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1 Introduction

The modeling of asset returns has evolved significantly since the groundbreaking contribution of

Louis Bachelier. There is now a plethora of processes to model a time series of returns, including

GARCH, regime-switching and stochastic volatility models. Many extensions to jointly model

series of returns have also been entertained. Yet, the emphasis in the literature has been on

modeling equity returns, either on a specific stock or on a market index, and returns on fixed

income funds have received considerably less attention. Fixed income funds pool investments that

pay a stream of interest payments, such as treasury bills, government bonds, investment-grade

corporate bonds and high-yield corporate bonds. Since these securities have fixed times to

maturity, new investments must be periodically purchased to keep the fund active. Moreover,

bond fund managers often do not hold the underlying securities until maturity, and make trades

to target a specified duration or to position themselves with respect to a subjective view of the

future interest rate environment. Consequently, fixed income fund returns behave very differently

from equity returns, and are in particular strongly related to variations in the term structure of

interest rates.

The main contribution of this paper is the proposal of a mixed bond and equity fund model that

links the return on the fixed income component of the fund to movements of the yield curve.

Importantly, we motivate this link theoretically through an analogy with a portfolio of rolling

horizon bonds (see Andersson and Lager̊as, 2013; Ekeland and Taflin, 2005; Rutkowski, 1999, for

an overview). Our fund return model can be thought of as a multifactor asset pricing model in the

spirit of arbitrage pricing theory (see Chen et al., 1986; Elton et al., 1995; Ross, 1976). In short,

we express the fund return as a linear function of term structure factor variations and returns on

equity market indices, plus a heteroskedastic error term. Although we choose to represent term

structure dynamics with the discrete-time multifactor Vasicek process, our model specification is

valid in greater generality for any yield curve model in the affine class. Moreover, we coherently

define our process under real-world and risk-neutral measures, which enables the use of our model

for both risk assessment and asset pricing.
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It must be stressed that we do not take the approach of directly modeling the fund return with

a univariate stochastic model, but rather we model its underlying risk drivers (i.e., yield curve

and stock market factors) and relate them to the fund return. A valuable advantage of this

specification is that it naturally incorporates basis risk between the fund return and its risk

drivers. We remark that for a pure equity fund, our model simplifies to a fund mapping model

and is thus consistent with the way equity fund returns are commonly analyzed in the financial

industry (Sharpe, 1992).

Our motivation is twofold. First, bond fund returns are usually modeled in the same way as

equity returns in the econometric literature (e.g., Guidolin and Timmermann, 2006; Nystrup

et al., 2017), and there is therefore a need for more specialized models that reflect the intrinsic

relationship between fixed income fund returns and term structure dynamics. In other words,

treating a bond fund return as a risky asset return that is correlated with other risky asset returns

misses a key feature of this asset class. Our second motivation is more specific to our research

interests in actuarial science, and relates to the relevance of our contribution to the literature

on variable annuities (VAs). VAs are retirement planning products sold by insurance companies

that combine an investment into mutual funds with a life insurance policy and capital guarantees.

These products are also known as segregated funds in Canada and unit-linked contracts in the

United Kingdom. The VA literature has so far focused on modeling guarantees on single-asset

equity funds with stochastic volatility, stochastic interest rates or both (e.g., Augustyniak and

Boudreault, 2012, 2017; Donnelly et al., 2014; Hardy, 2003; Kling et al., 2011). However, VAs

are typically written on so-called balanced mutual funds with exposure to both fixed income

and equity asset classes, and some guarantees are even issued on pure bond funds. Although

multi-asset funds are also occasionally considered (e.g., Boudreault and Panneton, 2009; Gan

and Valdez, 2017; Ng and Li, 2013), the underlying modeling frameworks used do not distinguish

between bond and equity fund returns; a shortcoming that results from the lack of specialized

bond fund models (i.e., our first motivation).

Hence, in this paper we emphasize an application of our model to the valuation of VAs with

the hope that our process will be used as a benchmark in future studies, and improved upon.
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In the first part of our application, we assess the fit of our model to three Canadian funds.

Two of these funds are actual underlying assets of VA policies, and one is a bond market index

exchange-traded fund (ETF). Fit diagnostics do not find evidence for the presence of significant

residual autocorrelations and heteroskedasticity, and confirm the suitability of our model for the

data considered. In the second part, we compare the valuation of long-term capital guarantees

issued on a bond fund and on a mixed fund. We include realistic features of VAs associated

to the periodic fee, mortality rates, dynamic lapses, surrender penalties, and ratchet provisions.

Furthermore, we examine the impact of the initial economic environment (i.e., interest rates and

volatilities) on valuation. We find that the initial interest rate setting can have a strong influence

on valuation, but that it is long-term, rather than current, volatility assumptions that matter in

this respect.

This paper is structured as follows. Section 2 introduces the real-world and risk-neutral dynamics

of our proposed fund model under a discrete-time multifactor Vasicek term structure. The

theoretical justification for modeling the return on the fixed income component of the fund as a

linear function of yield curve factor variations is presented in this section. Section 3 describes

the VA data used, details our estimation procedure, and analyzes the fit of our model. Section 4

illustrates the application of our model to the valuation of a VA. Section 5 concludes. An online

supplementary appendix provides proofs as well as complementary information and results.

2 Modeling framework

Consider an arbitrage-free and frictionless discrete-time market model with monthly time steps

denoted by t = 0, 1, . . . , T . The market dynamics are defined on a probability space (Ω,FT ,P)

endowed with a filtration F := {Ft}Tt=0, where P represents the real-world probability measure.

We assume that money can be invested and borrowed at the risk-free rate, and that the market

includes zero-coupon bonds of different maturities as well as a collection of stock indices.
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2.1 Interest rate term structure model

2.1.1 Real-world dynamics of the term structure factors

The dynamics of the interest rate term structure are modeled by a discrete-time version of the

multifactor Vasicek model (Wüthrich and Merz, 2013). Allowing for multiple factors is important

as Brigo and Mercurio (2007) explain that this is needed to reproduce the different shapes of the

yield curve observed in practice, and to account for the imperfect correlation between spot rates

at future dates.

The annualized continuously compounded risk-free rate applying to the monthly time period

[t, t+ 1) is denoted by rt and modeled as

rt =

p∑
i=1

x
(i)
t , (2.1)

x
(i)
t+1 = x

(i)
t + κi

(
µi − x(i)t

)
+ σiz

(i)
t+1, i = 1, . . . , p, (2.2)

where p is the number of term structure factors, x
(i)
0 ∈ R is a constant, z(i) := {z(i)t }Tt=1, i = 1, . . . , p,

are F -adapted standard Gaussian white noises with contemporaneous correlation p× p matrix Γ

under P, and (κi, µi, σi) are model parameters characterizing the P-dynamics of the factor process

x(i) := {x(i)t }Tt=0. The parameter µi corresponds to the long-term mean of factor x(i), κi represents

the rate at which factor x(i) reverts to its mean, and σi is a volatility parameter.

2.1.2 Risk-neutral dynamics of the term structure factors

The passage to the risk-neutral probability measure, denoted by Q, is achieved by way of a

discrete-time version of the Girsanov theorem. It follows from this theorem that for given interest

rate risk premium parameters λi ∈ R, i = 1, . . . , p, there exists a probability measure Q equivalent

to P such that the processes z̃(i) := {z̃(i)t }Tt=1, i = 1, . . . , p, defined by z̃
(i)
t+1 := z

(i)
t+1 − λix

(i)
t , are

F -adapted standard Gaussian white noises with contemporaneous correlation matrix Γ under Q.

Substituting z
(i)
t+1 = z̃

(i)
t+1 + λix

(i)
t in Eq. (2.2) yields the Q-dynamics of the factor processes:

x
(i)
t+1 = x

(i)
t + κ̃i

(
µ̃i − x(i)t

)
+ σiz̃

(i)
t+1, i = 1, . . . , p, (2.3)
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where

κ̃i := κi − σiλi, µ̃i :=
κiµi

κi − σiλi
.

Under this specific change of measure, the factor processes continue to have discrete-time Vasicek

dynamics, but with the modified parameters
(
κ̃i, µ̃i, σi

)
.

2.1.3 Zero-coupon bond price

Let Pt,T denote the price at time t of one dollar received with certainty at time T . The arbitrage-

free price of this zero-coupon bond under the risk-neutral measure Q satisfies

Pt,T = EQ

[
exp

(
−∆

T−t−1∑
j=0

rt+j

) ∣∣∣∣∣ Ft
]
,

where ∆ := 1/12. The pricing of zero-coupon bonds under the multifactor Vasicek model is

studied by Wüthrich and Merz (2013) under a different parametrization. Proposition 2.1 provides

the zero-coupon bond price formula in our setting.

Proposition 2.1. The arbitrage-free price of a zero-coupon bond in the discrete-time multifactor

Vasicek model under the risk-neutral measure Q defined in Section 2.1.2 is given by

Pt,T = exp

(
Aτ −∆

p∑
i=1

B(i)
τ x

(i)
t

)
,

where τ := T − t and

Aτ :=
∆2

2
1>p vτ1p −∆

p∑
i=1

m̃(i)
τ ,

B(i)
τ :=

1− (1− κ̃i)τ

κ̃i
, i = 1, . . . , p.

Here, 1p symbolizes the p-dimensional column vector of ones, m̃
(i)
τ := µ̃i

[
τ −B(i)

τ

]
, and vτ is a

p× p matrix with element on row i and column `, denoted by v
(i,`)
τ , equal to

v(i,`)τ =
σiσ`
κ̃iκ̃`

Γi,`

[
τ −B(i)

τ −B(`)
τ +

1− (1− κ̃i)τ (1− κ̃`)τ

1− (1− κ̃i)(1− κ̃`)

]
,
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where Γi,` corresponds to the element on row i and column ` of the factors’ contemporaneous

correlation matrix Γ.

Proof. The proof is available in the online appendix.

Remark 2.1. The interpretation of rt and x
(i)
t differs in the discrete and continuous-time settings.

In the continuous-time setting, rt and x
(i)
t denote values at exact time t, whereas in the discrete-

time setting they denote values in the time period [t, t+ 1) that are assumed to remain constant

across the entire interval. Consequently, the continuous-time and discrete-time multifactor Vasicek

models are not equivalent. In particular, they give rise to different zero-coupon bond price formulas.

2.2 Mixed bond and equity fund model

The main contribution of this paper is the proposal of a model for the dynamics of a fund that

comprises both equity and fixed income assets. We let {Ft}Tt=0 represent the value process of this

fund, and define the corresponding log-return from t to t+ 1 by

R
(F )
t+1 := log

(
Ft+1

Ft

)
, t = 0, 1, . . . , T − 1.

The return on the equity component of the fund is generally strongly related to the returns of

broad stock market indices, such as the S&P 500. Consequently, we assume that we observe the

dynamics of q stock indices, where {S(j)
t }Tt=0 represents the value process of equity index j for

j = 1, . . . , q. The corresponding log-return from t to t+ 1 is defined by

R
(S)
t+1,j := log

(
S
(j)
t+1

S
(j)
t

)
, t = 0, 1, . . . , T − 1.

2.2.1 Fund model specification

Our proposed mixed bond and equity fund model corresponds to a regression model that expresses

the fund return in excess of the risk-free rate as a linear function of term structure variations and
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returns on equity index portfolios as follows:

R
(F )
t+1 − rt∆ = θ0 +

p∑
i=1

θi

(
x
(i)
t+1 − (1− κ̃i)x(i)t

)
+

q∑
j=1

θ
(S)
j R

(S)
t+1,j +

√
h
(F )
t z

(F )
t+1, (2.4)

where (θ0, θ1, . . . , θp) and (θ
(S)
1 , . . . , θ

(S)
q ) are regression coefficient parameters, {h(F )

t }T−1t=0 is an

F -adapted conditional variance process (to be defined below), and z(F ) := {z(F )
t }Tt=1 is a standard

Gaussian white noise under P, independent of z(i), i = 1, . . . , p, and of R
(S)
j := {R(S)

t,j }Tt=1,

j = 1, . . . , q. The independence between z(F ) and z(i), and between z(F ) and R
(S)
j , is justified

by the assumption that all dependence between the fund returns and term structure shocks or

equity index returns is captured by the covariates in the regression relationship. The error term√
h
(F )
t z

(F )
t+1 can thus be interpreted as a basis risk component that reflects the idiosyncratic risks

not captured by these covariates.

Our model expands on the large literature on fund style analysis pioneered by Sharpe (1988,

1992). Fund style analysis is a statistical technique that maps mutual fund returns onto a set of

market index returns to determine the portfolio manager’s investment style. Note that if θi = 0

for i = 1, . . . , p in Eq. (2.4), the fund’s return would be modeled as a linear function of returns

on reference portfolios, which is consistent with fund style analysis. VA providers typically use

such fund mapping techniques (see for example, Gan and Valdez, 2017; Trottier et al., 2018b),

so our specification is compatible with an industry benchmark. The addition of term structure

factor variations in the model is our original contribution and allows us to link the return of the

fixed income component of the fund to movements in the term structure. The linear form of this

link is motivated theoretically in Section 2.2.2. Even though the equity index return variables

R
(S)
t+1,j, j = 1, . . . , q, are primarily included to explain the return on the equity component of the

fund, these variables can still prove useful when modeling a pure bond fund that includes some

corporate debt. This is due to the empirical observation that credit spreads and equity returns

are correlated.

To complete our model specification, we propose to use the following EGARCH dynamics (Nelson,
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1991) to represent the conditional variance process {h(F )
t }T−1t=0 in Eq. (2.4):

log h
(F )
t = ω(F ) + α(F )z

(F )
t + γ(F )

(
|z(F )
t | − 2/

√
2π
)

+ β(F ) log h
(F )
t−1, (2.5)

where (ω(F ), α(F ), γ(F ), β(F )) are parameters. In the applications presented in Section 3, we found

that a heteroskedastic error term in Eq. (2.4) significantly improved the model fit. Although

other processes generating heteroskedastic dynamics could have been entertained, we chose the

EGARCH model as it combines the strengths of GARCH and autoregressive stochastic volatility

models (see Carnero et al., 2004). For instance, Asai and McAleer (2011) explain that the

EGARCH model can flexibly accommodate the leverage effect, as well as an asymmetric response

of volatility to positive and negative shocks. Moreover, no parameter restrictions are required

to guarantee the positivity of the conditional variance in the EGARCH model. Nelson (1991)

argued that the constraints that one one needs to impose in (non-exponential) GARCH processes

unduly restrict volatility dynamics. Finally, the EGARCH model can generally better match

the sample autocorrelation function of squared errors in empirical applications, which leads to a

better representation of volatility persistence (Rodŕıguez and Ruiz, 2012).

2.2.2 Theoretical motivation

This section motivates the linear relationship between the fund return and term structure factor

variations considered in our model. We show that this relationship naturally arises in the context

of a simplified bond fund process and can thus be used as a basis to model the fund’s fixed income

component.

A simplified way to think about a bond fund is to consider a trading strategy where bonds are

repeatedly sold and bought so that time to maturities of the bonds in the portfolio are fixed. Such

a strategy was first studied theoretically by Rutkowski (1999) and then by Ekeland and Taflin

(2005). They referred to it as “rolling horizon bonds” or “roll-overs,” because the maturities

of the bonds are rolled-over from one period to the next. We note that similar strategies were

considered by Stefanovits and Wüthrich (2014) as part of a methodology to value and hedge

non-tradable long-term zero-coupon bonds with tradable ones under a given risk tolerance.
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Consider a bond fund with initial value V
(τ)
0 = 1 that aims to hold a risk-free zero-coupon bond

with a fixed time to maturity τ . At t = 0, 1/P0,τ units of the zero-coupon bond with price P0,τ

are purchased. Then, at t = 1, this zero-coupon is sold and the proceeds, V
(τ)
1 = P1,τ/P0,τ , are

reinvested in a zero-coupon bond with a time to maturity equal to τ and price P1,τ+1. This process

is repeated at every time step and the value of this self-financing strategy at time t corresponds to

V
(τ)
t = V

(τ)
t−1

Pt,t+τ−1
Pt−1,t−1+τ

=
t∏

n=1

Pn,n+τ−1
Pn−1,n−1+τ

, t = 1, . . . , T.

The associated log-return process, denoted by {R(τ)
t }Tt=1, under our discrete-time multifactor

Vasicek model is given by

R
(τ)
t+1 := log

(
V

(τ)
t+1

V
(τ)
t

)

= log

(
Pt+1,t+τ

Pt,t+τ

)
= logPt+1,t+τ − logPt,t+τ

= Aτ−1 −∆

p∑
i=1

B
(i)
τ−1x

(i)
t+1 −

(
Aτ −∆

p∑
i=1

B(i)
τ x

(i)
t

)

= Aτ−1 − Aτ −∆

p∑
i=1

(
B

(i)
τ−1x

(i)
t+1 −B(i)

τ x
(i)
t

)
.

It then follows that the log-return in excess of the risk-free rate is equal to1

R
(τ)
t+1 − rt∆ = Aτ−1 − Aτ −∆

p∑
i=1

(
B

(i)
τ−1x

(i)
t+1 −B(i)

τ x
(i)
t

)
−∆

p∑
i=1

x
(i)
t

= Aτ−1 − Aτ −∆

p∑
i=1

(
B

(i)
τ−1x

(i)
t+1 −

(
B(i)
τ − 1

)
x
(i)
t

)
= Aτ−1 − Aτ −∆

p∑
i=1

B
(i)
τ−1

(
x
(i)
t+1 −

(
B

(i)
τ − 1

B
(i)
τ−1

)
x
(i)
t

)
1Note that:

B
(i)
τ − 1

B
(i)
τ−1

=

1−(1−κ̃i)τ
κ̃i

− 1

1−(1−κ̃i)τ−1

κ̃i

=
1− κ̃i − (1− κ̃i)τ

1− (1− κ̃i)τ−1
= 1− κ̃i.
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= Aτ−1 − Aτ −∆

p∑
i=1

B
(i)
τ−1

(
x
(i)
t+1 − (1− κ̃i)x(i)t

)
.

Now consider a portfolio of rolling horizon bonds that aims to hold M zero-coupon bonds with

fixed time to maturities τ1, . . . , τM at each time t in the value-weighted proportions w1, . . . , wM ,

where
∑M

j=1wj = 1. The log-return on this fund between t and t+ 1, denoted by R
(B)
t+1, in excess

of the risk-free rate is approximately equal to

R
(B)
t+1 − rt∆ ≈ w1R

(τ1)
t+1 + · · ·+ wMR

(τM )
t+1 − rt∆

= w1

(
R

(τ1)
t+1 − rt∆

)
+ · · ·+ wM

(
R

(τM )
t+1 − rt∆

)
=

M∑
j=1

wj

(
Aτj−1 − Aτj −∆

p∑
i=1

B
(i)
τj−1

(
x
(i)
t+1 − (1− κ̃i)x(i)t

))

=
M∑
j=1

wj
(
Aτj−1 − Aτj

)
−

p∑
i=1

(
∆

M∑
j=1

wjB
(i)
τj−1

)(
x
(i)
t+1 − (1− κ̃i)x(i)t

)
.

Clearly, this log-return specification is a special case of our fund model defined in Eq. (2.4). To

recover it, simply set θ
(S)
j = 0 for j = 1, . . . , q, h

(F )
t = 0 for t = 0, 1, . . . , T − 1, and

θ0 =
M∑
j=1

wj
(
Aτj−1 − Aτj

)
,

θi = −∆
M∑
j=1

wjB
(i)
τj−1, i = 1, . . . , p.

Of course, in practice portfolio managers do not exactly manage a bond fund by rolling over

bond maturities at every time step. However, they typically structure their portfolios to target a

specified duration or choose to hold bonds with roughly constant maturities. The portfolio of

rolling horizon bonds can therefore be considered as an approximation to bond fund dynamics.

Consequently, this analysis offers support for modeling the fund’s fixed income component based

on a linear relationship with variations in the term structure factors.

Remark 2.2. Our analysis entails that the excess return on the portfolio of rolling horizon bonds

is linearly related to term structure factor variations whenever logPt,T is itself a linear function
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of yield curve factors. Therefore, this relationship is not limited to the multifactor Vasicek process

considered here but holds more generally in the affine model class.

2.2.3 Equity index model

To complete our mixed bond and equity fund model, a model for the equity index return variables

R
(S)
t+1,j, j = 1, . . . , q, must be specified. We choose to model log-returns on equity index j with

EGARCH dynamics as follows:

R
(S)
t+1,j − rt∆ = λ

(S)
j

√
h
(S)
t,j −

1

2
h
(S)
t,j +

√
h
(S)
t,j z

(S)
t+1,j, (2.6)

log h
(S)
t,j = ω

(S)
j + α

(S)
j z

(S)
t,j + γ

(S)
j

(
|z(S)t,j | − 2/

√
2π
)

+ β
(S)
j log h

(S)
t−1,j, (2.7)

where (ω
(S)
j , α

(S)
j , γ

(S)
j , β

(S)
j ) are parameters of the F -adapted EGARCH volatility process {h(S)t,j }T−1t=0 ,

λ
(S)
j is an equity risk premium parameter, and z

(S)
j := {z(S)t,j }Tt=1 is a standard Gaussian white

noise under P, independent of z(F ) and z(i), i = 1, . . . , p.2 Since equity indices in different regions

of the world are generally strongly correlated, we assume that for each t, (z
(S)
t,1 , . . . , z

(S)
t,q ) is a

centered normal random vector with Corr(z
(S)
t,j , z

(S)
t,k ) = ρjk ∈ (−1, 1) for j, k = 1, . . . , q and j 6= k.

2.3 Risk-neutral dynamics of the mixed bond and equity fund model

The physical dynamics of our mixed fund model are required for a statistical estimation of model

parameters, and to generate the actual distribution of fund returns in a risk assessment analysis.

However, for the purpose of pricing derivatives or guarantees on the mixed fund, the risk-neutral

dynamics must also be derived.

The risk-neutral dynamics of our model are obtained by risk-neutralizing the three underlying risk

drivers: z(i), i = 1, . . . , p (interest rate risk), z
(S)
j , i = 1, . . . , q (equity risk), and z(F ) (basis risk).

The interest rate risk drivers were already risk-neutralized in Section 2.1.2. Risk-neutralization of

2The independence between equity and interest rate innovations z
(S)
j and z(i) is assumed due to the difficulty

of modeling such dependence with the way interest rates have evolved in the past decades. For instance, interest
rates have been steadily declining since the 1990s in most developed countries. Therefore, disentangling the impact
of equity market fluctuations from other causes in the decline of interest rates through econometric methods is a
challenging endeavor. Moreover, with respect to the specific data sets that we consider in Section 3, the correlation
between the S&P/TSX Composite (resp. S&P 500) equity index monthly returns and the monthly changes in the
3-month Canadian interest rate over our data sample is −0.1% (resp. 4.0%). Hence, the independence assumption
is empirically supported in our application.
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the equity index model is accomplished by invoking Duan (1995)’s local risk-neutral valuation

relationship for the EGARCH model (Duan et al., 2006). Under this valuation principle, the

shifted innovation process z̃
(S)
j := {z̃(S)t,j }Tt=1, defined by z̃

(S)
t,j := z

(S)
t,j + λ

(S)
j , is a standard Gaussian

white noise under our risk-neutral measure Q for each j = 1, . . . , q. Accordingly, the Q-dynamics

of the log-returns on equity index j are given by

R
(S)
t+1,j − rt∆ = −1

2
h
(S)
t,j +

√
h
(S)
t,j z̃

(S)
t+1,j,

log h
(S)
t,j = ω

(S)
j + α

(S)
j (z̃

(S)
t,j − λ

(S)
j ) + γ

(S)
j

(
|z̃(S)t,j − λ

(S)
j | − 2/

√
2π
)

+ β
(S)
j log h

(S)
t−1,j.

To complete the risk-neutralization process, first note that Eq. (2.4) can be written as,

R
(F )
t+1 − rt∆ = φt +

p∑
i=1

θiσiz̃
(i)
t+1 +

q∑
j=1

θ
(S)
j

√
h
(S)
t,j z̃

(S)
t+1,j +

√
h
(F )
t z

(F )
t+1,

where

φt := θ0 +

p∑
i=1

θiκ̃iµ̃i +

q∑
j=1

θ
(S)
j

(
rt∆−

1

2
h
(S)
t,j

)
.

To risk-neutralize the remaining risk driver z(F ), we make three assumptions that follow from

an extended Girsanov principle: (i) the fund grows at the risk-free rate under the risk-neutral

measure Q, (ii) the conditional variance of the basis risk component remains unchanged when

moving from P to Q, and (iii) the conditional distribution of the fund return is still Gaussian

under Q. These assumptions imply that the risk-neutral innovation process z̃(F ) := {z̃(F )
t }Tt=1 of

the fund model is obtained by shifting the real-world innovation process z(F ), that is, under Q we

have that z̃
(F )
t+1 := z

(F )
t+1 + λ

(F )
t is a standard Gaussian white noise, independent of z̃(i), i = 1, . . . , p

and z̃
(S)
j , j = 1, . . . , q, where

λ
(F )
t :=

1√
h
(F )
t

[
φt +

1

2

(
σ
(F )
t

)2]
, (2.8)

(
σ
(F )
t

)2
:=

p∑
i=1

p∑
`=1

θiθ`σiσ`Γi,` +

q∑
j=1

(
θ
(S)
j

)2
h
(S)
t,j + 2

q−1∑
j=1

q∑
k=j+1

θ
(S)
j θ

(S)
k ρjk

√
h
(S)
t,j h

(S)
t,k + h

(F )
t .
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Consequently, the Q-dynamics of the log-returns on the fund can be expressed as,

R
(F )
t+1 − rt∆ = −1

2

(
σ
(F )
t

)2
+ σ

(F )
t ε̃

(F )
t+1,

where ε̃
(F )
t+1, defined by

ε̃
(F )
t+1 :=

∑p
i=1 θiσiz̃

(i)
t+1 +

∑q
j=1 θ

(S)
j

√
h
(S)
t,j z̃

(S)
t+1,j +

√
h
(F )
t z̃

(F )
t+1

σ
(F )
t

,

is a standard Gaussian innovation under Q conditionally on Ft. Finally, we note that the

Q-dynamics of the EGARCH fund volatility process {h(F )
t }T−1t=0 are given by

log h
(F )
t = ω(F ) + α(F )(z̃

(F )
t − λ(F )

t−1) + γ(F )
(
|z̃(F )
t − λ(F )

t−1| − 2/
√

2π
)

+ β(F ) log h
(F )
t−1.

3 Model estimation and analysis

We created a freely available R script to estimate our mixed bond and equity fund model

introduced in Section 2.3 Parts of our code make use of functions available in the R packages

DEoptim (Ardia et al., 2016), FKF (Luethi et al., 2018), Rsolnp (Ghalanos and Theussl, 2015)

and rugarch (Ghalanos, 2018).

3.1 Fund data

We analyze our model on monthly return data from the following three Canadian funds.

1. The iShares Core Canadian Universe Bond Index ETF. This is a Canadian fixed income

ETF comprised of approximately 70% government and 30% corporate securities.4 We

consider monthly return data on this fund from December 2000 to October 2018 for a total

of 215 returns (source: Yahoo! Finance).

2. The RBC Bond GIF Series 1 fund. This is a bond fund sold by RBC Insurance comprised

3The code is available on the website https://dms.umontreal.ca/~augusty/. The data sets used for estima-
tion are also available on this website.

4According to https://www.blackrock.com/, the effective duration of the index on January 16, 2020 was 8.06
years.

13

https://dms.umontreal.ca/~augusty/
https://www.blackrock.com/


of approximately 55% government and 45% corporate securities. We consider monthly

return data on this fund from October 2006 to October 2018 for a total of 145 returns

(source: https://lipper.rbcinsurance.com/rbc/).

3. The Assumption/CI Harbour Growth & Income Fund Series A fund. This is a mixed

bond and equity fund sold by Assumption Life comprised of approximately 35% Canadian

equity, 25% U.S. and international equity, and 40% fixed income (65% government and 35%

corporate securities). We consider monthly return data on this fund from February 2002

to October 2018 for a total of 201 returns (source: https://assumption.lipperweb.com/

assumplife/).

The reason why we consider two fixed income funds along with a mixed fund in this analysis is

that the bond funds allow us to test the adequacy of the linear relationship between the fund

return and term structure factor variations in a more isolated setting than if a significant equity

component was present. Testing this relationship is important as the main novelty of our model

is to improve the modeling of the fund’s fixed income component. Although the iShares bond

ETF is not sold as a VA policy, it acts as a proxy for the return on a passive investment strategy

in the Canadian fixed income market. As such, it is well suited to assess the validity of our model

specification, and the associated data set also has the advantage of being available for a longer

period of time (since December 2000) than VA funds data.

3.2 Estimation procedure and results

Our proposed estimation procedure is based on the maximum likelihood method and is divided

in two steps. In the first step, the interest rate model is calibrated to yield curve data. Since the

factors x
(i)
t , i = 1, . . . , p, in the multifactor Vasicek model are latent, we infer their values from

the observed data with filtering techniques. Note that this also allows us to infer the risk-free rate

as it is not directly observed (recall that rt =
∑p

i=1 x
(i)
t ). In the second step, we take the inferred

factor values as given and estimate the equity index model and our mixed bond and equity fund

model. This two-step approach simplifies the estimation process because on one hand, it allows us

to take advantage of the Kalman filter to estimate our interest rate model, and on the other hand,
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a joint estimation of all model parameters is avoided. Separating the calibration of the interest

rate model also leads to other practical advantages. For instance, it allows the use of a common

interest rate model to estimate different VAs. In contrast, if a joint estimation was carried out,

the parameters of the interest rate model would be influenced by the specific VA fund data used.

3.2.1 Estimation of the discrete-time multifactor Vasicek model

We estimate the discrete-time multifactor Vasicek model to Canadian end-of-month yield curve

data from January 1986 to October 2018 (source: https://www.bankofcanada.ca/rates/

interest-rates/bond-yield-curves/). Refer to Bolder et al. (2004) for the methodology

used by the Bank of Canada to construct this yield curve data set. We consider p = 3 factors

as empirical studies often suggest that the dynamics of the term structure of interest rates are

well represented by three factors (see Diebold and Rudebusch, 2013, and references therein).

Our calibration procedure takes advantage of the Kalman filter (see e.g., Shumway and Stoffer,

2017, Section 6) and assumes that we observe at each time t a set of M annualized continuously-

compounded spot rates with times to maturity n1, . . . , nM , denoted by

ŷ(t) := (ŷ(t, t+ n1), . . . , ŷ(t, t+ nM))> ∈ RM .

We include all integer times to maturities from 1 to 30 years available in the Canadian yield curve

data set, as well as short-end maturities of 3, 6 and 9 months. Therefore, we observe a yield

curve with M = 33 rates on each month from January 1986 to October 2018 (394 months). Refer

to the online appendix for a description of the estimation procedure based on the Kalman filter.

Table 1 reports our estimation results, whereas Figure 1 illustrates the factor states and short

rate inferred by the model for our data sample. We observe that the first factor trends downward

in our data sample and mimics the direction of interest rates since the 1980s. This factor is much

more persistent than the two others with a speed of mean reversion parameter κ1 = 0.00594,

which implies a half-life of almost 10 years.5 Although a lengthy downward trend of interest

5From Eq. (2.2), each factor x(i) follows an independent first-order autoregressive process, and we have that

x
(i)
t+1 − µi = (1− κi)(x(i)t − µi) + σiz

(i)
t+1. Consequently, a value of (1− κi) closer to one leads to a more persistent

autoregressive process. The half-life is a quantity used to measure the speed of mean reversion of a process and
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Table 1: Maximum likelihood estimates of the discrete-time multifactor Vasicek model (p = 3)

i κi µi σi λi

1 0.00594 0.01176 0.00524 0.918

2 0.04228 −0.00043 0.00482 −5.473

3 0.02049 0.04627 0.00788 1.134

Γ =

 1 0.135 −0.787

0.135 1 −0.539

−0.787 −0.539 1


Notes: The discrete-time multifactor Vasicek model is presented in Section 2.1. Model estimation was performed

using Canadian end-of-month yield curve data from January 1986 to October 2018.

Figure 1: Model-implied factors and short rate

1990 1995 2000 2005 2010 2015

−0.05

0.00

0.05

0.10

Factor 1 Factor 2 Factor 3 Short rate

Notes: Model-implied factors correspond to the smoothed state inferences EP
[
x
(i)
t

∣∣∣ ŷ(1), ŷ(2), . . . , ŷ(T )
]
, for

i = 1, 2, 3, whereas the inferred short rate is simply the sum of these estimates.

rates is unlikely to repeat itself in the near future due to rates currently being at very low levels,

the high persistence of the first factor is deemed a favorable feature of our model. Indeed, it

enables the model to generate interest rates which depart from their long-term averages for

extended periods of times. This can lead to a wide variety of interest rate scenarios in Monte

Carlo simulations, which is positive for risk management.

Regarding the overall fit of our model to the observed yield curve data, a metric that can be

considered is the variance of the error term between observed and model-implied spot rates. This

variance was estimated at 3.90× 10−6, which corresponds to a standard deviation of 0.2%.6 This

corresponds to the expected number of periods that the factor needs to halve its distance from its long-term mean
and is given by log(0.5)/ log |1− κi| here.

6The variance of the error term is symbolized by the parameter h in our estimation procedure described in the
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low error rate suggests that in general model-implied yields are close to the observed ones. The

online appendix presents additional figures comparing model-implied and observed sport rates,

which show that our estimated model is flexible enough to match the evolution of observed yields

in the data sample and to reproduce different observed term structure shapes reasonably well.

3.2.2 Estimation of the equity index model

We incorporate two country-specific equity indices in our mixed equity and bond fund model

(q = 2). They are the Canadian S&P/TSX Composite and the U.S. S&P 500 price indices. We

estimate the equity index model presented in Section 2.2.3 on monthly return data from February

1986 to October 2018 for a total of 393 returns by index (source: Federal Reserve Economic

Database and Yahoo! Finance). We note that the risk-free rate rt used as an input in this

model is inferred from our interest rate model and approximated by its smoothed inferred value,∑p
i=1 EP

[
x
(i)
t

∣∣∣ y(1),y(2), . . . ,y(T )
]

(these expectations are computed by way of the Kalman

smoother algorithm presented in the online appendix). Since the equity index model corresponds

to a bivariate EGARCH model with a constant correlation parameter, joint maximum likelihood

estimation of this model is relatively straightforward. Refer to our R code for more details.

Table 2: Maximum likelihood estimates of the equity index model (q = 2)

Stock index j λ
(S)
j ω

(S)
j α

(S)
j γ

(S)
j β

(S)
j ρ12

S&P/TSX 1 0.08477 −1.0132 −0.01083 0.29438 0.84031

0.76384
(0.02079)

(0.03972) (0.5561) (0.06172) (0.07536) (0.08539)

S&P500 2 0.12810 −1.5390 −0.16422 0.28580 0.75939
(0.04327) (0.5620) (0.07693) (0.07389) (0.08689)

Notes: The equity index model is presented in Section 2.2.3 and corresponds to a bivariate EGARCH model.

Model estimation was performed using monthly return data from February 1986 to October 2018 for the S&P/TSX

Composite and S&P 500 price indices (393 returns by index). Standard errors of the estimators are displayed in

parentheses below the estimates.

Table 2 reports our estimation results. As expected, the two equity indices are highly correlated

with ρ12 estimated at 0.76384. Moreover, since the values of parameters β
(S)
j are close to one,

online appendix. The relationship between observed and model-implied rates is given in Eq. (B.2) of this appendix.
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significant volatility clustering effects are present. Negative values of α
(S)
j imply the existence of

a leverage effect, notably for the S&P 500 index, where negative returns generate larger shocks

on volatility than positive ones. Finally, the positive values of λ
(S)
j indicate the presence of an

equity risk premium.

3.2.3 Estimation of the fund model

The estimation of our fund model introduced in Section 2.2.1 takes as inputs the smoothed factor

states EP
[
x
(i)
t

∣∣∣ y(1),y(2), . . . ,y(T )
]
, i = 1, . . . , p, inferred from our interest rate model. These

are used to approximate the latent factors x
(i)
t and the risk-free rate rt in Eq. (2.4). Consequently,

with our two-step estimation procedure, our fund model can be interpreted as a linear regression

model with heteroskedastic EGARCH errors. As this type of specification is covered in the

rugarch package, our code for maximum likelihood estimation takes advantage of the functions

in this package. We note that the maximization of the log-likelihood is carried out in a single

step with respect to both conditional mean and variance parameters. Refer to our R code for

more details.

Table 3 reports our estimation results, and the online appendix provides fit diagnostics outputs

for all three estimated models. These diagnostics indicate that our fund model fits the data very

well. For instance, Ljung-Box tests on residuals and squared residuals do not detect the presence

of significant residual autocorrelations or heteroskedasticity. ARCH Lagrange multiplier tests also

do not find evidence of residual heteroskedasticity. Moreover, an adjusted Pearson goodness-of-fit

test suggests that the assumed standard Gaussian distribution for the errors is not inappropriate.

Finally, the interest rate factor variation coefficients θ1, θ2 and θ3 are highly significant in all

three estimated fund models, which indicates that the fund model return is affected by all three

factors. Note that these coefficients are all highly negative for the iShares bond ETF and the

RBC bond fund. This was to be expected as interest rate factor variations are fundamental

risk drivers of bond fund returns. Moreover, the negative values of the θj parameters reflect the

inverse relationship between interest rate variations and bond prices. These results thus offer

support for the suitability of our model specification to represent fund returns with a fixed income
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Table 3: Maximum likelihood estimates of the fund model

iShares bond ETF RBC bond fund Assumption mixed fund

θ0 0.00340 0.00258 0.00020
(0.00024) (0.00020) (0.00002)

θ1 −6.62026 −6.80690 0.39095
(0.25358) (0.30873) (0.02236)

θ2 −1.31380 −1.50116 −0.32789
(0.19534) (0.25166) (0.00641)

θ3 −3.82370 −3.86662 −0.99664
(0.18664) (0.18263) (0.01305)

θ
(S)
1 0.02801 0.06202 0.49773

(0.01184) (0.01889) (0.00051)

θ
(S)
2 0.03378 0.04657 0.05913

(0.03289) (0.00758) (0.00007)

ω(F ) −0.40446 −0.29261 −0.51325
(0.15432) (0.02199) (0.00019)

α(F ) −0.09064 −0.25294 −0.06924
(0.08216) (0.06051) (0.00170)

γ(F ) 0.20352 0.19228 −0.20790
(0.06175) (0.05292) (0.00023)

β(F ) 0.96457 0.97454 0.94287
(0.01287) (0.00005) (0.00329)

Notes: The fund model is presented in Section 2.2.1. iShares Core Canadian Universe Bond Index ETF: Model

estimation was performed using monthly return data from December 2000 to October 2018 (215 returns); RBC

Bond GIF Series 1 fund: Model estimation was performed using monthly total return data from October 2006 to

October 2018 (145 returns); Assumption/CI Harbour Growth & Income Fund Series A fund: Model estimation

was performed using monthly total return data from February 2002 to October 2018 (201 returns). Standard

errors of the estimators are displayed in parentheses below the estimates.

component.

4 Application to the valuation of a variable annuity

We consider the valuation of Guaranteed Minimum Maturity Benefit (GMMB)7 policies issued

on two of the funds studied in Section 3, namely the RBC Bond GIF Series 1 fund and the

7A GMMB is a guarantee offered in a VA policy that protects the policyholder’s investment in mutual funds
against a market downturn. The insurer agrees to pay the policyholder the shortfall, if any, between the guaranteed
benefit of the policy and the account value at a pre-determined maturity date, provided that the policyholder is
alive at that date. This capital protection is financed via periodic fees collected from the policyholder’s account.
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Assumption/CI Harbour Growth & Income Fund Series A fund. Indeed, these two funds are

actual underlying assets of VA policies issued in Canada, and considering them allows us to

illustrate the valuation of long-term guarantees issued on a pure bond fund (RBC) as well as

on a mixed fund (Assumption). The iShares Core Canadian Universe Bond Index ETF is not

considered in this application as it is not a underlying asset in a VA.

4.1 Description of the VA policy cash flows

The mathematical representation of the VA policy cash flows presented in this section is inspired

from Trottier et al. (2018a). The policyholder is assumed to invest an amount A0 > 0 at time

t = 0 in an account that tracks the total return on a fund with value process {Ft}Tt=0. No

further contributions are made throughout the life of the product. The policy account offers a

T -month maturity benefit guarantee of KT , which evolves according to the process {Kt}Tt=0. The

guaranteed amount can either be a fixed value, or it can vary stochastically if some reset, ratchet

or roll-up provisions is included. A constant monthly fee rate ωtot is charged to the policyholder at

the end of the period provided that he is active at the beginning of the period to cover guarantee

costs, investment management fees, expenses and commissions. This fee is commonly known as

the management expense ratio (MER) of the VA fund. The policyholder account value at time t,

denoted by At, evolves according to

At = At−1(1− ωtot)
Ft
Ft−1

, t = 1, . . . , T. (4.1)

The policy that is active at time t = 0 can become inactive for three possible reasons: (i)

the policyholder deceases, (ii) the policyholder lapses his policy, or (iii) the maturity date of

the guarantee is attained. We assume that idiosyncratic mortality and policyholder behavior

risks are fully diversified so that only the systematic components of these risks are taken into

account. Denote by tax the proportion of policies still active at time t from a homogeneous pool

of policyholders aged x months at contract inception. The inactivity decrements satisfy

0ax = 1, tax = t−1ax

(
tpx

t−1px

)
(1− L(mt−1)) , t = 1, . . . , T,
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where tpx is the survival probability to time t for a policyholder aged x months at time 0,

mt−1 := At−1/Kt−1 is an indicator of the moneyness of the guarantee at time t − 1, and

L : (0,∞)→ [0, 1] is a function that indicates the proportion of policyholders active at time t− 1

that will survive to time t and lapse their policies (L will be explicitly defined in Section 4.3.2).

We remark that the dependence of the function L on mt−1 allows us to incorporate dynamic

lapsation.

The total fee charge collected by the insurer at time t is given by

Total Feet := t−1ax ωtotAt−1
Ft
Ft−1

= t−1ax
ωtot

1− ωtot
At, t = 1, . . . , T.

Insurers typically impose penalties for lapses in early years to compensate for underwriting fees

incurred at the onset which cannot be fully recovered from regular fees in the case of an early

surrender. The lapse penalties collected by the insurer are assumed to take the form

Lapse penaltyt :=

(
t−1ax

tpx

t−1px
L(mt−1)

)
︸ ︷︷ ︸
conditional lapse proportion

AtP(t), t = 1, . . . , T,

where P is a deterministic function of time that specifies the proportion of the account value that

is retained by the insurer in the event of surrender (P will be defined explicitly in Section 4.3.2).

Note that when a policyholder lapses his policy, he receives the difference between the current

account value and lapse penalties charged by the insurer.

Consequently, the insurer’s total cash inflow at time t, denoted by CFt, is given by

CFt := Total Feet + Lapse penaltyt, t = 1, . . . , T.

Finally, the GMMB policy ensures that each active policyholder at maturity time T has a minimal

amount of KT in his account. This entails that the insurer might have to pay a maturity benefit

corresponding to

BenefitT := Tax max(0, KT − AT ),
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if the policy guarantee is in-the-money at time T .

4.2 Valuation of the VA policy

The valuation of the VA policy is performed through a risk-neutral framework (Bauer et al., 2008).

This approach entails that the guarantee cost at time t, denoted by Π
(guar)
t , is given by

Π
(guar)
t := BtEQ

[
BenefitT
BT

]
, t = 0, 1, . . . , T, (4.2)

where B0 := 1 and Bt := exp
(

∆
∑t−1

j=0 rt

)
, t = 1, . . . , T . Moreover, the value of the insurer’s

future cash inflows at time t, denoted by Π
(in)
t , corresponds to

Π
(in)
t := BtEQ

[
T∑

j=t+1

CFj
Bj

∣∣∣∣∣ Ft
]
, t = 0, 1, . . . , T. (4.3)

The net value of the VA policy at time t, denoted by Πt, is then defined as Πt := Π
(in)
t − Π

(guar)
t .

The excess over the guarantee cost is generally allocated to pay investment management fees,

expenses and commissions, and for profits.

4.3 Assumptions used to value the VA policy

We assume that the GMMB policy is issued to a homogeneous pool of policyholders aged 55. The

initial investment in the policy account is set to A0 = 100. Economic scenarios are generated with

the model presented in Section 2 and estimated in Section 3. To bring our analysis closer in line

with reality, we suppose that the annualized MER, defined as ω
(ann)
tot := 1− (1−ωtot)12, is given by

the actual MER charged by RBC and Assumption Life for their baseline guarantees as described

in the fund prospectuses, that is, ω
(ann)
tot = 0.0206 (⇒ ωtot = 0.001733) for the RBC fund and

ω
(ann)
tot = 0.0286 (⇒ ωtot = 0.002415) for the Assumption fund. Assumptions related to mortality,

lapsing behavior and associated penalties are chosen to be representative for a Canadian life

insurance company.
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4.3.1 Mortality assumptions

The mortality rates considered in our application are based on the Canadian Pensioners’ Mortality

2014 (CPM2014) male mortality table (CIA, 2014). Projected mortality improvement is applied

on entries of this table in conformity with recommendations of the Canadian Institute of Actuaries

(see CIA, 2010, Appendix C) so that time t = 0 in our study corresponds to the beginning of 2019.

Data for both the baseline mortality table and mortality improvement rates can be obtained

through a hyperlink on p.8 of CIA (2014). A constant force of mortality assumption between

integral ages is considered to obtain monthly rates from the yearly mortality rates.

4.3.2 Lapse assumptions

According to a 2011 survey from the Society of Actuaries (Society of Actuaries, 2011), a majority

of life insurers use dynamic lapse assumptions. The impact of the moneyness of the guarantee

is intuitive, since policyholders are more likely to surrender their policies if their guarantee is

out-of-the-money (i.e., less likely to provide a payment from the insurer) than if it is in-the-money.

This is confirmed empirically by different studies (e.g., Knoller et al., 2016; Sun and Mo, 2011).

It is common in the literature to incorporate dynamic lapsation by way of a piecewise linear

function of the moneyness of the guarantee, see Feng et al. (2017), Ledlie et al. (2008) and Ngai

and Sherris (2011), among others.

We model the annualized lapse proportion at time t+ 1, denoted by L(ann)(mt), by the function

L(ann)(mt) =


γ1, if mt < δ1,

γ2, if mt > δ2,

γ1 + (γ2 − γ1)mt−δ1
δ2−δ1 , if δ1 ≤ mt ≤ δ2,

with parameters γ1 = 0.02, γ2 = 0.10, δ1 = 0.4434 and δ2 = 1.7420, which are inspired from the

assumptions made on p.149 of AMF (2018). This function entails that the annual lapse rate is

bounded below and above by γ1 and γ2, respectively. When the moneyness mt is between δ1 and

δ2, the lapse rate increases linearly between these two values. The monthly lapse proportion is

obtained from the relation L(mt) := 1−
(
1− L(ann)(mt)

)1/12
.
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Finally, surrender penalties are assumed to decrease by 1% every year from 7% in the first year

to 0% after the seventh year, that is,

P(t) = max (0, 0.07− 0.01b(t− 1)/12c) , t = 1, . . . , T,

where b·c denotes the integer part function.

4.3.3 Ratchet provision

Some of the GMMB policies considered in our work are assumed to include a ratchet provision8

based on the mechanism outlined on p.149 of AMF (2018), which is deemed representative of a

realistic case encountered in practice. The initial guaranteed amount is set to K0 = ξA0, where ξ

denotes the guaranteed account ratio (in our case, we assume ξ = 1). Under the ratchet provision,

the guaranteed amount is increased to a percentage ξ of the account value if the ratio of the latter

over the former becomes greater than or equal to 115%, with a maximum of ζ̄ adjustments per

year, and no adjustments being performed during the last 10 years before the maturity of the

policy. In other words, the ratchet specification entails

Kt+1 =


ξAt+1, if t < T − 120,

ξAt+1

Kt

≥ 1.15 and ζt+1 < ζ̄,

Kt, otherwise,

where ζt+1 is the number of times the guaranteed amount was increased prior to time t+ 1 and

during the current year. A maximum of ζ̄ = 1 ratchet adjustment per year is assumed in our

application.9

4.3.4 Other assumptions

Similarly to CIA (2017), we apply a floor of −0.75% on the risk-free interest rates simulated with

our three-factor Vasicek model to avoid highly negative values which could be obtained due to the

8In a VA contract, a ratchet provision allows for an increase in the guaranteed benefit amount of the policy
according to a pre-determined rule. Depending on the provision, the increase can occur automatically when some
specific market conditions are met, or at a time when the policyholder elects the ratchet.

9We note that in some setups the resetting of the guaranteed amount also resets the guarantee maturity, see
Armstrong (2001). This feature is not considered here.
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normality of the term structure factors (i.e., Eq. (2.1) is modified to rt = max(−0.0075,
∑p

i=1 x
(i)
t )).

CIA (2017) mentions that the floor assumption of −0.75% is based “on the lowest observed point

in German historical 1-year data.” Moreover, Alberts (2020) states that −0.75% was the lowest

central bank negative interest rate observed, which occurred in Switzerland. Although negative

interest rate policies have not been implemented in Canada and the US, an article from the Bank

of Canada (Witmer and Yang, 2016) recently estimated the effective lower bound for interest

rates in Canada to be between −0.25% and −0.75%. Given that the purpose of our model is to

make long-term projections and that guarantee costs are inversely related to interest rates, we

consider that an interest rate floor of −0.75% is a justifiable and conservative assumption in our

context.

In addition, a floor of 2.0833× 10−6 is imposed on the fund conditional variance h
(F )
t to ensure

that the annualized volatility of the fund is at least 0.5% at any given time (0.5% was the minimal

EGARCH fund volatility observed in our data sample).

4.4 Valuation results

We value two different GMMB policies on the RBC and Assumption funds: a 20-year 100%

capital guarantee (i.e., T = 240 and ∀t : Kt = 100), and a 20-year 100% capital guarantee with a

ratchet that is applied once a year for the first 10 years whenever the account value exceeds 115%

of the guaranteed amount (see Section 4.3.3). Such guarantees are representative of maturity

benefits offered by life insurers.

The risk-neutral expectations (4.2) and (4.3) are computed by way of Monte Carlo simulations.

We simulated three different sets of 1,000,000 economic scenarios using the market and fund

models estimated in Section 3. To assess the impact of initial market conditions on the VA

valuation, each scenario set is based on different starting values of term structure factors x
(i)
0 ,

i = 1, 2, 3, and volatilities

√
h
(F )
0 and

√
h
(S)
0,j , j = 1, 2. Initial risk factor values are inspired from

those inferred by our model on specific dates in the data sample used for estimation, and are

provided in Table 4.

Scenario set I is our baseline scenario set and assumes that the initial economic environment
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Table 4: Initial risk factor values assumed in each simulated scenario set

Interest rate factors S&P/TSX S&P 500 RBC Assumption

Scenario set x
(1)
0 x

(2)
0 x

(3)
0

√
12h

(S)
0,1

√
12h

(S)
0,2

√
12h

(F )
0

√
12h

(F )
0

I −6.90% −0.62% 9.40% 14.12% 17.85% 0.90% 4.16%

II −6.90% −0.62% 9.40% 22.68% 22.68% 5.40% 5.68%

III −4.62% 0.96% 7.95% 14.12% 17.85% 0.90% 4.16%

Notes: Initial risk factor values are given on an annualized basis. Starting values in scenario set I are based on

those inferred by our model on October 31, 2018. Scenario set II considers the same interest rate factors, but sets

volatilities to levels observed on December 31, 2008. Scenario set III combines volatility values on October 31,

2018 with interest rate factors inferred on December 29, 2006.

is given by the one inferred by our model on October 31, 2018, which is the last date of our

sample. Scenario set II is based on the same initial interest rate factor values as scenario set

I, but volatilities are now set to financial crisis levels, as observed on December 31, 2008. This

hypothetical scenario is considered to isolate the impact of a sudden surge in equity and bond

asset volatilities. Scenario set III uses the same starting volatility values as scenario set I, but

the initial term structure factors are mapped to their inferred values on December 29, 2006.

At the end of 2006, the yield curve was approximately flat at a 4% level so this scenario set is

representative of an economic environment in which interest rates are at an equilibrium level.

Valuation results are presented in Table 5. First, we observe that at the MER levels charged

by RBC and Assumption Life for their baseline guarantees, the cost of the GMMB represents

a relatively small portion of the insurer’s cash inflows (never more than 25%). Cash inflows

are comprised of fee income and lapse penalties, approximately in the proportions 95% and 5%,

respectively. Therefore, the majority of the insurer’s revenue coming from the MER is used to

pay for investment management fees, expenses and commissions, and for profits. If we relate a

VA product to an investment in an exchange traded fund which offers exposure to market risk at

very low fees, it could be argued that policyholders pay a substantial premium for the guarantees

embedded in VA contracts.

Moreover, our results confirm a general expectation that a long-term return-of-capital guarantee
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Table 5: Valuation of GMMB policies according to different initial market conditions

RBC bond fund Assumption mixed fund

Π0 Π
(in)
0 Π

(guar)
0

Π
(guar)
0

Π
(in)
0

Π0 Π
(in)
0 Π

(guar)
0

Π
(guar)
0

Π
(in)
0

20-year GMMB, no ratchets

Scenario set I 20.73 21.35 0.62 2.9% 22.53 27.86 5.33 19.1%

Scenario set II 20.71 21.35 0.64 3.0% 22.50 27.85 5.35 19.2%

Scenario set III 20.50 20.56 0.06 0.3% 24.46 26.97 2.51 9.3%

20-year GMMB, with ratchets during the first 10 years

Scenario set I 19.77 21.95 2.18 9.9% 22.13 29.00 6.87 23.7%

Scenario set II 19.77 21.96 2.19 10.0% 22.07 29.02 6.95 23.9%

Scenario set III 20.65 21.61 0.96 4.4% 24.82 28.53 3.71 13.0%

Notes: Π
(in)
0 represents the value at time 0 of all of the insurer’s cash inflows to be received during the life of

the policy, whereas Π
(guar)
0 corresponds to the value of the maturity benefit at time 0 (see Section 4.2 for more

details). The value of cash inflows in excess of the guarantee cost is denoted by Π0 (i.e., Π0 := Π
(in)
0 −Π

(guar)
0 ).

These values are computed for each scenario set based on 1,000,000 economic scenarios simulated with the model

estimated in Section 3. Initial risk factor values used for each simulated scenario set are provided in Table 4.

on a bond fund is close to being worthless. Indeed, the value of the 20-year GMMB without

ratchets on the RBC bond fund is at most 0.64 for all scenarios sets. However, the inclusion of

ratchets significantly raises the guarantee cost for the RBC bond fund as it is now more probable

that the return of the fund net of fees will be insufficient to match the resetted guarantee level.

For example, for scenario set I the ratchet mechanism increases the guarantee cost by a factor

of 3.5 for the RBC bond fund (from 0.62 to 2.18). Although the impact of ratchets is much

less significant in relative terms for the Assumption mixed fund, this is mainly due to the very

low guarantee costs associated to the RBC bond fund in the no ratchet case. In absolute terms,

the increase in the value of the maturity benefit due to ratchets is similar for the two funds.

Nevertheless, as could be expected, the market protection (with or without ratchets) is more

costly on the mixed fund than on the bond fund, due of course to the mixed fund’s exposure to

equity risk. So even if ratchets lead to a larger relative increase of the guarantee cost in the case
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of the bond fund, the ratchet guarantee for the mixed fund is still over three times more valuable

and is associated to a greater share of the insurer’s cash inflows.

Interestingly, we observe that the incremental cost of the guarantee due to ratchets is partly

offset by additional fee income received by the insurer. The increase in revenue is due to the reset

mechanism lowering the propensity to lapse the policy. Consequently, offering ratchets during an

initial temporary period does not necessarily put an excessive strain on the insurer’s net financial

position, and could actually constitute an attractive product design for policyholders and insurers

alike (see MacKay et al., 2017; Bernard and Moenig, 2019, who discuss why a reduced lapse

incentive can be beneficial for policyholders and guarantee providers).

Comparing results across scenario sets I and II, we observe that the surge in equity and bond

asset volatilities implied by scenario set II has a marginal impact. This therefore suggests that

valuation is little affected by starting volatility conditions. In contrast, the initial interest rate

environment has a substantial impact on guarantee costs. Indeed, we note a significant drop in

the value of the guarantee from scenario set I to III. This decrease is a consequence of the higher

level of interest rates implied by scenario set III. On one hand Indeed, a higher short rate in our

model specification entails that equity and bond asset returns are subject to a larger drift, which

reduces the likelihood of the guarantee ending in-the-money. On the other hand, This effect is

further magnified by the fact that higher rates lead to a bigger discounting factor, thus lowering

the expected present value of the maturity benefit at time 0.

4.5 Sensitivity to term structure and equity risk factors

To further understand how each risk driver impacts the valuation of a VA policy, we compute

sensitivities of the insurer’s revenue and costs with respect to variations in the term structure

and equity risk factors. This experiment involves shocking each risk factor in isolation to assess

its marginal impact on valuation. Such sensitivities are commonly known as Greeks.

Let Π0(z) denote the net value of the VA policy at time 0 when a given risk factor is equal to z,

and let ∆z be the size of the shock on this risk factor. The general formula that we use to define
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Table 6: Greeks for the 20-year GMMB policy with ratchets during the first 10 years

x
(1)
0 x

(2)
0 x

(3)
0

√
h
(F )
0

√
h
(S)
0,1

√
h
(S)
0,2

RBC bond fund

Greek for Π
(in)
0 −0.068 −0.012 −0.067 0.023 0.000 0.000

Greek for Π
(guar)
0 −0.259 −0.005 −0.123 0.034 0.000 0.000

Greek for Π0 0.191 −0.007 0.056 −0.011 0.000 0.000

Assumption mixed fund

Greek for Π
(in)
0 −0.089 −0.016 −0.091 0.022 0.012 0.001

Greek for Π
(guar)
0 −0.637 −0.047 −0.428 0.067 0.034 0.004

Greek for Π0 0.548 0.031 0.337 −0.045 −0.022 −0.003

Notes: Initial unshocked risk factor values correspond to those considered in our baseline scenario set I (see Table 4).

The first-order difference in our Greek formula (4.4) is computed by way of Monte Carlo simulations with 1,000,000

economic scenarios generated for the baseline and shocked risk factor values using a common random seed.

a Greek on Π0(z) is based on the forward first-order difference equation,10

Greek for Π0(z) =
Π0(z + ∆z)− Π0(z)

∆z

× σz, (4.4)

where σz is a scaling term associated to the underlying risk factor. Greeks for the value of the

insurer’s cash inflows at time 0, Π
(in)
0 , and for the guarantee cost, Π

(guar)
0 , are defined analogously.

We set σz equal to the standard deviation of the risk factor’s monthly variations inferred in

our data estimation sample.11 This allows us to compare Greeks for the different risk factors

on a common basis, as each Greek then reflects the impact of one historical monthly standard

deviation shock on the risk factor.

Table 6 reports Greeks for the 20-year GMMB policy with ratchets studied in Section 4.4, assuming

10The shock magnitude is set to ∆z = 0.001 for the term structure factors x
(i)
0 , i = 1, 2, 3 and for the fund

volatility

√
h
(F )
0 , and to ∆z = 0.005 for the equity index volatilities

√
h
(S)
0,i , i = 1, 2.

11The scaling term σz is set to respectively 0.00302, 0.00389 and 0.00541 for yield curve factors x
(i)
0 , i = 1, 2, 3,

to respectively 0.00555 and 0.00947 for equity index volatilities
√
h
(S)
0,i , i = 1, 2, and to respectively 0.00092 and

0.00083 for RBC and Assumption fund volatilities

√
h
(F )
0 .
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that initial unshocked risk factor values correspond to those in our baseline scenario set I (i.e.,

initial term structure and volatility factors are set to those inferred on October 31, 2018). This

analysis confirms that for both funds investigated, risk factors having the highest impact are

those related to the term structure. In fact, we observe that initial fund and equity volatilities

have little to no effect on valuation. Intuitively, this is due to the fact that the initial volatility

level does not significantly influence the total volatility that will be realized over the 20-year

guarantee period. A stronger impact would have surely been felt for a short-term guarantee.

Moreover, we observe that the Greeks for Π
(in)
0 and Π

(guar)
0 pertaining to the term structure

factors are all negative; this is expected as an increase in an interest rate factor implies a higher

short rate and leads to discounting cash flows at a higher rate, thus decreasing the expected

present value of these cash flows. Additionally, the impact of the first factor is much stronger

than the other two. Recall that in Section 3, we noted that this factor is very persistent and can

be interpreted as governing the yield curve level. The factor’s high persistence is the reason why

its starting value can have a long-lasting impact over the 20-year guarantee period.

The takeaway from this investigation is that the prevailing interest rate environment is an

important input to consider when valuating long-term guarantees. In contrast, it is long-term,

rather than current, volatility assumptions that matter in this respect. This can be justified by

the fact that interest rate conditions tend to be more persistent than stock volatility over long

periods of time.

5 Conclusion

This paper develops a time series model to represent the return dynamics of mutual funds invested

in both equity and fixed income asset classes. The model is made up of three building blocks: a

discrete-time multifactor Vasicek model for the term structure of interest rates, a multivariate

EGARCH model for equity index returns, and finally the fund return model which includes

loadings on risk factors associated with the first two components and a heteroskedastic error

term. Our model framework is particularly relevant in the context of VAs. Indeed, the literature

has so far concentrated on studying investment guarantees on single-asset equity funds, whereas
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in practice such protections are typically offered on mixed funds. The long-term nature of the

financial guarantees offered makes it essential to model the fund’s fixed income component in a

way that is consistent with movements of the yield curve. Moreover, an important feature of our

model is the natural integration of basis risk which, although a critical issue for actuaries in the

variable annuity business, has often been neglected in past studies.

Maximum likelihood estimation of the proposed model was performed on historical data for a

sample of bond and mixed funds. Goodness-of-fit tests all indicated that the fit of our model

was adequate. The valuation of VA policies on those funds was then illustrated to assess the

importance of various risk drivers in our model. Realistic characteristics related to the periodic

fee, mortality rates, dynamic lapses, surrender penalties, and ratchet provisions were included into

our analysis. Our results confirmed that a long-term return-of-capital guarantee on a pure bond

fund is close to being worthless. Moreover, we observed that the initial interest rate environment

can have a material impact on the value of cash flows to be received by the insurer and on

guarantee costs. This finding is important as it implies that yield curve modeling must be given

special care in the context of variable annuities.

Finally, we note that although we adopted an EGARCH specification to model volatility persis-

tence of equity and fund returns, other approaches such as regime-switching processes could be

entertained. It would also be interesting to evaluate how valuation of VAs is impacted by the

choice or calibration of the interest rate model. These questions are left for future research.
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