
Modelling Mortality for Pension Schemes:

Online Appendices

1 Identifiability in the sub-population model

In Hunt and Blake (2015a) and Hunt and Blake (2015b), we discussed the
identifiability issues in age/period and age/period/cohort mortality models,
respectively. In particular, we find that almost all APC mortality models
possess “invariant” transformations, i.e., transformations of the parameters
of the model which leave the fitted mortality rates unchanged. In order to
find a unique set of parameters, we impose a set of identifiability constraints
on them. Typically, these are chosen so that we can assign our desired in-
terpretation of the demographic significance to the parameters in question.
However, because this interpretation is subjective, it is important that our
choice of identifiability constraints does not have any impact on any observ-
able quantities. For instance, we discuss in Hunt and Blake (2015a,b) how to
ensure that projected mortality rates are independent of the choice of iden-
tifiability constraints.

The model in Equation 2 of the main paper does not possess any ad-
ditional identifiability issues in and of itself, once the parameters from the
reference population are known. However, due to its structure, transforma-
tions of the parameters in the reference population model will have knock-on
effects for those in the sub-population model. It is important therefore that
invariant transformations of the reference model are also invariant for the
sub-population model, so that our choice of identifiability constraints for
the reference population does not affect the suitability of the sub-population
model. This requirement will determine both the nature of the set of deter-
ministic functions of year of birth, Xy in Equation 2, and the nature of any

parametric simplification imposed upon α
(∆)
x , i.e., if α

(∆)
x is restricted to be
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a linear combination of a set of basis functions

α(∆)
x =

n
∑

i=1

α(i)g(i)(x)

then the nature of the basis functions, g(i)(x), will be determined by the
identifiability issues present in the model. We, therefore, consider each of the
different forms that the invariant transformations of the reference model can
take in turn, in order to ensure that they will not affect the sub-population
model.

First, the scaling factors in the sub-population model do not depend upon
the normalisation scheme of the age/period terms in the reference model.
Normalisation schemes are imposed by using a transformation of the form

{f̂ (R,i)(x), κ̂
(R,i)
t } =

{

1

a(i)
f (R,i)(x), a(i)κ

(R,I)
t

}

and so it is obvious that Λ(i)f̂ (R,i)(x)κ̂
(R,i)
t = Λ(i)f (R,i)(x)κ

(R,i)
t .

Second, we know from Hunt and Blake (2015a) that all APC models are
invariant under the transformation

{α̂(R)
x , f̂ (R,i)(x), κ

(R,i)
t , γ̂(R)

y } = {α(R)
x − a(i)f (R,i)(x), f (i)(x), κ

(R,i)
t + a(i), γ(R)

y }

(1)

i.e., the model using the transformed parameter set gives exactly the same
fitted mortality rates. This allows us to impose the “level” of the period func-
tions, κ

(R,i)
t , via the identifiability constraints, such as imposing

∑

t κ
(R,i)
t = 0

or κ
(R,i)
T = 0. However, such a set of identifiability constraints is arbitrary,

and so should not have any consequences for our modelling approach.

Accordingly, we require that our model in Equation 2 is also invariant if
the transformed parameters are used for the reference population. In order to
ensure this, we require that Equation 2 is invariant under the transformation

α̂(∆)
x = α(∆)

x − a(i)Λ(i)f (R,i)(x) (2)

This transformation can be accommodated without α
(∆)
x fundamentally chang-

ing form if
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1. α
(∆)
x is non-parametric, as in the original specification in Equation 2;

or

2. if α
(∆)
x is restricted to be of parametric form, then α

(∆)
x =

∑N

i=1 α
(i)f (i)(x)+

∑n

i=N+1 α
(i)g(i)(x), i.e., the age functions in the reference model form

a subset of the basis functions, g(i)(x).

As an example, consider the case where our model for the reference pop-
ulation is the “classic APC” model of Hobcraft et al. (1982)

ln
(

µ
(R)
x,t

)

= α(R)
x + κ

(R)
t + γ

(R)
t−x

Rx,t = α(∆)
x + Λ(1)κ

(R)
t + Λ(γ)γ

(R)
t−x + νXt−x

The classic APC model is invariant under the transformation

{α̂(R)
x , κ̂

(R)
t , γ̂(R)

y } = {α(R)
x − a, κ

(R)
t + a, γ(R)

y }

Substituting the transformed parameters into the sub-population model gives

R̂x,t = α̂(∆)
x + Λ̂(1)κ̂

(R)
t + Λ̂(γ)γ̂

(R)
t−x + ν̂Xt−x

= α̂(∆)
x + Λ̂(1)(κ

(R)
t + a) + Λ̂(γ)γ

(R)
t−x + ν̂Xt−x

In order to ensure R̂x,t = Rx,t, we must have Λ̂(1) = Λ(1), ν̂ = ν and

α̂
(∆)
x = α

(∆)
x − aΛ(1). The requirement that α̂

(∆)
x is of the same form as

α
(∆)
x implies that any parametric simplification for α

(∆)
x must be of the

form α
(∆)
x = α(1) +

∑n

j=2 α
(i)g(i)(x), i.e., it has a constant basis function,

g(1)(x) = 1, in order that the sub-population model does not change if the
levels of the period functions are transformed.

Third, the values of Λ(i) depend upon the definition of the age functions
in the reference model. “Equivalent” models for the reference population,
which use different definitions for the age functions but give identical fitted
mortality rates, will give different values of Λ(i). To see this, consider a
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reference model of the form1

ln
(

µ
(R)
x,t

)

= α(R)
x + κ

(R,1)
t + (x− x̄)κ

(R,2)
t + γ

(R)
t−x

Rx,t = α(∆)
x + Λ(1)κ

(R,1)
t + Λ(2)(x− x̄)κ

(R,2)
t + Λ(γ)γ

(R)
t−x + νXt−x

The model for the reference population is equivalent to a model of the form

ln
(

µ
(R)
x,t

)

= α(R)
x + κ̂

(R,1)
t + xκ̂

(R,2)
t + γ

(R)
t−x

with κ̂
(R,1)
t = κ

(R,1)
t − x̄κ

(R,2)
t and κ̂

(R,2)
t = κ

(R,2)
t . The corresponding sub-

population model in this case is

R̂x,t = α̂(∆)
x + Λ̂(1)κ̂

(R,1)
t + Λ̂(2)xκ̂

(R,2)
t + Λ(γ)γ

(R)
t−x + ν̂Xt−x

However, in this situation, we find that we require Λ̂(2)x = Λ(2)(x− x̄)+Λ(1)x̄

to give the same fitted mortality rates for both reference models. In this case,
the relationship between the two is a function of age, x, which contradicts
the assumption that the scaling factors are constants. Consequently, we find
that the values of the scaling factors and the fit provided by the model for
the sub-population will depend on the specifics of the age functions in the
reference model and will differ between equivalent models.

Finally, identifiability under transformations of the cohort parameters
is not as straightforward. From Hunt and Blake (2015b), we found that
APC models may have unidentifiable trends which are allocated between the
age/period and cohort terms by the identifiability constraints. Invariance of
the mortality rates in the sub-population model to a different allocation of
these trends in the reference model depends upon the deterministic regres-
sors, Xy, we added to the sub-population model in Equation 2, and the form

of any parametric simplification of α
(∆)
x . This is illustrated by the following

example.

1We call this model the “reduced Plat” model, since it was suggested in Plat (2009) as
being a reduced form of the model tested in that paper that might be more suitable for
high ages. This model can also be thought of as an extension to model M6 in Cairns et al.
(2009), with a static age function, or as an extension to the “CBDX” model discussed in
Hunt and Blake (2015a) with a cohort term.
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Consider the example of the classic APC model for the reference popula-
tion again. In addition to the transformation above, the classic APC model
is also invariant under the following two transformations involving the cohort
parameters

{α̂(R)
x , κ̂

(R)
t , γ̂(R)

y } = {α(R)
x − b, κ

(R)
t , γ(R)

y + b}

{α̂(R)
x , κ̂

(R)
t , γ̂(R)

y } = {α(R)
x + c(x− x̄), κ

(R)
t − c(t− t̄), γ(R)

y + c(y − ȳ)}

where x̄ and t̄ are defined in a similar fashion to ȳ in Appendix 2. Invariance
of the sub-population model under the first of these transformations requires
Λ̂(γ) = Λ(γ) and α̂

(∆)
x = α

(∆)
x − bΛ(γ), and therefore that any parametric re-

striction placed upon α
(∆)
x must have a constant basis function, g(1)(x) = 1,

as discussed above in respect of the level of κ
(R)
t .

However, substituting the transformed parameters from the second trans-
formation in Equation 2, we find

R̂x,t = α̂(∆)
x + Λ̂(1)κ̂

(R)
t + Λ̂(γ)γ̂

(R)
t−x + ν̂Xt−x

= α̂(∆)
x + Λ̂(1)(κ

(R)
t − c(t− t̄)) + Λ̂(γ)(γ

(R)
t−x + c((t− t̄)− (x− x̄))) + ν̂Xt−x

In order to have R̂x,t = Rx,t, we require

• Λ̂(j) = Λ(j), i.e., that our sensitivities do not change from one set of
identifiability conditions to any other;

• ν̂Xy = νXy − c(λ(γ) −λ(1))(y− ȳ), i.e., we can add terms linear in year
of birth to the deterministic term without it fundamentally changing
form, and therefore that our deterministic regressors contain a linear
trend in year of birth; and

• α̂
(∆)
x = α

(∆)
x − cλ(1)(x − x̄), i.e., we can add linear functions to any

parametric form for α
(∆)
x without it fundamentally changing form, and

therefore that it must be either non-parametric or have a linear func-
tion of age, g(2)(x) = x − x̄, amongst the basis functions used in any
parametric restriction.

In addition to the identifiability issues discussed here, it is also important
that any parametric simplification for α

(∆)
x consists of more than one, con-

stant term. As discussed in Tuljapurkar and Edwards (2009), multiple terms
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in α
(∆)
x allow higher moments of the observable distribution of deaths in the

sub-population (such as the variance of age at death) to be captured by the
model, as well as the difference in life expectancy between the two popula-
tions. These higher moments are important in the allowance for idiosyncratic
risk in the sub-population, which is likely to be important in many circum-
stances, such as those discussed in Hunt and Blake (2016).

We also see from the analysis above that the form of our deterministic
regressors, Xy, will depend upon the mortality model being used for the
reference population. From Hunt and Blake (2015b), if the model for the ref-
erence population contains age functions which span the polynomials to order
p, then there will be unidentified polynomial trends in the cohort parameters
of order p + 1. We must therefore ensure that the deterministic regressors
in Equation 2 span the polynomials to order p + 1 and that any parametric
simplification for the age function, α

(∆)
x , also contains a basis function of the

form g(i)(x) = xp+1.

For the classic APC model, p = 0 and therefore we would require that
the deterministic regressors and age function are, at least, of linear order.
Similarly, for the reduced Plat model and the model constructed by the gen-
eral procedure in Section 4.1 and Online Appendix 2, p = 1 and we require
that the deterministic regressors are at least of quadratic order.

In summary, the identifiability issues present in APC mortality models
and discussed in Hunt and Blake (2015a,b) have important consequences
for the mortality modelling approach used in this study. Most importantly,
we require an additional νXy term in the model and must be careful when

specifying any parametric simplification for α
(∆)
x , in order to ensure that our

results do not depend on the arbitrary identifiability constraints we impose
on the reference model. In the context of the reference model used in this
study, described in Section 4.1, this means that we need the term

νXy = ν1(y − ȳ) + ν2
(

(y − ȳ)2 − σy

)
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in Equation 2, and any parametric simplification of α
(∆)
x must be of the form

α(∆)
x =

(

α(1), α(2), α(3), α(4), α(5)
)













f (1)(x)
f (2)(x)
f (3)(x)
f (4)(x)

((x− x̄)2 − σx)













=

N+1
∑

i=1

α(i)f̃ (R,i)(x)

where f (i)(x) are the parametric age functions in the reference model, de-
scribed in Table 1.

2 Models constructed by the “general proce-

dure” for the UK

In Hunt and Blake (2014), a “general procedure” for constructing mortality
models tailored to the specific features of individual datasets was proposed.
In outline, this

• starts from a simple static mortality model with a non-parametric static
age function;

• sequentially adds age/period terms to the model to detect and capture
the age/period structure in the data:

– structure is detected by adding a non-parametric age/period term
which will identify the feature explaining the largest proportion
of the remaining structure in the data;

– then this term is simplified into a parametric form which identi-
fies the same feature more parsimoniously and with greater demo-
graphic significance;

– then the statistical significance and robustness of the term is
tested;

• finally adds a cohort term once all age/period structure has been cap-
tured by the model;
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• tests the standardised deviance residuals of the model for any remaining
structure, independence, and normality.

This procedure was applied to data from the Human Mortality Database
(2014) for men in the UK for ages 50 to 100 and years 1950 to 2011 in
order to construct mortality models capable of capturing all the relevant in-
formation in the data and therefore allowing it to be projected appropriately.

A brief description of the terms in the models and their demographic sig-
nificance is given in Table 1 in the main report. A fuller list of the parametric
age functions in the “toolkit” developed as part of the general procedure is
given in the Appendix of Hunt and Blake (2014).

Models generated by the GP impose the following standard identifiability
constraints

100
∑

x=50

|f (R,i)(x)| = 1 ∀i} (3)

on the age functions to ensure that they have a consistent normalisation
scheme. This enables us to compare the magnitudes of the period functions
both with each other and between populations and gauge their relative im-
portance.2

In order to assist the visual comparison between the UK and SAPS data
(the latter of which only spans ages 60 to 90 and years 2000 to 2011), we
impose the following constraint on the period functions

2011
∑

t=2000

κ
(R,i)
t = 0 ∀i (4)

This means that the period functions represent deviations from an “average”
level of mortality in the period covered by the SAPS data, rather than over
the whole period of the UK data.

The results of Hunt and Blake (2015b) also indicate that we need to
impose constraints on the levels, linear and quadratic trends present in the

2For both women and men, the second and third age/period terms use age functions
which are “self-normalising” in the sense of Hunt and Blake (2015a).
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cohort parameters. To identify their levels, we impose the following con-
straints on the cohort parameters for each of the reference populations

1951
∑

y=1910

n(S)
y γ(R)

y = 0

where n
(S)
y is the number of observations of each cohort in the SAPS data. As

with the period functions, this means that the cohort parameters should be
centred around zero over the range of the SAPS data, not the full range of the
data covered for the UK population. To constrain the linear and quadratic
trends in the cohort parameters, we impose

1961
∑

y=1850

n(R)
y γ(R)

y (y − ȳ) = 0 (5)

1961
∑

y=1850

n(R)
y γ(R)

y

(

(y − ȳ)2 − σy

)

= 0 (6)

where n
(R)
y is the number of observations of each cohort in the UK national

data, ȳ = 0.5(X + T − 1) and σy =
1

X+T−1

∑

y(y − ȳ)2.

The justification for these constraints is that they allow us to remove
linear and quadratic trends in the cohort parameters. This makes them con-
form better to the demographic significance for cohort parameters described
in Hunt and Blake (2015c), namely that the cohort parameters should not
have any long-term systematic trends. We impose this over the whole range
of the UK data, which is considerably longer than the range covered by the
SAPS data, since there appear to be short-term trends (lasting for a few
decades) which are then reversed out over a longer time horizon. However,
this means that over the shorter range of years of birth covered by the SAPS
data, the cohort parameters appear to have strong trends.

It is important to note, however, that our demographic significance for
the parameters is highly subjective and our choice of constraints is arbitrary.
We have therefore taken appropriate steps in Online Appendix 1 to ensure
that our choice of identifiability constraints does not affect either the mor-
tality rates fitted by the model or our overall conclusions.
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When fitting the final models, we obtain the parameters shown in Figure
1. This model has a BIC of −1.96 × 104, with 407 free parameters for both
populations.3 We also test the standardised deviance residuals from fitting
the model as part of the general procedure. The moments of the residuals
and a Jarque-Bera test of their normality is given in Table 1.

Residual Standard Residual Residual Jarque-Bera
mean deviation skewness kurtosis statistic

Men 0.00 0.93 -0.05 3.15 4.84

Table 1: Moments of the residuals of the reference model

We can see that the residuals are close to normal and therefore pass the
relevant Jarque-Bera test for normality at the 5% level (p-value of 8.7%),
although they are slightly leptokurtic. We also see from Figure 1a that there
appears to be relatively little correlation structure over consecutive ages,
although the residuals show significant autocorrelations during the early part
of the data range, which diminishes towards the end of the period of the
data. The heat maps for the residuals shown in Figure 1b indicate that the
residuals have very little remaining structure in them. There is possibly some
remaining structure around age 80, although this appears to be specific to
only a few neighbouring years and therefore it is difficult to add an age/period
term to capture this without overfitting the model.
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