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Abstract
Unlike the mortality risk on which actuaries have been working for more than a century, the

long-term care (LTC) risk is relatively new and as of today hardly mastered. Semi-Markov processes
have been identified as an adequate tool to study this risk. Nevertheless, access to data is limited and
the associated literature still scarce. Insurers mainly use discrete time methods directly inspired from
the study of mortality in order to build experience tables. Those methods however are not perfectly
suited for the study of competing risk situations.

The present article provides a theoretical framework to estimate biometric laws associated with a
long-term care insurance portfolio. The presented method relies on a continuous-time semi-Markov
model with three states: autonomy, disability and death. The process describing the state of disability
is defined through its transition intensities. We provide a formula to infer the mortality of autonomous
people from the mortality of the whole portfolio, on which we have more reliable knowledge. We then
propose a parametric expression for the remaining intensities of the model. In particular, incidence
in LTC is described by a logistic formula. Under the assumption that the disabled population is a
mixture of two latent populations with respect to the category of pathology that caused LTC, we
show that the resulting intensity of mortality in LTC takes a very peculiar form and depends on time
spent in the LTC state. Estimation of parameters relies on the maximum likelihood method. Our
parametric approach, while inducing model uncertainty, eliminates issues related to segmentation in
age categories, smoothing or extrapolation at higher ages and thus proves very convenient for the
practitioner. Finally, we provide an application using data from a real long-term care insurance
portfolio.

Keywords: Long-Term Care Insurance, continuous time semi-Markov process, competing risks,
maximum likelihood, mixture model, parametric model.

1 Introduction
Disability among elderly people can be defined as a permanent state of inability to autonomously perform
activities of daily living. It is mostly caused by diseases linked to ageing, such as dementia, neurological
diseases, cardiovascular diseases and cancer. Disabled elderly people require regular care whose frequency
increases with the severity of their status. While some people can rely at least partially on their family
or their friends for help, others have to hire professional caregivers or join a nursing home, whose average
cost exceeds 3,000 € a month. Despite public aids, this cost proves overwhelming for most pensioners.
Therefore, to long-term care (LTC) is associated a financial risk to which most people are exposed. In
France, part of this risk is transferred through private insurance contracts.

The long-term care risk is complex. Its study requires to take into account incidence in LTC as well
as probabilities of death for both autonomous and disabled people, which are very different from another.
This risk is directly related to ageing through pathologies, and longevity gains in the second half of the
20th century made it paramount. The very first long-term care insurance products appeared in the US
during the 1980’s and shortly after in France. Average age at subscribing for those products is close to 60
when the average age at which LTC occurs is near to 85. Therefore, even on older portfolios, the number
of claims remains limited. Moreover, in France, insurers and public aids use different definitions to asses
the level of required care. Those definitions, as well as insurers underwriting and claims policies often
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change over time. All those elements make data aggregation from several sources very difficult, which
may explain the difficulty of getting a better knowledge of the risk.

Markov processes are such that their transition probabilities only depend on the current state of the
process. A semi-Markov process is a generalization for which transition probabilities depend on both the
current state and the time spent in the current state. One can find more details about those processes
in Cinlar (1969). Multi-state models based on Markov and semi-Markov processes have led to many
applications in the field of epidemiology. As the long-term care state is mainly caused by pathologies,
those processes appear as natural candidates to study the long-term care risk. This framework has already
been described for example in Haberman and Pitacco (1998) or Christiansen (2012). Several studies based
on US national data have also been performed. One can refer to Robinson (1996), Pritchard (2006) or
more recently Fong et al. (2015). On the other hand, studies based on portfolio data Guibert and
Planchet (2014)as are very rare. Practitioners nevertheless played a key role in the knowledge of the LTC
risk. One of the very first models on the French market was presented by SCOR (1995). Relying on a
parametric approach, it highlights the exponential increase in the probabilities of incidence in LTC, and
defines mortality in LTC (resp. autonomous mortality) as a linear function of the general population
mortality, computed via an exogenous mortality table. With only 5 parameters required to model the
whole process, it is remarkably simple. It is however based on the Markov assumption that mortality
in LTC only depends on the age of the disabled life, and not on the time since the entry in LTC. The
Markov assumption is still used today by many insurers as well as in recent academic papers like Pitacco
(2015) or Fong et al. (2015), because it allows for simpler models. However, it does not reflect the reality
of the long-term care process, for which mortality is much higher during the first year in LTC than for
the subsequent year. For an insurance company, ignoring this feature of the risk can be very damaging.
Indeed, it leads to greatly overestimating mortality in LTC based on the first-year mortality experience
and therefore underestimating the required amount of reserve, which results in heavy losses in the future.

Semi-Markov processes have already been used for disability insurance, especially through the illness-
death model as described in Pitacco (2014). However, one has to keep in mind that on one hand disability
insurance only lasts until retirement age with a limited period for benefits. On the other hand, individual
long-term care insurance relies on lifetime annuities with no expiry date. Therefore, while a similar model
may be used for both risks, issues related to extrapolation of biometric laws at higher ages and higher
duration in the disabled state arise in the study of the long-term care risk. For the same reason, non-
parametric methods based on Nelson-Aalen estimator (Klein, 1991) that have also been used to study
the long-term care risk, for example in Guibert and Planchet (2015) still need to be associated with
parametric methods for the extrapolation step.

In this article, we present a parametric approach relying on a continuous-time semi-Markov process,
which is defined using its transition intensities. Compared to a discrete-time approach, it allows to get
a more straightforward modeling of the process, while correctly taking into account the competing risks
(disability and death). Section 2 introduces the model and derives an equation to express the autonomous
mortality using general mortality and other intensities of the model. Benefits to use general mortality
instead of autonomous mortality are discussed with more details. We then introduce the intensity for
general mortality of the portfolio using a simple relational model as in Brass (1971). We propose a
parametric expression for the intensity of incidence in LTC, based on the logistic form introduced by
Perks (1932) for the study of mortality. We use a complex parametric model for the intensity of mortality
in LTC, corresponding to a latent mixture model where we consider two homogeneous populations of
disabled people, with two different levels of mortality. Estimation of parameters relies on the maximum
likelihood method. We also introduce formulas for pricing and reserving based directly on the transition
intensities. Section 3 provides an application of the model based on data from a real insurance portfolio.
For each transition intensity, several models of increasing complexity are compared using the Bayesian
Information Criterion (BIC). Comparison with empirical transition rates is also provided. Robustness
of estimation is then assessed using a non-parametric quantile bootstrap method. Finally, Section 4
summarizes the results obtained and discusses limits and potential improvements of the model.

2 Model

2.1 Notations
For x0 ≥ 0, let us consider a continuous-time process (Zx)x≥x0 with values in the 3-state set E = {A, I,D}
of autonomy, LTC (or "illness"), death, respectively. Let us assume that Z is càd-làg and that Zx0 = A.
The index variable of the process Z is called age of the process. Therefore x0 is an initial age where all
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individuals are assumed to be autonomous. For x ≥ x0 let us denote by Ax (resp. Ix, Dx) the probability
for the process to be in the state of autonomy (resp. LTC, death) at age x or more formally

Ax =P (Zx = A|Zx0 = A),
Ix =P (Zx = I|Zx0 = A),
Dx =P (Zx = D|Zx0 = A).

Hence Ax0 = 1 and for all x ≥ x0, Ax + Ix +Dx = 1.

A D

I

µa(x)

λ(x) µi(x, t)

Figure 1: The 3 states continuous-time semi-Markov model and the associated transition intensities.

We now assume that (Zx)x≥x0 is a non-homogeneous semi-Markov process and introduce the transition
intensities, also called instantaneous transition probabilities. Transition intensities allow us to fully
describe the behaviour of the process

µa(x) = lim
h→0

1
h
P (Zx+h = D|Zx = A) ,

λ(x) = lim
h→0

1
h
P (Zx+h = I|Zx = A) ,

µi(x, t) = lim
h→0

1
h
P (Zx+t+h = D|Zx− = A,Zx = I, Zx+t = I) .

Those intensities are called respectively intensity of entry in LTC, intensity of autonomous mortality
and intensity of mortality in LTC, with the latter intensity depending on both the age at onset of LTC
and time spent in LTC. We consider that death is an absorbing state and that there is no transition
allowed from LTC to autonomy. To understand this last assumption, one has to keep in mind that on
the French long-term care insurance market, the LTC benefit is only granted when the disabled state is
expected to be permanent. Therefore cases of return to the autonomy state are quite rare, compared
to other markets where this is not the case. Furthermore, once the benefit is granted, the annuitant
is not required to provide any proof that they are still disabled. Hence ignoring cases of return to the
autonomy state does not introduce any inconsistency with the way the insurance products are priced,
and it allows for simpler models. Given the limited amount of available data this proves very convenient.
A representation of the model can be found on Figure 1.

Lemma 1. Let x ≥ x0. The probability Ax (resp. Ix) to be in the autonomous (resp. disabled) state at
age x may be expressed directly from the transition intensities of the model and we have

Ax = exp

− x∫
x0

[λ(u) + µa(u)] du

 , (1)

Ix =
x∫
x0

λ(u)Au exp

− x∫
u

µi(u, v − u)dv

 du. (2)
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Proof. For x ≥ x0, h ≥ 0, we have

P (Zx+h = A) = [1− P (Zx+h = I|Zx = A)− P (Zx+h = D|Zx = A)]× P (Zx = A)

and therefore
d
dxP (Zx = A) = − [µa(x) + λ(x)]P (Zx = A).

As Ax0 = 1, this equation has a unique solution

Ax = exp

− x∫
x0

[λ(u) + µa(u)]du

 . (3)

For x ≥ x0, t, h ≥ 0, we can write

P (Zx+t+h = I|Zx− = A,Zx = I) =P (Zx+t+h = I|Zx− = A,Zx = I, Zx+t = I)
× P (Zx+t = I|Zx− = A,Zx = I).

which gives us

d
dtP (Zx+t = I|Zx− = A,Zx = I) = −µi(x, t)P (Zx+t = I|Zx− = A,Zx = I).

As
P (Zx = I|Zx− = A,Zx = I) = 1

we obtain

P (Zx+t = I|Zx− = A,Zx = I) = exp

− t∫
0

µi(x, u)du

 .

Then as we have the following decomposition

Ix =
x∫
x0

P (Zu = A)P (Zu = I|Zu− = A)P (Zx = I|Zu− = A,Zu = I)du,

we get an expression of the probability to be disabled at age x ≥ x0

Ix =
x∫
x0

λ(u)Au exp

− x∫
u

µi(u, v − u)dv

 . (4)

2.2 Link with general mortality
Let us consider the intensity of mortality for the aggregated population of autonomous and disabled
(hereafter general mortality) defined by

µg(x) = lim
h→0

1
h
P (Zx+h = D|Zx ∈ {A, I}) .

Figure 2 represents the fourth transition in our model, a transition between life and death for the general
population.

{A, I} D
µg(x)

Figure 2: Intensity of transition for the general population.
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Lemma 2. For x ≥ x0 and t ≥ 0, let us denote by ∆(x, t) the difference between the intensity of
mortality in LTC and the intensity of autonomous mortality for the same current age, so that ∆(x, t) =
µi(x, t)− µa(x+ t). Then the intensity of autonomous mortality is solution of the following equation

µa(x) = µg(x)−

x∫
x0

λ(u)∆(u, x− u) exp
(
−
x∫
u

[∆(u, v − u)− λ(v)] dv
)
du

1 +
x∫
x0

λ(u) exp
(
−
x∫
u

[∆(u, v − u)− λ(v)] dv
)
du

. (5)

Proof. Differentiating (1) and (2) gives us equations (6) and (7) below which describe the evolution of
the probabilities Ax and Ix. Similarly, from the definition of µg we get equation (8). We obtain a system
of 3 differential equations

d
dxAx = −[λ(x) + µa(x)]Ax, (6)

d
dxIx = λ(x)Ax −

x∫
x0

λ(u)Au exp

− x∫
u

µi(u, v − u)dv

µi(u, x− u)du, (7)

d
dx (Ax + Ix) = −µg(x)(Ax + Ix). (8)

Summing the evolution equations (6) and (7), then identifying with equation (8) yields

µg(x)(Ax + Ix) = µa(x)Ax +
x∫
x0

λ(u)Au exp

− x∫
u

µi(u, v − u)dv

µi(u, x− u)du.

With simple algebra we get

µa(x) = µg(x)
(

1 + Ix
Ax

)
−

x∫
x0

λ(u)Au
Ax

exp

− x∫
u

µi(u, v − u)dv

µi(u, x− u)du.

Using (2) and (1), we obtain after a few simplifications

µa(x) = µg(x)−
x∫
x0

λ(u) exp

− x∫
u

[µi(u, v − u)− λ(v)− µa(v)]dv

 [µi(u, x− u)− µg(x)] du.

Now, we replace the intensity of mortality in LTC using the formula

µi(x, t) = µa(x+ t) + ∆(x, t)

which gives us

µa(x) = µg(x)−
x∫
x0

λ(u) exp

− x∫
u

[∆(u, v − u)− λ(v)] dv

 [µa(x)− µg(x) + ∆(u, x− u)]du.

This finally leads to the result.

Equation (5) allows us to use the general mortality instead of the autonomous mortality in the model,
at the cost of the introduction of ∆, the difference between autonomous mortality and mortality in LTC.
On one hand, mortality of autonomous people is complex to predict, because people can leave the state of
autonomy either by becoming disabled or dying. Furthermore, the scope of autonomous people depends
directly on the definition used for LTC. Therefore predicting the autonomous mortality requires to have
intensive knowledge of the LTC process beforehand. On the other hand, general mortality has been
studied for a long time by actuaries, demographers, biologists and is very well documented. One can
therefore rely on reference mortality tables for ages where no portfolio data is available.

The formula does not give an analytic expression for the intensity of autonomous mortality in the most
general case. Numerical methods can however be used to compute it. As will be seen in section 2.4.3,
choosing an ad hoc model, the inner integrals in the formula take an analytic expression and numerical
approximation is only required for the outer integrals. Intensity of general mortality appears directly in
the equation, which is very convenient if we want to use an external reference for this intensity.
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2.3 Data structure
Data issued from insurance portfolios generally consists of two databases. The first database gathers
information on contributors and the second on annuitants. We also define the database of insured lives
obtained by merging the two previous bases which will be used for the estimation of general mortality.
From one portfolio to another, data quality and available information may vary a lot. In what follows,
we assume both databases contain at least the variables of Table 1, listed as follows:

• DoB: date of birth of the individual,

• DoS: date of start. For contributors, it is the date of subscribing. For annuitants, the date of entry
in LTC,

• DoE and CoE: Respectively the date of end and cause of end for the individuals. In the case where
the observation ends because of death, we use code 1 for the cause, in the case of exit because
of entry in LTC, we use code 2. For individuals still autonomous when the observation stops,
trajectories are right-censored. We use code 0 and the date of exit is the date at which observation
ends.

DoB DoS DoE CoE
12/23/1941 11/10/1992 09/27/2006 2
06/14/1926 03/28/1997 12/31/2014 0
04/17/1937 04/27/1995 04/08/2003 1

Table 1: Example of a database of contributors.

Other covariates such as gender, type of residence (home or facility), marital status, cause of disabil-
ity, amount of annuity bought or premium for substandard risk may be available and bring additional
information. In what follows, we assume that only gender is available and we estimate a separate model
for male and female.

The observation period must often be limited in some way:

• By removing the last year of individual exposure. With each database is associated a date of
extraction, which is the date of the latest entry in the database. In practice, most claims are
reported up to one year after their occurrence, which may result in some missing information
during the last year of observation. It may therefore be a good idea to set a date for the end of the
observation one year prior to the date of extraction, in order not to underestimate the number of
events. For events that occurred during the last year of observation, the associated code must then
be set to 0.

• By removing the first 3 years of individual exposure. On the french individual long-term care
insurance market, there is usually an elimination period of 3 years for dementia and neurological
pathologies which results in fewer claims during those 3 years. In order not to underestimate
the incidence rate, we therefore remove the exposure for the first 3 years of observation for each
individual.

• By shortening the observation period. When we study the behaviour of a population for a specific
risk, it may change over time. There are several factors involved, such as changes in the definition
of LTC, underwriting and claim management policy in addition to underlying changes of biometric
laws. Shortening the observation period is therefore required in order to minimize those effects and
set a good compromise between large volume and stability of the underlying risk over the period.

Once the data has been processed, we may easily compute quantities of interest which will be used in
the estimation procedure

• The age of entry x = DoS−DoB,

• The age of exit y = DoE−DoB,

• The cause of exit c = CoE.
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2.4 Parametric modelling of the intensities
In this section, we propose to rely on a parametric expression for each of the transition intensities in the
model.

2.4.1 Intensity of general mortality

We want to assess the general mortality of our portfolio, which is seen as a specific population inside the
French population. To do so, we rely on the database of insured lives as well as on an external mortality
reference, using the Brass relational model as described in Brass (1971, 1974) or Hannerz (2001).

Let F be the cumulative distribution function associated with an intensity of mortality µ such that

F (x) = 1− exp

− x∫
x0

µ(u)du

 .

Then we define the cumulative distribution odds (CDO) by

CDO(x) = F (x)
1− F (x) .

In his model, Brass relies on the assumption that the logarithm of the CDO associated with the mortality
of a reference population and the mortality of a specific population are parallel curves. We denote by µg
and Fg (resp. µrefg and F refg ) the intensity of mortality and cumulative distribution function associated
with the mortality of the specific (resp. reference) population. Under this assumption, the Brass estimator
for the intensity of mortality of the specific population is

µ̂g(x) =
β̂µrefg (x)

1− (1− β̂)F refg (x)

where β̂ is the solution of the equation

∑
x

Dx =
∑
x

Dref
x

β̂Nx

Nref
x (1− (1− β̂)F refg (x))

and Dx, Nx (resp. Dref
x , Nref

x ) are the total number of deaths observed and the number of years lived
between ages x and x + 1 by the specific population (resp. by the reference population). the Brass
model only requires the estimation of a single parameter β̂. It gives an estimator for the intensity of
mortality which converges smoothly towards the mortality reference at higher ages while predicting the
same number of deaths as in the empirical data, given the empirical exposure.

2.4.2 Intensity of incidence in LTC

For the intensity of incidence in LTC, we consider the logistic model introduced in Beard (1959, 1971)
and Perks (1932)

λ(x) = exp(aλx+ bλ)
1 + exp(aλx+ cλ) + dλ (9)

with aλ > 0, bλ, cλ ∈ R ∪ {−∞} and dλ ≥ 0.

Experience from insurers shows that the intensity of incidence in LTC increases exponentially with
respect to age (SCOR, 1995). At higher ages, data becomes scarcer. As LTC is linked to ageing, it
is reasonable to expect that the behaviours of mortality and morbidity are quite similar and that an
exponential or logistic form is suited to model incidence in LTC. The logistic model has already been
used to this extent, e.g. in Rickayzen and Walsh (2002). Let us notice that the exponential models
introduced in Gompertz (1825) and Makeham (1867) may be seen as limit cases of the logistic model, for
which cλ = −∞.
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For an individual p defined by their age of entry in the portfolio xp ≥ 0, their age of exit yp > xp and
the associated exit cause cp ∈ {0, 1, 2} the log-likelihood has the following expression

lp(λ) = log

exp

−yp∫
xp

λ(u)du

λ(yp)δ
2
cp


=δ2

cp log(λ(yp))−
yp∫
xp

λ(u)du

=δ2
cp log

[
exp(aλyp + bλ)

1 + exp(aλyp + cλ) + dλ

]
− exp(bλ − cλ)

aλ
log
[

1 + exp(aλyp + cλ)
1 + exp(aλxp + cλ)

]
− dλ(yp − xp),

where for k, l ∈ N, δlk =
{

1 if k = l,

0 otherwise.

2.4.3 Intensity of mortality in LTC

Disability may be caused by a wide range of underlying pathologies. Unfortunately most of the time
those pathologies are not available in the data. This results in heterogeneity among disabled people.
In this section, we provide a simple parametric model which accounts for the heterogeneity caused by
pathologies. In order to do this, we must rely on several strong assumptions. First of all, we assume that
underlying pathologies can be divided into two main groups. On one hand we have pathologies associated
with very high mortality such as terminal cancer mainly or more rarely respiratory diseases. For such
diseases, life expectancy at the onset of LTC is within a few months. On the other hand, dementia,
neurological or cardiovascular diseases have an associated life expectancy which is closer to 5 years. We
further assume that among each group the population can be considered as homogeneous. We could
consider three or more groups of pathologies but then inference of parameters would prove extremely
difficult and this would be at the expense of robustness in the estimation procedure.

We then consider an additive model for the intensity of mortality in LTC, so that the mortality
within each group is the sum of a common term (which may be for example the autonomous mortality
at the current age) plus a term which only depends on the pathology group and the age at onset of LTC.
The underlying assumption to this additive model of mortality is that people who become disabled have
increased mortality from the pathology that caused disability but are still exposed to other causes of
death. Also, considering that the additional mortality depends on the age at onset of LTC rather than
on the current age may seem very restrictive and the model may not be accurate for very high duration
in the disabled state. However due to the very high mortality in the disabled state, cases of exceptional
longevity should remain rare enough and the resulting impact quite limited. Under those assumptions,
the resulting intensity of mortality in LTC takes a very peculiar form as we show in the following lemma.
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I1

I2

µa(x)

λ1(x)

λ2(x)

µi,1(x, t)

µi,2(x, t)

Figure 3: Model with 2 completely separate states of LTC.

Lemma 3. Let us consider a model with 2 distinct states of disability I1 and I2, such that the respective
transition intensities from autonomy to those states are λ1 and λ2 respectively and no transition is
allowed between those states or back to autonomy (see Figure 3). Let us further assume that the intensity
of mortality in state Ik can be written as

µi,k(x, t) = µ0(x, t) + ∆k(x)

with x ≥ x0, t ≥ 0 where µ0(x, t) is a common mortality term and ∆k(x) a state-specific mortality term,
for k ∈ {1, 2}.

Then to ensure the embedding of the 3-states model in this model, the following relations must be
satisfied for all x > x0, t ≥ 0

λ(x) = λ1(x) + λ2(x)

µi(x, t) =


µ0(x, t) + ∆1(x) + ∆2(x)−∆1(x)

1 + λ1(x)
λ2(x) exp([∆2(x)−∆1(x)] t)

if λ2(x) 6= 0

µ0(x, t) + ∆1(x) otherwise.

Proof. The first relation on the incidences in LTC is obvious, as well as the case where λ2(x) = 0. For
the second relation, let us denote by ηk(x, t) the proportion of disabled people in state Ik among the
population of people who became disabled at age x ≥ x0 and then survived for a time t ≥ 0.

Let us define for x ≥ x0, t ≥ 0, k ∈ {1, 2} and h > 0

ηk(x, t) = P (Zx+t = Ik|Zx− = A,Zx ∈ {I1, I2})
P (Zx+t ∈ {I1, I2}|Zx− = A,Zx ∈ {I1, I2})

.

and

ηk(x, t, h) = P (Zx+t = Ik|Zx−h = A,Zx ∈ {I1, I2})
P (Zx+t ∈ {I1, I2}|Zx−h = A,Zx ∈ {I1, I2})

.

On one hand, we have

ηk(x, t, h) →
h→0

ηk(x, t),

9



and on the other hand

ηk(x, t, h) = P (Zx+t = Ik, Zx−h = A,Zx ∈ {I1, I2})
P (Zx+t ∈ {I1, I2}, Zx−h = A,Zx ∈ {I1, I2})

= P (Zx+t = Ik, Zx = Ik, Zx−h = A)
2∑
l=1
P (Zx+t = Il, Zx = Il, Zx−h = A)

= P (Zx−h = A)P (Zx = Ik|Zx−h = A)P (Zx+t = Ik|Zx = Ik, Zx−h = A)
2∑
l=1
P (Zx−h = A)P (Zx = Il|Zx−h = A)P (Zx+t = Il|Zx = Il, Zx−h = A)

= P (Zx = Ik|Zx−h = A)P (Zx+t = Ik|Zx = Ik, Zx−h = A)
2∑
l=1
P (Zx = Il|Zx−h = A)P (Zx+t = Il|Zx = Il, Zx−h = A)

→
h→0

λk(x) exp
(
−
t∫
0
µi,k(x, u)du

)
2∑
l=1
λl(x) exp

(
−
t∫
0
µi,l(x, u)du

)

=
λk(x) exp

(
−
t∫
0
µ0(x, u)du

)
× exp [−∆k(x)× t]

2∑
l=1
λl(x) exp

(
−
t∫
0
µ0(x, u)du

)
× exp [−∆l(x)× t]

= λk(x) exp [−∆k(x)× t]
2∑
l=1
λl(x) exp [−∆l(x)× t]

.

By uniqueness of the limit we obtain

ηk(x, t) = λk(x) exp [−∆k(x)× t]
2∑
l=1
λl(x) exp [−∆l(x)× t]

.

Now the intensity of mortality for the population of disabled people is

µi(x, t) =
2∑
k=1

ηk(x, t)µi,k(x, t)

=
2∑
k=1

λk(x) exp(−∆k(x)t)
2∑
l=0
λl(x) exp(−∆l(x)t)

µi,k(x, t)

=µ0(x, t) +
2∑
k=1

λk(x) exp(−∆k(x)t)
2∑
l=0
λl(x) exp(−∆l(x)t)

∆k(x)

=µ0(x, t) + ∆1(x) + λ2(x) exp(−∆2(x)t)
λ1(x) exp(−∆1(x)t) + λ2(x) exp(−∆2(x)t) [∆2(x)−∆1(x)]

=µ0(x, t) + ∆1(x) + ∆2(x)−∆1(x)
1 + λ1(x)

λ2(x) exp {[∆2(x)−∆1(x)] t}
,

which proves the lemma.

In what follows, we assume that the assumptions of the lemma are satisfied and that the common
mortality term is the intensity of mortality for autonomous people µa at the same current age x+ t. Let
us denote, for x ≥ x0

θ(x) = λ2(x)
λ(x) .
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We now have

µi(x, t) = µa(x+ t) + ∆1(x) + θ(x) [∆2(x)−∆1(x)]
θ(x) + [1− θ(x)] exp {[∆2(x)−∆1(x)] t}

and thus
∆(x, t) = ∆1(x) + θ(x) [∆2(x)−∆1(x)]

θ(x) + [1− θ(x)] exp {[∆2(x)−∆1(x)] t} . (10)

The log-likelihood associated with survival in LTC for an individual p with an age of entry in LTC
xp ≥ 0, an age of exit yp > xp and the associated cause of exit cp ∈ {0, 1} then takes the following
expression:

lp(µa,∆1,∆2, θ) = log

exp

−yp∫
xp

µi(xp, u− xp)du

µi(xp, yp − xp)δ
1
cp


=δ1

cp log(µi(xp, yp − xp))−
yp∫
xp

µi(xp, u− xp)du

=δ1
cp log

(
µa(yp) + ∆1(xp) + θ(xp) [∆2(xp)−∆1(xp)]

θ(xp) + [1− θ(xp)] exp([∆2(xp)−∆1(xp)] [yp − xp])

)

−
yp∫
xp

µa(u)du−∆2(xp) [yp − xp]

+ log
{
θ(xp) + [1− θ(xp)] exp([∆2(xp)−∆1(xp)] [yp − xp])

}
.

For a given µa, the previous log-likelihood may then be computed analytically, which allows for the
estimation of ∆1,∆2, θ and then ∆ by plugging in equation (10) using maximum likelihood.

2.4.4 Intensity of autonomous mortality

The maximum likelihood method in the previous section requires to know the autonomous mortality
beforehand. We therefore need to compute an intermediary estimate of the autonomous mortality whose
sole purpose is the estimation of ∆. Indeed, the ultimate autonomous mortality is then computed thanks
to Lemma 2.

Once again we rely on the logistic model introduced in Beard (1959, 1971) and Perks (1932)

µa(x) = exp(aax+ ba)
1 + exp(aax+ ca) + da (11)

with aa > 0, ba, ca ∈ R ∪ {−∞} and da ≥ 0.

For an individual p defined by their age of entry in the portfolio xp ≥ 0, their age of exit yp > xp and
the associated exit cause cp ∈ {0, 1, 2} the log-likelihood has the following expression similar to section
2.4.2

lp(µa) = log

exp

−yp∫
xp

µa(u)du

µa(yp)δ
1
cp


=δ1

cp log
[

exp(aayp + ba)
1 + exp(aayp + ca) + da

]
− exp(ba − ca)

aa
log
[

1 + exp(aayp + ca)
1 + exp(aaxp + ca)

]
− da(yp − xp).

2.5 Parameters estimation procedure
To estimate the parameters, we use the following procedure

1. We estimate the parameters for the intensity of general mortality µ̂g by using the individuals of
both databases and the Brass relational model (as in Brass, 1971) in order to get a robust estimate
of the intensity of general mortality with convergence towards a reference mortality table at higher
ages (see section 2.4.1).
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2. We estimate the parameters for the intensity of incidence in LTC λ̂ (resp. a first-step estimate
of the autonomous mortality µ̂a(1)), using the contributors database and the Perks logistic model
(as in Perks, 1932). More precisely λ̂ (resp. µ̂a

(1)) is the maximum likelihood estimator (MLE)
constructed by summing over the individuals the log-likelihoods given in section 2.4.2 (resp. 2.4.4).

3. We estimate the parameters for the additional mortality in LTC ∆̂ from µ̂a
(1) and the annuitant

database, using the MLE constructed by summing over the individuals the log-likelihoods given in
section 2.4.3. Several parametric forms for ∆̂ will be tested in the next section.

4. Thanks to equation (5), we compute the value of a second-step estimator for the intensity for
autonomous mortality µ̂a(2), relying on λ̂, ∆̂, µ̂g and using numerical methods to approximate the
outer integrals in (5). This second-step estimator should give more reliable results at higher ages
where no data is available.

A summary of the procedure is provided in Figure 4.

Database of contributors

Database of insured lives

Database of annuitants

Mortality reference

λ̂

µ̂a
(1)

µ̂g

∆̂ µ̂a
(2)

the Perks model

the Perks model

Parametric mixture model

the Brass relational model

Equation (3)

Figure 4: Procedure for the estimation of biometric laws. Dashed (resp. plain) circles represent inter-
mediary (resp. final) estimates of biometric laws. Database of insured lives is obtained by merging the
contributors and annuitants databases.

Furthermore when we deal with complex models, it can be very interesting to compare them to some
of their sub-models to see if the use of many parameters is justified. To this extent, we can rely on the
Bayesian Information Criterion (BIC). For a model mi characterized by a number of parameters ki and
a log-likelihood function li maximized at θi, the expression of the criterion is as follows

BICi = −2li(θi) + ki log(n),
where n represents the number of observed transitions in the expression of the likelihood. The choice
of the coefficient in front of the number of parameters log(n) differs from the one made in the original
Akaike’s Information Criterion (AIC) where this coefficient is 1. Also, let us note that in the version
of the criterion, n is the number of observed transitions and not the number of individuals as in the
original criterion. The interest in introducing this modification in the case of censored data is discussed
in Volinsky and Raftery (2000). Using the BIC, we are able to compare models, the model with the lower
BIC being the "best" model. In the next section we use the BIC to challenge the use of more complex
parametric models introduced in this section and lower the overall number of parameters.
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2.6 Pricing and reserving
We consider a product where the autonomous insured lives pay a fixed amount of premium while they
are autonomous. Should they become disabled, the premium is no longer due and they are entitled to
an annuity instead. On the French long-term care insurance market most products rely on monthly
premium and monthly benefit. For simplicity sake, we consider continuous time premiums and annuities
instead, the difference with monthly quantities being extremely low. We denote by τ the continuous time
actuarial interest rate used to compute discounted cash flows.

Let us introduce additional notation

A(x, y) =P (Zy = A|Zx = A) = Ay
Ax

= exp

− y∫
x

[µa(u) + λ(u)] du

 ,

Ix(t, s) =P (Zx+s = I|Zx− = A,Zx = I, Zx+t = I) = exp

− s∫
t

µi(x, u)du


and

A(x, y) =e−τ(y−x)A(x, y) = exp

− y∫
x

[µa(u) + λ(u) + τ ]du

 ,

Ix(t, s) =e−τ(s−t)Ix(t, s) = exp

− s∫
t

[µi(x, u) + τ ]du


for x0 ≤ x ≤ y and 0 ≤ t ≤ s such that A (resp. I) is the survival probability in the state of autonomy
(resp. in the disabled state) and A (resp. I) the discounted survival probability in the aforementioned
state.

We define the following quantities that are required for the pricing of the product:

• P (x) the expected value of insured liabilities for an autonomous insured life with current age x for
a 1 € yearly premium

P (x) =
∞∫
x

A(x, u)du.

• RFC(x, t) the expected value of insurer liabilities for a disabled insured life with an age x at the
onset of LTC and a time t spent in the disabled state and a 1 € yearly annuity, also called reserve
for claim

RFC(x, t) =
∞∫
t

Ix(t, u)du.

• Π(x) the expected value of insurer liabilities for an autonomous insured life with current age x,
associated with a 1 € yearly annuity

Π(x) =
∞∫
x

λ(u)A(x, u)RFC(u, 0)du.

• The stability premium p∗(x). It is the value of premium that matches insurer and insured liabilities
at the time of subscribing. For an age x at subscribing we have

p∗(x) = Π(x)
P (x) .

• The reserve for premium (RFP) which is constituted for autonomous people. Its amount is equal
to the expected value of future liabilities minus the expected value of premium. For an insured of
age at subscribing xs, current age x, the associated amount of reserve is

RFP(xs, x) = P (x) [p∗(x)− p∗(xs)] .
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3 Results
In this section, we provide an example using aggregated data from several French long-term care insurance
portfolios. The definition used for LTC is 3ADL4 which means that an insured life is considered disabled
if he/she has permanently lost the ability to do on their own at least 3 out of the 4 activities of daily living
defined by the contract: functional mobility, dressing, bathing, eating. The portfolio we consider contains
a very large number of policies and covers a relatively long period. The date of extraction is 11/31/2014
for both contributors and annuitants. We remove the first 3 years spent by contributors in the portfolio
and then consider a 12 year observation period between 1/1/2002 and 12/31/2013 for contributors and a
20 year observation period between 1/1/1994 and 12/31/2013 for annuitants. Database of contributors
contains over 1.5 million years of exposure with 69.8 % of the lines being right censored. Database of
annuitants contains close to 45,000 years of exposure and 29.4 % of right censored lines. Women account
for 65.4 % of contributors and 66.7 % of annuitants. Separate models are estimated for men and women.

3.1 General mortality
We use the Brass relational model with data for the french population over the years 2010 to 2013 coming
from the Human Mortality Database (University of California, Berkeley (USA) and Max Planck Institute
for Demographic Research (Germany), 2015) that we choose as our mortality reference. At the same time,
we compute empirical probabilities of death, using the Hoem estimator as described in Planchet and
Thérond (2006), as well as 95 % confidence intervals under the normal approximation, over the age range
where the Cochran criterion is satisfied. Figure 5 displays the logarithm of the cumulative distribution
odds (CDO) for empirical probabilities and the mortality reference and the difference between them. As
it is close to a straight line, the underlying assumption of the model is satisfied. Figure 6 represents
the observed and reference mortality, as well as the mortality fitted using the Brass relational model.
The latter mortality is close to the observed mortality for ages where enough data is available and then
smoothly converges toward the reference at higher ages, where no data is available.
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Figure 5: Logarithm of Cumulative Distribution Odds (CDO) for observed mortality (dotted), reference
mortality (dashed) and their difference (plain).
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Figure 6: Intensity of mortality estimated from the data (dots) with 95 % confidence intervals, from the
mortality reference (dashed) and given by the Brass relational model (plain).

3.2 Incidence in LTC

Model Intensity l(males) BIC(males) l(females) BIC(females)

Gompertz λ(x) = eaλx+bλ - 25,099.12 50,223.64 - 52,380.25 104,788.21

Makeham λ(x) = eaλx+bλ + dλ - 25,099.12 50,232.11 - 52,380.25 104,797.44

Beard λ(x) = eaλx+bλ

1 + eaλx+cλ
- 25,094.61 50,223.09 - 52,326.58 104,690.09

Perks λ(x) = eaλx+bλ

1 + eaλx+cλ
+ dλ - 25,093.74 50,229.81 - 52,325.83 104,697.83

Table 2: Value of log-likelihood l and BIC of previously introduced models for the incidence in LTC.

The results for the estimation of incidence in LTC can be found in Table 2. the Gompertz (resp.
the Beard) model performs better than the Makeham (resp. the Perks) model according to the BIC,
which means that the use of an extra parameter which represents an initial level of incidence present
at all ages is not required. In addition, the Beard logistic model is a better fit to the data than the
Gompertz exponential model. One can come to this conclusion by looking at Figure 7 which represents
the empirical incidence as well as the inferred incidence for the Gompertz and the Beard models. The
empirical incidence in LTC increases exponentially at first but at higher ages there is a slowing down in
this increase, more pronounced for females than for males, which makes the Beard logistic model a better
fit.
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Figure 7: Estimates of the incidence in LTC. Dots and ribbon represent empirical estimates with 95 %
confidence intervals. Plain (resp. dashed) line represents the Gompertz (resp. the Beard) model fitted
to the data.

3.3 Mortality in LTC
We rely on the results from section 2.4.3 and define the mortality in LTC by providing a parametric model
for ∆1, ∆2 and θ. In this section, we only focus on a handful of well known models that in our opinion
are the most obvious candidates. Furthermore, for the sake of simplicity, we only consider models where
∆1 and ∆2 take the same parametric form. For ∆1(x) and ∆2(x), we consider constant, the Gompertz
and the Makeham exponential models as well as the Beard and the Perks logistic models (so 5 different
models in total). For θ(x), we have the additional constraint that we should have 0 ≤ θ(x) ≤ 1 for all
ages. We consider a constant model then 4 logistic models with increasing degrees of freedom. Indeed,
the full logistic law has 4 parameters and therefore 4 degrees of freedom. By setting the ultimate values
for x = −∞ and x = +∞ respectively to 0 and 1, we obtain a logistic model with only 2 parameters.
We may relax either of those constraints by introducing additional parameters 0 ≤ α ≤ β ≤ 1 so that α
(resp. β) is the ultimate value of θ(x) when x = −∞ (resp. x = +∞). Hence, we estimate 5 × 5 = 25
combinations of models. Results are available in Table 3 in the Appendix.

Figure 8 represents each of the models on the angle of the number of parameters and maximum log-
likelihood. As the BIC is a linear combination of the two aforementioned components, contour curves of
increasing BIC correspond to parallel lines of increasing intercept in this representation. The model with
the best BIC is such that there is no other model in the upper half two-dimensional space delimited by the
associated contour curve. Distance from any model to this contour curve is proportional to the difference
in BIC between that model and the best model. The criterion selects model 9 for males (models 7 and
10 being close contenders) and model 10 for females. All those models rely on the Gompertz law for the
specific mortality terms ∆1 and ∆2. As regards θ, model 10 uses the full 4 parameters logistic model
while model 9 only uses 3 parameters, the asymptotic value for the prevalence of high mortality (group
2) pathologies at lower ages being set to 100%. From this point all results are based on the parameters
inferred for models 9 for males and 10 for females.
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Figure 8: Representation of the models (dots) in the plan of log-likelihood and number of parameters.
The plain line represents the contour curve for the model with the highest BIC.
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Figure 9: Prevalence of high mortality trajectories in the population of newly disabled inferred by the
model.
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Figure 9 displays the value of θ(x) which represents the prevalence of high mortality pathologies
among newly disabled people inferred by the model. This prevalence decreases with age and is much
higher for males (70 % at age 60 and 17 % at age 90) than for females (40 % at age 60 and 6 % at age
90). Figure 10 represents the specific mortality terms ∆1(x) and ∆2(x) and the resulting mortality term
for the newly disabled ∆(x, 0), which is the weighted mean of ∆1(x) and ∆2(x) with weights 1−θ(x) and
θ(x) respectively. We observe that ∆2(x) is way higher than ∆1(x). Besides the initial mortality ∆(x, 0)
decreases with age until 85 then remains stable. Let us remind that for higher durations, ∆(x, t) converges
toward the lower value between ∆1(x) and ∆2(x) as the weight of the population with higher mortality in
the mixture decreases to 0. Those results seem compatible with our interpretation in terms of cancer for
the group of high mortality pathologies and dementia as well as cardiovascular and neurological diseases
for the other group. However, one should keep in mind that pathologies are not actually observed in the
data and Figures 9 and 10 only represents the underlying distribution inferred by the model.

female

male

0

2

4

0

2

4

60 65 70 75 80 85 90 95 100
Age in years

In
te

ns
ity

Delta_1(x)
Delta_2(x)
Delta(x,0)

Intensities associated with the model

Figure 10: Specific mortality terms for both populations in the mixture (dotted and dashed lines), and
resulting mortality at the onset of LTC (plain line).

Figure 11 represents annual death probabilities associated with the empirical data on one hand and
given by the model on the other hand. We compute empirical annual probabilities by grouping disabled
people, according to their age of entry in LTC with 5-year age bands between 65 and 90. For each age
band, we then compute annual death probabilities by duration under the assumption that the intensity of
mortality is constant over intervals of one year for the duration. We represent 95 % confidence intervals
for those probabilities under the normal approximation (as in Planchet and Thérond, 2006). We also
compute annual death probabilities given by the model for individuals of ages 67.5, 72.5,. . . , 87.5 at onset
of LTC. Confidence intervals are still very wide, especially for men as well as at lower/higher age at onset
of LTC and/or high duration in LTC. Nonetheless, the annual probabilities computed using the model
appear to match the empirical probabilities very well for both males and females when data is available.
It appears that by taking into account a mixture component in the model, we were able to reproduce
the evolution of death probabilities with respect to time spent in LTC. Nevertheless, in each component
of the mixture, time spent in LTC only appears in the autonomous mortality term, through the current
age x+ t.
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Figure 11: Consecutive death probabilities for disabled people according to the model (triangles) with em-
pirical probabilities (circles) and associated 95 % confidence intervals. The y-scale has been re-normalized
to preserve confidentiality of results.
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3.4 Autonomous mortality
Figure 12 represents the initial intensity of autonomous mortality we get from the first-step estimator
µ̂a

(1) and the refined intensity from the second-step estimator µ̂a(2). The refined intensity remains close
to the empirical intensity for females but for males there are some divergences which can be explained
by the lower volume of data.

● ● ● ●
● ●

● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
●

●
● ● ● ●

● ●
●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

● ● ●
●

female

male

−6

−5

−4

−3

−2

−1

−6

−5

−4

−3

−2

−1

60 65 70 75 80 85 90 95 100
Age in years

Lo
g−

in
te

ns
ity

empirical
initial fit
refined

Intensity of autonomous mortality

Figure 12: Intensity of autonomous mortality. Dots: empirical rates; Dashed line: direct fit of the Perks
model; Plain line: refined intensity from equation (5).

3.5 Summary of intensities and prevalence of LTC
In order to assess the robustness of the estimation performed, we use a non-parametric quantile boot-
strap method. From the initial database of insured lives, we build 200 new samples by drawing, with
replacement, as many individuals as in the initial observation database. For each sample, we then run all
the steps of the estimation procedure, including the choice of the best model according to the BIC. We
then use the inferred parameters to compute the final intensities of transition as well as the prevalence
of LTC. Finally, for each age, we select the 2.5 % and 97.5 % quantiles of the empirical distribution of
those quantities in order to get bootstrap confidence interval.

Figure 13 represents the intensity of mortality for the general population, the intensity of mortality for
autonomous people as well as the incidence in LTC. Confidence intervals are very tight for autonomous
and general mortality. For the incidence in LTC they are larger, especially at lower or higher ages, and
for males as the data is scarcer. Figure 14 represents the prevalence of LTC among the general population
inferred by the model. The prevalence increases almost exponentially with respect to age at first, with a
slowing down at higher ages. Prevalence is initially close for males and females, but from the age of 80 it
becomes much higher for females. Overall the confidence intervals are very large especially for males at
higher ages where the number of survivors is limited.
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Figure 13: Intensities of general mortality (plain), autonomous mortality (dotted) and incidence in LTC
(dashed), with 95 % confidence intervals obtained by bootstrap.
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Figure 14: Prevalence of LTC by age in the general population (plain line), with 95 % confidence intervals
obtained by bootstrap.
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3.6 Results of pricing and reserving
We consider a long-term care insurance product where autonomous policyholders pay a monthly level
premium, whose amount is set based on their age of subscription. Should they become disabled, they
would stop paying the premium and instead receive a monthly annuity of 1,000 € until they die. We use
an actuarial interest rate of 1 % for the pricing of the product. Figure 15 shows the required level of
premium according to the model for ages at subscribing from 50 and 80, as well as confidence intervals
obtained by bootstrap, using the methodology described in the previous section. The premium increases
exponentially with age and is is twice as expensive for women than for men. Confidence intervals are
relatively tight given the uncertainty on the underlying biometric laws. The method therefore proves
quite robust.
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Figure 15: Amount of monthly premium required according to the model, with 95 % confidence intervals
obtained by bootstrap. The y-scale has been re-normalized to preserve confidentiality of results.

We also compute the average reserve of premium on Figure 16. We define it as the product between
the probability A(xs, x) for the individual to remain autonomous between the age of subscription xs and
the current age x and the associated amount of reserve for premium RFP(xs, x) at that age. The reserve
for premium reaches a maximum between ages 78 and 88, depending on the age of subscription and then
decreases when the cost associated with the claims starts to outweigh the amount of premium. We also
compute the average reserve for claim on Figure 17. We define it as the product between the survival
probability in LTC Ix(0, t) at the age of claim x for the given duration t and the associated amount of
reserve for claim RFC(x, t). This reserve decreases by duration as the number of survivors does. The
initial amount of reserve for claim reaches its maximum for claim inception under 60 for women and
between 70 and 80 for men. Indeed, for males, the incidence of cancer is very high for ages under 70.
Therefore men under 70 have very high death probabilities for the first year following the onset of LTC
while men over 80 have very high death probabilities for the subsequent years, because mortality from
other causes of death get higher with ages. For women, this second phenomenon carries more weight,
and the most expensive claims are made before age 60.
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Figure 16: Expected value of reserve for premium by age at subscribing and current age, assessed at
subscribing. The z-scale has been re-normalized to preserve confidentiality of results.
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Figure 17: Expected value of reserve for claim by age at entry in LTC and time spent in LTC, assessed
at claim inception. The z-scale has been re-normalized to preserve confidentiality of results.
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4 Discussion
In this paper, we introduce a method to estimate biometric laws associated with a long-term care insurance
portfolio. This method relies on a continuous time semi-Markov model, as opposed to discrete-time
methods used by practitioners in most countries (with the notable exception of Denmark, see Ramlau-
Hansen (1991)). This model relies on 3 transition intensities: incidence in LTC, autonomous mortality
and mortality in LTC. We suggest parametric models for the transition intensities. The Brass relational
model is used for the intensity of general mortality and the Perks logistic model is used for incidence
in LTC, as well as for the first-step estimate of autonomous mortality. As regards mortality in LTC
we introduce a mixture model. The aim is to model the underlying heterogeneity in the population
caused by the very different pathologies that may lead to LTC. Inference of parameters relies on the
maximum likelihood method. We then introduce a formula to include general mortality of the portfolio
in the model (on which we expect to have more reliable knowledge) and use it to get a second-step
estimator of the autonomous mortality, which should prove more reliable at higher ages. We also provide
adequate formulas for continuous-time pricing and reserving based directly on the transition intensities.
Let us remind that there is only few data available at higher ages on for high duration in LTC. Therefore
parametric methods are compulsory to extrapolate biometric laws at higher ages. Using parametric
models from the start is very convenient for the practitioner as it allows to derive biometric laws in
a single step, while non-parametric methods requires to find adequate age bands to perform empirical
estimations, smooth the empirical probabilities and finally extrapolate the results for higher ages.

We then apply our methodology to data from a real long-term care insurance portfolio. Empirical
probabilities demonstrates that mortality during the first year following the onset of LTC is way higher
than for the subsequent years. A semi-Markov model which takes into account both the age at the onset
of LTC and the duration in the LTC state is therefore required in order to explain this phenomenon. By
taking into account heterogeneity in the trajectories through a mixture model, we obtain such a model
for the mortality in LTC which proves very close to empirical estimations. This may indicate that most
of the effect of duration on the mortality actually comes from the heterogeneity of causes.

In the present article, we take into account several potential sources of error. As we use a parametric
approach, there is a significant risk of modeling error that we try to mitigate by comparing the results of
the model with the empirical annual probabilities obtained using a classic non-parametric approach. We
also consider several sub-models and remain parsimonious in the number of parameters we introduce by
using the Bayesian Information Criterion to compare models. Furthermore, the robustness of estimation
is also assessed using a non-parametric quantile bootstrap method.

The parametric form we introduce for mortality in LTC is based on the assumption that pathologies
can be sorted in two main groups of homogeneous mortality. This assumption may be tested by focusing
on the study of the pathologies causing LTC. Data containing information about pathologies is however
extremely scarce and kept private by most insurers. Another limit to our estimation approach is that it
is stationary and does not consider that biometric laws are changing over time. The estimation of drifts
would indeed prove very difficult because of the limited observation period, and lack of consistency in
definition of LTC as well as changes in underwriting and claim management policies over time. Also,
most products in France allow the insurer to increase the level of premium in order to account for drifts in
the underlying risk. While this may justify not to consider any trend in the model, a sensitivity approach
would in any case prove very useful. We could consider several scenarios for the improvement of incidence
and mortality rates and look at the impact on the insurer technical result. Nevertheless, to the best of
our knowledge, neither the data nor the theoretical framework associated with this issue exist. Finally,
the model only considers one level of LTC, when most individual LTC products currently sold provide
several levels of benefits according to the severity of the disability state. Extending the model to consider
several levels of LTC as in Lepez et al. (2013) or Biessy (2015) would therefore prove very useful. Once
again, finding adequate data to perform estimation of parameters is very challenging.
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Appendix

Model ∆1, ∆2 θ k l(males) BIC(males) l(females) BIC(females)

1 Constant Constant 3 - 8,423.49 16,872.43 - 18,569.90 37,166.71

2 Constant Logistic(0, 1) 4 - 8,394.21 16,822.36 - 18,522.60 37,081.07

3 Constant Logistic(0, β) 5 - 8,394.21 16,830.84 - 18,522.60 37,090.04

4 Constant Logistic(α, 1) 5 - 8,384.81 16,812.05 - 18,505.70 37,056.24

5 Constant Logistic(α, β) 6 - 8,382.20 16,815.30 - 18,494.63 37,043.07

6 Gompertz Constant 5 - 8,393.70 16,829.81 - 18,543.44 37,131.71

7 Gompertz Logistic(0, 1) 6 - 8,356.27 16,763.44 - 18,475.74 37,005.29

8 Gompertz Logistic(0, β) 7 - 8,356.27 16,771.93 - 18,475.74 37,014.26

9 Gompertz Logistic(α, 1) 7 - 8,350.55 16,760.50 - 18,466.26 36,995.30

10 Gompertz Logistic(α, β) 8 - 8,348.25 16,764.38 - 18,456.02 36,983.79

11 Makeham Constant 7 - 8,393.26 16,845.91 - 18,542.66 37,148.10

12 Makeham Logistic(0, 1) 8 - 8,355.39 16,778.65 - 18,473.17 37,018.08

13 Makeham Logistic(0, β) 9 - 8,355.39 16,787.14 - 18,473.17 37,027.04

14 Makeham Logistic(α, 1) 9 - 8,350.91 16,778.18 - 18,465.94 37,012.60

15 Makeham Logistic(α, β) 10 - 8,348.66 16,782.18 - 18,456.04 37,001.75

16 Beard Constant 7 - 8,393.62 16,846.64 - 18,543.43 37,149.63

17 Beard Logistic(0, 1) 8 - 8,356.21 16,780.30 - 18,475.74 37,023.23

18 Beard Logistic(0, β) 9 - 8,356.22 16,788.81 - 18,475.74 37,032.20

19 Beard Logistic(α, 1) 9 - 8,349.54 16,775.44 - 18,463.98 37,008.67

20 Beard Logistic(α, β) 10 - 8,346.92 16,778.69 - 18,455.87 37,001.41

21 Perks Constant 9 - 8,391.68 16,859.73 - 18,542.14 37,165.00

22 Perks Logistic(0, 1) 10 - 8,355.79 16,796.42 - 18,473.26 37,036.20

23 Perks Logistic(0, β) 11 - 8,355.95 16,805.23 - 18,473.30 37,045.24

24 Perks Logistic(α, 1) 11 - 8,350.91 16,795.15 - 18,466.62 37,031.88

25 Perks Logistic(α, β) 12 - 8,346.90 16,795.62 - 18,455.96 37,019.53

Table 3: Value of log-likelihood l and BIC of models for mortality in LTC.
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