
Supplementary online appendix

A Proofs

A.1 Proof of Proposition 2.1

Before proving Proposition 2.1, we show the following lemma.

Lemma A.1. For i = 1, . . . , p and n = 1, . . . , T − t, we have that,

x
(i)
t+n = x

(i)
t (1− κ̃i)n + µ̃iκ̃i

n∑
j=1

(1− κ̃i)n−j + σ̃i

n∑
j=1

(1− κ̃i)n−j z̃(i)t+j.

Proof. The result is trivially true for n = 1. Assuming that it holds for given n, the proof is

completed by induction as follows:

x
(i)
t+n+1 = x

(i)
t+n + κ̃i

(
µ̃i − x(i)t+n

)
+ σ̃iz̃

(i)
t+n+1

= x
(i)
t+n(1− κ̃i) + κ̃iµ̃i + σ̃iz̃

(i)
t+n+1

=

[
x
(i)
t (1− κ̃i)n + κ̃iµ̃i

n∑
j=1

(1− κ̃i)n−j + σ̃i

n∑
j=1

(1− κ̃i)n−j z̃(i)t+j

]
(1− κ̃i)

+κ̃iµ̃i + σ̃iz̃
(i)
t+n+1

= x
(i)
t (1− κ̃i)n+1 + κ̃iµ̃i

n∑
j=1

(1− κ̃i)n+1−j

+σ̃i

n∑
j=1

(1− κ̃i)n+1−j z̃
(i)
t+j + κ̃iµ̃i + σ̃iz̃

(i)
t+n+1

= x
(i)
t (1− κ̃i)n+1 + κ̃iµ̃i

n+1∑
j=1

(1− κ̃i)n+1−j + σ̃i

n+1∑
j=1

(1− κ̃i)n+1−j z̃
(i)
t+j.

We now prove Proposition 2.1. By Lemma A.1, we have that:

n−1∑
`=0

x
(i)
t+` =

n−1∑
`=0

[
x
(i)
t (1− κ̃i)` + κ̃iµ̃i

∑̀
j=1

(1− κ̃i)`−j + σi
∑̀
j=1

(1− κ̃i)`−j z̃(i)t+j

]
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= x
(i)
t

n−1∑
`=0

(1− κ̃i)` + κ̃iµ̃i

n−1∑
`=1

∑̀
j=1

(1− κ̃i)`−j + σi

n−1∑
`=1

∑̀
j=1

(1− κ̃i)`−j z̃(i)t+j

= x
(i)
t

1− (1− κ̃i)n

κ̃i
+ κ̃iµ̃i

n−1∑
`=1

`−1∑
j=0

(1− κ̃i)j + σi

n−1∑
`=1

n−1∑
j=1

1{j≤`}(1− κ̃i)`−j z̃(i)t+j

= x
(i)
t

1− (1− κ̃i)n

κ̃i
+ κ̃iµ̃i

n−1∑
`=0

1− (1− κ̃i)`

κ̃i
+ σi

n−1∑
j=1

n−1∑
`=1

1{j≤`}(1− κ̃i)`−j z̃(i)t+j

= x
(i)
t

1− (1− κ̃i)n

κ̃i
+ µ̃in− µ̃i

n−1∑
`=0

(1− κ̃i)` + σi

n−1∑
j=1

[
n−1∑
`=j

(1− κ̃i)`−j
]
z̃
(i)
t+j

=
(
x
(i)
t − µ̃i

) [1− (1− κ̃i)n

κ̃i

]
+ µ̃in︸ ︷︷ ︸

=m
(i)
n,t

+σi

n−1∑
j=1

1− (1− κ̃i)n−j

κ̃i
z̃
(i)
t+j.

Define X
(i)
n,t :=

∑n−1
`=0 x

(i)
t+`. Thus, under Q and conditional on Ft, Xn,t := [X

(1)
n,t · · ·X

(p)
n,t ]
> follows

a multivariate Gaussian distribution with mean vector mn,t :=
[
m

(1)
n,t · · ·m

(p)
n,t

]>
and covariance

matrix vn :=
[
v
(i,`)
n

]p
i,`=1

, where

m
(i)
n,t =

(
x
(i)
t − µ̃i

) [1− (1− κ̃i)n

κ̃i

]
+ µ̃in,

and

v(i,`)n = CovQ

[
σi

n−1∑
j=1

1− (1− κ̃i)n−j

κ̃i
z̃
(i)
t+j, σ`

n−1∑
j′=1

1− (1− κ̃`)n−j
′

κ̃`
z̃
(`)
t+j′

∣∣∣∣∣ Ft
]

=
σiσ`
κ̃iκ̃`

Γi,`

n−1∑
j=1

[
1− (1− κ̃i)n−j

] [
1− (1− κ̃`)n−j

]
=
σiσ`
κ̃iκ̃`

Γi,`

n−1∑
j=1

[
1− (1− κ̃i)j

] [
1− (1− κ̃`)j

]
=
σiσ`
κ̃iκ̃`

Γi,`

n−1∑
j=1

[
1− (1− κ̃i)j − (1− κ̃`)j + (1− κ̃i)j(1− κ̃`)j

]
=
σiσ`
κ̃iκ̃`

Γi,`

[
n− 1− 1− (1− κ̃i)n

κ̃i
+ 1− 1− (1− κ̃`)n

κ̃`
+ 1

+
1− (1− κ̃i)n(1− κ̃`)n

1− (1− κ̃i)(1− κ̃`)
− 1

]
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=
σiσ`
κ̃iκ̃`

Γi,`

[
n− 1− (1− κ̃i)n

κ̃i
− 1− (1− κ̃`)n

κ̃`
+

1− (1− κ̃i)n(1− κ̃`)n

1− (1− κ̃i)(1− κ̃`)

]
.

Using the expression for the moment generating function of the multivariate normal, we obtain,

Pt,T = EQ

[
exp

(
−∆

T−t−1∑
j=0

rt+j

) ∣∣∣∣∣ Ft
]

= EQ [exp
(
−∆1>pXT−t,t

) ∣∣ Ft]
= exp

{
−∆1>pmT−t,t +

∆2

2
1>p vT−t1p

}
,

from which the result of Proposition 2.1 is deduced.

B Estimation procedure for the discrete-time multifactor Vasicek

model

Let y(t, t+ n) be the annualized continuously-compounded model-implied spot rate with time to

maturity n, that is,

y(t, t+ n) := − 1

n∆
logPt,t+n

= −An
n∆

+

p∑
i=1

B
(i)
n

n
x
(i)
t , (B.1)

and define,

xt :=
(
x
(1)
t , . . . , x

(p)
t

)>
∈ Rp,

y(t) := (y(t, t+ n1), . . . , y(t, t+ nM))> ∈ RM ,

a :=

(
− An1

n1∆
, . . . ,− AnM

nM∆

)>
∈ RM ,

βn :=

(
B

(1)
n

n
, . . . ,

B
(p)
n

n

)
∈ Rp,

B := (βn1 , . . . ,βnM
)> ∈ RM×p.
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We model the relationship between observed and model-implied spot rates with the following

equation:

ŷ(t) = y(t) + ηt

= a+ Bxt + ηt, ηt ∼ N(0,H), (B.2)

where {ηt} is an independent sequence of Gaussian distributed random vectors with mean 0 and

diagonal variance-covariance matrix H. All diagonal entries in the matrix H are assumed to be

equal to the parameter h > 0.

Eq. (B.2) expresses the observed spot rates as a linear function of the term structure factors plus

a Gaussian noise term. In filtering terminology, this equation is called the measurement equation.

To complete the state space representation, the transition equation describing the dynamics of

the latent factors xt must be specified. It is given in vector form from Eq. (2.2) by:

xt+1 = b+ Dxt + ξt+1, ξt+1 ∼ N(0,Q), (B.3)

where

b := (κ1µ1, . . . , κpµp)
> ,

D := diag (1− κ1, . . . , 1− κp) ,

ξt+1 :=
(
σ1z

(1)
t+1, . . . , σpz

(p)
t+1

)>
,

Q :=



σ2
1 Γ12σ1σ2 · · · Γ1pσ1σp

Γ21σ2σ1 σ2
2 · · · Γ2pσ2σp

...
. . .

Γp1σpσ1 σ2
p


.

Eqs. (B.2) and (B.3) define a linear Gaussian state space model. This representation allows us

to calibrate the discrete-time multifactor Vasicek model to yield curve data using the Kalman

filter. This algorithm recursively computes the Gaussian densities p(ŷ(t) | ŷ(1), . . . , ŷ(t − 1)),

A-4



p(xt | ŷ(1), . . . , ŷ(t)) and p(xt+1 | ŷ(1), . . . , ŷ(t)) for t = 1, . . . , T . Maximization of the log-

likelihood, log p(ŷ(1), ŷ(2), . . . , ŷ(T )) =
∑T

t=1 log p(ŷ(t) | ŷ(1), . . . , ŷ(t − 1)), as a function of

the model parameters is accomplished using the following optimization strategy to avoid local

maxima. In a first step we took advantage of the R package DEoptim (Ardia et al., 2016), which

implements a differential evolution algorithm for global optimization. Starting from a randomly

generated parameter value, this algorithm generates successive parameter iterates that are each

more likely to represent the optimum of the objective function. In a second step, we used the

best parameter iterate generated in the first step as the initial value in a standard gradient-based

optimizer based on Newton’s method. We repeated these two steps a large number of times and

retained the parameter vector associated with the highest log-likelihood.

B.1 Kalman recursions for the discrete-time multifactor Vasicek model

The Kalman filter algorithm used to calibrate the discrete-time multifactor Vasicek model performs

the following recursions for t = 1, . . . , T assuming given initial values x̄1|0 ∈ Rp and P1|0 ∈ Rp×p:

Step 1. Calculate p(ŷ(t) | ŷ(1), . . . , ŷ(t− 1)):

p(ŷ(t) | ŷ(1), . . . , ŷ(t− 1)) ∼ N(ȳ(t),Σt)

ȳ(t) = a+ Bx̄t|t−1

Σt = BPt|t−1B
> + H

Step 2. Calculate p(xt | ŷ(1), . . . , ŷ(t)):

p(xt | ŷ(1), . . . , ŷ(t)) ∼ N(x̄t|t,Pt|t)

x̄t|t = x̄t|t−1 + Pt|t−1B
>Σ−1t (ŷ(t)− ȳ(t))

Pt|t = Pt|t−1 −Pt|t−1B
>Σ−1t BPt|t−1
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Step 3. Calculate p(xt+1 | ŷ(1), . . . , ŷ(t)):

p(xt+1 | ŷ(1), . . . , ŷ(t)) ∼ N(x̄t+1|t,Pt+1|t)

x̄t+1|t = b+ Dx̄t|t

Pt+1|t = DPt|tD
> + Q

The density p(xt | ŷ(1), . . . , ŷ(t)) which infers the factors at time t based on the available observed

information up to that time is called the filtered state density. On the other hand, the density

p(xt | ŷ(1), . . . , ŷ(T )) which infers the factors at time t conditionally on all observations is called

the smoothed state density. This density can be obtained by way of a backward procedure known

as the Kalman smoother (Shumway and Stoffer, 2017, Section 6.2). This algorithm follows the

Kalman filter and computes,

p(xt | ŷ(1), . . . , ŷ(T )) ∼ N(x̄t|T ,Pt|T ),

by performing the following recursions for t = T − 1, . . . , 1:

Jt = Pt|tD
>P−1t+1|t,

x̄t|T = x̄t|t + Jt
(
x̄t+1|T − x̄t+1|t

)
,

Pt|T = Pt|t + Jt
(
Pt+1|T −Pt+1|t

)
J>t .

B.2 Additional figures comparing model-implied and observed sport rates

This section presents additional figures comparing model-implied and observed sport rates.

Figure B.1 illustrates the evolution of model-implied and observed 3-month and 10-year spot

rates in the data sample, whereas Figure B.2 shows model-implied and empirical yield curves at

specific dates.
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Figure B.1: Model-implied versus observed rates
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Notes: The model-implied rates are obtained by plugging in the smoothed factor states,

EP
[
x
(i)
t

∣∣∣ ŷ(1), ŷ(2), . . . , ŷ(T )
]
, for i = 1, 2, 3, in Eq. (B.1).

Figure B.2: Model-implied and observed yield curves
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C Fit diagnostics output for our fund model

This section presents a summary of the fit diagnostics for our fund model introduced in Section 2.2.1

and estimated on the three data sets described in Section 3.1. Note that mu, mxreg1, mxreg2,

mxreg3, mxreg4 and mxreg5 in the outputs below correspond to θ0, θ1, θ2, θ3, θ
(S)
1 and θ

(S)
2 ,

respectively.

iShares bond ETF

Optimal Parameters

------------------------------------

Estimate Std. Error t value Pr(>|t|)

mu 0.003399 0.000241 14.0842 0.000000

mxreg1 -6.620257 0.253579 -26.1072 0.000000

mxreg2 -1.313802 0.195340 -6.7257 0.000000

mxreg3 -3.823703 0.186637 -20.4874 0.000000

mxreg4 0.028009 0.011837 2.3661 0.017976

mxreg5 0.033781 0.032885 1.0273 0.304293

omega -0.404463 0.154322 -2.6209 0.008770

alpha1 -0.090638 0.082155 -1.1033 0.269912

beta1 0.964566 0.012869 74.9544 0.000000

gamma1 0.203524 0.061746 3.2961 0.000980

LogLikelihood : 880.2946

Weighted Ljung-Box Test on Standardized Residuals

------------------------------------

statistic p-value

Lag[1] 0.06528 0.7983

Lag[2*(p+q)+(p+q)-1][2] 0.07221 0.9396

Lag[4*(p+q)+(p+q)-1][5] 0.58368 0.9440

d.o.f=0

H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

------------------------------------

statistic p-value

Lag[1] 0.05526 0.8141

Lag[2*(p+q)+(p+q)-1][5] 0.12630 0.9970

Lag[4*(p+q)+(p+q)-1][9] 0.50962 0.9984

d.o.f=2

Weighted ARCH LM Tests

------------------------------------

Statistic Shape Scale P-Value

ARCH Lag[3] 0.07896 0.500 2.000 0.7787

ARCH Lag[5] 0.11254 1.440 1.667 0.9845

ARCH Lag[7] 0.45528 2.315 1.543 0.9823

Adjusted Pearson Goodness-of-Fit Test:

------------------------------------
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group statistic p-value(g-1)

1 20 28.44 0.07529

2 30 40.77 0.07215

3 40 40.81 0.39067

4 50 64.77 0.06502

RBC bond fund

Optimal Parameters

------------------------------------

Estimate Std. Error t value Pr(>|t|)

mu 0.002580 0.000197 13.1012 0.000000

mxreg1 -6.806903 0.308729 -22.0481 0.000000

mxreg2 -1.501163 0.251663 -5.9650 0.000000

mxreg3 -3.866624 0.182625 -21.1724 0.000000

mxreg4 0.062015 0.018891 3.2827 0.001028

mxreg5 0.046569 0.007581 6.1427 0.000000

omega -0.292606 0.021987 -13.3084 0.000000

alpha1 -0.252937 0.060505 -4.1805 0.000029

beta1 0.974537 0.000049 19870.4757 0.000000

gamma1 0.192276 0.052918 3.6334 0.000280

LogLikelihood : 607.0695

Weighted Ljung-Box Test on Standardized Residuals

------------------------------------

statistic p-value

Lag[1] 0.7349 0.3913

Lag[2*(p+q)+(p+q)-1][2] 1.2667 0.4193

Lag[4*(p+q)+(p+q)-1][5] 2.8909 0.4273

d.o.f=0

H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

------------------------------------

statistic p-value

Lag[1] 0.02661 0.8704

Lag[2*(p+q)+(p+q)-1][5] 0.32127 0.9814

Lag[4*(p+q)+(p+q)-1][9] 1.22617 0.9749

d.o.f=2

Weighted ARCH LM Tests

------------------------------------

Statistic Shape Scale P-Value

ARCH Lag[3] 0.001018 0.500 2.000 0.9745

ARCH Lag[5] 0.670042 1.440 1.667 0.8326

ARCH Lag[7] 1.332163 2.315 1.543 0.8543

Adjusted Pearson Goodness-of-Fit Test:

------------------------------------

group statistic p-value(g-1)

1 20 15.69 0.6779

2 30 21.55 0.8383

3 40 37.34 0.5455

4 50 47.07 0.5517
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Assumption mixed fund

Optimal Parameters

------------------------------------

Estimate Std. Error t value Pr(>|t|)

mu 0.000201 0.000015 13.329 0

mxreg1 0.390952 0.022361 17.483 0

mxreg2 -0.327890 0.006408 -51.167 0

mxreg3 -0.996643 0.013047 -76.388 0

mxreg4 0.497730 0.000513 970.991 0

mxreg5 0.059126 0.000067 888.757 0

omega -0.513249 0.000188 -2734.566 0

alpha1 -0.069243 0.001701 -40.714 0

beta1 0.942871 0.003293 286.306 0

gamma1 -0.207904 0.000232 -895.978 0

LogLikelihood : 614.8825

Weighted Ljung-Box Test on Standardized Residuals

------------------------------------

statistic p-value

Lag[1] 0.8939 0.34444

Lag[2*(p+q)+(p+q)-1][2] 4.7554 0.04729

Lag[4*(p+q)+(p+q)-1][5] 7.4151 0.04108

d.o.f=0

H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

------------------------------------

statistic p-value

Lag[1] 1.223 0.2687

Lag[2*(p+q)+(p+q)-1][5] 1.478 0.7454

Lag[4*(p+q)+(p+q)-1][9] 2.825 0.7874

d.o.f=2

Weighted ARCH LM Tests

------------------------------------

Statistic Shape Scale P-Value

ARCH Lag[3] 0.01537 0.500 2.000 0.9013

ARCH Lag[5] 0.42782 1.440 1.667 0.9047

ARCH Lag[7] 1.83416 2.315 1.543 0.7524

Adjusted Pearson Goodness-of-Fit Test:

------------------------------------

group statistic p-value(g-1)

1 20 16.61 0.6161

2 30 37.66 0.1302

3 40 35.22 0.6430

4 50 46.01 0.5949
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D Additional VA valuation results

This section presents additional results on the valuation of our VA policies to complement those

shown in Section 4. Table D.1 repeats the analysis in Table 5 for a GMMB with a lower guarantee

(75%) and a shorter maturity (10 years). We note that the basic GMMB offered for the RBC bond

fund and the Assumption mixed fund is, respectively, a 10 and 15-year 75% capital guarantee

without ratchets. According to our analysis these guarantees have little to no value. When

comparing the 100% guarantee for maturities of 10 and 20 years, we notice that the costs increase

for the shorter maturity. The greater costs are partly due to the fact that the maturity benefit is

less heavily discounted over a 10-year period. In addition, the shorter maturity offers less recovery

time in the event of a crash in the years that follow the signature of the contract. Interestingly,

for the 75% guarantee on the Assumption mixed fund, the opposite effect is observed; the shorter

maturity guarantee is less valuable. We believe that this is related to the very low level of the

guarantee. Indeed, for the 75% guarantee to mature in-the-money, a very severe market crash

would have to occur, which is more likely to happen over a time horizon of 20 than 10 years.

The second analysis that we performed to complement the results shown in Section 4 relates to

a robustness check on our base interest rate floor assumption of −0.75%. Hence, we repeated

the experiment in Table 5 with a floor of 0%. Results are illustrated in Table D.2. As expected,

guarantee costs decrease when the floor is increased from −0.75% to 0%. This follows from the

one-sided impact of the floor; it either has no influence on interest rates in a given scenario

or it increases them. A floor of −0.75% is thus a conservative assumption. Nevertheless, this

assumption does not affect the qualitative analysis of our results.
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Table D.1: Valuation of GMMB policies according to different guarantee terms and levels

RBC bond fund Assumption mixed fund

Π0 Π
(in)
0 Π

(guar)
0

Π
(guar)
0

Π
(in)
0

Π0 Π
(in)
0 Π

(guar)
0

Π
(guar)
0

Π
(in)
0

20-year GMMB, no ratchets

100% guarantee 20.73 21.35 0.62 2.9% 22.53 27.86 5.33 19.1%

75% guarantee 18.91 18.91 0.00 0.0% 24.12 24.86 0.74 3.0%

10-year GMMB, no ratchets

100% guarantee 13.87 15.48 1.60 10.4% 13.32 20.37 7.05 34.6%

75% guarantee 14.62 14.62 0.00 0.0% 18.90 19.17 0.27 1.4%

Table D.2: Valuation of GMMB policies according to different interest rate floor assumptions

RBC bond fund Assumption mixed fund

Π0 Π
(in)
0 Π

(guar)
0

Π
(guar)
0

Π
(in)
0

Π0 Π
(in)
0 Π

(guar)
0

Π
(guar)
0

Π
(in)
0

20-year GMMB, no ratchets

With floor of −0.75% 20.73 21.35 0.62 2.9% 22.53 27.86 5.33 19.1%

With floor of 0% 20.89 21.33 0.44 2.0% 22.99 27.81 4.82 17.3%

20-year GMMB, with ratchets during the first 10 years

With floor of −0.75% 19.77 21.95 2.18 9.9% 22.13 29.00 6.87 23.7%

With floor of 0% 20.19 21.92 1.73 7.9% 22.81 28.98 6.17 21.3%
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