
C Comments on the programs

The lines of the Word file programs.docx are numbered. This document refers to these
numbers. The Word file has an alter ego in text format (file programs.txt). The programs
and comments are sorted by their order of appearance in the paper and the appendices.

C.1 ARFIMA(0, d, 0) specifications reach level S in the strict
sense

Lines 5 to 47: This R program is related to Section 3.5. I verify that the ARFIMA(0, d, 0)
specifications reach level S in the strict sense (i.e., credibilities per period are positive
regardless of the risk exposure). Precision matrices are derived first, then the related
correlation matrices. The program verifies that all the off-diagonal generalized partial
autocorrelation coefficients are positive (see Section 2.4). From stationarity, the variance–
covariance matrices of the random effects are Toeplitz. The Toeplitz property is lost in
the inversion, which justifies the adjective “generalized.”
Figure 8 gives the minimum value of the off-diagonal generalized partial autocorrelation
coefficients as a function of the partial differencing coefficient d. The length of the history
is T = 100. From hereditarity, level S is reached for histories shorter than a century. The
mesh size for d equals 0.01.

C.2 Compatibility between autocovariance functions with pos-
itivity properties and exponentials of stationary Gaussian
vectors

The programs are related to Section 4.2.
Let γ be an autocovariance function. If ρ = log(1+γ)/ log(1+γ0) is an autocorrelation

function, then γ is followed by the exponential of a stationary Gaussian vector. To verify
(or to prove) the admissibility of ρ as an autocorrelation function, the natural approach is
the Herglotz-Bochner theorem, linking admissibility with the nonnegativity of the Fourier
transform.

The paper does not retain this approach. Fourier transforms ususally do not have a
closed form. If a numerical approach is retained (discrete Fourier transform, fast Fourier
transform), then an approximation of the spectral density is obtained on a grid defined
in the frequency domain. To reach substantial results, an approximation framework has
to be built, and this is taxing.

In my paper, the verification strategy remains in the time domain. The Levinson–
Durbin recursion takes an autocorrelation function as an input, and generates partial
autocorrelation coefficients as an output. Other outputs are the other filtering coefficients,
and the accuracy of the prediction. I focus on the first output. The Levinson–Durbin
recursion can be used backwards: as long as the entries of the output range in ]-1, 1[,
the truncated input is a positive definite autocorrelation function. A verification is less
than a proof. A proof could stem from the definition of ]-1, 1[ as an attraction basin
with a Lyapunov function. However, the partial autocorrelation coefficients depend on
all the previous values. Using a dynamical system framework to solve the problem is not
obvious.
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Figure 8: Minimum of the off-diagonal generalized partial autocorrelation coefficients (as
a function of d, for T = 100).

Lines 53 to 87: an example from an AR(1) specification with γ = 2 and ρ1 = 0.5
provides the ten first entries of the output of the Levinson–Durbin recursion (variable
pacub). They all range in ]-1, 1[, hence the ten first entries of the AR(1) specification
are compatible with a stationary log-Gaussian sequence. The partial autocorrelation
coefficients oscillate around zero. Results suggest that the whole sequence vanishes. It
is worth noting that the sequence pac(ρ) vanishes at infinity if ρ is an autocorrelation
function with a positive innovation. Indeed, the accuracy of linear filtering is updated by
the Levinson–Durbin recursion with

sin2(ψT+1) = sin2(ψT )× (1− pac2
T+1).

Hence, sin2(ψ∞) =
+∞∏
h=1

(1− pac2
h), where sin2(ψ∞) is the ratio between the variance of the

innovation and the variance of the sequence. If sin2(ψ∞) > 0 (i.e. if the sequence is non
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deterministic in Wold’s parlance), then the partial autocorrelations are square summable
and hence vanish at infinity.

Lines 89 to 149: loop on the filtering coefficient ϕ1 and on the variance of the
random effect in the verification for AR(1) specifications with positive autocorrelations.
The variance γ0 is spanned in the interval ]0, γmax

0 = 5] with a mesh size termed gammesh

in the program. The filtering coefficient ϕ1 is spanned in the interval ]0, 1[ with a mesh
size termed phimesh in the program. The maximum length of the history is the variable
length. The output of the program is that the maximum absolute value of pac(ρ) is always
reached for h = 1. Hence the admissibility condition is always fulfilled, as [pac(ρ)]1 =

ρ1 = log(1+γ0ϕ1)
log(1+γ0)

. A better understanding of the link between ρ and pac(ρ) would make
these verifications useless.

The verifications are also achieved for AR(p) specifications, with p = 2, 3, and for spec-
ifications reaching the N2 level (nonnegative linear filtering). For p = 2, the verification
includes Region II in Figure 3 (Section A.1) that corresponds to the counterexample given
in the paper. In this region, experience rating can be thought of (the autocovariances are
nonnegative, and level N1 is reached), but linear credibility is not recommended.

Lines 152 to 228: verification program for AR(2) specifications with nonnegative
autocovariances. The notations are similar to those for the AR(1) specifications.

Lines 230 to 295: verification program for AR(3) specifications with nonnegative
filtering coefficients. The notations are different (older version). The filtering coefficients
related to stationary AR(3) specifications are described in Section B.14.

For the AR(p) specifications with nonnegative filtering coefficients (p = 1, 2, 3) and for
the AR(p) specifications that reach level N1 (with p = 2), the maximum absolute value
of pac(ρ) is always reached for h = 1, . . . , p and is less than one.

The Yule-Walker equations are used to generate the autocorrelations from the filtering
coefficients. For p = 2, we have:

(
1 ρ1

ρ1 1

)(
ϕ1

ϕ2

)
=

(
ρ1

ρ2

)
⇔

(
1− ϕ2 0
−ϕ1 1

)(
ρ1

ρ2

)
=

(
ϕ1

ϕ2

)
,

hence
ρ1 =

ϕ1

1− ϕ2

.

Then the autocorrelation sequence is extended with Yule-Walker.
The result is actually obvious with ρ1 = ϕ1ρ0 +ϕ2ρ−1, and ρ0 = 1; ρ−1 = ρ1. The matrix
equations can be used for higher orders. For the AR(3) specifications, we have




1− ϕ2 −ϕ3 0
−ϕ1 − ϕ3 1 0
−ϕ2 −ϕ1 1






ρ1

ρ2

ρ3


 =




ϕ1

ϕ2

ϕ3


 .

This equation provides ρ1, ρ2, ρ3 as a function of ϕ1, ϕ2, ϕ3. Then the autocorrelation
sequence is extended with Yule-Walker.
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For the AR(2) specifications, with phimesh=0.01, a maximum value of γ0 equal to 5
and length=100, the maximum absolute of value of pac(ρ) equals 0.9953. This is reached
for the two following values:

ϕ1 = 0.99; ϕ2 = 0; γ0 = γmax
0 = 5; h = 1; [pac(ρ)]1 = 0.9953.

ϕ1 = 0; ϕ2 = 0.99; γ0 = γmax
0 = 5; h = 2; [pac(ρ)]2 = −0.9953.

Lines 297 to 356: verification program for the ARFIMA(0, d, 0) specifications. The
partial autocorrelation coefficients of ρ = log(1 + γ)/ log(1 + γ0) are positive, decreasing,
and vanish at infinity for every value of (d, γ0) from the grid. The partial autocorrelation
coefficients related to the ARFIMA(0, d, 0) specifications equal d/(h − d) (h ∈ N∗) and
have the same properties. These results show the strong positivity properties of the
ARFIMA(0, d, 0) specifications.

C.3 The entrywise exponentiation of stationary Gaussian vec-
tors of type ARFIMA(0, d, 0) reach level S in the strict sense

This result is quoted at the end of Section 4.2 in the paper. Compatibility is not an
issue, as the autocovariance specifications are followed by log-Gaussian sequences. The
specifications exp(γ)− 1, where γ is of the ARFIMA(0, d, 0) type, are weakly ergodic and
have a long memory.

Lines 365 to 406: This R program verifies the positivity of such specifications. The
derivations are obtained as in Section C.1. The generalized partial autocorrelations are
always positive, and the minimum is reached for the lowest value of d and the largest
value of γ0 retained in the verification.

C.4 Level S is not (but nearly) maintained by entrywise expo-
nentiation of stationary Gaussian vectors of type AR(p)

Lines 417 to 456: This R program verifies the positivity for an example (the result
is quoted at the end of Section 4.2). Let γ denote an AR(1) autocovariance function
(γ(h) = 0.5|h| ∀h ∈ Z). I derive the minimum of the generalized partial autocorrelations
of the sequence exp(γ) − 1, depending on the length T of the history (varying from 2
to 100): see Figure 9. The minimum is negative, and equals −7.8 × 10−17, for T = 87.
The minimum is negative but very close to zero. Besides, level S is a sufficient condition
for nonnegative credibilities, but the paper does not prove that it is necessary. These
specifications are used in Pinquet et al. (2001) and Bolancé et al. (2003).
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Figure 9: Minimum of the generalized partial autocorrelations of the sequence exp(γ)−1,
depending on the length T of the history.

C.5 Proposition 8 for ARFIMA(0, d, 0) specifications and their
entrywise exponentiation

The programs refer to the end of Section 5 in the paper. The goal is to place side by side a
time-invariant random effect and a dynamic and ergodic random effect that reaches level
S, and to maintain this positivity level for the product of these random effects. Proposition
8 gives a sufficient condition. This condition (i.e., the sums of the lines of the precision
matrices are nonnegative) is proved in Appendix B.9 for the AR(p) specifications that
reach level S. The hereditarity of this condition is proved in Appendix B.9. Hereditarity is
used to verify that ARFIMA(0, d, 0) specifications and their entrywise exponentiation fulfil
this condition. If γ is an ARFIMA(0, d, 0) autocovariance function, the program verifies
that γ and exp(γ) − 1 fulfill the condition. The set of ARFIMA(0, d, 0) autocovariance
functions is a cone, which is not the case for their transforms by γ → exp(γ) − 1. The
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verification is then achieved on the fractional differencing parameter d only for γ, and for
both d and γ0 for exp(γ)− 1.

Lines 469 to 517: This R program verifies the positivity condition for the ARFIMA(0, d, 0)
specifications. Let RT

d be the correlation matrix of an ARFIMA(0, d, 0) specification ap-

plied to a history with a length equal to T . The function d→ min(
[
RT
d

]−1
1T ) decreases

on [0, 0.5[ from unity to a positive limit, equal to 0.0064 in 0.5− for T = 100. From
hereditarity, the condition given in Proposition 8 is valid for histories shorter than a cen-

tury. The vectors
[
RT
d

]−1
1T are centrally symmetric, and the minimum is reached at the

middle.

Lines 521 to 561: This R program verifies the positivity condition for the ARFIMA(0, d, 0)
specifications exponentiated entrywise. The positivity condition is fulfilled, and the mini-
mum values are obtained at the middle of the vectors. They decrease with d and increase
with γ0.

C.6 Verification of the formula for the limit credibility in the
short memory case

A formula for the limit credibility in the short memory case is given in Proposition 10,
Section 6. The proof (see Appendix B.11) uses the dominated convergence theorem, and
a bounding condition is needed (see (35) in Proposition 10). This condition is not easy
to prove, and the program commented on here verifies that the limit holds for AR(1)
specifications. As an example, let us use: λ = 1/15; U = Q, γQ(h) = 0.8|h| ∀h ∈ Z ⇒
‖γQ‖1 = 9. The credibilities per period are obtained from linear filtering on X = U +A =
Q+A, with A a weak white noise uncorrelated with U and that accounts for risk exposure.
The variance of A equals 1/λ = 15. Let tTα be the total credibility for T periods, and ET

be the sequence of residuals in the linear filtering of X with the last T values. Using
spectral densities, it is easily seen that (see Appendix B.11)

(
1− tTα

)2
sX(0) = sET (0).

In the example, sX(0) = ‖γX‖1 = ‖γA‖1 +‖γQ‖1 = 15+9 = 24. The accuracy of the linear
prediction is derived in the Levinson–Durbin recursion by sin2(ψT ) = γET (0)/γX(0).

The innovation IX is the limit of ET as T goes to infinity. Hence, the limit of γET (0)
as T goes to infinity equals γIX (0) from the definition of the innovation as the limit
residual. This result holds entrywise on the autocovariance function, which means that

lim
T→+∞

γET = γIX = γIX (0) δ0 (IX is white noise) entrywise on Z.

To obtain the formula for the limit credibility, we need the result lim
T→+∞

sET (0) = sIX (0)

(= γIX (0)) . This result holds if the limit and the sums can be interchanged. This is true
by the dominated convergence theorem, provided a bounding condition is satisfied. The
monotone convergence theorem could also be thought of, the only non-obvious assumption
being the entrywise decrease of γET with T . From the example, we obtain the following
table.
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TABLE 7

TOTAL CREDIBILITY, SQUARED SINUS, VARIANCE AND SUM OF AUTOCOVARIANCES OF THE RESIDUAL

AS A FUNCTION OF THE LENGTH OF THE HISTORY

T tTα sin2(ψT ) γET (0) sET (0)
1 0.1281 0.9939 15.90 18.24
5 0.1445 0.9946 15.91 17.56
10 0.1760 0.9943 15.91 16.30
20 0.1853 0.9942 15.91 15.93
40 0.1859 0.9942 15.91 15.91

The results to four digits are unchanged for higher values of T . The variance of the
residual γET (0) reaches its limit γIX (0) very quickly. The formula for the limit credibility
is valid if sET (0) reaches the same limit. The table shows that this is the case, but the
convergence is not as fast as that of γET (0). Hence, the ‘whitening’ of ET is not reached as
quickly as the limit of the variance. As expected, we have that γIX (0) = 15.91 > 15 = 1/λ.

Lines 573 to 609: This R program generates the above table. The variables γQ(0)
and ‖γQ‖1 are defined by lines 579 and 580. Lines 581 and 582 provide γX(0) and ‖γX‖1 =
sX(0). Then the Levinson–Durbin recursion is applied to ρX , with γX = γQ + δ0

λ
⇒

ρX =
λγQ(0)

1+λγQ(0)
ρQ on N∗.

C.7 Estimated autocovariances of random effects from three
variables: number of events, frequency premiums, and pe-
riod index

The unconstrained estimations of the autocovariances given in Table 1 are obtained from
a regression on individual data that is not disclosed. See Section A.3 and Pinquet et al.
(2001) for the formulas on the autocovariances.

The program (lines 625 to 718) is written with the IML module for matrix calculus
included in SAS. The individuals are the pairs (policyholder, risk exposure period), and
three variables are used: the number of events (variable n), a frequency premium (i.e.
an estimated expectation, conditional on covariates: variable prfreq), and the period
index (variable period). The individuals are sorted by increasing periods. The variable
prfreq is derived from the Poisson regression carried out in Pinquet et al. (2001), with a
log-linear specification for the expectation. Any other type of regression (neural network,
regression tree, or random forest) can be used to obtain the frequency premium. The only
constraint to impose is that the regression components do not use the individual history.
The variable period allows handling the two first ones in an unbalanced panel dataset
framework.

C.8 Rough GMM on AR(p) and ARFIMA(0, d, 0) models for the
ergodic component of the random effect

The AR(p) specifications applied to Q that reach level S for p ≤ 3 are estimated in Table
2, Section 7.2. The specifications are spanned and the autocovariances are generated as
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indicated in Section C.2. The R program (lines 729 to 980) derives the estimates of the
unconstrained autocovariance function γ̂U given in Table 1.

• The variance of a time-invariant random effect is the mean of the estimated autoco-
variances. Uniform weights are not optimal because risk exposure in the estimation
strongly decreases with the lag (see Section A.3). This shortcoming is corrected in
Section C.10 by means of an asymptotically efficient estimation based on individual
frequency premiums.

• The autocovariance function of a random effect with a white noise specification for
Q is γU,α = σ2

P +((1+σ2
P )σ2

Q δ0), with α = (σ2
P , σ

2
Q). The adjustment error γU,α− γ̂U

nullifies at the optimum for h = 0, with

σ̂2
Q =

γ̂U(0) − σ̂2
P

1 + σ̂2
P

.

The estimator of σ2
P minimizes the sum of squared errors for positive lags, hence

σ̂2
P = γ̂U

h>0
.

• The estimation of the other specifications is derived from the minimization of the
function α −→ ‖γU,α − γ̂U‖2. This function is not necessarily convex, and we span
the parameter space to find the solution. With three parameters, as is the case with
AR(1) and ARFIMA(0, d, 0) specifications, the derivations are easy with a mesh
size equal to 0.01. For AR(2) and AR(3) specifications, local derivations are recom-
mended. The program iterates a local search initialized by the optimum reached at
the previous order of the autoregressive process, the supplementary filtering coeffi-
cient being equal to zero. The optimum is reached in less than 10 iterations with a
mesh size equal to 0.01. The optimum might be local, but global derivations derived
outside the program show that we have reached the global optimum. Positivity lev-
els N2 and S are equivalent for AR(2) specifications (see Proposition 7). Hence, the
triangle defined by ϕ1 ≥ 0; ϕ2 ≥ 0; ϕ1 + ϕ2 < 1 must be spanned (regions Ia and
Ib in the stationarity triangle, Appendix A.1). For the AR(3) specifications, the
positivity level N2 is defined by ϕh ≥ 0 (h = 1, 2, 3); ϕ1 + ϕ2 + ϕ3 < 1. Level S
is reached with the supplementary conditions ϕ1 ≥ ϕ1ϕ2 + ϕ2ϕ3; ϕ2 ≥ ϕ1ϕ3 (see
Appendix B.14 for geometrical representations).

In Section 7, I argue that ergodicity should not be an assumption for the random ef-
fects, especially if the ergodic specification has a short memory. From the autocovariances
given in Table 1, Figure 10 exhibits the adjustment errors for three specifications:
1) U: AR(1) ; 2) U: ARFIMA(0, d, 0) ; 3) U: time-invariant component×AR(1).
The fit is poor for the short memory specification (SSE=0.0700, vs. SSE=0.0067 and
0.0073 for the two other specifications, as seen in Section 7).

C.9 Limit credibility in the ARFIMA(0, d, 0) case: an example

The formula related to the short memory case

(1− t∞α )2 =
γIX (0)

(1/λ) + ‖γQ‖1
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Figure 10: Goodness of fit for specifications with short, long and very long memory.

suggests that the limit credibility equals one at the intermediate level of the memory
(ergodicity, and non-summability of the autocovariance function of the random effects).

This paper does not prove this result, but we study the behavior of the total credibility
for an example. With the ARFIMA(0, d, 0) specification fitted with the rough GMM
estimation and λ = 0.07, then 1− tTα and 2.4×T−0.4 are equivalent at infinity. This result
is obtained from the graph of f : log(T ) −→ log(1− tTα), derived by the R program (lines
989 to 1032). Figure 11 shows evidence of a slant asymptote for the function f .

C.10 Derivations for total credibilities in Figure 1

Lines 1041 to 1078: This R program derives the total credibilities for the ARFIMA(0, d, 0)
specification estimated in Section 7. Because they are filtering coefficients of X if the
frequency risk is time-invariant, the credibilities are obtained by a Levinson–Durbin re-
cursion. The recursion on the total credibility is given at the beginning of Section 6. We
derive ρX , with γX = γU + δ0

λ
⇒ ρX = λγU (0)

1+λγU (0)
ρU on N∗. In the example, we have Q = U

and λ = 0.07.

C.11 Second-order stochastic dominance comparisons between
linear credibility predictors, ROC curves (Section 7.4)

Lines 1093 to 1368: This SAS program derives linear credibility predictors for the last
risk exposure period of policyholders observed over seven years (the maximum length in
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the sample). Estimation has been rerun from histories restricted to six periods. Elemen-
tary statistics are presented in Table 4, then integrated differences of quantiles are derived
in order to assess the second-order stochastic dominance between predictors. Given that
their mean is greater on the sample, the predictors related to dynamic random effects
are less dispersed than the predictor related to a time-invariant random effect. Then the
ROC curves and related Gini coefficients are derived, as well as log-likelihoods derived
from experience rated frequency premiums.

Figure 11: graph of f : log(T ) −→ log(1− tTα)

C.12 Asymptotically efficient GMM on Poisson mixtures from
given frequency premiums, and an example with re-estimation
of the regression parameters

Lines 1405 to 1715: This SAS program implements the GMM strategy mentioned
at the end of Section A.3. Efficient GMM estimators are derived from given frequency

10



premiums derived at the individual level (individual: pair (policyholder, period)). Esti-
mations are performed for time-invariant and dynamic random effects with an AR(1) or
ARFIMA(0,d,0) ergodic component. The input is described in Section C.7. The estimat-
ing functions are those related to the second-order moments equations ((38), (39) and
(40) in Section A.3). We obtain the following results, to be compared with those of Table
2.

Q = 1 : σ̂2
P = 0.72 .

Q : AR(1). σ̂2
P = 0.51 ; γ̂Q(0) = 0.50 ; ϕ̂1 = 0.39.

Q : ARFIMA(0, d, 0). σ̂2
P = 0.01 ; γ̂Q(0) = 1.27 ; d̂ = 0.37.

In what follows, I show an example of comprehensive GMM estimation that uses the
k = 19 covariates retained in Pinquet et al. (2001). They include the intercept and are
all binary. The parameters of the Poisson regression are re-estimated. If the parameters
of the mixing distribution are taken on the grid, minimizing the distance to the manifold
defined in (42) leads to estimators of α that are given in Table 8 and compared with those
of Table 2. The values of the two objective functions are given for the two estimations.

TABLE 8

ESTIMATIONS OF THE AR(2) SPECIFICATION FOR Q (PARTIAL AND EFFICIENT GMM).

σ̂2
U γ̂Q(0) ϕ̂1 ϕ̂2 g(θ) =

∥∥∥F (θ)
∥∥∥

2

[tF (θ)F (θ)]
−1 SSE

Table 2 (rough GMM) 0.45 0.56 0.40 0.07 762× 10−8 55× 10−4

Efficient GMM 0.49 0.52 0.39 0.03 636× 10−8 75× 10−4

The estimators of β almost do not vary between the two estimations, as: max
1≤j≤19

∣∣∣β̂j − β̂0
j

∣∣∣ =

1.7× 10−3.
Each estimator minimizes a criterion (i.e. the sum of squared errors SSE for α̂0, the

function g for θ̂ = (β̂, α̂)). The goodness of fit of the two GMM estimations on the
different lags is given in Table 9.

TABLE 9

GOODNESS OF FIT FOR THE PARTIAL AND EFFICIENT GMM ESTIMATIONS.

h (lag) 0 1 2 3 4 5 6

γ̂U(h) 1.269 0.802 0.615 0.586 0.553 0.457 0.442

γU,α̂0(h)− γ̂U(h) −0.007 −0.003 0.031 −0.033 −0.048 0.022 0.024

γU,α̂(h)− γ̂U(h) −0.004 0 0.020 −0.030 −0.033 0.047 0.054

The efficient GMM estimation takes into account the risk exposure and gives lower weights
to the last lags than the rough derivations of the case study, as expected by the results
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given in Table 6. This explains why the efficient estimation outperforms the rough strategy
for the low values of the lags and is beaten for the last two values.

We provide details on the relative weights of the two estimations. The sample average
of the estimating functions is split into two blocks: M = F =

(
Mβ Mα

)
. The first

block corresponds to the likelihood equations in the Poisson model. Then Mβ(β̂0) = 0,

which implies g(θ̂0) =
∥∥∥Mα(θ̂0)

∥∥∥
2

Wαα(θ̂0)
from (42). Equation (41) provides a matrix W 0

αα

that expresses θ̂0 as an estimator of the GMM type, but W 0
αα 6= Wαα(θ̂0).

At the optimum, the objective function g minimized by the efficient GMM actually
concentrates on the diagonal of Wαα. As β̂ is close to β̂0, Mβ(β̂) is close to Mβ(β̂0) = 0

and the entries of g(θ̂) =
∥∥∥M(θ̂)

∥∥∥
2

W (θ̂)
that are located outside the α − α block have a

negligible contribution. Indeed, we have g(θ̂) = 636.3× 10−8, with

∥∥∥M(θ̂)
∥∥∥

2

W (θ̂)

636.3×10−8=

=
∥∥∥Mα(θ̂)

∥∥∥
2

Wαα(θ̂)

636×10−8

+
∥∥∥Mβ(θ̂)

∥∥∥
2

Wββ(θ̂)

+3.1×10−8

+ 2
(
Mα(θ̂) |Mβ(θ̂)

)
Wαβ(θ̂)

−2×1.4×10−8

.

The contribution of the diagonal of Wαα(θ̂) is equal to
∥∥∥Mα(θ̂)

∥∥∥
2

diag(Wαα(θ̂))
= 608.5×10−8.

The weights associated to the squared errors reported in Table 9 decrease with the lag
for the efficient GMM estimation.

C.13 Derivations in the projective plane

Lines 1717 to 1741: This R program derives the matrices related to the projective
approach in the affine plane that contains the simplex (see Section B.3).

C.14 Mathematica programs for Figures 5 and 6

Lines 1743 to 1760: This Mathematica program generates a 3D plot of the stationarity
domain for AR(3) time series, and a 3D plot of the set associated to stationary times
series of the AR(3) type that reach level S.

C.15 Between–within derivations for Table 3

Lines 1769 to 1814: This R program provides a between–within analysis of the random
effects (Table 3). See Appendix B.15 for the formulas.
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