
B Appendix

B.1 Proof of Proposition 1

1) Perron–Frobenius. If B ≥ 0 entrywise, then B has a nonnegative eigenvalue λ (termed
the Perron root), with λ = ρ(B). If IT − B is an M -matrix, we have λ ∈ [0, 1]. If λ = 1,
then IT −B is singular. �
2) A positive definite matrix whose off-diagonal entries are nonpositive is an M-matrix.
Let P be such a matrix, expressible as P = s × (IT − B) where T is the order of P and
s = max

1≤h≤T
Phh > 0. The matrix B is symmetric, with B ≥ 0 entrywise. We are left to prove

ρ(B) < 1, as P is nonsingular. Now P is positive definite, hence x
′
Bx
x′x

< 1 ∀x ∈ RT −{0}.
Hence, the eigenvalues of B are less than one. For x 6= 0, the following inequalities are
obtained:

x
′
x = |x|′ |x| >

(a)
|x|′B |x| ≥

(b)

∣∣∣x′B x
∣∣∣ ≥ −x′B x. (43)

The absolute value function is applied entrywise to x in (43). The matrix P is positive
definite, which implies inequality (a). Besides, inequality (b) stems from B ≥ 0 and the
triangular inequality. Then x

′
x > −x′B x ∀x 6= 0. Hence, the eigenvalues of B are

greater than −1. �
3) Proof of the proposition in the strict sense.

As P = s× (IT −B), condition (11) applied to P =
[
V T
U

]−1
is equivalent to |τ − h| =

1⇒ Bhτ > 0. We define a square matrix B of order T , by

|τ − h| = 1⇒ Bhτ = Bhτ > 0, |τ − h| 6= 1⇒ Bhτ = 0.

All the entries of B and B are nonnegative, and we have B ≥ B, where the inequality is
defined entrywise. We writeB = BL+BU , which is an additive lower–upper decomposition
of B. Then

0 ≤ n < T ⇒ {(Bn
U)hτ > 0⇔ τ − h = n} , and n ≥ T ⇒ Bn

U = 0. (44)

A similar property holds for BL. Equation (44) and the nonnegativity of all the entries
lead to the following entrywise results

(
P

s

)−1

=
∑

n∈N
Bn ≥

∑

n∈N
(BL +BU)n ≥

∑

0≤n<T
[(BL)n + (BU)n] > 0.

In addition, some of the filtering coefficients are positive (i.e., vTϕU 6= 0 as vTϕU ∈
(R+)

T
from condition (8)), which provides the proof in the strict sense. To see this, we

start from the probabilistic regression U c
t =

∑T
h=1 ϕT,h U

c
t−h + ET

t , with U c = U − 1 and
Cov(ET

t , Ut−h) = 0 ∀t ∈ N∗, ∀h = 1, . . . , T . If vTϕU = 0, then Cov(Ut, Ut−h) = 0 ∀t ∈
N∗, ∀h = 1, . . . , T . The matrices V T

U and P =
[
V T
U

]−1
would be diagonal, which is a

contradiction to condition (11). �

B.2 Precision matrices and generalized partial autocorrelation
coefficients

We denote the residuals of the affine probabilistic regression of Uh and Uτ with respect to

(Ut)t=1,...,T ; t6=h,τ as U
∗(h,τ)
h and U

∗(h,τ)
τ . Then r(Uh, Uτ |U1, . . . , UT )

def
= r(U

∗(h,τ)
h , U

∗(h,τ)
τ ).
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The vector space spanned by the centered variables (U c
t = Ut − 1)t=1,...,T is endowed with

the inner product 〈X, Y 〉 = E(X Y ). In this vector space, the dual basis of (U c
t )t=1,...,T is

denoted by (U∗t )t=1,...,T . Then

E(U∗t U
c
s ) = 1[t=s] ∀t, s = 1, . . . , T ⇒ E(U∗t U

∗
s ) = Pts ∀t, s

(
P =

[
V T
U

]−1
)
. (45)

The precision matrix is the variance–covariance matrix of the variables of the dual basis.
From the residual definition of U

∗(h,τ)
h and U

∗(h,τ)
τ , we have U

∗(h,τ)
s ∈ RU∗h + RU∗τ for

s = h, τ . We write
U∗(h,τ)
s = ashU

∗
h + asτU

∗
τ for s = h, τ.

The identities
〈
Us − U∗(h,τ)

s , U∗t

〉
= 0 ∀s, t ∈ {h, τ} and equation (45) lead to

(
ahh ahτ
aτh aττ

)
=

(
Phh Phτ
Pτh Pττ

)−1
def
=

(
P hh P hτ

P τh P ττ

)
.

Then

V

(
U
∗(h,τ)
h

U
∗(h,τ)
τ

)
= V

[(
ahh ahτ
aτh aττ

)(
U∗h
U∗τ

)]
=

(
P hh P hτ

P τh P ττ

)
⇒

r(Uh, Uτ |U1, . . . , UT ) = r(U
∗(h,τ)
h , U∗(h,τ)

τ ) =
P hτ

√
P hh
√
P ττ

=
−Phτ√
Phh
√
Pττ

= −Rhτ .

Equation (13) is proved, as well as the equivalence

([
V T
U

]−1
)
hτ

= Phτ ≤ 0⇔ r(Uh, Uτ |U1, . . . , UT ) ≥ 0 (h 6= τ).

From the stationarity of U , the variance–covariance matrix V T
U is Toeplitz. This

property is lost in the inversion, and the entries of the precision matrix are not constant
on diagonals. This explains the “generalized” adjective.

Generalized partial autocorrelation coefficients are a tool in the “big data” literature
for variable selection. Popular methods such as the “variable selection with the lasso”
(Tibshirani, 1996; Meinshausen et al., 2006) use precision matrices and their statistical
interpretation. The surge of the “big data” challenges experience rating in non-life insur-
ance because distribution mixing reflects an unobservable information, which receives a
residual interpretation with respect to observable information. Second-order moments of
random effects decrease when observable information increases.

B.3 A formal proof of Proposition 3

The derivations related to Figure 4 are given first. We have that

γU : AR(1); ϕ1 = 0.5; v3
γU

= 0.5 c1 ⇒ p
(
v3
γU

)
= p(c1) = a1.

If γU(0) = 1 : V 3
U = R =




1 0.5 0.25
0.5 1 0.5
0.25 0.5 1


 = (c1 c2 c3).

(s(c1) s(c2) s(c3)) =
(

7/4 2 7/4
)
⇒
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A = (a1 a2 a3) =
(

c1
s(c1)

c2
s(c2)

c3
s(c3)

)
=




4/7 0.25 1/7
2/7 0.5 2/7
1/7 0.25 4/7


 .

A−1 =




7/3 −7/6 0
−4/3 10/3 −4/3

0 −7/6 7/3


 .

A−1 is the matrix of barycentric coordinates of the canonical vector basis {e1, e2, e3} in
{a1, a2, a3}. The lines of A−1 are proportional to those of the precision matrix

P = R−1 =




4/3 −4/6 0
−2/3 5/3 −2/3

0 −4/6 4/3


 .

In Figure 4, the weights used in: bh = πheh + (1 − πh)ah (h = 1, 2, 3) are equal to
π1 = 1/2; π2 = 5/7; π3 = 1/2. From 1/πh = 1 + (λT+1−h s(ch)) (h = 1, 2, 3), we obtain
λ1 = λ3 = 4/7; λ2 = 1/5.

The matrix of barycentric coordinates of {b1, b2, b3} in {a1, a2, a3} is

B =




4/3 −4/6 0
−2/3 5/3 −2/3

0 −4/6 4/3


 .

The columns of B are derived as averages between those of A−1 and of the identity matrix
I3 with the weights πh and 1 − πh, respectively (h = 1, 2, 3). The matrix of barycentric
coordinates of {a1, a2, a3} in {b1, b2, b3} is

B−1 =




0.7 0.25 0.1
0.2 0.5 0.2
0.1 0.25 0.7


 .

These positive coordinates imply positive credibilities. Because p(v3
γU

) = a1, the credibil-
ities α3,h (h = 1, 2, 3) are obtained from (47) as

α3,1 = 0.7× 7/8

7/2
= 0.175; α3,2 = 0.2× 7/8

7
= 0.025; α3,3 = 0.1× 7/8

7/2
= 0.025.

Formal proof of Proposition 3: a geometrical interpretation of condition (8) (i.e.,
nonnegative linear filtering) is

vTϕU =
[
V T
U

]−1
vTγU ∈

(
R+
)T ⇔ vTγU = V T

U vTϕU ∈
∑

1≤h≤T
R+ch,

where ch is the hth column of V T
U . As the autocovariances are positive, vTγU belongs to a

cone included in the nonnegative orthant.
We use the vocabulary of projective geometry. Write s(x) =

∑T
h=1 xh ∀x ∈ RT . For

any scalar a, Ha = s−1(a) is an affine hyperplane of RT . The function

p : x −→ x

s(x)
= Rx ∩H1
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maps RT − H0 onto H1. The function p also maps (R+)
T − {0} onto the simplex S =

(R+)
T ∩H1. The vertices of S are the elements e1, . . . , eT of the canonical basis of RT .

We write ah = p(ch) (h = 1, . . . , T ). As V T
U is positive definite, {ch}h=1,...,T is a vector

basis of RT and {ah}h=1,...,T is an affine basis of H1. Hence

x ∈ H1 ⇒ x =
T∑

h=1

πxh ah, with
T∑

h=1

πxh = 1.

The (πxh)h=1,...,T are the barycentric coordinates of x in the affine basis {ah}h=1,...,T . The
convex hull of {ah}h=1,...,T is denoted by CH(a1, . . . , aT ) and is the subset of H1 defined
from nonnegative barycentric coordinates in the affine basis {ah}h=1,...,T . A new geomet-
rical interpretation of (8) is obtained from:

vTγU ∈
∑

1≤h≤T
R+ch ⇔ p

(
vTγU
)
∈ CH(p(c1), . . . , p(cT )) = CH(a1, . . . , aT ). (46)

Nonnegative credibilities are interpreted in a similar way. The vector of stacked credibil-
ities per period is denoted by vTα . We assume that λ1, . . . , λT > 0. From equation (4), we
have vTγU =

[
Λ−1
T + V T

U

]
vTα . Hence

vTγU =
∑

1≤h≤T
αT,h dh, with dh =

eh
λT+1−h

+ ch. Then (47)

vec
1≤h≤T

(αT,h) = vTα ∈
(
R+
)T ⇔ vTγU ∈

∑

1≤h≤T
R+dh,⇔ p

(
vTγU
)
∈ CH(b1, . . . , bT ), (48)

with bh = p (dh) = πheh + (1− πh)ah; πh =
1

1 + (λT+1−h s(ch))
∀h = 1, . . . , T. (49)

Nonnegative credibilities are obtained from the nonnegative filtering condition given in
(46) if CH(a1, . . . , aT ) ⊂ CH(b1, . . . , bT ). The weights πh defined in (49) are positive,
hence bh ∈ ]ah, eh[∀h = 1, . . . , T . Besides, CH(a1, . . . , aT ) ⊂ CH(e1, . . . , eT ) = S, where
S is the simplex.

The nonpositivity of the off-diagonal coefficients of the precision matrix (i.e., condition
(10)) also receives a geometrical interpretation. The equations

eh =
∑

1≤τ≤T
πehτ aτ (h = 1, . . . , T ) (50)

provide the barycentric coordinates of the vectors of the canonical vector basis in the

affine basis {ah}h=1,...,T . Then eh =
∑T

τ=1
π
eh
τ

s(cτ )
cτ (h = 1, . . . , T ). As (cτ )τ=1,...,T are the

columns of V T
U , the precision matrix P is defined by Pτ,h = π

eh
τ

s(cτ )
∀h, τ = 1, . . . , T . Hence,

condition (10) is related to the nonpositivity of the barycentric coordinates πehτ , if τ 6= h.
As
∑T

τ=1 π
eh
τ = 1 ∀h = 1, . . . , T in (50), we have eh − ah =

∑T
τ=1 π

eh
τ (aτ − ah) and

eh − ah ∈
∑

τ 6=h
R−(aτ − ah) ∀h = 1, . . . , T. (51)
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As bh ∈ ]ah, eh[ ∀h = 1, . . . , T, equation (51) also holds if eh is replaced by bh.
From (48), the credibilities per period are nonnegative if p

(
vTγU
)
∈ CH(b1, . . . , bT ). As

nonnegative linear filtering implies p
(
vTγU
)
∈ CH(a1, . . . , aT ), Proposition 3 is proved in

the wide sense from the following result.

Proposition 12 Let {ah}h=1,...,T be an affine basis of H1. If (bh)h=1,...,T are elements of
H1 such that

bh − ah ∈
∑

τ 6=h
R−(aτ − ah) ∀h = 1, . . . , T (52)

(i.e. bh is at the opposite of ah with respect to the (aτ )τ 6=h ∀h = 1, . . . , T ), then {bh}h=1,...,T

is an affine basis of H1 and CH(a1, . . . , aT ) ⊂ CH(b1, . . . , bT ).

We write: bh − ah =
∑

τ 6=h µτ,h×(aτ − ah), with µt,h ≤ 0 ∀h, τ from (52). The

barycentric coordinates of bh in the affine base {aτ}τ=1,...,T are πbhτ = µτ,h if τ 6= h, and
πbhh = 1−∑τ 6=h µτ,h. These barycentric coordinates are the entries of a matrix Π, with

Π = (IT −B)×D, D = diag
h=1,...,T

(
πbhh

)
, (53)

and: a) Bh,h = 0 ∀h = 1, . . . , T ; b) Bτ,h = −πbhτ
π
bh
h

=
−µτ,h

1−∑τ 6=h µτ,h
if τ 6= h.

We have: B ≥ 0 entrywise and
∑T

τ=1 Bτ,h < 1 ∀h = 1, . . . , T (B is column substochas-
tic). Hence, IT −B is a nonsingular M−matrix (see Lemma 2). The matrix Π is nonsin-
gular, and {bh}h=1,...,T is an affine basis of H1. The barycentric coordinates of (ah)h=1,...,T

in the affine basis {bτ}τ=1,...,T are the entries of Π−1 = D−1× (IT −B)−1 =
∑+∞

n=0 D
−1Bn.

The entries of Π−1 are nonnegative entrywise. A convex hull is defined from nonnegative
barycentric coordinates, hence CH(a1, . . . , aT ) ⊂ CH(b1, . . . , bT ) and the credibilities are
nonnegative.

The positivity result also holds in the strict sense. If the entries of the precision matrix
are negative on the subdiagonal and on the superdiagonal, the corresponding barycentric
coordinates in (50) are also negative. The same result holds for the barycentric coordinates
of bh with respect to {aτ}τ=1,...,T , as πh > 0 in (49) for h = 1, . . . , T . Applying Lemma 2 in
the strict sense implies positive barycentric coordinates of ah with respect to {bτ}τ=1,...,T .
As p(vTγU ) ∈ CH(a1, . . . , aT ), the barycentric coordinates in {bτ}τ=1,...,T of p(vTγU ) are
positive. Therefore, the credibilities αT,h (h = 1, . . . , T ) are positive as

vTγU =
∑

h

αT,h dh ⇒ p(vTγU ) =

∑
h αT,h dh∑

h αT,h s(dh)
=
∑

h

αT,h s(dh)∑
τ αT,τ s(dτ )

bh. �

B.4 Proof of Proposition 6

The conditions given in (23) ensure the stationarity of U because the roots of the lag
polynomial Φ(z) = 1 −∑1≤h≤p ϕh z

h (i.e., defined by Φ(L)U c = ε) lie outside the unit
disk of C. The double index on the filtering coefficients is used in the proof, and ϕh
is denoted by ϕp,h (h = 1, . . . , p). As ε is the innovation of U c, we obtain ϕT,h = ϕp,h
if T ≥ p ≥ h and ϕT,h = 0 if T ≥ h > p. Let us prove that the conditions ϕp,h ≥
0 ∀h = 1, . . . , p are hereditary. The Levinson–Durbin recursion is used backwards, with
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ϕp,h = ϕp−1,h − ϕp,pϕp−1,p−h ; ϕp,p−h = ϕp−1,p−h − ϕp,pϕp−1,h for h = 1, . . . , p − 1. Then,
ϕp,h ≥ 0, ϕp,p−h ≥ 0 ⇒ ϕp−1,h ≥ ϕp,pϕp−1,p−h ≥ ϕ2

p,pϕp−1,h, and ϕ2
p,p < 1 (from (20))

implies ϕp−1,h ≥ 0 ∀h = 1, . . . , p − 1. From backward induction, the conditions given in
(23) entail a level N2 specification for U . They are obviously necessary.

B.5 Precision matrices of an AR(p) sequence

Proposition 1 is illustrated by the precision matrix associated with an AR(1) sequence.
This matrix is tridiagonal and such a result is extended to an AR(p) sequence. The
derivation starts from a spherization of the AR(p) sequence. Write vTU = vec

1≤t≤T
Ut , and let

(LT )T∈N∗ be a sequence of lower triangular matrices, with V
(
LT v

T
U

)
= σ2

ε IT ∀T ∈ N∗.
The constant σ2

ε is the variance of the innovation of U . The precision matrices are obtained
from the (LT )T∈N∗ by

V
(
LT v

T
U

)
= LT V

T
U L

′

T ⇒ P =
[
V T
U

]−1
=
L
′
T LT
σ2
ε

. (54)

We now determine P for T ≥ 2p. The definition of the AR(p) sequence provides a natural
solution for the tth line of LT if t > p, with

(
LT v

T
U

)
t

= εt. We want to bypass the first
p lines of LT , which are not detailed in the proof. The southeast block of P , which is
a square matrix of order T − p, is obtained from the scalar products of the last T − p
columns of LT . These scalar products are known because LT is lower triangular. The
precision matrix is centrally symmetric (see the proof of the Levinson–Durbin recursion).
This provides the northwest block of P . The northeast and southwest square blocks of
order p must still be derived, and one derivation is enough due to the symmetry of P .
These blocks are derived from the scalar products of one of the first p columns of LT ,
and one of the last p columns. As LT is lower triangular, the unknown entries of LT are
eliminated in the scalar products that lead to the yet undefined blocks of P if T ≥ 2p.
Then, L

′
T LT and the precision matrix are completely determined.

The entries of L
′
T LT and P are now detailed. First, |h− τ | > p ⇒ Phτ = 0. Hence,

the precision matrix is (2p+ 1)-diagonal (which extends the tridiagonal denomination of
P if p = 1). The off-diagonal entries of L

′
T LT that are located at the border are equal to

−ϕ1, . . . ,−ϕp if we start from the northwest or southeast corners. They are nonpositive
if U reaches level S. The first condition given in (23) is obtained. On the hth diagonal
above or below the main diagonal (1 ≤ h ≤ p), the entries of L

′
T LT increase from −ϕh

(at the border of the matrix) to −ϕh +
∑

1≤τ≤p−h ϕτ ϕτ+h. Then the entries are constant,
which leads to (24). We assume T ≥ 2p in these derivations but this does not restrict the
result owing to the hereditarity of level S specifications.
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We detail the spherization operator LT , a lower triangular matrix. We have

LT =




? 0 . . . 0 . . . . . . 0 0 0 0 0
. . . . . .

...
...

...
...

? . . . ? 0

? . . . ? ? 0 0
...

−ϕp . . . −ϕ2 −ϕ1 1
. . .

0
. . . . . . . . . . . . 0

...
...

...
...

. . . . . . . . .
. . . 1 0 0 0 0

...
. . . . . . . . . . . . . . . . . .

...
...

0 0
...

. . . . . . . . . . . . . . . 1 0 0

0 0
. . . . . . −ϕ1 1 0

0 . . . 0 . . . . . . 0 −ϕp . . . −ϕ2 −ϕ1 1




In this example, we see that the p × p northwest block of LT can be bypassed in the
derivation of L

′
T LT if T ≥ 2p, with the central symmetry property of the precision matrix

[
V T
U

]−1
=

L
′
T LT
σ2
ε
.

On the hth diagonal above or below the main diagonal (1 ≤ h ≤ p), the entries of L
′
T LT

increase from −ϕh to −ϕh+
∑

1≤τ≤p−h ϕτ ϕτ+h if we leave the border of the matrix. Then
the entries are constant.

The matrix L
′
T LT is represented below.

L
′

T LT =




1 −ϕ1 . . . . . . −ϕp 0 0 0 0 0 0

−ϕ1 1 + ϕ2
1

. . .
...

. . . 0
...

...
...

... . . .
. . . . . . . . .

... . . .
. . . . . . . . .

...

−ϕp . . .
. . . . . . . . . 0 0

0
. . . . . . . . . . . .

...
. . . 0

...
. . . . . . . . .

. . . . . . −ϕp
...

. . . . . . . . . . . . . . .
...

...

0 0
...

. . . . . . . . . . . . . . . 1 + ϕ2
1 + ϕ2

2 −ϕ1 + ϕ1ϕ2 −ϕ2

0 0
. . . . . . −ϕ1 + ϕ1ϕ2 1 + ϕ2

1 −ϕ1

0 . . . 0 . . . . . . 0 −ϕp . . . −ϕ2 −ϕ1 1




From (54), the precision matrix is a positive multiple of L
′
T LT . The positivity conditions

on autoregressive specifications given in Propositions 6 and 7 are then obtained.
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B.6 Proof of equation (26)

We assume that E(W ) = 0 entrywise without loss of generality, as an intercept is elimi-
nated in the definition of U . The useful result is

Z ∼ N(0, σ2)⇒ E[exp(Z)] = exp(σ2/2).

Then
Wt ∼ N(0, γW (0))⇒ E[exp(Wt)] = exp(γW (0)/2).

In the fully specified framework of Section 4, every finite linear combination of the entries
of W is Gaussian. For any lag h, we have

Wt +Wt+h ∼ N(0, 2(γW (0) + γW (h)))⇒

E[exp(Wt +Wt+h)] = exp(γW (0) + γW (h))⇒

E(Ut Ut+h) =
E [exp(Wt +Wt+h)]

E[exp(Wt)]× E[exp(Wt+h)]
= exp(γW (h)).

Then, Cov(Ut, Ut+h) = E(Ut Ut+h) − 1 = exp(γW (h)) − 1 for any lag h implies γU =
exp(γW )− 1 entrywise.

B.7 Interplay between semiparametric and fully specified mod-
els on second-order stationary random effects

Figure 5 describes two sets. The first is the convex cone of autocovariance functions and
is denoted by C1. This is the parameter domain for the second-order semiparametric
analysis of stationary random effects. The convex set C2 is much larger, and relates to
the probability distributions on RZ that are second-order stationary. The subset C+

2 =

{P ∈ C2, P
(

(R+)
Z
)

= 1} is used for fully specified models of Poisson mixtures with

dynamic random effects.
Let P be a probability distribution in C2, and let γ = f(P ) be the related autocovari-

ance function. The set f−1(γ) always intersects the set GS of Gaussian stationary dis-
tributions. To see this, perform Cholesky decompositions on nested variance–covariance
matrices related to consecutive variables and then apply the corresponding lower ma-
trices to a strong Gaussian standard white noise. Denote LGS as the set of stationary
log-Gaussian distributions. Equation (26) means:

∀γ ∈ C1 : f−1(γ) ∩ LGS 6= ∅ ⇔ log(1 + γ) ∈ C1.

In Section 4, we verify with the Levinson–Durbin recursion that this condition holds
at the horizon of a century and on a grid of parameters for the AR(p) autocovariance
functions (p = 1, 2, 3) that reach level N2, and for the ARFIMA(0, d, 0) specifications.

8



�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@C1 ⊂ RZ : C1

convex cone of
autocovariance functions

�
�
�
�
�
�
�

�
�
�
�
�
�
�

γ0 = 1

γ/γ0 = ρ ;

C1 ∩ {γ0 = 1} : autocorrelation functions �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
EE

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB

ARFIMA(0, d, 0)AR(1), ρ1 > 0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB sγ

C2 : convex set of second-order stationary probability distributions on RZ.
f : C2 −→ C1, f(P ) = γ

C+
2 = {P ∈ C2, P

(
(R+)

Z
)

= 1⇔ supp(P ) ⊂ (R+)
Z}.

Autocovariance functions γ of interest for Poisson mixtures:
f−1(γ) ∩ C+

2 6= ∅
C+

2��
��
GAMs
��
��

LGSs��
��

GS
s

f−1(γ)

C2

P, f(P ) = γs

GS, GAM, LGS: sets of distributions of the Gaussian, gamma (including autoregressive
gamma), and log-Gaussian type. The sets GAM and LGS are included in C+

2 .

If γ is AR(1), with ρ1(= γ1/γ0) > 0, then f−1(γ) intersects GS, GAM and LGS.

5

Figure 5: Interplay between semiparametric and fully specified models
on second-order stationary random effects.
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B.8 The deterministic component of a stationary sequence an-
alyzed in both the time and frequency domains

A deterministic sequence X is defined by a null innovation, hence by an autoregressive
equation without innovation of the type Xt =

∑+∞
h=1 ϕhXt−h. Deterministic sequences can

be obtained from AR(p) specifications related to lag polynomials with roots on the unit
circle, which are conjugate because the lag polynomial is real. With p = 1, 2, we obtain:
p = 1 : (I −L)Xt = Xt−Xt−1 = 0⇒ Xt is time-invariant. This is the solution retained
in the paper in a multiplicative setting.
p = 2 : (I − eiθL) (I − e−iθL)Xt = 0 (with eiθ 6= 1)⇔ Xt = 2 cos(θ)Xt−1 − Xt−2. The
solutions are of the type

Xt = A sin(θt) +B cos(θt),

where A and B are random variables. The autocovariance function oscillates without
vanishing, and the same result holds for larger values of p.
A characterization of deterministic sequences requires an analysis in the frequency domain.
The time domain is Z in our setting, and the frequency domain is defined by a dual
approach on groups (Rudin (2017)). In a discrete time framework, the frequency domain

is equal to Ẑ = R/2πZ. This domain is identified with the interval [−π, π[, and is defined
as the set of characters χθ(h) = eiθh (θ ∈ R, h ∈ Z). The time domain Z can be seen
as a group G endowed with Haar measures (i.e., not identically zero, nonnegative, and
invariant with respect to translations). From the invariance property, it is clear that
every Haar measure on Z is equal to the counting measure times a positive constant.
Haar measures are equal up to a positive and multiplicative constant for every locally
compact and Abelian group. The characters on G constitute the dual group Ĝ. If G is
the time domain, then Ĝ is the frequency domain.

A Fourier transform of f ∈ L1(G) is defined by f̂(χ) =
∫
G
f(g)χ(g) dµ(g) ∀χ ∈ Ĝ. In

this equation, µ is a Haar measure on G and the Fourier transform depends on a positive
coefficient c such as µ = c µ0, with µ0 a reference Haar measure. In a time series context,
the functions f are autocovariances if G = Z or spectral densities if G = Ẑ = R/2πZ.
They are even because we restrict our considerations to real-valued random variables.
Hence, χ(g) could be replaced by χ(g) in the Fourier transform, which defines an inverse

Fourier transform
∨
f .

A Fourier transform of a summable sequence γ (with a short memory if γ is an auto-
covariance function) is defined by s(θ) = γ̂(θ) = c1

∑
h∈Z e

−iθh γ(h), θ ∈ [−π, π[; c1 > 0.
Herglotz’s theorem implies

γ is an autocovariance function ⇔ s = γ̂ ≥ 0 on [−π, π[. (55)

In this case, s = γ̂ is a spectral density. If X is a stationary sequence such as γ = γX , then

we have γX =
∨
γ̂X =

∨
sX = c2

∫ π
−π e

ihθ sX(θ) dθ if c1 c2 = 1/2π. We will take c2 = 1/2π
and c1 = 1, in which case the variance of the innovation of X defined from (27) is the
geometric mean of the spectral density sX . Then

∀h ∈ Z, ∀θ ∈ [−π, π[ : γX(h) =
1

2π

∫ π

−π
eihθ sX(θ) dθ ; sX(θ) =

∑

h∈Z
e−iθh γX(h). (56)
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An autocovariance function γX /∈ L1(Z) can still be represented by a nonnegative
spectral measure SX , with

γX(h) =
1

2π

∫ π

−π
eihθ dSX(θ) ∀h ∈ Z. (57)

Spectral theory provides a characterization of deterministic time series.
Let us start from a time-invariant sequence X. We have SX = 2π γX(0) δ0 from (57),

hence the spectral measure is proportional to a Dirac mass located at zero. If X is related
to an AR(2) specification without innovation (i.e. (I − eiθL) (I − e−iθL)Xt = 0 with
eiθ 6= 1), then the spectral measure is a linear combination of Dirac masses located at θ
and −θ. For higher values of p, the spectral measure has a finite support.
If p = +∞, consider the component of SX that is absolutely continuous with respect to
any Haar measure on the frequency domain (i.e. the trace of the Lebesgue measure on
R/2πZ, up a positive constant). The corresponding density is denoted by sX . If the Haar
measure on the time domain is the counting measure in the definition of the spectral
density, then the variance of the innovation IX of a stationary sequence X is equal to

γIX (0) = exp

[
1

2π

∫ π

−π
log(sX(θ)) dθ

]
.

The variance of the innovation is the geometric mean of the spectral density, as the Haar
measure on the frequency domain that is dual to the counting measure is a probability
measure. Then

γIX (0) = 0⇔
∫ π

−π
log(sX(θ)) dθ = −∞,

which is the Kolmogorov–Szegö condition for X to be deterministic. This condition is
fulfilled, for instance, if the spectral measure equals zero for a non empty and open set of
the frequency domain.
A characterization of deterministic time series from the autocovariance function would be
more relevant for practitioners. The nonconstant autocovariance functions derived by the
author from spectral densities following the Kolmogorov–Szegö condition always oscillate
around zero. Hence, they cannot be retained in the credibility model because they do not
reach the positivity level N1.

B.9 Ergodicity properties of stationary time series

Stationary time series have properties that relate to ergodicity in the mean. Consider the
dynamic random effect U defined in Section 5. If U = Q, U is purely nondeterministic and
the autocovariance function γU vanishes. The mean square convergence of time averages

U
T

= 1
T

∑T
t=1 Ut (T ∈ N∗) towards E(U) = 1 follows. This weak ergodicity result is

easily obtained from the variance of U
T

, equal to the mean of the entries of the variance–
covariance matrix V T

U . This variance is also a mean of γU with a triangular kernel. As γU
vanishes and as the weights of the kernel go to zero for any lag when the length goes to

infinity, the limit of V (U
T

) is equal to zero. The convergence almost everywhere of U
T

towards E(U) = 1 is obtained if U is strictly stationary. This strong ergodicity result is
obtained from subadditive ergodicity concepts (Kingman, 1968; Liggett, 1985).
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If the sequence U is strictly stationary but not ergodic, then there is still a limit almost

everywhere for U
T

from Birkhoff’s theorem. However, this limit is not a constant. In this
paper, the random effect is defined as Ut = P Qt. In a fully specified context (e.g. with

log-Gaussian sequences), we may assume strict stationarity, and U
T

= P Q
T

converges
almost everywhere towards P × E(Q) = P . This result is exploited in Table 3, with
between–within derivations on the random effects.

B.10 Proof of Proposition 8

Equation (30) implies V T
U = (1 + σ2

P )
[
V T
Q +

(
σ2
P

1+σ2
P
JT

)]
, with JT = 1T 1

′
T . Then

(
IT + uv

′
)−1

= IT −
uv
′

1 + u′v
∀u, v ∈ RT , u

′
v 6= −1⇒ (58)

[
V T
Q + a JT )

]−1
=
[
V T
Q

]−1 −
a
[
V T
Q

]−1
1T

([
V T
Q

]−1
1T

)′

1 +
(
a 1
′
T

[
V T
Q

]−1
1T

) . (59)

Equation (58) is proved with
(
uv
′) (

uv
′)

= u
′
v
(
uv
′)

. Equation (59) is obtained from[
V T
Q + a JT

]−1
=
(
IT + uv

′)−1 [
V T
Q

]−1
, with u = a

[
V T
Q

]−1
1T , v = 1T . The first part of

Proposition 8 is proved because level S in a wide sense (resp. in a strict sense) is related to
the nonpositivity of off-diagonal entries (resp. to the supplementary negativity of entries
for the subdiagonal and the superdiagonal) for precision matrices. The hereditarity is
obtained from (22), with

∑
1≤h≤T ϕT,h < 1 and ϕT,h ≥ 0 ∀h = 1, . . . , T .

Let Q be an AR(p) sequence that reaches level S. With the notations of Section B.5,

we write c = L
′
T LT1T = σ2

ε

[
V T
Q

]−1
1T , with T > 2p. We have a) c = c̃ (ch = cT+1−h ∀h =

1, . . . , T ); b) c1 = 1 −∑1≤h≤p ϕh; c) ch+1 = ch − ϕh c1 ∀h = 1, . . . , p; d) cp+1 = c2
1; e)

ch = cp+1 if p + 1 ≤ h ≤ T − p. Hence, ch decreases from c1 to cp+1 = c2
1 as h increases

from 1 to p+ 1, which implies
[
V T
Q

]−1
1T ∈ (R+)

T
. The result also holds for T ≤ 2p, due

to hereditarity.

A geometrical interpretation of the condition
[
V T
Q

]−1
1T ∈ (R+)

T
is obtained with the

framework defined in Sections A.2 and B.3. If V T
Q = (cv1 . . . c

v
T ), this condition is equivalent

to p(1T ) ∈ CH(p(cv1), . . . , p(cvT )). Because p(1T ) = 1T/T, the latter condition means that
the center of the simplex belongs to the aforementioned convex hull.

B.11 Limit credibility in the short memory case

Consider equation (18) applied to X. The filtering coefficients (i.e., the credibilities) and

the autocorrelation coefficients are nonnegative. Then, (ṽTϕ | vTρ ) ≥ 0 ⇒ 0 ≤ pacT+1 ≤
ρT+1

sin2(ψT )
. For positive lags, we have γU = γX and ρX = γU/γX(0). As sin2(ψT ) decreases

with T, sin2(ψT ) ≥ lim
τ→+∞

sin2(ψτ ) = γIX (0)/γX(0).

A lower bound is needed for γIX (0). Equation (16) impliesET
t = At+

[
U c
t −

∑T
h=1 ϕ

X
T,h Xt−h

]
.

Then V (ET
t ) ≥ V (At) = 1/λ, as A is a white noise sequence uncorrelated with U . The

sequence ET is stationary because it was obtained from X by linear filtering. Hence,

γET (0) ≥ γA(0) =
1

λ
∀T ∈ N∗ ⇒ lim

T→+∞
γET (0) = γIX (0) ≥ 1

λ
∀λ > 0,
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and: 0 ≤ pacT+1 ≤
ρT+1

sin2(ψT )
≤ γU(T + 1)

γX(0)

1

γIX (0)/γX(0)
≤ λ γU(T + 1).

Then, γU = γQ ∈ L1(Z) ⇒ pac = pacX ∈ L1(N∗). As γX is positive definite, we have

pacX ∈ [0, 1[N
∗
. From (33), the limit credibility t∞α is less than one by a classic result on

infinite products.
Equation (34) is obtained from (16), written as ΦT (L)Xt = ET

t , with
ΦT (z) = 1 −∑1≤h≤T ϕT,h z

h. The spectral density is transformed by linear filtering as
follows:

ET
t = ΦT (L)Xt ⇒ sET (θ) =

∣∣ΦT (e−iθ)
∣∣2 sX(θ) (60)

for any T ∈ N∗ and any θ ∈ [−π, π[. Equation (56) implies sX(0) =
∑

h∈Z γX(h) =
1
λ

+
∑

h∈Z γQ(h) = 1
λ

+ ‖γQ‖1 as U = Q, γQ ≥ 0 and γX = γU + δ0
λ
. Writing (60) with

θ = 0 yields ΦT (1) = 1−∑1≤h≤T ϕT,h = 1− tTα . Hence,

(
1− tTα

)2 (
(1/λ) + ‖γQ‖1

)
= sET (0).

As the mean square convergence of ET
t towards IXt holds ∀t ∈ N∗, we have lim

T→+∞
γET (h) =

γIX (h) = γIX (0) δ0(h) ∀h ∈ Z because the innovation IX is a white noise process. The
limit and the sums that define the spectral densities can be interchanged under condition
(35) by the dominated convergence theorem, which yields (34).

Although condition (35) is not discussed in this paper, we have verified it numerically
on AR(p) specifications (with p = 1, 2, 3). An example is given in the document that
comments the programs, Section 6.

B.12 Cesàro convergence

From (30), lim
h→±∞

γQ(h) = 0, and from γX = γU + (δ0/λ), we have lim
h→±∞

γX(h) = σ2
P .

The hth column of V T
X is denoted by cT,hX . If 1T is the intercept, then

(
1
′

T V
T
X

)
h

= 1
′

T c
T,h
X ∀h⇒ 1

′

T V
T
X ≤ max

1≤h≤T

(
1
′

T c
T,h
X

)
1
′

T ,

where the inequality is taken entrywise. Nonnegative credibilities imply

1
′

T V
T
X vTϕX ≤ max

h=1,...,T

(
1
′

T c
T,h
X

)
1
′

T v
T
ϕX
.

Equation (15) implies V T
X vTϕX = vTγX . With 1

′
T v

T
ϕX

= tTα and 1
′
T v

T
γX

=
∑

1≤h≤T γX(h), we
obtain

tTα ≥
1
T

∑
1≤h≤T γX(h)

1
T

max
τ=1,...,T

∑
1≤h≤T γX(h− τ)

.

The proposition follows from

lim
T−→∞

1

T

∑

1≤h≤T
γX(h) = lim

T−→∞
max

τ=1,...,T

1

T

∑

1≤h≤T
γX(h− τ) = σ2

P > 0. (61)

Equation (61) implies t∞α ≥ 1, and the result as t∞α ≤ 1.
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The first limit in (61) follows from a Cesàro convergence result
lim

T−→∞
1
T

∑T
h=1 γX(h) = lim

h−→∞
γX(h). The second limit relies on uniform Cesàro conver-

gence. The proof of the uniform convergence follows.
We obviously can assume that lim

h→+∞
γX(h) = 0 without loss of generality. However,

this cannot be assumed at the inception of the proof because of the ratio.
The mean of γX on a non-empty set S, S ⊂ Z is denoted by γX

S. Let us prove

lim
T→+∞

[
max

S, S⊂Z, |S|=T

∣∣γXS
∣∣
]

= 0, (62)

where |S| denotes the cardinality of S. This uniformity result is stronger than our primary
goal. Then lim

h→+∞
γX(h) = 0⇒ ∀ε > 0, ∃nε ∈ N∗ / |γX(h)| ≤ ε/2 ∀h ∈ Z, |h| ≥ nε. The

set S∩ ]− nε, nε[ is denoted by Sε. Then

γX
S =

[ |Sε|
|S| γX

Sε

]
+

[(
1− |Sε||S|

)
γX

S−Sε
]
,

with |Sε| ≤ 2nε− 1. The sets Sε or S−Sε may be empty, in which case we may associate
them to any given average because the corresponding weight is null. Hence,

∣∣γXS
∣∣ ≤

[ |Sε|
|S| ‖γX‖∞

]
+

[(
1− |Sε||S|

)
ε

2

]
.

Then
∣∣γXS

∣∣ ≤ (2nε−1) ‖γX‖∞
|S| + ε

2
, and

∣∣γXS
∣∣ ≤ ε if |S| ≥ (4nε − 2) ‖γX‖∞ /ε .

B.13 Length of the memory and spectral measures of the ran-
dom effects

Let SU be the spectral measure of the random effect U defined by (57), and consider the
related distribution function CU(θ) = SU ([−π, θ[) defined on [−π, π]. The function CU
is increasing, since SU is a nonnegative measure from Herglotz’s theorem. This function
is bounded, as CU(π) = SU ([−π, π[) = 2π γU(0) from (57), with h = 0. The regularity
level of this increasing function at θ = 0 in the frequency domain depends on the length
of the memory in U and determines the limit credibility. Three cases may occur.

1. There is a jump of CU for θ = 0 if lim
h→±∞

γU(h) = σ2
P > 0. The constant autoco-

variance function γP is related to a spectral measure of the Dirac type from (57),
with SP = 2π σ2

P δ0. The length of the memory is at the highest level, and the limit
credibility is equal to one from Proposition 11.

2. The function CU is differentiable for θ = 0 if σ2
P = 0 and γQ ∈ L1(Z). Indeed,

γU = γQ, and C
′
U(0) =

∑
h∈Z γU(h) from (56). From Proposition 10, the limit

credibility is less than one. This short memory level is reached with the AR(p)
models defined in Section 3.4.

3. The intermediate level in terms of regularity (i.e., CU is continuous but not differen-
tiable for θ = 0) corresponds to σ2

P = 0 and
∑

h∈Z γQ(h) = +∞. This long memory
level is obtained with ARFIMA(0, d, 0) semiparametric specifications on U = Q.
Equation (34) suggests that t∞α = 1. An example supporting this intuition is given
in Section 7.2.
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B.14 Stationary time series of the AR(3) type, and their filtering
coefficients

Let us explicit the stationarity conditions for the AR(3) family from the Levinson–Durbin
recursion used backwards. First, we have the obvious condition |pac3| = |ϕ3,3| = |ϕ3| < 1,
with ϕ3,h = ϕh (h = 1, 2, 3). From the Levinson–Durbin recursion, we obtain

(1) : ϕ1 = ϕ3,1 = ϕ2,1 − ϕ3ϕ2,2 ;

(2) : ϕ2 = ϕ3,2 = ϕ2,2 − ϕ3ϕ2,1 .

Then, ϕ3(1) + (2)⇔ ϕ2,2 = pac2 = ϕ2+ϕ1ϕ3

1−ϕ2
3
, and the second condition is

|pac2| = |ϕ2,2| < 1⇔ |ϕ1ϕ3 + ϕ2| < 1− ϕ2
3.

We also obtain (1) +ϕ3(2)⇔ ϕ2,1 = ϕ1+ϕ2ϕ3

1−ϕ2
3
. From the first step of the Levinson–Durbin

recursion, we have ϕ2,1 = ϕ1,1 × (1− ϕ2,2)⇒ ϕ2,1

1−ϕ2,2
= ϕ1,1 = pac1 = ϕ1+ϕ2ϕ3

1−ϕ2
3−ϕ1ϕ3−ϕ2

.

The denominator of the last ratio is equal to 1−ϕ2,2 and is positive as |pac2| = |ϕ2,2| <
1. Hence the stationarity conditions: |pach| < 1 for h = 3, 2, 1 are

|ϕ3| < 1; |ϕ1ϕ3 + ϕ2| < 1− ϕ2
3; |ϕ1 + ϕ2ϕ3| < 1− ϕ2

3 − ϕ1ϕ3 − ϕ2. (63)

Let us interpret the last condition derived from |pac1| < 1: we have
ϕ1 + ϕ2ϕ3 < 1− ϕ2

3 − ϕ1ϕ3 − ϕ2 ⇔ (ϕ1 + ϕ2)× (1 + ϕ3) < 1− ϕ2
3

⇔ ϕ2 < 1− (ϕ1 + ϕ3), and −ϕ1 − ϕ2ϕ3 < 1− ϕ2
3 − ϕ1ϕ3 − ϕ2 ⇔ ϕ2 < 1 + (ϕ1 + ϕ3) .

To summarize, we obtain the equivalence

|pac1| < 1⇔ ϕ2 < 1− |ϕ1 + ϕ3| . (64)

From (63), we have |pac2| < 1⇔ |ϕ1ϕ3 + ϕ2| < 1−ϕ2
3. The inequality ϕ1ϕ3 +ϕ2 < 1−ϕ2

3

is always fulfilled from (64). Indeed, we have

ϕ2 < 1− |ϕ1 + ϕ3| ⇒ ϕ2 < 1− ϕ1ϕ3 − ϕ2
3 = 1− [ϕ3 × (ϕ1 + ϕ3)] ,

as ϕ3 × (ϕ1 + ϕ3) ≤ |ϕ3| × |ϕ1 + ϕ3| ≤ |ϕ1 + ϕ3| , with |ϕ3| = |pac3| < 1.
The only working inequality derived from |pac2| < 1 is ϕ2

3−1 < ϕ1ϕ3 +ϕ2 ⇔ ϕ2
3−ϕ1ϕ3−

1 < ϕ2. The domain related to stationary AR(3) sequences is then defined by

|ϕ3| < 1; ϕ2
3 − ϕ1ϕ3 − 1 < ϕ2 < 1− |ϕ1 + ϕ3| . (65)

The graphs of the two functions of ϕ1 and ϕ3 that bound ϕ2 look respectively like a saddle
and a roof. The constraint |ϕ3 − ϕ1| < 2 is easily derived from (65). The parameter
domain is below the roof and above the saddle, and its projection on coordinates 1− 3 is
the parallelogram defined by |ϕ3| < 1 and |ϕ3 − ϕ1| < 2. The representation is given in
Figure 6, with a red roof and a green saddle.
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Figure 6: Set of filtering coefficients for stationary AR(3) time series.

Figure 7: AR(3) sequences that reach level S.

Let us represent the subsets related to distributions that reach levels N2 and S. The
intersection of the preceding set with the nonnegative orthant is related to distributions
that reach level N2. As seen in Proposition 6, the related set is defined by ϕ1, ϕ2, ϕ3 ≥
0; ϕ1 + ϕ2 + ϕ3 < 1. The representation is obvious. The subset related to level S is
related to the additional constraints ϕ1 ≥ ϕ1ϕ2 + ϕ2ϕ3 and ϕ2 ≥ ϕ1ϕ3. The set related
to level S is described by Figure 7. From left to right, we first see the face related to the
binding constraint ϕ2 = ϕ1ϕ3. The estimation given in the case study is located in this
face. Then the frontier related to the linear constraint ϕ1 + ϕ2 + ϕ3 < 1 is seen, and the
second nonlinear constraint generates the face on the right side of the figure.
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B.15 Limits for the between and within sample variances of the
random effects

The variable y = U, with Ui,t = PiQi,t from (29) is defined on a virtual and balanced
panel dataset, with Ti = T ∀i = 1, . . . ,m. The total variance of U splits into a between
and a within variance as follows:

1

mT

∑

i,t

(Ui,t − U••)2 =
1

m

∑

i

(Ui,• − U••)2 +
1

mT

∑

i,t

(Ui,t − Ui,•)2. (66)

The within variance is a sample average on the policyholders of the variable

1

T

∑

t

(Ui,t − Ui,•)2 =

(
vUT

i

)′
C
′
T CT vU

T
i

T
,

with vUT
i = vec1≤t≤T (Ui,t). The matrix CT = IT − JT

T

(
JT = 1T 1

′
T

)
, is symmetric and

idempotent, hence

E

[
1

T

∑

t

(Ui,t − Ui,•)2

]
=

Trace
[
CT E

(
vUT

i

(
vUT

i

)′)]

T
=

Trace
[
CT

(
JT + V T

U

)]

T
.

As V T
U = σ2

P JT + (1 + σ2
P )V T

Q (see Section B.10), and CT JT = 0, we have

CT
(
JT + V T

U

)
= CT V

T
U = (1 + σ2

P )CT V
T
Q .

Then

E

[
1

T

∑

t

(Ui,t − Ui,•)2

]
= (1 + σ2

P )

[
γQ(0)− Trace

(
JTV

T
Q

)

T 2

]
. (67)

The ratio
Trace(JTV TQ )

T 2 = V (Qi,•) equals the mean of the entries of V T
Q . As the within

variance is a sample average, the convergence towards the expectation given in (67) holds
when m goes to infinity. The convergence holds almost everywhere if the random effects
(Ui,t)t∈N∗ are i.i.d. across policyholders in fully specified models following the semipara-
metric constraints. In a semiparametric setting, the mean square convergence follows
from fourth order conditions on the moments of U . The variance V (Qi,•) goes to zero
when T goes to infinity, from the weak ergodicity result mentioned in Section B.9. This
justifies the last line of Table 3.

The total variance equals

1

mT

∑

i,t

(Ui,t − U••)2 =
1

m

∑

i

[
1

T

∑

t

U2
i,t

]
− U2

••,

and converges almost everywhere towards E(U2)−E2(U) = γU(0) = σ2
P + (1 +σ2

P ) γQ(0).
The convergence holds almost everywhere or mean square, depending on the assumptions
on the random effects discussed earlier. Hence, the limit almost everywhere or mean
square of the between variance is equal to

γU(0)− (1 + σ2
P )

[
γQ(0)− Trace

(
JTV

T
Q

)

T 2

]
= σ2

P +
(1 + σ2

P ) Trace
(
JTV

T
Q

)

T 2
.

From a weak ergodicity result applied on Q, the limit of the between variance of U is σ2
P

when T goes to infinity.
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Meinshausen, N., Bühlmann, P. et al. (2006). High-dimensional graphs and variable
selection with the lasso, The Annals of Statistics 34(3): 1436–1462.

Rudin, W. (2017). Fourier Analysis on Groups, New York: Courier Dover Publications.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the
Royal Statistical Society. Series B (Methodological) pp. 267–288.

18


