni Ñ8 for every i P t1, . . . , nu.

This theorem can be even extended by assuming that the row-wise volumes in the claims
triangle tend to some constant different from one, i.e., ni/n1 Ñ νi ‰ 1. Nevertheless, an esti-
mator of νi is then required, which brings additional technical issues, cf. Huang et al. (2015).

Moreover, an assumption on the variance of the first column’s elements Yi,1’s is needed
in Theorem 2, because the standard chain ladder assumption C is postulated in a telescopic
manner and it does not provide information about the row-wise initial VarYi,1. Note that the
assumption on VarYi,1 is implied by Wald’s second inequality VarYi,1 = Var Ni,1(ECi,1,1)

2 +

ENi,1Var Ci,1,1 and the assumption Var Ni,1 = const ˆ ENi,1 proposed in, for instance, Verrall
et al. (2010), Huang et al. (2015), Huang et al. (2016), or Wahl et al. (2019).

4.2 REACT

For REACT, Assumption P is replaced by the following Assumption R, expressing again a type
of stochastic stability between two consecutive cumulative claim amounts from the same de-
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velopment period after several (n) observation periods are given.

Assumption R. Yn´j,j/Yn+1´j,j
P

ÝÝÝÑ
nÑ8

1 and Yn´j,j/Y2
n+1´j,j

P
ÝÝÝÑ
nÑ8

0 for all j P N.

This assumption indicates that within the same j-the development year the current value
Yn+1´j,j and the previous one Yn´j,j are getting closer in probability as the size of the claims
triangle increases. Moreover, the second part of the assumption reflects that Yn´j,j is naturally
negligible compared to Y2

n+1´j,j. From a practical point of view, if there is some known claims
inflation present in the run-off triangle, it should be removed by deflating the claim amounts
accordingly (e.g., Verrall et al., 2010, Section 6) in order to fulfill this assumption.

The REACT estimator of the chain ladder development factor is defined as

rf (n)j := 1 +
Yn´j,j+1 ´Yn´j,j

Yn+1´j,j
(17)

if Yn+1´j,j ‰ 0, otherwise is equal to one. The chain ladder development factors’ estimators
are linearly defined, since they are (weighted) least squares estimates within the Aitken het-
eroscedastic linear regression model (Murphy, 1994). And, thus, unbiasedness comes hand in
hand with linearity. Since our estimators (from PARALLAX as well as from REACT) of the
development factors are clearly not linearly defined, it cannot be expected that they would be
unbiased. Nonetheless, being consistent should be viewed as a desirable property for a suit-
able estimator. The following theorem presents the similar type of result for the REACT as
Theorem 1 for the PARALLAX.

Theorem 3. Under Assumptions I, C, and R,

rf (n)j

L2

(
T(n)

n+1´j,j

)
ÝÝÝÝÝÝÝÑ

nÑ8
f j

in probability P for any j P N. The conditional mean square error of the REACT estimator of f j is

E

[
!

rf (n)j ´ f j

)2ˇ
ˇ

ˇ
T(n)

n+1´j,j

]
=

σ2
j Yn´j,j

Y2
n+1´j,j

+ ( f j ´ 1)2

(
Yn´j,j

Yn+1´j,j
´ 1

)2

[P]-a.s.

The latter theorem asymptotically reproduces the regular chain ladder when the claims
triangle growing height-wise. The next consistency result is again as Theorem 2 in terms of an
exposure measure, while keeping the size of the triangle fixed.

Theorem 4. Under Assumptions I, C, and E, for any j P t1, . . . , n´ 1u,

rf (n)j
P

ÝÝÝÝÑ
njÑ8

f j,

if ni/n1 Ñ 1 and VarYi,1/n2
i Ñ 0 as ni Ñ8 for every i P t1, . . . , nu.

4.3 MACRAME

The independence of the processes tUi,jujPN for all rows of the converted incremental run-
off triangle follows immediately by Assumption I from the independence of the processes in
the rows of the original cumulative run-off triangle tYi,ju. While the analogous implication
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would hold in the same direction for the Markov property, it is more expedient to formulate
the following assumption, central for the stochastic behavior of the MACRAME, directly in
terms of the “converted” triangle tUi,ju.

Assumption M. For every i P N, the process tUi,jujPN is a homogeneous Markov chain with the
transition probabilities p(s1, s2) = P[Ui,j+1 = s2|Ui,j = s1] for every j and any s1, s2 P S.

The assumption of a homogeneous Markov chain has already been motivated in Subsec-
tion 3.4. Note that the chain ladder assumption of proportionality of the consequent incremen-
tal claim amounts for the same origin period E[Xi,j+1|Xi,j, . . . , Xi,1] = ( f j ´ 1)

řj
k=1 Xi,k is not

contradicted here. By Assumption M,

E[Ui,j+1|Ui,j, . . . , Ui,1] =
ÿ

sPS

sp(Ui,j, s) for all i, j. (18)

Despite the homogeneity of the assumed Markov chains, formula (18) for the incremental claim
amounts is a non-homogeneous one; the right hand side of (18) depends on j. Therefore, in terms
of the traditional chain ladder model, the model implied by Assumption M can be considered
as competitive. Note also that there is no finite variance assumption on the original Xi,j’s.
Thus, another theoretical advantage of the MACRAME method is that it is suitable also for
heavy tailed distributions.

The following assumption, which may be considered as a stabilizing or stationarity condi-
tion, is also more expediently formulated in terms of the converted run-off triangle. It basically
ensures that there is sufficient number of data entries in the incremental run-off triangle for
each state of the Markov chain. In case of the proposed guideline (i)–(iii) from Subsection 3.4
for defining the states, this assumption is automatically satisfied.

Assumption B. For any s P S, the sequence
 1

n
řn´1

j=1
1

n´j
řn´j

i=1 P[Ui,j = s]
(

nPN
is bounded away from

zero.

The MACRAME method is characterized through the transition probabilities, which can be
regarded as unknown parameters. Its coherence and usability thus follows from the consis-
tency result of the following theorem, expressed via stochastic representation.

Theorem 5. Under Assumptions I, M, and B,

rp(s1, s2) = p(s1, s2) +OP(n´1/2), n Ñ8,

for every s1, s2 P S.

In order to provide a finite sample justification for a fixed n, we will assume stationarity of
the underlying Markov chain.

Assumption S. For every i, the process tUi,jujPN is strictly stationary.

This assumption together with Assumption M allow us to estimate p(s) = P[Ui,j = s] for
the state s P S by rp(s) in the following way: If 0 P S, then rp(s) := pp(s)/(1´ δn) for s ‰ 0 and
rp(0) := 1´

ř

0‰sPS rp(s); if 0 R S, then rp(s) := pp(s), where pp(s) := 1
n´1

řn´1
j=1

1
n´j

řn´j
i=1 1tUi,j =

su. The prediction pUi,j+1 based on (13) can be considered as an estimate of the correspond-
ing conditional expectation, i.e., pE

[
Ui,j+1|Ui,j = s1

]
:=

ř

s2PS
rp(s1, s2)s2. Hence, an estimate of
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the unconditional expectation becomes pE
[
Ui,j+1

]
:=

ř

s1PS

ř

s2PS
rp(s1)rp(s1, s2)s2. Then, we get

unconditionally unbiased prediction.

Theorem 6. Suppose that either 0 R S or 0 is an absorbing state. Under Assumptions M, B, and S, for
any i P t1, . . . , nu and j P t1, . . . , n´ 1u,

E
[
pE
 

Ui,j+1
(

]
= E

[
Ui,j+1

]
for every fixed n P N.

The condition on zero as a possible state of the Markov chain can be interpreted as follows:
If 0 R S, then the incremental triangle is not fully developed; if 0 is an absorbing state, then
the incremental triangle typically does not contain any development tails. Let us remark that
the independence Assumption I is no more needed in the latter theorem, because there are no
asymptotic results with respect to the size of the claims triangle involved.

5 Reserve distribution and permutation bootstrap

The point prediction of the overall claims reserve is only a mid-step in the whole loss reserv-
ing assessment. The valuation of the overall risk of the given portfolio requires a prediction
of the whole reserve distribution. In this section, we review standard, residual bootstrap algo-
rithms for standard parametric reserving methods, as proposed in England and Verrall (1999)
and Pinheiro et al. (2003), and then develop appropriate bootstrap extensions of the reserving
techniques proposed in Section 3.

5.1 Back-fitting and residuals for parametric methods

A key step in the standard residual bootstrap relying on a parametric model is to obtain a set of
approximately identically distributed residuals. For the parametric reserving methods based
on the development factors, one starts from the diagonal elements Yi,j with i + j = n + 1. The
original cumulative amounts are back-fitted, for instance, as

pYi,j =
Yi,n+1´i
śn´i

k=j
pfk

for i = 1, . . . , n´ 1 and j = 1, . . . , n´ i

using the estimated development ratios tpf ju
n´1
j=1 in case of the chain ladder method and the

volume weighted average development ratios method as in Section 2. The raw residuals are
obtained as

ri,j = (Yi,j ´Yi,j´1)´ (pYi,j ´ pYi,j´1) for i = 1, . . . , n´ 1 and j = 1, . . . , n´ i, (19)

where pYi,0 := 0. As these residuals are not yet identically distributed, they have to be properly
standardized before the actual resampling takes place. This standardization must reflect the
underlying variability assumptions.

Thus, the average and volume weighted average development ratios methods from Sec-
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tions 2.1 and 2.2 use the standardized residuals

pri,j =
ri,j

ˇ

ˇ

ˇ

pYi,j ´ pYi,j´1

ˇ

ˇ

ˇ

, (20)

while the ODP method and the chain ladder method (implied by Assumption C) work instead
with

pri,j =
ri,j

b

ˇ

ˇpYi,j ´ pYi,j´1
ˇ

ˇ

. (21)

The appropriate standardization for the gamma model is also given by (20). For more back-
ground, see England and Verrall (2002). By convention, if zero appears in the denominator
of (20) or (21), we set pri,j := 0.

Once the standardized residuals
 

pri,j
(n´1,n´i

i=1,j=1 are available, they are randomly resampled with

replacement B-times in order to get a set of the bootstrapped triangles
!

pr(b)i,j

)n´1,n´i

i=1,j=1
for b =

1, . . . , B. The number of bootstrap resamples B is chosen sufficiently high, for example B =

10,000. The bootstrap run-off triangle is reconstructed with respect to (19) and (21)

Y(b)
i,j = pr(b)i,j

b

ˇ

ˇpYi,j ´ pYi,j´1
ˇ

ˇ+
(
pYi,j ´ pYi,j´1

)
+ Y(b)

i,j´1

for the ODP and the chain ladder methods or, with respect to (19) and (20),

Y(b)
i,j = pr(b)i,j

ˇ

ˇ

ˇ

pYi,j ´ pYi,j´1

ˇ

ˇ

ˇ
+
(
pYi,j ´ pYi,j´1

)
+ Y(b)

i,j´1

for the average and volume weighted average development ratios methods. Here, i + j ď n+ 1
and b = 1, . . . , B such that Y(b)

i,0 ” 0 and pr(b)i,n+1´i ” 0.

5.2 Resampling functional development profiles without replacement

Compared to the technology described above and applied to standard parametric methods
described in Section 2, resampling in case of the non-parametric techniques based on the func-
tional development profiles needs an entirely different approach—as there are generally no pa-
rameters there, and thus no need to assume their existence. Here we are dealing with the shape
of the functional development profiles handled as similar, but independent curves. We there-
fore start with the predicted lower triangle tpYi,j : i = 2, . . . , n; j = n + 2´ i, . . . , nu, where the
upper triangle predicted elements are kept as the original ones, i.e., pYi,j = Yi,j for i + j ď n + 1.
Consequently, the full predicted square tpYi,ju

n,n
i=1,j=1 is standardized such that each row value is

divided by the first positive value within the row (from the left), i.e.,

rYi,j := pYi,j/pYi,pi , pi = min
!

j P t1, . . . , nu : pYi,j ą 0u
)

.

If for some i P t1, . . . , nu we obtain pYi,j = 0 for all j P t1, . . . , nu (which is very uncommon),
then rYi,j := 0 for all j P t1, . . . , nu, pi := 0, and pYi,pi := 1. Next, the standardized square
trYi,ju

n,n
i=1,j=1 is resampled in a row-wise manner without replacement. Formally speaking, for

every permutation π(b) : (1, . . . , n) ÞÑ (π(b)(1), . . . , π(b)(n)), where b = 1, . . . , B such that
π(b) ‰ π(s) if b ‰ s, we obtain a permuted square trYπ(b)(i),ju

n,n
i=1,j=1. This approach belongs to so-

called permutation bootstrap methods, suitable if the asymptotic behavior of interest is unknown
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but if exchangeability of individual observations (e.g., functional curves) is ensured (Pesarin
and Salmaso, 2010).

We apply this technique to our algorithms proposed in this paper by re-running the algo-
rithm in question on the cut upper triangles trYπ(b)(i),j : π(b)(i) + j ď n + 1u, obtaining thus the

newly predicted standardized cumulative amounts
 

Y̆(b)
i,j

(

i,j for i = 2, . . . , n and j = n + 2´

i, . . . , n. Finally, the predicted standardized Y̆(b)
i,j ’s are “back-standardized” yielding the boot-

strapped predicted values

!

qY(b)
i,j := Y̆(b)

i,j
pYi,pi

)

i,j
for i = 2, . . . , n and j = n + 2´ i, . . . , n.

5.3 Bootstrapped loss reserve distribution

Now, the underlying functional profile based reserving method provides again bootstrap lower
triangles

 

tqY(b)
i,j : i = 2, . . . , n; j = n + 2 ´ i, . . . , nu

(

b=1,...,B and the bootstrapped reserves
tR(b)ub=1,...,B are calculated for each bootstrap triangle in a way that

R(b) =
n
ÿ

i=2

qY(b)
i,n ´

n
ÿ

i=2

Yi,n+1´i.

The empirical distribution of tR(b)ub=1,...,B is used to mimic the unknown reserve distribution,
which is of the main interest in the claims reserving tasks. For instance, the 99.5% value-at-
risk (sample version) of the bootstrap reserve distribution can be considered to be a reasonable
estimate for the reserve allocation, which is quite often used in practice. It may be of interest
at this point that our permutation bootstrap often allows for an exact solution: avoid Monte
Carlo and employ the full empirical distribution of permutations. For instance, for n = 10, it is
not prohibitive to evaluate all 10! = 3,628,800 resamples; recent computational resources allow
that. For one claims triangle with 10 rows such computation is feasible on a better laptop within
few minutes. However, for evaluations of different methods on several hundred triangles,
we still rather used 10,000 Monte Carlo resamples. We deemed this number sufficient, as its
increase did not yield any additional significance precision gain.

The same two portfolios from Figure 1 are once again compared, now in terms of the overall
reserve distributions derived from the bootstrap samples and the given reserving methods; see
Figure 6. For the first portfolio in Figure 6(a), which is ODP compliant (i.e., all the incremental
claim amounts are strictly positive), our non-parametric approaches to reserving techniques
compete well with the standard parametric methods. Especially, PARALLAX and REACT beat
the remaining reserving techniques in terms of variability. The most accurate result with re-
spect to the point prediction is MACRAME (although more volatile than PARALLAX or RE-
ACT, but still better than the standard methods based on averaging development ratios). For
the second portfolio in Figure 6(b)—which is still ODP compliant according to the observed up-
per part of the triangle, but it is not ODP compliant according to its further development (lower
triangle)—our reserving techniques together with the ODP model come as more suitable. The
negative incremental claim amounts present solely in the unobserved part of the square cause
that all of the reserving methods provide biased results. However, PARALLAX still shows the
smallest variability, in terms of interquartile range.
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(b) Portfolio 2

Figure 6: Bootstrap reserve distributions for three standard methods from Section 2 and three
functional profile based approaches from Section 3. The red thick horizontal line corresponds
with the true reserve. The upper whiskers corresponding to the 95%-quantiles are above the
true reserve for all the methods.

6 Empirical comparisons via retrospective testing

In this section, we investigate the overall empirical performance of the proposed methods,
comparing them also to the traditional reserving techniques described in Section 2, on the 518
run-off triangles from the National Association of Insurance Commissioners (NAIC) database
(Meyers and Shi, 2011b). We stress the conceptual difference here: contrary to synthetic data
created by simulations that follow postulated assumptions, this comparison is done on an ex-
tensive and representative collection of real data from the insurance industry, which includes,
among other things, various non-standard triangles—triangles that could be considered atypi-
cal from the theoretical point of view, but nevertheless occur in the actuarial practice.

6.1 The description of the database

The run-off triangles of paid losses correspond to claims of accident years 1988–1997 with n =

10 years development period, relating to six different lines of business (private passenger auto
liability/medical, commercial auto/truck liability/medical, workers’ compensation, medical
malpractice, other liability, and product liability) from the U.S. property-casualty insurers. We
a priori eliminated triangles with only zero observed claim amounts in the last four accident
periods and also those triangles having 8 or more development profiles identically equal to
zero (which can occur, for example, when the company does not show recent activity or it does
not run the particular line of business anymore).

The remaining run-off triangles were split—from the actuarial viewpoint, and also in view
of the applicability of standard methods—into three groups: (i) 130 run-off triangles that were
ODP compliant (with only non-negative increments, but profiles being entirely zero not al-
lowed); (ii) 299 not ODP compliant triangles (negative increments exists, but still no entirely
zero profiles); (iii) 89 remaining triangles that could be considered “rather atypical”, but are
still not uncommon in the actuarial practice (for instance, those with development profiles con-
sisting entirely of zeros; we allowed triangles with up to 7 such profiles out of 10 development
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Method Reserve% BootCoV% BootVaR.995 BootQnt.950

Average 58.79 (186.00) 79.46 (144.67) 3.67 (3.57) 100.00%
Weighted 47.13 (130.91) 53.60 (61.46) 2.63 (1.81) 98.46%
ODP Model 47.10 (130.89) 16.98 (10.16) 1.54 (0.39) 86.92%
PARALLAX 57.85 (125.45) 22.34 (16.13) 1.59 (0.46) 96.92%
REACT 43.19 (78.28) 24.08 (18.03) 1.64 (0.51) 97.69%
MACRAME 45.32 (76.43) 23.93 (12.65) 1.73 (0.42) 95.38%

Table 2: Overall empirical performance of six claims reserving techniques when applied to
the group (i), 130 ODP compliant run-off triangles from Meyers and Shi (2011b). The corre-
sponding standard deviations are given in parentheses; two best results are indicated by bold
typeface.

periods).

6.2 Claims reserves evaluation

For each run-off triangle, the overall claims reserve was estimated via the techniques described
in Section 2 and Section 3. The stochastic prediction was obtained from the corresponding
bootstrap add-on (Section 5) and the quality of the prediction was subsequently evaluated
with respect to the true reserve (which is in this case known, as all the data feature the lower
parts, the triangles being fully completed). The overall quality of the reserve prediction was
evaluated in terms of four quantitative criteria motivated by the standard out-of-sample bootstrap
performance measures (e.g., Efron and Tibshirani, 1993, Chapter 19):

Reserve% gives an absolute relative difference of the predicted reserve and the true reserve
defined for each triangle as

100ˆ
ˇ

ˇ

ˇ

ˇ

predicted reserve
true reserve

´ 1
ˇ

ˇ

ˇ

ˇ

and averaged over all triangles in the given scenario (smaller values are better);
BootCoV% expresses a coefficient of variation for the bootstrapped reserve distribution rel-

ative to the bootstrap mean

100ˆ
Std.Dev(bootstrapped reserves)

Avg(bootstrapped reserves)

averaged, again, over all triangles in the given scenario (smaller values are better);
BootVaR.995 denotes the 99.5% quantile of the bootstrap distribution relative to the boot-

strapped mean
Quantile0.995(bootstrapped reserves)

Avg(bootstrapped reserves)

and averaged over all triangles in the given scenario (smaller values are better);
BootQnt.950 provides a percentage proportion of the triangles in the given scenario for

which the true reserve is dominated by the 95% quantile of the bootstrapped distribution (val-
ues closest to 95% are preferred).

The results for the groups (i), (ii), and (iii) are reported in Tables 2, 3, and 4, respectively. In
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addition, we also considered the run-off triangles from two particular lines of business (com-
mercial auto/truck liability/medical and workers’ compensation) and analogous results are given in
Tables 5 and 6. The actual choice of B is a problem of itself, requiring theoretical/empirical
study beyond the scope of this paper. We observed that B = 10,000 yielded results sufficiently
stable for our objectives.

Regarding the reserve prediction, all six methods in Table 2 perform rather similarly. In-
deed, the decent performance of the traditional parametric methods is in particular to be ex-
pected for the ODP compliant loss development run-off triangles, as those satisfy the para-
metric model assumptions. However, new methods are in this situation still competitive and
two out of three (REACT and MACRAME) even outperform all parametric ones. As far as
the prediction of the overall reserve distribution by the bootstrap extension is considered, only
the ODP model from parametric reserving techniques seems to provide solid results closely
followed by all three functional approaches. However, only 87% of the true reserves are dom-
inated by the 95% quantile of the ODP model based bootstrap distribution while the best per-
formance is guaranteed for the permutation based bootstrap, most precisely by MACRAME
(95.38%).

The situation becomes different in Table 3, when the run-off triangles are not ODP compli-
ant (and thus the over-dispersed Poisson model is inapplicable). Traditionally, the chain ladder
model relying on (14) is utilized as an alternative for point predictions in this case. We adopted
the same strategy in our numerical comparisons. The naı̈ve approaches based on development
ratios fail here: both in the reserve prediction and the reserve distribution bootstrapping. The
superiority of the proposed PARALLAX, REACT, and MACRAME algorithms is evident espe-
cially in terms of the reserve prediction (Reserve%). For the bootstrap distribution, the chain
ladder method is the only competitive parametric technique, but it again fails in terms of the
true reserve coverage (BootQnt.950).

In Table 4, the performance of the standard parametric techniques does not appear reason-
able except for the chain ladder method which is, however, inapplicable in its straightforward
form for this type of run-off triangles. The reason is that zero values may appear in the de-
nominator in (14). In practice, this is mitigated by various modifications, typically requiring
additional expert insights or the estimates of the problematic development factors are set to

Method Reserve% BootCoV% BootVaR.995 BootQnt.950

Average 215.95 (1128.77) 4045.61 (4.0e+04) 43.14 (461.41) 99.67%
Weighted 541.33 (6135.24) -2516.97 (2.3e+04) -7.43 (132.37) 97.99%
Chain ladder 541.33 (6135.24) 29.78 (212.59) 1.97 (7.58) 83.28%
PARALLAX 68.83 (132.40) 9.53 (628.55) 1.70 (11.04) 92.98%
REACT 97.85 (334.97) 66.60 (182.67) 2.92 (4.99) 94.31%
MACRAME 68.38 (93.76) 51.26 (36.96) 2.75 (1.59) 91.97%

Table 3: Empirical performance of six claims reserving techniques applied to the group (ii), 299
“rather typical” but ODP non-compliant run-off triangles from Meyers and Shi (2011b). The
corresponding standard deviations are given in parentheses; two best results are indicated by
bold typeface.

25



Functional Profile Techniques for Claims Reserving

Method Reserve% BootCoV% BootVaR.995 BootQnt.950

Average 255.88 (654.91) -2446.40 (2.1e+04) -47.74 (505.00) 91.01%
Weighted 181.32 (526.35) 4.6e+04 (4.3e+05) 167.99 (1492.61) 91.01%
Chain ladder 181.32 (526.35) 177.17 (472.73) 6.02 (11.65) 79.78%
PARALLAX 142.08 (567.07) 69.77 (75.02) 3.09 (4.63) 77.53%
REACT 111.03 (256.82) 240.60 (1294.93) 7.94 (35.34) 76.40%
MACRAME 111.02 (141.21) 256.41 (1175.31) 10.25 (52.48) 69.66%

Table 4: Empirical performance of six claims reserving techniques applied to the group (iii), 89
“atypical” run-off triangles from Meyers and Shi (2011b). The corresponding standard devia-
tions are given in parentheses; two best results are indicated by bold typeface.

one by default. This was also the case in our empirical comparison. Our methods run with-
out any modifications and all three of them outperform parametric techniques in terms of the
reserve prediction (Reserve%) while performing very similarly as the modified chain ladder
method in terms of the bootstrap distribution (PARALLAX still dominates).

Finally, we also compared the performance of all six reserving techniques (using the same
four quantitative criteria) when applied to the run-off triangles from the same underlying line
of business (LoB). Two different LoBs are considered: commercial auto/truck liability/medical as
a portfolio which is expected to have rather less atypical triangles and the workers’ compensa-
tion portfolio with a long-tailed liability and rather more atypical triangles. The results are
summarized in Table 5 and 6.

The chain ladder method and all three proposed functional techniques perform very sim-
ilarly for both portfolios: the “commercial auto/truck liability/medical” line of business and
the “workers’ compensation” liability. The parametric chain ladder is slightly better in reserve
prediction (Reserve%) in the first LoB, our methods perform better in terms of the bootstrap
distribution in both LoBs. However, the chain ladder method gets the worst coverage scores
(BootQnt0.950) in both portfolios.

From the overall point of view, ignoring the triangle types as well as the line of business,

Method Reserve% BootCoV% BootVaR.995 BootQnt.950

Average 79.80 (163.81) -3759.58 (58835.43) -4.05 (251.68) 99.14%
Weighted 54.19 (83.06) -596.79 (18374.22) 5.84 (95.02) 99.14%
Chain Ladder 54.19 (83.06) 59.22 (104.41) 2.85 (3.61) 89.66%
PARALLAX 56.80 (74.15) 43.24 (135.54) 2.27 (3.34) 93.10%
REACT 78.73 (174.38) 65.19 (191.02) 3.43 (6.16) 93.10%
MACRAME 63.67 (66.52) 81.03 (582.13) 2.85 (22.99) 90.52%

Table 5: Empirical performance of six claims reserving techniques when applied to 116 run-off
triangles for the “commercial auto/truck liability/medical” line of business from Meyers and
Shi (2011b). The corresponding standard deviations are given in parentheses; two best results
are indicated by bold typeface.
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Method Reserve% BootCoV% BootVaR.995 BootQnt.950

Average 51.84 (68.77) -277.29 (5514.31) 2.98 (37.45) 97.44%
Weighted 48.38 (59.53) 2192.51 (8680.85) 15.73 (72.84) 96.15%
Chain Ladder 48.38 (59.53) 39.18 (80.00) 2.08 (2.38) 71.79%
PARALLAX 49.17 (86.51) 39.41 (44.28) 2.12 (1.37) 88.46%
REACT 45.88 (45.10) 48.18 (53.51) 2.55 (2.06) 85.90%
MACRAME 44.60 (46.11) 39.06 (43.67) 2.39 (1.90) 78.21%

Table 6: Empirical performance of six claims reserving techniques when applied to 132 run-off
triangles for the “workers’ compensation” line of business from Meyers and Shi (2011b). The
corresponding standard deviations are given in parentheses; two best results are indicated by
bold typeface.

the 95% upper-sided prediction interval from the chain ladder covers only 83.59% of the true
reserves for all 518 triangles and, therefore, the chain ladder undershoots the theoretical value
of 95%. On the other hand, this overall empirical prediction coverage for the true reserves be-
comes better for all three proposed functional profile methods: 91.67% for PARALLAX, 92.08%
for REACT, and 89.00% for MACRAME.

7 Conclusions

Claims reserving is a key task in insurance business, as a rule formally stipulated by various
regulatory codes. Routinely used approaches for risk reserving assessment are based on the
chain ladder or generalized linear models, with various bootstrap extensions. While boot-
strapping may be performed for wide range of different situations and consequently is not that
much restricted by theoretical assumptions, chain ladder and generalized linear models heav-
ily rely on various assumptions, rather crucial for the overall model validity and applicability.
Many portfolios must be, therefore, evaluated using alternative approaches.

In this paper, we propose loss reserving techniques based on non-parametric and distri-
bution free approaches. The proposed methods offer the following advantages: (i) they are
simple, straightforward, and easily applicable; (ii) they require neither distributional nor para-
metric assumptions and apply to all kinds of run-off triangles, including those with negative
incremental cells or zero cumulative claim amounts over some development periods; (iii) var-
ious stochastic model assumptions can be postulated in order to derive desirable statistical
properties serving as the methods’ justifications; (iv) it is straightforward to obtain also the
overall reserve distributions via bootstrapping techniques; (v) and the proposed methods are
also robust against outliers. When compared on retrospective, historical data (on the complete
squared, that is, with predicted reserves already observed, run-off triangles), the new methods
demonstrate apparent superiority over traditional claims reserving techniques—a clear indica-
tion of their potential in the actuarial practice.

Of course, summarizing and comparing methods proposed here, we need to be aware of
their distribution free, non-parametric design. While this means independence of restrictive
assumptions and wider range of applications, it can also cause somewhat higher volatility in
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the prediction of the claims reserves. However, if the distributional/parametric assumptions
are violated, the classical reserving approaches may yield unreliable reserve predictions—or
even collapse, as demonstrated on the triangles still common in actuarial practice. Hence, we
advocate some caution when using traditional reserving techniques; at least, they should be
accompanied by the proper diagnostics of the underlying assumptions.

The practical guidelines for applying the proposed methods may still need some further
investigation, and above all, practical experience. So far, we observed that while the PARAL-
LAX could be recommended for cumulative run-off triangles possessing unpredictable trend
fluctuations across the accident years, the REACT works well when the behavior of an insur-
ance company in a given year is likely to be similar (up to possible trend) to that in the previ-
ous/forthcoming year. Finally, the MACRAME is applicable overall, even if the portfolio size
is increasing. It is more robust, but it also allows the actuary to intervene into the model, for
instance, by specifying the states of the Markov chain by using some expert insight rather than
the fully data driven approach.
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Bearing in mind (23) and (24), the conditional mean square error of the individual development
factors’ estimator can be expressed as
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for i + j ą n + 1 due to Assumptions I and C. For i = n + 1´ j, we have pYi,j = Yi,j = Yn+1´j,j

and
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if Assumption P holds. An analogous property to (26) applies for every diagonal element
corresponding to the calendar year n, especially for the diagonal cell with the development
year j´ 1:
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Thus, Markov’s inequality and (27) provide, for every ε ą 0,
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because an indicator function is uniformly bounded, so one may interchange limit and expec-
tation. With respect to
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Furthermore, for i = n + 2´ j, Assumption P and (25) lead to
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due to relations (30)–(31).

Then, one can continue by induction similarly as in obtaining (26) and (32). Hence, for
i = n + κ ´ j, where κ P N is a fixed deterministic constant such that κ ą 1, the conditional
mean square error (25) can be rewritten as
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if Assumption P is satisfied.

�

Proof of Theorem 2. With respect to equations (22) and (23), Assumption E together with the
tower property lead to
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Analogously as in the second part of (33), we clearly have EY
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1u, because of Assumptions C and E. According to the law of total variance, Assumptions C
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for all i P t1, . . . , nu and j P t1, . . . , n´ 1u, where an empty product is set to one by convention.

Chebyshev’s inequality and equation (34) provide, for any ε ą 0,
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as ni Ñ8 for all i P t1, . . . , nu and j P t1, . . . , n´ 1u. Similarly by (34), for any ε ą 0,
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as ni Ñ 8 for all i P t1, . . . , nu and j P t2, . . . , n´ 1u, because of the conditions on VarYi,1 from
the theorem. The convergence (36) also holds for j = 1 due to the assumption VarYi,1 = o(n2

i )

as ni Ñ8.

Now, the assertion of the theorem will be proved by induction for k = i + j P tn +

1, . . . , 2n´ 1u. The fist step corresponds to k = i + j = n + 1. By (16), we have

pf (n)i,n+1´i = 1 +
Y
p`i,n+1´i ,n+2´i ´Y

p`i,n+1´i ,n+1´i

Yi,n+1´i
, (37)

since pYi,n+1´i = Yi,n+1´i. Again, Chebyshev’s inequality, Assumption E, and equation (34)
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imply, for any ε ą 0,
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Due to the induction step and relation (38), we get
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Proof of Theorem 3. Let j P N be fixed. According to Assumptions I and C, we get
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j

)

= σ2
j Yn´j,j [P]-a.s. (40)

With respect to (39) and (40), the conditional mean square error of the development factors’
estimator can be expressed as

E

[
!

rf (n)j ´ f j

)2ˇ
ˇ

ˇ
T(n)

j

]
=

E
!(

Yn´j,j+1 ´Yn´j,j ´ f jYn+1´j,j + Yn+1´j,j
)2
ˇ

ˇ

ˇ
T(n)

j

)

Y2
n+1´j,j

=
E
!(

Yn´j,j+1 ´Yn´j,j
)2
ˇ

ˇ

ˇ
T(n)

j

)

Y2
n+1´j,j

´ 2( f j ´ 1)
E
!(

Yn´j,j+1 ´Yn´j,j
)ˇ
ˇ

ˇ
T(n)

j

)

Yn+1´j,j
+ ( f j ´ 1)2

5
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=
Var

!

Yn´j,j+1

ˇ

ˇ

ˇ
T(n)

j

)

Y2
n+1´j,j

+
E
!

( f j ´ 1)2Y2
n´j,j

ˇ

ˇ

ˇ
T(n)

j

)

Y2
n+1´j,j

´ 2( f j ´ 1)2 Yn´j,j

Yn+1´j,j
+ ( f j ´ 1)2

=
σ2

j Yn´j,j

Y2
n+1´j,j

+ ( f j ´ 1)2

(
Yn´j,j

Yn+1´j,j
´ 1

)2

[P]-a.s. (41)

due to Assumptions I and C. Then, expression (41) converges in probability P to zero if As-
sumption R is satisfied. �

Proof of Theorem 4. Chebyshev’s inequality, Assumptions C, E, and relation (34) imply, for any
ε ą 0,

P

[
1

nn´j

ˇ

ˇYn´j,j+1 ´ f jnn´jηj
ˇ

ˇ ě ε

]
ď

VarYn´j,j+1

n2
n´jε

2
Ñ 0; (42)

P

[
1

nn´j

ˇ

ˇYn´j,j ´ nn´jηj
ˇ

ˇ ě ε

]
ď

VarYn´j,j

n2
n´jε

2
Ñ 0; (43)

P

[
1

nn+1´j

ˇ

ˇYn+1´j,j ´ nn+1´jηj
ˇ

ˇ ě ε

]
ď

VarYn+1´j,j

n2
n+1´jε

2
Ñ 0 (44)

as ni Ñ8 for all i P t1, . . . , nu. With respect to (17) and (42)–(44),

P-lim
n1Ñ8

rf (n)j = 1 + P-lim
n1Ñ8

Yn´j,j+1 ´Yn´j,j

Yn+1´j,j
= 1 + P-lim

n1Ñ8

f jηj ´ ηj

ηj

nn´j

n1

n1

nn+1´j
= f j,

where P-lim stands for the limit in probability. �

Proof of Theorem 5. Let us consider the indicators from the numerator and denominator of (11).
For every i, j P N, it directly holds that

E1tUi,j = s1u = P[Ui,j = s1],

E1tUi,j = s1 ^Ui,j+1 = s2u = P[Ui,j = s1 ^Ui,j+1 = s2] = p(s1, s2)P[Ui,j = s1] (45)

due to Assumptions M, where s1, s2 P S. Assumption I implies that the processes tUi,jujPN are
independent for all i P N; therefore,

Var

[
n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1 ^Ui,j+1 = s2u

]

=
n´1
ÿ

j=1

1
(n´ j)2Var

[ n´j
ÿ

i=1

1tUi,j = s1 ^Ui,j+1 = s2u

]

+ 2
n´2
ÿ

j=1

n´1
ÿ

k=j+1

1
(n´ j)(n´ k)

Cov

[ n´j
ÿ

i=1

1tUi,j = s1^Ui,j+1 = s2u,
n´k
ÿ

`=1

1tU`,k = s1^U`,k+1 = s2u

]

=
n´1
ÿ

j=1

1
(n´ j)2

n´j
ÿ

i=1

Var
[
1tUi,j = s1 ^Ui,j+1 = s2u

]
+ 2

n´2
ÿ

j=1

n´1
ÿ

k=j+1

1
(n´ j)(n´ k)

n´k
ÿ

`=1

Cov
[
1tU`,j = s1 ^U`,j+1 = s2u,1tU`,k = s1 ^U`,k+1 = s2u

]
6
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=
n´1
ÿ

j=1

1
(n´ j)2

n´j
ÿ

i=1

P[Ui,j = s1 ^Ui,j+1 = s2]
(
1´ P[Ui,j = s1 ^Ui,j+1 = s2]

)
+ 2

n´2
ÿ

j=1

n´1
ÿ

k=j+1

1
(n´ j)(n´ k)

n´k
ÿ

`=1

(
P[U`,j = s1 ^U`,j+1 = s2 ^U`,k = s1 ^U`,k+1 = s2]

´ P[U`,j = s1 ^U`,j+1 = s2]P[U`,k = s1 ^U`,k+1 = s2]
)

ď

n´1
ÿ

j=1

1
4(n´ j)

+ 2
n´2
ÿ

j=1

n´1
ÿ

k=j+1

1
n´ j

ď
n´ 1

4
+ 2

n´2
ÿ

j=1

n´ j´ 1
n´ j

ď
n´ 1

4
+ 2(n´ 2) (46)

for every s1, s2 P S. Similarly,

Var

[
n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1u

]
ď

n´ 1
4

+ 2(n´ 2) (47)

for every s1 P S. Chebyshev’s inequality for the sequence

#

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1 ^Ui,j+1 = s2u

+

nPN

provides

P

[ˇ
ˇ

ˇ

ˇ

ˇ

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1 ^Ui,j+1 = s2u ´

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

P[Ui,j = s1 ^Ui,j+1 = s2]

ˇ

ˇ

ˇ

ˇ

ˇ

ě C

#

Var

(
n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1 ^Ui,j+1 = s2u

)+1/2]
ď

1
C2

for any C ą 0. Thus, according to (46), it follows that

P

[ˇ
ˇ

ˇ

ˇ

ˇ

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1 ^Ui,j+1 = s2u ´

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

P[Ui,j = s1 ^Ui,j+1 = s2]

ˇ

ˇ

ˇ

ˇ

ˇ

ě C
"

n´ 1
4

+ 2(n´ 2)
*1/2

]
ď

1
C2 .

With respect to (45), the latter above implies

P

[ˇ
ˇ

ˇ

ˇ

ˇ

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1 ^Ui,j+1 = s2u ´ p(s1, s2)
n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

P[Ui,j = s1]

ˇ

ˇ

ˇ

ˇ

ˇ

ě C
"

n´ 1
4

+ 2(n´ 2)
*1/2

]
ď

1
C2 (48)

for arbitrary C ą 0. Analogously for the sequence
 
řn´1

j=1
1

n´j
řn´j

i=1 1tUi,j = s1u
(

nPN
, bearing in

7
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mind (47), we obtain

P

[ˇ
ˇ

ˇ

ˇ

ˇ

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1u ´

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

P[Ui,j = s1]

ˇ

ˇ

ˇ

ˇ

ˇ

ě K
"

n´ 1
4

+ 2(n´ 2)
*1/2

]
ď

1
K2

(49)
for any K ą 0.

Inequality (48) and Assumption B yield

1
n

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1^Ui,j+1 = s2u =
p(s1, s2)

n

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

P[Ui,j = s1] +OP(n´1/2). (50)

Moreover, inequality (49) and Assumption B lead to

1
n

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1u =
1
n

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

P[Ui,j = s1] +OP(n´1/2). (51)

With respect to Assumption B, there exists Ns P N such that for all n ě Ns, it holds that
1
n
řn´1

j=1
1

n´j
řn´j

i=1 1tUi,j = su ą 0 [P]-a.s. for every s P S. Finally, Assumption B together
with (50) and (51) provide

pp(s1, s2) =

1
n
řn´1

j=1
1

n´j
řn´j

i=1 1tUi,j = s1 ^Ui,j+1 = s2u

1
n
řn´1

j=1
1

n´j
řn´j

i=1 1tUi,j = s1u
= p(s1, s2) +OP(n´1/2).

If 0 P S, then rp(s1, s2) = (1´ δn)pp(s1, s2) + δn1ts2 = 0u. If 0 R S, then rp(s1, s2) = pp(s1, s2).
Since δn = 1

n
ř

sPS pp(s, 0)Ñ 0 [P]-almost surely as n Ñ8, we end up with P-limnÑ8 rp(s1, s2) =

P-limnÑ8 pp(s1, s2), where P-lim stands for the limit in probability. �

Proof of Theorem 6. Assumption B ensures that pp(s) ą 0 [P]-almost surely for every s P S. Sup-
pose that 0 R S. Then, rp(s) = pp(s) and rp(s1, s2) = pp(s1, s2). The tower property provides

E
[
pE
 

Ui,j+1
(

]
= E

ÿ
s1PS

ÿ

s2PS

s2
1

n´ 1

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

1tUi,j = s1, Ui,j+1 = s2u


=

1
n´ 1

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

ÿ

s1PS

ÿ

s2PS

s2E
[
1tUi,j = s1u1tUi,j+1 = s2u

]
=

1
n´ 1

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

ÿ

s1PS

ÿ

s2PS

s2E
[
E
(
1tUi,j = s1u1tUi,j+1 = s2u

ˇ

ˇ

ˇ
Ui,j = s1

)]

=
1

n´ 1

n´1
ÿ

j=1

1
n´ j

n´j
ÿ

i=1

ÿ

s1PS

E

[
1tUi,j = s1u

ÿ

s2PS

s2E
(
1tUi,j+1 = s2u

ˇ

ˇ

ˇ
Ui,j = s1

)]
.

(52)

Since

ÿ

s1PS

E

[
1tUi,j = s1u

ÿ

s2PS

s2E
(
1tUi,j+1 = s2u

ˇ

ˇ

ˇ
Ui,j = s1

)]

8
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=
ÿ

s1PS

E

[
1tUi,j = s1u

ÿ

s2PS

s2P
(

Ui,j+1 = s2

ˇ

ˇ

ˇ
Ui,j = s1

)]
=

ÿ

s1PS

E

[
1tUi,j = s1u

ÿ

s2PS

s2 p(s1, s2)

]
=

ÿ

s1PS

ÿ

s2PS

s2 p(s1, s2)E
[
1tUi,j = s1u

]
=

ÿ

s1PS

ÿ

s2PS

p(s1)p(s1, s2)s2

depends neither on i nor on j due to Assumptions M and S, equation (52) can be further elabo-
rated such that

E
[
pE
 

Ui,j+1
(

]
=

ÿ

s1PS

ÿ

s2PS

p(s1)p(s1, s2)s2 = E
[
Ui,j+1

]
. (53)

Now, suppose that 0 P S is an absorbing state. Then, pp(0, s) = 0 for every 0 ‰ s P S. Since
s21ts2 = 0u = 0 for every s2 P S, we have

E
[
pE
 

Ui,j+1
(

]
= E

[
ÿ

s1PS

ÿ

s2PS

rp(s1)rp(s1, s2)s2

]

= E

[
ÿ

s1PS

ÿ

s2PS

rp(s1) [(1´ δn)pp(s1, s2) + δn1ts2 = 0u] s2

]

= E

[
ÿ

0‰s1PS

ÿ

0‰s2PS

rp(s1)(1´ δn)pp(s1, s2)s2

]
= E

[
ÿ

s1PS

ÿ

s2PS

pp(s1)pp(s1, s2)s2

]
,

which equals the right hand side of the first line from (52). In order to finish the proof, one
continues as in the case when 0 R S and ends up with (53). �
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