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Abstract

This article proposes a complex economic scenario generator that nests versions of well-known
actuarial frameworks. The generator estimation relies on the Bayesian paradigm and accounts for
both model and parameter uncertainty via Markov chain Monte Carlo methods.

So, to the question is less more?, we answer maybe, but it depends on your criteria. From an in-
sample fit perspective, on the one hand, a complex economic scenario generator seems better. From
the conservatism, forecasting, and coverage perspectives, on the other hand, the situation is less clear:
having more complex models for the short rate, term structure, and stock index returns is clearly ben-
eficial. However, that is not the case for inflation and the dividend yield.
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SM.A Other Economic Scenario Generators

This section introduces three ESGs nested in our more general framework of Section 2: a Wilkie-like
model, an extended Wilkie-like model based on his extension of 1995, and an Ahlgrim, D’Arcy, and
Gorvett-like model (note that this latter model is also known as the CAS-SOA model).

SM.A.1 A Wilkie-Like Model

The Wilkie (1986) model is considered the first comprehensive open access ESG in the actuarial
academic literature. Since its publication in 1986, the framework has been the subject of extensive study
and debate (e.g., Geoghegan et al., 1992; Wilkie, 1995; Huber, 1997; Şahin et al., 2008). This section
presents the Wilkie-like model used in this study and describes its similarities and differences with the
actual Wilkie model.

The inflation rate and the transformed short rate are modelled by AR(1) dynamics defined as follows:

qt = µq + aq
(
qt−1 − µq

)
+ σq εq,t,

r̃t = µr + ar
(
r̃t−1 − µr

)
+ σr εr,t.

Instead of having the contemporaneous inflation rate as well as the dividend yield innovation in the short
rate equation, we assume that the standardized innovation εr,t is correlated with εq,t and εd,t in our Wilkie-
like model; this makes the Wilkie-like model comparable to that of Ahlgrim et al. (2005). Moreover, it
has no impact on the fit of the model.

We assume that each entry in matrix A f is set to zero, meaning that the transformed forward rates are
given by:

f̃t − 1n r̃t = µ f + Σ f ε f ,t.

In other words, we assume that each transformed forward rate is a noisy translated version of the short
rate. This is also consistent with Wilkie (1986) that uses only one interest rate factor to describe the
whole yield curve—in this case, the short rate.

The dividend yield is given by the following equation:

log(dt) = log(µd) + ad
(
log(dt−1) − log(µd)

)
+ σd εd,t.

Again, we assume dependence between the standardized innovations instead of having functionals of the
inflation rate in our dynamics (i.e., parameter YW of the original paper is set to zero).

Finally, the stock index return in period t is given by the following dynamics:

yt = rt + µy + σy εy,t.

Again, for the sake of comparability, we include the short rate in our dynamics instead of the inflation
rate—similar to Ahlgrim et al. (2005). Also, parameters DY and DB of the original paper are set to zero.

SM.A.2 An Extended Wilkie-Like Model

Wilkie (1995) extends the classic Wilkie model and includes an earnings index, short-term interest
rates, and property prices. For the sake of consistency with Wilkie’s (1986) model and the framework
introduced in Section 2, we only consider inflation, nominal interest rates, the dividend yield, and stock
index returns.

We focus on a variant of Wilkie’s (1995) that is nested within the model presented in Section 2.
Specifically, the inflation rate, short rate, dividend yield, and stock index return models are exactly the
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same as those proposed above for the Wilkie (1986) model. The only difference with the 1986 framework
comes from the addition of long rate dynamics that are modelled via a second equation. In the 1995
paper, Wilkie models the spread between the long- and short-rate interest rates, similar to our approach.
Indeed, this spread is called the slope in the present study. Our version of Wilkie (1995) thus relies on
the following transformed forward rate dynamics:

f̃t − 1n r̃t = µ f + A f ,1 F1,t + Σ f ε f ,t,

where A f ,1 is the first column of matrix A f .

SM.A.3 An Ahlgrim, D’Arcy, and Gorvett-Like Model

The Ahlgrim et al. (2005) framework is the end-product of a research project on Modelling of Eco-
nomic Series Coordinated with Interest Rate Scenarios initiated by a joint request from the Society of
Actuaries and the Casualty Actuarial Society. Their original model considers inflation, nominal and real
interest rates, dividend yield, stock index returns, real estate returns, and unemployment. Again, for the
sake of consistency with Wilkie’s (1986) model and the framework introduced in Section 2, we consider
only inflation, nominal interest rates, dividend yield, and stock index returns.

Ahlgrim et al. (2005) express their ESG via continuous-time diffusions. To make our analysis con-
sistent with the rest of this study, we use a discrete-time equivalent of their model. As their model is
estimated based on discrete-time observations, this should not impact the model’s behaviour (additional
details are available in Ahlgrim et al., 2005).

Similar to Wilkie’s (1986) framework, the inflation rate is modelled by an AR(1) process defined as
follows:

qt = µq + aq
(
qt−1 − µq

)
+ σq εq,t.

The transformed short rate is also modelled by an AR(1) process defined as follows:

r̃t = µr + ar
(
r̃t−1 − µr

)
+ σr εr,t.

In the original paper, the authors use a second—long rate—factor to model the yield curve. Our approach
in this study—capturing the yield curve by using two factors—is slightly different, but ultimately equiv-
alent; i.e., short and long rates in Ahlgrim et al. (2005) and short rate and average forward rate in excess
of the short rate in our variant of their model. Our version relies on the following transformed forward
rate dynamics:

f̃t − 1n r̃t = µ f + A f ,1 F1,t + Σ f ε f ,t.

Again, similar to Wilkie, the following equations give the dividend yield:

log(dt) = log(µd) + ad
(
log(dt−1) − log(µd)

)
+ σd εd,t.

Finally, the stock index return in period t is given by the following dynamics:

yt = rt + µy,mt + σy,mt εy,t,

where σ2
y,u, σ2

y,s, and σ2
y,d are regime-dependent return variances. This is obviously slightly different

from Ahlgrim et al.’s model as we consider three regimes instead of two, and we use observable regimes
based on the monetary policy instead of latent ones. Note that these two modifications to the original
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framework do not negatively impact the fit.
As mentioned above, this framework also considers real estate returns and unemployment. Adding

more variables is helpful under some circumstances but should not materially impact this study’s results.

SM.B More on the Estimation

SM.B.1 Likelihood Function

Whether one uses maximum likelihood or Bayesian inference, the likelihood function serves as an
important building block to estimate the model parameters. Note that the following equations are all
based on the new ESG and, for the sake of conciseness, we do not explicitly includeM4 in the condi-
tioning set. Also, we only show the likelihoods forM4, but the likelihoods for frameworksM1,M2 and
M3 are obtained in a similar fashion.

For the monetary policy model, the likelihood function is given by

Lm (m1:T | puu, psu, psd, pdd) = f (m1 | puu, psu, psd, pdd)
T∏

t=2

f (mt |mt−1, puu, psu, psd, pdd)

= f (m1 | puu, psu, psd, pdd)
T∏

t=2

pmt−1mt .

The probability mass function related to the first term m1 is different since we do not know m0—there is
no preceding observation on which to condition. To circumvent this issue, we condition on m0 and treat
it as an additional parameter:

Lm (m1:T |Θm) =

T∏
t=1

pmt−1mt ,

where Θm =
[

puu psu psd pdd m0
]
.

The inflation rate, short rate, and dividend yield innovations are related through linear correlations:

Corr
(
[ εq,t εr,t εd,t ]

)
=

 1 ρq,r ρq,d

ρq,r 1 ρr,d

ρq,d ρr,d 1

 ,
To make the derivation below more direct, we define the Cholesky decomposition of the above matrix
and use it to obtain the following relationship:εq,t

εr,t

εd,t

 =

 1 0 0
l12 l22 0
l13 l23 l33


ε1,t

ε2,t

ε3,t

 , where

ε1,t

ε2,t

ε3,t

 ∼ N3(03, I3)

In the case of the inflation rate model, the likelihood function is given by

Lq

(
q1:T

∣∣∣Θm,Θq,m1:T

)
=

T∏
t=1

f
(
qt

∣∣∣Θm,Θq,m1:T , q1:t−1

)

SM-4



=

T∏
t=1

1
√

2πσq,t

exp

−1
2

qt − µq,mt − aq

(
qt−1 − µq,mt

)
σq,t


2

if we treat the initial inflation rate q0 and the time-1 conditional variance σ2
q,1 as additional parameters,

where Θq = [ µq,u µq,s µq,d aq σ2
q αq βq γq q0 σ2

q,1 ].
Similar to the inflation model, the likelihood function of the short rate model is given by

Lr

(
r̃1:T

∣∣∣Θm,Θq,Θr,m1:T , q1:T

)
=

T∏
t=1

f
(
r̃t

∣∣∣Θm,Θq,Θr,m1:T , q1:T , r̃1:t−1

)
=

T∏
t=1

1
√

2π l22 σr,t

exp
−1

2

(
r̃t − µr,mt − ar

(
r̃t−1 − µr,mt

)
− l12 σr,t ε1,t

l22 σr,t

)2 ,
where Θr = [ µr,u µr,s µr,d ar ρq,r σ2

r αr βr γr r0 σ2
r,1 ].

The forward rate model is comprised of two components: (1) the factor dynamics, and (2) the link
between the factors and the transformed forward rates. For the former, the likelihood associated with the
factor dynamics is given by:

LF

(
F1:T

∣∣∣Θm,Θq,Θr,ΘF ,m1:T , q1:T , r̃1:T

)
=

T∏
t=1

f
(
Ft

∣∣∣Θm,Θq,Θr,ΘF ,m1:T , q1:T , r̃1:t−1, F1:t−1

)
=

T∏
t=1

2∏
i=1

1
√

2πσFi

exp
−1

2

(
Fi,t − µFi − aFi

(
Fi,t−1 − µFi

)
σFi

)2 ,
where ΘF = [ µF1

µF2
aF1

aF2
σ2

F1
σ2

F2
F1,0 F2,0 ]>. For the latter, the likelihood function is

given by:

L f

(
f̃ 1:T

∣∣∣Θm,Θq,Θr,ΘF ,Θ f ,m1:T , q1:T , r̃1:T , F1:T

)
=

T∏
t=1

f
(

f̃ t

∣∣∣Θm,Θq,Θr,ΘF ,Θ f ,m1:T , q1:T , r̃1:t−1, F1:T , f̃ 1:t−1

)
=

T∏
t=1

n∏
i=1

1
√

2πσ fi

exp

−1
2

(
f̃i,t − r̃t − µ fi − a fi,1 F1,t − a fi,2 F2,t

σ fi

)2 ,
where Θ f = [ µ f1

... µ fn
a f1,1

... a fn,1
a f1,2

... a fn,2
σ2

f1
... σ2

fn
].

In the case of the dividend yield model, the likelihood function is given by:

Ld

(
d1:T

∣∣∣Θm,Θq,Θr,ΘF ,Θ f ,Θd,m1:T , q1:T , r̃1:T , , F1:T , f̃ 1:T

)
=

T∏
t=1

f
(
dt

∣∣∣Θm,Θq,Θr,ΘF ,Θ f ,Θd,m1:T , q1:T , r̃1:T , F1:T , f̃ 1:T , d1:t−1

)
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=

T∏
t=1

1
√

2π l33 σd,t

exp
−1

2

(
log(dt) − µd,mt − ad

(
log(dt−1) − µd,mt

)
− l13 σd,t ε1,t − l23 σd,t ε2,t

l33 σd,t

)2 ,
where Θd = [ µd,u µd,s µd,d ad ρq,d ρr,d σ2

d αd βd γd d0 σ2
d,1 ].

Then, the likelihood associated with the stock index returns is given by:

Ly

(
y1:T

∣∣∣Θm,Θq,Θr,ΘF ,Θ f ,Θd,Θy,m1:T , q1:T , r̃1:T , F1:T , f̃ 1:T , d1:T

)
=

T∏
t=1

f
(
yt

∣∣∣Θm,Θq,Θr,ΘF ,Θ f ,Θd,Θy,m1:T , q1:T , r̃1:T , F1:T , f̃ 1:T , d1:T , y1:t−1

)
=

T∏
t=1

1
√

2πσy,t

exp
−1

2

(
yt − rt − µy,mt

σy,t

)2 ,
where Θy = [ µy,u µy,s µy,d σ2

y αy βy γy σ2
y,1 ].

Finally, the total likelihood is simply the product of the seven previous likelihoods:

L (X |Θ) =Lm (m1:T |Θm) × Lq

(
q1:T

∣∣∣Θm,Θq,m1:T

)
× Lr

(
r̃1:T

∣∣∣Θm,Θq,Θr,m1:T , q1:T

)
× LF

(
F1:T

∣∣∣Θm,Θq,Θr,ΘF ,m1:T , q1:T , r̃1:T

)
× L f

(
f̃1:T

∣∣∣Θm,Θq,Θr,ΘF ,Θ f ,m1:T , q1:T , r̃1:T , F1:T

)
× Ld

(
d1:T

∣∣∣Θm,Θq,Θr,ΘF ,Θ f ,Θd,m1:T , q1:T , r̃1:T , F1:T , f̃1:T

)
× Ly

(
y1:T

∣∣∣Θm,Θq,Θr,ΘF ,Θ f ,Θd,Θy,m1:T , q1:T , r̃1:T , F1:T , f̃ 1:T , d1:T

)
. (SM.1)

SM.B.2 Implementation and Convergence Diagnostics

This study utilizes a version of the adaptive Metropolis algorithm of Haario et al. (2001) (for a review
on adaptive MCMC algorithms, refer to Roberts and Rosenthal, 2009). We rely on blocking to divide our
framework into seven smaller components, representing the seven likelihoods of Equation (SM.1): mon-
etary policy (m), inflation (q), short rate (r), interest rate factors (F), term structure ( f ), dividend yield
(d), and stock index returns (y). Specifically, we perform Metropolis steps with proposal distributions
based on the following mixture at step j:

Θ∗i ∼

 N
(
Θ

( j−1)
i , (2.38)2 Σi,n/di

)
with probability 1 − β

N
(
Θ

( j−1)
i , Ki Idi/di

)
with probability β

, (SM.2)

where i ∈ {m, q, r, F, f , d, y}, β is a small positive constant (we use β = 0.05 in this study), Σi,n is the
covariance structure of the target density of the i th block, di is size of Θi, and Ki is a di × di diagonal
matrix containing scaling factors. The samples are accepted as usual, using the Hastings acceptance
ratio:

αM
(
Θ∗i ,Θ

( j−1)
i

)
= min

1, L (X |Θ∗,M) π (Θ∗ |M)

L
(
X

∣∣∣Θ ( j/ j−1),M
)
π
(
Θ ( j/ j−1)

∣∣∣M) , (SM.3)

where Θ∗ = [ Θ( j)
m ... Θ∗i ... Θ

( j−1)
y ] and Θ ( j/ j−1) = [ Θ( j)

m ... Θ
( j−1)
i ... Θ

( j−1)
y ]. The details

of the method are given in Algorithm 1.
To cope with potential slow convergence issues, we employ a long Markov chain; that is, M =
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Algorithm 1 Adaptive Metropolis Algorithm
1: set Θ(0)

i for each block i ∈ {m, q, r, F, f , d, y}
2: for each j ∈ {1, ...,M} do
3: for each i ∈ {m, q, r, F, f , d, y} do
4: generate a candidate Θ∗i from Equation (SM.2)
5: calculate the Hastings acceptance ratio αM

(
Θ∗i ,Θ

( j−1)
i

)
using Equation (SM.3)

6: accept of reject this new sample using a uniform random number
7: end for
8: end for

300,000 observations. The first 100,000 observations are burned and are therefore removed from the
sample. Thereafter, every second simulation is recorded for posterior analysis (i.e., thinning). This
process yields a final Markov chain of size 100,000 for each model that is used for empirical purposes.

It is very difficult to verify the convergence from a theoretical standpoint in high-dimensional prob-
lems. We therefore rely on practical tests to verify that our chains converged: the Gelman and Rubin
(1992) diagnostic assesses the convergence by comparing the estimated between-chains and within-chain
variances for each model parameter. All the potential scale reduction factors (PSRFs) range between 1
and 1.025 for all the parameters and models, meaning that the chains seem to have converged to their
target posterior distribution. Indeed, Brooks and Gelman (1998) suggested that one can be confident that
convergence has been reached if the PSRFs are below 1.2—which is the case in this study. Also, for all
our models and parameters, the trace plots exhibit a hairy caterpillar behaviour, meaning that the mixing
seems adequate. They are available in Figures SM.1 to SM.6 forM4 and upon request forM1,M2, and
M3.
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Figure SM.1: Trace Plots of Monetary Policy Parameters.
This figure reports the trace plots for the parameters of the monetary policy model.

SM.B.3 Reversible Jump MCMC

Most MCMC schemes create samples from a target density with a fixed number of dimensions.
The reversible jump MCMC algorithm of Green (1995) is different in that respect because it allows
for dimension jumping moves. Specifically, it enables us to move from one model and one parameter
realization to another model and a new parameter realization consequential in size.

Assume that you want to move from Mk to Mk′ (or from Θk ∈ R
dk to Θk′ ∈ R

dk′ ). Green’s idea
is to pad out Θk and Θk′ with random auxiliary variables, say, Wk and Wk′ , so that the final size of
Zk = [ Θk Wk ] is equal to that of Zk′ = [ Θk′ Wk′ ] (i.e., dimension matching requirement). Then,
we need to build a smooth continuous bijective mapping hk,k′ with a smooth continuous inverse such that
hk,k′(Zk) = Zk′ to move from one parameter space to another.

Once we have these two additional components, we can apply the rationale of the Metropolis algo-
rithm as achieved in the previous section. To do so, we need a proposal distribution for both model jumps
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Figure SM.2: Trace Plots of Inflation Parameters.
This figure reports the trace plots for the parameters of the inflation model.
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Figure SM.3: Trace Plots of Short Rate Parameters.
This figure reports the trace plots for the parameters of the short rate model.

and parameter values. To jump fromMk toMk′ , on the one hand, we employ a proposal that assumes
equally likely moves:

q(Mk′ |Mk) = 1
4 , where k′ = 1 ∈ {1, 2, 3, 4} and k ∈ {1, 2, 3, 4}.

The proposal for Zk′ , on the other hand, is obtained in two parts: Θk′ is obtained using the adaptive
Metropolis method explained in Appendix SM.B.2, and the auxiliary variables Wk′ from a distribution
with density, say, gk′ . We use a multivariate normal distribution in our application as we can easily
generate samples from this distribution, and the density exists in closed form.

Finally, because we can jump from one model to the other, the Hastings ratio needs to be adjusted in
the following way:

min
(
1,
L(X |Θk′ ,Mk′) π(Θk′ |Mk′) π(Mk′) gk′(Wk′) q(Mk′ |Mk)
L (X |Θk,Mk) π (Θk |Mk) π (Mk) gk(Wk) q(Mk |Mk′)

·

∣∣∣∣∣∂hk,k′(Zk)
∂Zk

∣∣∣∣∣ ) ,
where the last component is the determinant of the Jacobian matrix related to the bijection hk,k′ .
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Figure SM.4: Trace Plots of Term Structure Parameters.
This figure reports the trace plots for the parameters of the term structure model.
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Figure SM.5: Trace Plots of Dividend Yield Parameters.
This figure reports the trace plots for the parameters of the dividend yield model.
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Figure SM.6: Trace Plots of Stock Index Returns Parameters.
This figure reports the trace plots for the parameters of the stock index returns model.

SM.C Empirical Results

SM.C.1 Term Structure Factors

The term structure factors—the slope and the curvature—are constructed from the (transformed)
forward rates. The former is computed as the difference between the 30-year transformed forward rate
and the one-year transformed forward rate. The latter is obtained by summing the 30-year transformed
forward rate and the one-year transformed forward rate, and subtracting twice the three-year transformed
forward rate. Figure SM.7 reports the time series of the two factors.

SM.C.2 Results and Discussion

Table SM.1 shows the average parameters and their standard deviations. Section 4 of the article
discusses these parameters in more detail.

Figure SM.8 shows an example of one realization obtained fromM4. Overall, the simulated series
yield a similar behaviour to those observed empirically.

SM.D An Ad Hoc Ensemble Model Averaging

This supplementary section gives preliminary results on ensemble models. Based on the results of
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Figure SM.7: Term Structure Factors.
This figure shows the two term structure factors—the slope and the curvature. The former is computed as the difference be-
tween the 30-year transformed forward rate and the one-year transformed forward rate. The latter is obtained by summing the
30-year transformed forward rate and the one-year transformed forward rate, and subtracting twice the three-year transformed
forward rate.

Sections 4, 5, and 6, there are clearly some benefits and disadvantages for each of the four models consid-
ered. From an in-sample perspective, the most complex ESG seems better for most components. From
the conservatism, forecasting, and coverage perspectives, on the other hand, the issue is less clear: hav-
ing more complex models for the short rate, term structure, and stock index returns is clearly beneficial.
However, this is not the case for inflation and the dividend yield. Moreover, as the saying goes, it is
difficult to make predictions, especially about the future. Perhaps a better way to construct ESGs is by
combining them. The idea is actually quite simple: we use the scenarios we have and blend them to
create an ensemble model.

This strategy has been used extensively in data-heavy domains such as weather forecasting (e.g.,
Gneiting and Raftery, 2005). A range of methodology exists to combine models; it goes from simple un-
weighted averages to more sophisticated methods such as principal component-based methods, trimmed
means, performance-based weighting, optimal least squared estimates, and Bayesian shrinkage (Graefe
et al., 2015). One drawback regarding the advanced methods is that they involve a level of complexity
that can often be unnecessary.

In this study, we use simple unweighted average models in lieu of sophisticated combination methods
to create better ESGs. Table SM.2 reports ensemble model out-of-sample forecast RMSEs (Panel A) and
coverage errors (Panel B) for all series and horizons considered in Tables 5 and 6. As expected, the
ensemble model RMSEs are better than those of the worst model but marginally worse than the best
model. For instance, the inflation RMSE is 2.2% forM1,M2, andM3 and is 2.5% forM4; the ensemble
model for inflation yields an RMSE of 2.3%. We reach a similar conclusion for every other economic
and financial variable.

We obtain a similar story for coverage errors: the ensemble model improves the performance of the
worst model but slightly deteriorates the best model’s performance. Overall, the average coverage errors
are close to zero; that is, between 2.4% and 16.1%.

In sum, the ensemble model is a good compromise; it allows for correcting overly or insufficiently
conservative estimates. Moreover, if one model is off at times, the other models compensate and bring
the ensemble to decent levels. This ultimately reduces the potential for model risk.
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Table SM.1: Parameters Statistics for the Four Models (1986–2020).

Panel A: Monetary Policy.

M1 M2 M3 M4

puu 0.856 (0.035) 0.856 (0.035)
psu 0.050 (0.013) 0.050 (0.013)
psd 0.068 (0.015) 0.068 (0.015)
pdd 0.753 (0.049) 0.753 (0.049)
Panel B: Inflation.

M1 M2 M3 M4

µq,u × 100 0.281 (0.030)
µq,s × 100 / µq × 100 0.216 (0.019) 0.216 (0.019) 0.216 (0.019) 0.222 (0.016)
µq,d × 100 0.215 (0.032)
aq 0.433 (0.043) 0.433 (0.043) 0.433 (0.043) 0.341 (0.057)
σq × 100 0.225 (0.008) 0.225 (0.008) 0.225 (0.008) 0.318 (0.117)
αq 0.290 (0.063)
βq 0.613 (0.066)
γq −0.250 (0.131)
Panel C: Short Rate.

M1 M2 M3 M4

µr,u × 10 2.611 (0.423)
µr,s × 10 / µr × 10 0.196 (0.194) 0.196 (0.194) 0.196 (0.194) −0.015 (0.187)
µr,d × 10 −3.687 (0.770)
ar 0.992 (0.003) 0.992 (0.003) 0.992 (0.003) 0.994 (0.001)
ρq,r 0.065 (0.048) 0.065 (0.048) 0.065 (0.048) 0.007 (0.047)
σr × 100 0.290 (0.010) 0.290 (0.010) 0.290 (0.010) 0.557 (0.228)
αr 0.361 (0.071)
βr 0.601 (0.070)
γr 0.002 (0.128)
Panel D: Term Structure.

M1 M2 M3 M4

µ f1 × 100 0.500 (0.021) 0.342 (0.036) 0.341 (0.036) 0.292 (0.034)
µ f2 × 100 1.095 (0.039) 0.596 (0.060) 0.596 (0.061) 0.446 (0.038)
µ f3 × 100 1.401 (0.048) 0.456 (0.061) 0.457 (0.061) 0.295 (0.034)
µ f5 × 100 1.884 (0.061) 0.333 (0.060) 0.332 (0.059) 0.183 (0.036)
µ f7 × 100 2.339 (0.069) 0.470 (0.053) 0.470 (0.052) 0.352 (0.038)
µ f10 × 100 2.305 (0.073) 0.214 (0.047) 0.213 (0.047) 0.142 (0.043)
µ f30 × 100 2.484 (0.076) 0.341 (0.036) 0.343 (0.037) 0.294 (0.034)
a f1 ,1 0.080 (0.015) 0.081 (0.015) 0.123 (0.014)
a f2 ,1 0.252 (0.025) 0.252 (0.025) 0.384 (0.016)
a f3 ,1 0.477 (0.025) 0.476 (0.025) 0.622 (0.015)
a f5 ,1 0.780 (0.024) 0.780 (0.024) 0.915 (0.015)
a f7 ,1 0.940 (0.021) 0.941 (0.022) 1.047 (0.016)
a f10 ,1 1.054 (0.019) 1.054 (0.019) 1.118 (0.019)
a f30 ,1 1.081 (0.014) 1.080 (0.015) 1.122 (0.015)

This table reports the average and standard deviation (in parentheses) for each of the parameters out of a sample of 100,000
values. This is done using the adaptive Metropolis algorithm of Section 3 with the three models of Section 2.6: the Wilkie-like
framework (M1), the extended Wilkie-like framework (M2), the Ahlgrim, D’Arcy, and Gorvett-like framework (M3), and
the new ESG (M4).

References
Ahlgrim, K. C., S. P. D’Arcy, and R. W. Gorvett (2005). Modeling financial scenarios: A framework for

the actuarial profession. In Proceedings of the Casualty Actuarial Society, Volume 92, pp. 177–238.
Casualty Actuarial Society, Arlington, VA, United States of America.

Brooks, S. P. and A. Gelman (1998). General methods for monitoring convergence of iterative simula-

SM-12



Table SM.1: Parameters Statistics for the Four Models (1986–2020), continued.

Panel D: Term Structure, continued.

M1 M2 M3 M4

a f1 ,2 −0.202 (0.022)
a f2 ,2 −0.633 (0.025)
a f3 ,2 −0.701 (0.021)
a f5 ,2 −0.641 (0.022)
a f7 ,2 −0.509 (0.024)
a f10 ,2 −0.298 (0.026)
a f30 ,2 −0.202 (0.020)
σ f1 × 100 0.463 (0.016) 0.449 (0.015) 0.449 (0.015) 0.410 (0.014)
σ f2 × 100 0.826 (0.027) 0.744 (0.025) 0.744 (0.025) 0.474 (0.015)
σ f3 × 100 1.016 (0.034) 0.756 (0.025) 0.758 (0.025) 0.410 (0.014)
σ f5 × 100 1.328 (0.044) 0.724 (0.025) 0.724 (0.024) 0.432 (0.014)
σ f7 × 100 1.490 (0.048) 0.655 (0.023) 0.656 (0.022) 0.463 (0.016)
σ f10 × 100 1.606 (0.054) 0.577 (0.019) 0.578 (0.020) 0.511 (0.017)
σ f30 × 100 1.601 (0.053) 0.449 (0.015) 0.449 (0.015) 0.411 (0.014)
µF1 2.057 (2.771) 2.057 (2.771) 2.057 (2.771)
µF2 0.245 (0.251)
aF1 0.988 (0.008) 0.988 (0.008) 0.988 (0.008)
aF2 0.921 (0.019)
σF1 0.259 (0.009) 0.259 (0.009) 0.259 (0.009)
σF2 0.375 (0.012)
Panel E: Dividend Yield.

M1 M2 M3 M4

µd,u × 100 3.651 (2.058)
µd,s × 100 / µd × 100 1.809 (0.389) 1.809 (0.389) 1.809 (0.389) 1.594 (0.522)
µd,3 × 100 3.238 (2.876)
ad 0.988 (0.005) 0.988 (0.005) 0.988 (0.005) 0.991 (0.004)
ρq,d −0.129 (0.046) −0.129 (0.046) −0.129 (0.046) −0.113 (0.049)
ρr,d −0.102 (0.047) −0.102 (0.047) −0.102 (0.047) −0.056 (0.047)
σd × 100 4.436 (0.150) 4.436 (0.150) 4.436 (0.150) 6.323 (1.907)
αd 0.146 (0.037)
βd 0.811 (0.058)
γd −0.143 (0.193)
Panel F: Stock Index Returns.

M1 M2 M3 M4

µy,u × 100 0.486 (0.359) 0.104 (0.337)
µy,s × 100 / µy × 100 0.511 (0.200) 0.511 (0.200) 0.637 (0.264) 0.674 (0.217)
µy,d × 100 −0.150 (0.517) 0.157 (0.473)
σy,u × 100 3.446 (0.257)
σy,s × 100 / σy × 100 4.234 (0.143) 4.234 (0.143) 4.440 (0.191) 4.773 (0.623)
σy,d × 100 4.516 (0.380)
αy 0.223 (0.079)
βy 0.176 (0.112)
γy 1.197 (0.358)

tions. Journal of Computational and Graphical Statistics 7(4), 434–455.
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Figure SM.8: Example of Simulated Series for the New Economic Scenario Generator.
This figure shows one scenario generated from our new ESG.
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Table SM.2: Out-of-Sample Forecast Root-Mean-Square Errors and Coverage Errors Over Differ-
ent Horizons for Ensemble Model.

Panel A: Out-of-Sample Forecast Root-Mean-Square Errors.

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

Inflation 0.257 0.612 0.936 1.426 2.350 3.252 4.256 5.294 2.298
Short Rate 0.202 0.405 0.691 1.233 2.014 2.444 2.599 2.566 1.519
Dividend Yield 0.092 0.171 0.265 0.365 0.448 0.446 0.455 0.480 0.340
Stock Index Returns 4.298 7.737 11.763 17.916 28.648 36.270 42.635 48.316 24.698
1-Year Risk-Free Interest Rate 0.354 0.545 0.803 1.278 2.011 2.448 2.629 2.636 1.588
2-Year Risk-Free Interest Rate 0.435 0.608 0.827 1.224 1.874 2.281 2.461 2.513 1.528
3-Year Risk-Free Interest Rate 0.497 0.640 0.820 1.148 1.721 2.090 2.274 2.360 1.444
5-Year Risk-Free Interest Rate 0.714 0.763 0.858 1.041 1.448 1.722 1.896 2.025 1.308
7-Year Risk-Free Interest Rate 0.929 0.934 0.972 1.055 1.302 1.483 1.632 1.781 1.261
10-Year Risk-Free Interest Rate 1.156 1.126 1.121 1.129 1.241 1.315 1.418 1.548 1.257
30-Year Risk-Free Interest Rate 1.734 1.639 1.555 1.453 1.347 1.220 1.177 1.233 1.420
Panel B: Out-of-Sample Coverage Errors.

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

Inflation 0.016 0.020 0.014 0.069 0.160 0.247 0.335∗ 0.428∗ 0.161
Short Rate 0.106 0.075 0.029 0.013 0.132 0.152 0.109 0.001 0.077
Dividend Yield 0.013 0.002 0.001 0.005 0.046 0.013 0.057 0.059 0.024
Stock Index Returns 0.031 0.009 0.012 0.032 0.069 0.098 0.078 0.074 0.051
1-Year Risk-Free Interest Rate 0.035 0.042 0.015 0.013 0.124 0.102 0.100 0.019 0.056
2-Year Risk-Free Interest Rate 0.035 0.024 0.026 0.009 0.085 0.086 0.083 0.024 0.046
3-Year Risk-Free Interest Rate 0.024 0.005 0.034 0.010 0.054 0.078 0.048 0.008 0.033
5-Year Risk-Free Interest Rate 0.028 0.035 0.056 0.051 0.029 0.009 0.065 0.036 0.039
7-Year Risk-Free Interest Rate 0.021 0.031 0.060 0.070∗ 0.057 0.075 0.100 0.082∗ 0.062
10-Year Risk-Free Interest Rate 0.013 0.038 0.071∗ 0.089∗ 0.080 0.100 0.100 0.100 0.074
30-Year Risk-Free Interest Rate 0.039 0.064∗ 0.089∗ 0.089∗ 0.100 0.100 0.100 0.100 0.085

This table reports ensemble model out-of-sample forecast RMSEs (Panel A) and coverage errors (Panel B) for all series and
horizons considered in Tables 5 and 6. We use simple unweighted averages in lieu of sophisticated combination methods
to create better forecasts and models. An asterisk indicates a coverage error that is statistically different from zero at a
significance level of 5%. The significance is assessed with robust Newey-West t-statistics as given in Equation (38) of Engle
et al. (2017). The RMSEs are multiplied by 100.

223–242.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.

Biometrika 57(1), 97–109.
Huber, P. (1997). A review of Wilkie’s stochastic asset model. British Actuarial Journal 3(1), 181–210.
Roberts, G. O. and J. S. Rosenthal (2009). Examples of adaptive MCMC. Journal of Computational and

Graphical Statistics 18(2), 349–367.
Wilkie, A. D. (1986). A stochastic investment model for actuarial use. Transactions of the Faculty of

Actuaries 39, 341–403.
Wilkie, A. D. (1995). More on a stochastic asset model for actuarial use. British Actuarial Journal 1(5),

777–964.

SM-15


