
A Details on Neural Networks

A.1 Feed-Forward Neural Networks

We summarize the approach of Richman and Wüthrich [2021]. An FFNN can be defined
as a collection of functions, so-called layers,

φl : Rnl−1 → Rnl ,Zl−1 7→ Zl := σl
(
WlZl−1 + bl

)
, l = 1, . . . , L. (1)

Here, Wl ∈ Rnl×nl−1 is a weight matrix and bl ∈ Rnl is a bias vector, which the
network tries to adjust during the calibration (training) in such a way that the resulting
output minimizes some loss function such as the mean squared error, and σl : R→ R
are activation functions, which are applied element-wise and are often nonlinear. The
output of an FFNN corresponding to an input Z0 is obtained by the concatenation of
all layers,

ZL =
(
φL ◦ · · · ◦ φ1

) (
Z0) . (2)

The features we are given to build Z0 are year t, age x, country c and gender g, from
which we predict the corresponding death rates mi

x,t, where i = (c, g). As stated in (1),
we can only directly feed numerical inputs into a neural network, which is certainly
problematic for country and gender and also for age as we decide to interpret it as a
categorical rather than a numerical variable. We use embeddings [Guo and Berkhahn,
2016] to deal with this issue. An embedding is a function eP : P → RnP which maps
the set P of categorical values of a feature into a Euclidean space of typically low
dimension nP . The conceptually intriguing aspect of embeddings is that the function
eP can be learned by the neural network itself, providing it with an opportunity to
create a representation of the categorical feature which is optimal for solving the given
prediction task.

Table 1 gives an overview of hyperparameters for the FFNN and the values we
have tried during the cross validation procedure for hyperparameter selection. We have
run cross validation on over 45000 hyperparameter combinations. In particular, we
have considered variants of the MSE and MAE loss functions with age-specific weights
(WMSE and WMAE), where we have used as weights for each age x the ratio of the
average death rate at the lowest age x1 to the average death rate at age x calculated
on the training set. As death rates typically increase with age, this results in higher
weights for lower ages and is intended to counterbalance the increasing influence of
death rates at higher ages on the model calibration.

Table 1: Considered hyperparameter values of feed-forward neural networks (FFNN).

parameter explanation values

optimizer
numerical optimization algorithm to train the
FFNN (variant of stochastic gradient descent)

Adam [Kingma and Ba,
2014], rmsprop [Tiele-
man and Hinton, 2012]

learning rate step size of the gradient descent optimizer 0.001, 0.01, 0.1

batch size
to achieve faster convergence, the training data
is not put into the algorithm all at once but in
batches of this size

32, 128

loss function metric to be optimized during the training (W)MSE, MAE
number of
epochs

number of times the training data are consecu-
tively put into the optimization algorithm

50, 100, 300

early stopping
whether to abort training when there is no loss
function decrease after 2 consecutive epochs

with, without

1



transformation
of outputs

transformation to apply to the output death rates logarithm, none

scaling of nu-
merical inputs

neural networks require inputs to be in a similar
order of magnitude [see LeCun et al., 1998]

standardization, min-
max, none

embed age
whether to embed age or to treat it as a numerical
variable

embed, do not embed

age embedding
size

dimension of age embedding space 2, 3, 5, 7, 10

gender embed-
ding size

dimension of gender embedding space 2, 3, 5

country embed-
ding size

dimension of country embedding space 2, 3, 5, 7, 10

activation of
hidden layers

activation function of hidden layers relu, tanh

activation of
output layer

activation function of last layer; id for log death
rates, relu or sigmoid for raw death rates

id, relu, sigmoid

architecture
number of hidden layers and number of neurons per
hidden layer (e.g., (16) ∗ 3 means 3 hidden layers
with 16 neurons each)

(16), (32), (64), (128),
(16, 8), (16) ∗ 2, (32) ∗ 2,
(64)∗2, (16)∗3, (32)∗3,
(64) ∗ 3, (128) ∗ 5

skip connection
whether to add a skip connection from the input to
the last hidden layer [see Richman and Wüthrich,
2021]

with, without

dropout proba-
bility

regularization technique, drop weights during
training with specified probability, applied after
every hidden layer [see Srivastava et al., 2014]

0 (i.e., no dropout), 0.05

batch normal-
ization

regularization technique to prevent internal covari-
ate shift, applied after every hidden layer [see Ioffe
and Szegedy, 2015]

with, without

Based on the cross validation results, we have chosen the following hyperparameter
values for the FFNN:

• Adam optimizer with learning rate 0.001,

• batch size of 128 and 500 epochs without early stopping,

• minimize MAE loss in predicting raw death rates,

• use categorical features country, gender and age embedded into Euclidean spaces
of dimension 3, 2 and 5, respectively, and standardized numerical feature year,

• two hidden layers with relu activations and 64 neurons each, including dropout
with a probability of 0.05 after every hidden layer as well as a skip connection
from the input to the second hidden layer,

• sigmoid activation for the output layer.

A.2 Recurrent Neural Networks

We begin by fixing τ ∈ N, the maximal length of a historical time window influencing
current predictions, and as for CNN set τ = 10.

Then, for all populations i ∈ P and all target ages xT ∈ Xout, we arrange the
available death rates in matrices via the rolling window approach(

mi
x,t

)>
x=xT−AP ,...,xT+AP ,t=t1,...,tτ

, . . . ,
(
mi
x,t

)>
x=xT−AP ,...,xT+AP ,t=tY−τ ,tY−1

, (3)

2



where AP ∈ N0 and a value AP > 0 allows the network to use observed death rates of
neighboring ages as additional features. Based on these inputs, the goal is to obtain
one-step forecasts of mi

xT ,tτ+1
, . . . ,mi

xT ,tY , respectively. In other words, an input of
the network is a matrix of size (2AP + 1) × τ , whose columns contain time series of
death rates for the target age xT and possibly some neighboring ages. Additionally, age,
gender and country are input via embedding layers. We obtain forecasts for multiple
years ahead by recursive one-year predictions, analogously as for CNN.

Table 2 gives an overview of hyperparameters for the RNN and the values we have
tried during the cross validation procedure for hyperparameter selection. We have run
cross validation on over 2000 hyperparameter combinations.

Table 2: Considered hyperparameter values of recurrent neural networks (RNN).

parameter explanation values

optimizer
numerical optimization algorithm to train the
RNN (variant of stochastic gradient descent)

Adam [Kingma and Ba,
2014]

learning rate step size of the gradient descent optimizer 0.001, 0.01

batch size
to achieve faster convergence, the training data
is not put into the algorithm all at once but in
batches of this size

10, 20, 40

loss function metric to be optimized during the training MSE, MAE
number of
epochs

number of times the training data are consecu-
tively put into the optimization algorithm

100, 250, 500

early stopping
whether to abort training when there is no loss
function decrease after 2 consecutive epochs

with, without

transformation
of outputs

transformation to apply to the output death rates logarithm or none

scaling of nu-
merical inputs

neural networks require inputs to be in a similar
order of magnitude [see LeCun et al., 1998]

standardization, min-
max

number of
neighboring
ages AP

number of neighboring ages to add on each side of
the target age

0, 1, 2

age embedding
size

dimension of age embedding space 3, 5, 10

gender embed-
ding size

dimension of gender embedding space 2

country embed-
ding size

dimension of country embedding space 3, 5

activation of
LSTM

activation function of LSTM layers relu, tanh

activation of
output layer

activation function of last layer; id for log death
rates, sigmoid for raw death rates

id, sigmoid

architecture
number of LSTM layers and number of neurons per
LSTM layer

(5), (10), (20), (5, 5),
(10, 10), (20, 20),
(5, 5, 5)

Based on the cross validation results, we have chosen the following hyperparameters
for the RNN:

• Adam optimizer with learning rate 0.001,

• batch size of 40 and 500 epochs without early stopping,

• minimize MAE loss in predicting logarithmic death rates,

• use categorical features country, gender and age embedded into Euclidean spaces
of dimension 5, 2 and 10, respectively, and standardized numerical feature year,

• AP = 2 neighboring ages as additional inputs on each side of the target age,

3



• one LSTM layer with relu activation and 10 neurons.

A.3 Convolutional Neural Networks

In the following, we give a detailed description of the different components of a CNN.
For this, it is convenient to interpret their input matrices

Z0 := (mx,t)x,t ∈ RAin×τ

as 3-hypermatrices, i.e., elements of R1×Ain×τ , which is isomorphic to RAin×τ . Now,
we can define a CNN as a collection φ1, . . . , φL of functions

φl : Rn
l−1
1 ×nl−1

2 ×nl−1
3 → Rn

l
1×n

l
2×n

l
3 for l = 1, . . . , L,

with nl1, n
l
2, n

l
3 ∈ N, where nl−1

2 and nl−1
3 are interpreted as the numbers of rows and

columns of the input matrices of layer l, and nl−1
1 is the number of such input matrices,

also called the number of channels. For example, if the inputs are RGB images, n0
1 = 3

could account for the three different color channels, but as we have two-dimensional
input data without any natural additional channels in our application, we set n0

1 = 1.
Recursively defining Zl := φl

(
Zl−1

)
for l = 1, . . . , L, we call(

Zlk,i,j

)
i=1,...,nl2, j=1,...,nl3

for k = 1, . . . , nl1

feature maps if l is a convolutional or pooling layer (see below), and the number of
these feature maps is given by nl1. They can be interpreted as automatically generated
features, where we allow the net to create multiple feature maps per layer so that each
feature map can focus on different characteristics of the input, for example edges and
corners in image data. A visualization of such feature maps is given in Section C.1.

There are mainly three types of layers, i.e., kinds of functions φl, in CNN.

Convolutional layers If layer l is a convolutional layer, there is a collection of as-

sociated weights or filters Wl ∈ Rn
l
1×n

l−1
1 ×f×f . Usually, the number of filters nl1 per

input channel and the filter size f ∈ N are specified during the implementation of the
CNN. Both quantities can in principle vary across convolutional layers, but we consider
only constant numbers of filters and filter sizes for simplicity, i.e., we do not let f or
nl1 =: nF depend on l. The output Zl of layer l is obtained via

Zlk,i,j = σl

nl−1
1∑
r=1

f∑
p=1

f∑
q=1

Wl
k,r,p,qZ

l−1
r,i+p−1,j+q−1 + bk

 (4)

for k = 1, . . . , nl1, i = 1, . . . , nl2, j = 1, . . . , nl3.
Here b ∈ RnF is a bias vector, and σl : R → R is an activation function. For

convolutional layers, we always use the rectified linear unit relu(x) := max(0, x) as the
activation function.

Equation (4) can be interpreted in the following way: For every output channel
k = 1, . . . , nl1, we calculate a sliding dot product of the filter(

Wl
k,r,p,q

)
r=1,...,nF , p,q=1,...,f

4



with the output Zl−1 of the previous layer to obtain the k-th feature map of layer
l. Here, we use different filters for each output channel k, but the filter weights are
shared per feature map. In this way, the CNN is enabled to detect the same features at
different locations of the input data [see LeCun et al., 1989], and this also saves many
parameters in comparison to a fully connected approach where different weights are
trained for every possible connection. Generalizations of Equation (4) exist where the
so-called stride is larger than 1, which means that the filters are not shifted only one
but multiple units at a time in the calculation of the sliding dot product. As the size of
the output data decreases with the stride and we already have rather small input data
to begin with, we do not make use of this technique.

Equation (4) imposes the following relationships between the tuples
(
nl2, n

l
3

)
and(

nl−1
2 , nl−1

3

)
:

nl2 = nl−1
2 − f + 1, nl3 = nl−1

3 − f + 1. (5)

In particular, this implies that a convolutional layer reduces the second and third di-
mension of its input by f − 1. This could be prevented by padding the outputs of the
convolutional layers, i.e., appending zero values at the edges such that nl2 = nl−1

2 and
nl3 = nl−1

3 , but we refrain from doing so as we do not consider it necessary here.

Pooling layers Pooling layers usually directly follow after convolutional layers. They
are used for downsampling, i.e., for dimension reduction of feature maps. This makes
sense since the calculation of multiple feature maps from the same input data point
introduces some redundancy, which is then reduced by the pooling operation whose
aim is to extract the most dominant output signals of the convolutional layer. Similarly
to convolutional filters, pooling ”filters” are slided over the feature maps. However,
they do not calculate a dot product with each section of the feature map but instead
a real-valued function of it. The most popular choices are max pooling and average
pooling :

Zlk,i,j =


max

p=(i−1)nP+1,...,i·nP ,
q=(j−1)nP+1,...,j·nP

Zl−1
k,p,q (max pooling),

1
(nP )2

i·nP∑
p=(i−1)nP+1

j·nP∑
q=(j−1)nP+1

Zl−1
k,p,q (average pooling),

(6)

for k = 1, . . . , nl1. Here, nP is the pooling size which determines how many units in a
feature map are pooled into a single number. For example, if we perform max pooling
with nP = 2, this amounts to calculating a sliding maximum over groups of 22 = 4
units in the input feature maps. Equation (6) fixes the dimensions of the output:

nl1 = nl−1
1 , nl2 =

⌊
nl−1
2

nP

⌋
and nl3 =

⌊
nl−1
3

nP

⌋
, (7)

where bzc := max{r ∈ N : r ≤ z}.

Dense layers FFNN consist exclusively of dense layers. In this sense, we can interpret
the convolutional and pooling layers of a CNN as sophisticated feature extractors, from
which the resulting features are passed on to a shallow FFNN which learns how to
translate these features into mortality rate predictions. As dense layers expect ordinary
vectors as input, the first step for training a dense layer l whose predecessor l − 1 is
a convolutional or pooling layer consists in flattening, i.e., stacking all components of

5



Zl−1 into the first dimension so that we can interpret it as a column vector Zl−1 ∈ Rn
l−1

where nl−1 := nl−1
1 · nl−1

2 · nl−1
3 . The output of the dense layer is obtained via

Zl = σl
(
WlZl−1 + bl

)
, (8)

where Wl ∈ Rn
l×nl−1

is a weight matrix, bl ∈ Rn
l

a bias vector and the activation
function σl : R → R is applied element-wise. As we do not consider architectures
where convolutional or pooling layers follow dense layers, we can again interpret Zl as a

column vector in Rn
l

. Also note that at least the last layer (l = L) in our CNN should
be a dense layer because we need a column vector in RAout , which contains predictions
of the age-specific death rates in the following year, as an output.

Table 3 gives an overview of hyperparameters for the CNN and the values we have
tried during the cross validation procedure for hyperparameter selection.

Table 3: Considered hyperparameter values of convolutional neural networks (CNN).

parameter explanation values

optimizer
numerical optimization algorithm to train the
CNN (variant of stochastic gradient descent)

Adam [Kingma and Ba,
2014]

learning rate step size of the gradient descent optimizer 0.001

batch size
to achieve faster convergence, the training data
is not put into the algorithm all at once but in
batches of this size

50, 100

loss function metric to be optimized during the training (W)MSE, (W)MAE
number of
epochs

number of times the training data are consecu-
tively put into the optimization algorithm

100, 200, 300, 400, 500

transformation
of outputs

transformation to apply to the output death rates logarithm or none

scaling of nu-
merical inputs

neural networks require inputs to be in a similar
order of magnitude [see LeCun et al., 1998]

standardization

architecture

what layers to use and in what order; c = convo-
lutional, p = pooling, d = dense; the final output
layer has to be a dense layer and is therefore not
explicitly mentioned here

cp, cpd, cpdd, ccp,
ccpd, cpcp, cpcpd

number of fil-
ters nF

number of convolutional filters 5, 10, 20

size of filters f third and fourth dimension of the filters 2, 3
type of pooling see (6) max, average
pooling size nP determines how many units are pooled 2
activation of
dense layers

activation function of dense layers; id for log death
rates, softplus or sigmoid for raw death rates

id, softplus sigmoid

size of dense
layers

number of neurons per hidden dense layer 5, 10, 25, 50, 100

batch normal-
ization

regularization technique to prevent internal covari-
ate shift, applied after every convolutional layer
[see Ioffe and Szegedy, 2015]

with, without

Based on the cross validation results, we have chosen the following hyperparameters
for the CNN:

• Adam optimizer with learning rate 0.001,

• batch size of 100 and 500 epochs without early stopping,

• no batch normalization,

• minimize MAE loss in predicted logarithmic death rates,

6



• standardize inputs,

• start with one convolutional layer with nF = 10 filters of size f = 3 followed
by an average pooling layer of size nP = 2. Repeat these two layers a second
time, insert a dense layer with 50 neurons and id activation and, finally, the dense
output layer with 30 neurons and id activation.

B Prediction Intervals for Stochastic Mortality Models

We describe how we calculate prediction intervals in the Poisson LC model, which is
based on the equation

logmi
x,t = αix + βixκ

i
t. (9)

Usually, ARIMA models are used to extrapolate the calibrated period effect
(
κ̂it
)
t
, with

the most common case being just a random walk with drift:

κ̂it+1 = di + κ̂it + εit+1 with di ∈ R and εit+1 ∼ N
(

0,
(
σiε

)2)
i.i.d. (10)

Its parameters are estimated by

d̂i :=
κ̂itY − κ̂

i
t1

Y − 1
and

(
σ̂iε

)2
:=

1

Y − 2

tY∑
t=t2

(
κ̂it − κ̂it−1 − d̂i

)2
. (11)

Forecasts for future death rates are obtained by inserting the central projection of
the random walk into the death rate model. More precisely, we set

m̂i
x,tY +h := exp

(
α̂ix + β̂ix

(
κ̂itY + h · d̂i

))
(12)

for h ∈ N [see Koissi et al., 2006]. Similarly, prediction interval bounds at level a ∈ (0, 1)
for the death rate mi

x,tY +h could be obtained as

exp

(
α̂ix + β̂ix

(
κ̂itY + h · d̂i ±

√
h · σ̂iε · Φ−1

(
1 + a

2

)))
,

where Φ−1 denotes the quantile function of the standard normal distribution.
However, these bounds only take into account the random volatility of the time

series, i.e., noise variance but not the uncertainty in estimating the ARIMA parame-
ters, i.e., model uncertainty. In the simple random walk with drift case, this is just
the uncertainty related to the estimation of the drift (there is also uncertainty in the
estimation of the time series volatility itself, which is neglected here). To account for
this, we define the prediction interval bounds via

m̂
i, lower|upper
x,tY +h := exp

(
α̂ix + β̂ix

(
κ̂itY + h · d̂i ± ŝ · Φ−1

(
1 + a

2

)))
, (13)

with

ŝ :=
√
h2 · σ̂2

d̂i
+ h · (σ̂iε)2, (14)

where σ̂2
d̂i

is the empirical variance of the estimator d̂i, which is given by

σ̂2
d̂i :=

(
σ̂iε
)2

Y − 1
. (15)

7



For a more detailed derivation and for the estimation of prediction intervals in the
general ARIMA model, we refer to Kleinow and Richards [2016].

While there are other approaches such as bootstrapping [Koissi et al., 2006] to
account for further sources of uncertainty in the calibration of the LC model [for a
detailed discussion, see also Lee and Carter, 1992], we use (13) as it accounts for the
uncertainty involved in the actual forecasting process. Furthermore, we assume it is
applied most often in practice.

There is no closed formula for the prediction interval bounds of the ACF model, so
they are calculated via Monte Carlo simulation (ignoring parameter uncertainty).

C Additional Empirical Results

C.1 Plotting Feature Maps

A technique which is often used to visualize CNN and to convince oneself that the feature
extraction performed by the convolutional layers makes sense consists in plotting the
feature maps for certain inputs. For images, those often look like variations of the
input showing where the network places its focus with the different filters. While the
interpretation for the human eye is easier in the case of images, it is possible to make
some observations for mortality data. In Figure 1, we display the ten feature maps
of the first convolutional layer of the first model in the CNN ensemble to which we
have input the death rates of English & Welsh females in the time periods 1891–1900,
1941–1950 and 1991–2000. We can clearly see that different filters focus on different
parts of the age-year input matrices, and that it also depends on the time period (i.e.,
on the level of the death rates) whether filters are activated more or less. In particular,
some filters are not activated at all for certain time periods, which is due to the relu
activation function used in the convolutional layers. There are some diagonal patterns
in the feature maps, most clearly visible for the years 1991–2000, indicating that the
network has detected cohort effects. In particular, this proves the greater flexibility
of the CNN in accounting for changing dependencies of age and year, while in the LC
model the influence of yearly changes in mortality on different ages represented by the
age effect stays constant over time.

C.2 Evaluation over the Whole Age Range

Table 4 displays the performance of the different models over the whole age range 2–98.
The youngest and oldest ages 0, 1, 99 and 100 are excluded for technical reasons (the
RNN needs additional age columns on each side of the target age and these are not
available for the youngest and oldest ages). Furthermore, we exclude Iceland from the
evaluation because there are calibration issues with the LC model for this country.

The results are broadly similar to those of Tables 2 and 4 from the main paper. CNN
and FFNN yield similar MSE and MAE as well as a PICP above 95%. The MdAPE is
clearly minimized by the CNN. The MPIW of FFNN and RNN are heavily inflated by a
few populations with overestimated noise variance. The MPIW of CNN is significantly
larger than those of LC and ACF, which also indicates some inflation, but more stable
compared to FFNN and RNN. Therefore, even though FFNN gets closer to the target
coverage probability of 95%, CNN prediction intervals would be preferable.

8



(a) 1891–1900

(b) 1941–1950

(c) 1991–2000

Figure 1: Feature maps of the first convolutional layer for English & Welsh females for
input years 1891–1900, 1941–1950 and 1991–2000 (blue means no activation, red means
high activation).

9



Table 4: Robustness check. Out-of-sample error measures for 52 populations, ages 2
to 98, years 2007 to 2016 (models trained on years up to 2006). In case of the RNN,
the female populations of Northern Ireland, Slovenia and Scotland were not included
in the evaluation due to numerical instabilities. The best value in each column, where
applicable, is marked in bold.

Model MSE×104 MAE×103 MdAPE[%] Dev PICP[%] MPIW

LC10 2.4 4.0 10.1 12.3 50.9 0.0079

LC20 1.8 4.1 10.3 16.5 50.1 0.0064

ACF 1.8 4.3 11.6 17.2 57.2 0.0087

FFNN 1.3 3.1 11.3 34.1 96.4 � 1

RNN 1.4 3.6 9.5 13.2 45.3 � 1

CNN 1.2 3.0 8.8 17.4 97.2 0.2662

C.3 Annuity Values

We consider a temporary annuity-immediate issued to a life of population i aged x at
the start of year t, which runs for n years and pays an amount of 1 at the end of each
year in which the life is alive. Its present value, assuming a constant yearly discount
factor v, is given by

n∑
s=1

vssp
i
x,t =

n∑
s=1

vs
s−1∏
j=0

pix+j,t+j ≈
n∑
s=1

vs exp

(
−
s−1∑
j=0

mi
x+j,t+j

)
, (16)

where we have used the notation sp
i
x,t for the s-year cohort survival probability with

special case pix,t := 1p
i
x,t and the common approximation pix,t ≈ exp

(
−mi

x,t

)
. This

approximation is based on assuming a piecewise constant force of mortality between
integer ages, which is unlikely to hold for higher ages. Other approximation formulae
are possible but would not result in substantial qualitative changes of the following
results.

Figure 2 displays the values of (16) according to the different models for x = 60,
t = 2007, n = 30 and v = 1

1.009
. We observe large differences between populations,

which are expected due to the differing levels of mortality, but for some populations
such as Lithuanian males also noticeable differences between models.

For the female and male populations of West Germany, we additionally compare the
annuity values predicted by the models to those implied by the second-order annuity
life tables DAV2004R provided by the German Association of Actuaries [DAV, 2018],
see Table 5. To get an impression of the uncertainty in the central forecasts, we provide
the annuity values obtained from both the central death rate estimates and the 95%
prediction interval bounds. Note that low annuity values correspond to high death rates,
which means that the annuity value lower bounds are calculated from the death rate
upper bounds, and vice versa. We find that the actuarial life table leads to significantly
more conservative reserves for both genders than the central estimates of our considered
mortality models, while the annuity value upper bounds resulting from the prediction
intervals are closer to the values implied by DAV2004R. Again, there are also non-
negligible differences in the values implied by our models which range from 21.3 to 22.3
(central estimates) or 20.0 to 23.0 (prediction intervals) for females and from 19.2 to 19.7
(central estimates) or 17.6 to 21.0 (prediction intervals) for males. In practical pricing

10



Figure 2: Population-specific values of a 30-year annuity for a life aged x = 60 at the
start of year t = 2007 according to CNN (red circles), FFNN (brown squares), RNN
(blue inverted triangles), ACF (green diamonds) and LC30 (magenta triangles) under
a yearly discount factor of v = 1

1.009
.

or reserving applications, it is therefore recommendable to consult multiple models and
compare the resulting projections, annuity values and their lower and, more importantly,
upper bounds with careful actuarial judgement.

Table 5: Values of a 30-year annuity for a female or male life aged x = 60 at the start of
year t = 2007 in West Germany according to the 95% prediction intervals and central
estimates of different models and the DAV2004R life table.

Model LC30 ACF CNN FFNN RNN 2004R

Annuity value (F)
lower bound 21.1 21.3 20.0 21.3 21.4 —
central estimate 21.7 21.8 21.3 22.1 22.3 23.0
upper bound 22.3 22.2 22.3 22.8 23.0 —

Annuity value (M)
lower bound 18.5 18.7 17.6 18.7 18.4 —
central estimate 19.2 19.3 19.5 19.7 19.2 21.2
upper bound 19.8 19.9 21.0 20.6 20.0 —

11


