A Bayesian joint model for population and portfolio-specific mortality

Online appendix

Frank van Berkum^{*}¹, Katrien Antonio^{1,2}, and Michel Vellekoop¹

 $^1{\rm Faculty}$ of Economics and Business, University of Amsterdam, The Netherlands. $^2{\rm Faculty}$ of Economics and Business, KU Leuven, Belgium.

This version: April 2017

Abstract

In this online appendix we present convergence diagnostics for the mortality models discussed in van Berkum et al. (2017).

^{*}Corresponding author. Email: f.vanberkum@uva.nl

1 England & Wales population: **POP(B)**

Parameter estimates for POP(f) and POP(B).

Figure 1: Parameter estimates for α_x , β_x , κ_t , δ and σ_{ε}^2 using the England & Wales population. (Colored versions of the figures can be found online.)

Figure 2: Convergence diagnostics for α_x for selected x. First column: traceplot for the final sample from the MCMC procedure. Second column: autocorrelation function for the final sample from the first chain. Third column: density plots from the final sample for all four chains. Fourth column: Gelman-Rubin statistic showing the convergence between the different chains, see Gelman and Rubin (1992) for more information.

Convergence diagnostics for β_x in POP(B).

Figure 3: For comments: see Figure 2.

Convergence diagnostics for κ_t in POP(B).

Figure 4: For comments: see Figure 2.

Convergence diagnostics for δ and σ_{ε}^2 in POP(B).

Figure 5: For comments: see Figure 2.

MH-sampling variances and acceptance probabilities in POP(B).

Figure 6: Metropolis(-Hastings) sampling variances used during the final sample phase and the acceptance probabilities from the last sample.

2 CMI original dataset: **PF(B-G)** and **PF(B-logN)**

Parameter estimates for PF(B-G) and PF(B-logN) (original portfolio size).

Figure 7: Parameter estimates for α_x , β_x , κ_t , δ and σ_{ε}^2 using the original CMI portfolio.

Figure 8: Parameter estimates for Θ_x^{pf} and Θ_x^{rest} using the original CMI portfolio.

Convergence diagnostics for α_x in **PF(B-G)** (original portfolio size).

Figure 9: For comments: see Figure 2.

Convergence diagnostics for β_x in PF(B-G) (original portfolio size).

Figure 10: For comments: see Figure 2.

Convergence diagnostics for κ_t in **PF(B-G)** (original portfolio size).

Figure 11: For comments: see Figure 2.

Convergence diagnostics for δ and σ_{ε}^2 in PF(B-G) (original portfolio size).

Figure 12: For comments: see Figure 2.

Convergence diagnostics for Θ_x^{pf} in PF(B-G) (original portfolio size).

Figure 13: For comments: see Figure 2.

Convergence diagnostics for Θ_x^{rest} in **PF(B-G)** (original portfolio size).

Figure 14: For comments: see Figure 2.

MH-sampling variances and acceptance probabilities in PF(B-G) (original portfolio size).

Figure 15: Metropolis(-Hastings) sampling variances used during the final sample phase and the acceptance probabilities from the last sample.

Convergence diagnostics for α_x in **PF(B-logN)** (original portfolio size).

Figure 16: For comments: see Figure 2.

Convergence diagnostics for β_x in PF(B-logN) (original portfolio size).

Figure 17: For comments: see Figure 2.

Figure 18: For comments: see Figure 2.

Convergence diagnostics for δ and σ_{ε}^2 in PF(B-logN) (original portfolio size).

Figure 19: For comments: see Figure 2.

Convergence diagnostics for Θ_x^{pf} in **PF(B-logN)** (original portfolio size).

Figure 20: For comments: see Figure 2.

Convergence diagnostics for Θ_x^{rest} in **PF(B-logN)** (original portfolio size).

Figure 21: For comments: see Figure 2.

Convergence diagnostics for $\sigma_{\Theta^i}^2$ and ρ_{Θ^i} in **PF(B-logN)** (original portfolio size).

Figure 22: For comments: see Figure 2.

MH-sampling variances and acceptance probabilities in $\mathsf{PF}(\mathsf{B-logN})$ (original portfolio size).

Figure 23: Metropolis(-Hastings) sampling variances used during the final sample phase and the acceptance probabilities from the last sample.

3 CMI reduced portfolio size: PF(B-G) and PF(B-logN)

Parameter estimates for PF(B-G) and PF(B-logN) (reduced portfolio size).

Figure 24: Parameter estimates for Θ_x^{pf} and Θ_x^{rest} using the reduced CMI portfolio.

Figure 25: Parameter estimates for α_x , β_x , κ_t , δ and σ_{ε}^2 using the reduced CMI portfolio.

Convergence diagnostics for α_x in PF(B-G) (reduced portfolio size).

Figure 26: For comments: see Figure 2.

Convergence diagnostics for β_x in PF(B-G) (reduced portfolio size).

Figure 27: For comments: see Figure 2.

Convergence diagnostics for κ_t in **PF(B-G)** (reduced portfolio size).

Figure 28: For comments: see Figure 2.

Figure 29: For comments: see Figure 2.

Convergence diagnostics for Θ_x^{pf} in **PF(B-G)** (reduced portfolio size).

Figure 30: For comments: see Figure 2.

Convergence diagnostics for Θ_x^{rest} in **PF(B-G)** (reduced portfolio size).

Figure 31: For comments: see Figure 2.

MH-sampling variances and acceptance probabilities in PF(B-G) (reduced portfolio size).

Figure 32: Metropolis(-Hastings) sampling variances used during the final sample phase and the acceptance probabilities from the last sample.

Convergence diagnostics for α_x in PF(B-logN) (reduced portfolio size).

Figure 33: For comments: see Figure 2.

Convergence diagnostics for β_x in PF(B-logN) (reduced portfolio size).

Figure 34: For comments: see Figure 2.

Figure 35: For comments: see Figure 2.

Convergence diagnostics for δ and σ_{ε}^2 in PF(B-logN) (reduced portfolio size).

Figure 36: For comments: see Figure 2.

Convergence diagnostics for Θ_x^{pf} in **PF(B-logN)** (reduced portfolio size).

Figure 37: For comments: see Figure 2.

Convergence diagnostics for Θ_x^{rest} in **PF(B-logN)** (reduced portfolio size).

Figure 38: For comments: see Figure 2.

Convergence diagnostics for $\sigma_{\Theta^i}^2$ and ρ_{Θ^i} in PF(B-logN) (reduced portfolio size).

Figure 39: For comments: see Figure 2.

MH-sampling variances and acceptance probabilities in PF(B-logN) (reduced portfolio size).

Figure 40: Metropolis(-Hastings) sampling variances used during the final sample phase and the acceptance probabilities from the last sample.

References

- Gelman, A. and Rubin, D. (1992), 'Inference from iterative simulation using multiple sequences', *Statistical Science* **7**(4), 457 472.
- van Berkum, F., Antonio, K. and Vellekoop, M. (2017), 'A Bayesian joint model for population and portfolio-specific mortality'.