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Online Appendices

A: Alternative Approaches to Estimating Joint Model

In this section, we investigate two alternative estimating strategies for the joint model.
We show that significant bias will be induced if the model is not estimated appropriately.

The first strategy is independence estimation. Specifically, setting α = 0 in the survival
submodel, we estimate the longitudinal and survival submodel separately. The second
strategy is a two-stage method. The first stage estimates the longitudinal submodel, and
the second stage estimates the survival submodel holding parameter estimates from the
first stage fixed.

In the simulation study, we generate data from the joint model described in Section 5.1.
Parameters are estimated using both independence and two-stage methods. Estimation
results based on sample size N=1000 and S=150 replications are reported in Table 1 and
Table 2, respectively, for the longitudinal and survival submodels. We show in the table
the average bias (Bias), the average standard error (SE) of the estimates, and the standard
deviation of the average bias calculated as SD/

√
(S). For comparison, we reproduce the

estimates for the joint model from Table 1 in the paper.
It is critical to note that both estimation strategies induce substantial bias into param-

eter estimates. For the independence method, we emphasize that it is different from the
usual multivariate regression where ignoring the association among multiple outcomes
pays no price in terms of consistency, but only hampers the efficiency. The bias in the
longitudinal submodel is due to the sample selection under independence assumption
and the bias in the survival submodel is due to the omitted variable. For the two-stage
estimation, the selection bias in the longitudinal submodel is carried over to the survival
submodel. Therefore, model parameters cannot be consistently estimated although the
association between the two processes are taken into account.
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Table 1: Estimation results for the longitudinal submodel.
N=1000, S=150 JM Independence and Two-stage
Parameter Bias SD/

√
(S) SE Bias SD/

√
(S) SE

β10=1.0 0.001 0.005 0.056 -0.035 0.005 0.056
β11=0.3 0.002 0.001 0.010 0.008 0.001 0.010
β21=0.2 -0.001 0.003 0.039 0.001 0.003 0.040
β22=0.4 -0.002 0.003 0.042 -0.001 0.003 0.042
ν=0.09 -0.001 0.001 0.015 0.002 0.001 0.017
σ=1.5 0.001 0.004 0.043 0.092 0.006 0.072

Table 2: Estimation results for the survival submodel.
N=1000, S=150 JM Two-Stage Independence
Parameter Bias SD/

√
(S) SE Bias SD/

√
(S) SE Bias SD/

√
(S) SE

γ1=0.5 -0.004 0.007 0.085 -0.004 0.007 0.086 -0.026 0.007 0.089
γ2=0.3 -0.001 0.007 0.079 -0.004 0.007 0.080 -0.084 0.007 0.081
log(λ)=-1.139 -0.021 0.012 0.148 -0.075 0.012 0.140 -0.420 0.009 0.116
α=-0.25 0.011 0.005 0.066 0.020 0.005 0.063 - - -

B: Details for Marked Poisson Process for RBNS

Under the Marked Poisson Process framework, the likelihood for the full development
process of a claim is given by (Jin, 2014):

L = fV × fU|v × fW|v,u = fV × fU|v × fS|v,u × fE|v,u,s × fP|v,u,s,e, (1)

where V and U represent the claim occurrence times and reporting delay respectively.
However, with the focus on RBNS reserve prediction, we are interested in the claim de-
velopment process W given by

fW|v,u = fS|v,u × fE|v,u,s × fP|v,u,s,e. (2)

Where S denotes the transaction occurrence times, E denotes the type of transaction, and
P denotes the payment amount of the transaction. The transaction occurrence times S are
modeled by a discrete survival model with piecewise constant hazard rates. Following
Jin (2014) and Antonio and Plat (2014), the first transactions are modeled with a hazard
rate g(s), and the later transactions are modeled with a different hazard rate h(s). Let
[0, aR] and [0, bL] be the interval for first and later transactions. Then we have:

g(s) =
R

∑
r=1

gr1{ar−1 < s ≤ ar} (3)
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h(s) =
L

∑
l=1

hl1{bl−1 < s ≤ bl} (4)

With cumulative hazard rates given by:

G(s) =
∫ s

0
g(t)dt (5)

H(s) =
∫ s

0
h(t)dt (6)

Then the cumulative density functions of transaction occurrence times are given by:

Pr(S1 ≤ s) = 1− exp(−G(s)) (7)

Pr(Sk ≤ s) = 1− exp(−H(s)), k > 1 (8)

Let aR = N1 be regarded as the maximum waiting time to the first transaction, and
bL = N2 is regarded as the maximum settlement delay. Then under these additional
assumptions, the probability that the first transaction occurs at time r, r = 1, 2, ..., N1 is

Pr(S1 = r|S1 ≤ N1) =
exp{−G(r− 1)} − exp{−G(r)}

1− exp{−G(N1)}
(9)

And given the occurrence time of the first transaction, Sk−1 = c, the probability that
transaction k occurs at time r, r = c + 1, c + 2, ..., N2 is

Pr(Sk = r|Sk−1 = c, Sk ≤ N2) =
exp{−H(r− 1)} − exp{−H(r)}
exp{−H(c)} − exp{−H(N2)}

(10)

For the Wisconsin LGPIF training dataset, the maximum waiting time for the first
transaction is 17 months, and the maximum settlement delay is 27 months. It is assumed
that there is at most one transaction in each month, and the transactions can only occur at
the end of a month. As noted in Jin (2014), this discrete setup is consistent with the fact
that many insurers aggregate transactions on a monthly basis by the end of each month.
Therefore, the piecewise-constant hazard rates is defined to have jumps every month,
i.e. a1 = 0, a2 = 1, · · · , a17 = 17 and b1 = 0, b2 = 1, · · · , b27 = 27.

Furthermore, for the type of transactions E, we consider two types for claim i at time
S = s; a payment transaction that leads to settlement (eis = 1) and an intermediate pay-
ment transaction (eis = 0). With an intermediate transaction, the claim development

3



process continues. Given a transaction at time s, the transaction type is determined by
a logit model that accommodates heterogeneity by incorporating random effects ai.The
probabilities also depend on the time of the transaction and covariates xis given by:

Pr(eis = 1|ai) = π(x′isβ + ai) =
1

1 + exp(−(x′isβ + ai))
. (11)

To model the incremental payments P, a Generalized Linear Mixed-Effects Model is spec-
ified.

C: Joint Model Algorithm to Construct the Training and Validation Data in the Simulation Study

Algorithm 1 Data-generating process for JM.

Input: Parameters {β10, β11, β21, β22, ν, σ} from the payments submodel, and
{γ1, γ2, λ, α} from the settlement submodel.

Output:
Training datasets DP

T = {(yit, t, xi1, xi2); 0 ≤ t ≤ ti, i = 1, ..., N}, and
DS

T = {(ti, δi, xi1, xi2); i = 1, ..., N}; Validation dataset for open claims
DV =

{
yit; ci < t ≤ t∗i , i = 1, ..., m

}
.

1: for Claim i = 1, ..., N do
2: Generate xi1 ∼ Bernouli(0.5), xi2 ∼ Normal(1, 0.25);
3: Generate bi = bi0 ∼ N (0, ν);
4: for Payment time t = 0, ..., 9 do
5: yit ∼ Gamma

(
exp(ηit)

σ , σ
)

; ηit = β10 + tβ11 + xi1β12 + xi2β13 + bi0;
6: end for
7: return {yit; t = 0, ..., 9};
8: Generate Si(t) = U ∼ Uniform(0, 1);
9: Calculate t∗i = H−1

i (− log(U)); where Hi(t) =
∫ t

0 λ exp{γ1xi1 + γ2xi2 + αηis}ds;
10: Generate accident year AYi ∈ [(1, . . . , 10)− 1];
11: Generate ci = 9− AYi + Uniform(0, 0.5);
12: DP

Ti = {(yit, t, xi1, xi2); 0 ≤ t ≤ ti}; where ti = min(t∗i , ci);
13: DS

Ti = {ti, δi, xi1, xi2}; where δi = I(t∗i < ci);
14: DVi =

{
yit; ci < t ≤ t∗i , δi = 0

}
;

15: return DP
T =

{
DP

Ti; i = 1, ..., N
}

; DS
T =

{
DS

Ti; i = 1, ..., N
}

; and
DV = {DVi; i = 1, ..., m}; where m = ∑ I(δi = 0);

16: end for
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