
1 

  

Supplementary Material 

Text summary 

Supplementary Material includes seven sections of text, four table, and three figures. Sections 

S1, S2, S3, and S4 contain detailed descriptions of predicting future species distributions, 

predicting relative opportunity costs, estimating scenario-specific expected ROIs, and scenario 

design. In addition, sections S5, S6, and S7 provide detail descriptions of average elasticities of 

the efficient frontiers, sensitivity outcomes for the minimum constraint on portfolio weights, and 

sensitivity outcomes for alternative relative ecological quality of unprotected private forest, 

respectively. Table S1 shows the expected ROIs and their standard deviations (SD) for the 

counties selected in the first step and for the taxonomic groups in the selected counties in the 

second step at four risk-tolerances (i.e., 5%, 15%, 25%, maximum) represented by the four 

dashed vertical lines in Fig.3. Table S2 shows the optimal portfolio weights for the counties 

selected in the first step (referred to as ‘Portfolio weights 1’), portfolio weights for the four 

taxonomic groups in the second step, and the portion of total budget optimally distributed to the 

counties for conservation investments that benefit biodiversity of particular taxonomic groups 

under four risk-tolerances using a hypothetical total budget of US$1 million (referred to as 

‘Optimal budget distribution of US$1 million’) when the relative weight of unprotected 

forestland is 0.5. Table S3 represents the portfolio weights for the selected counties in the first 

step, portfolio weights for the four taxonomic groups in the second step with 10%-minimum 

portfolio weights required for each taxonomic group, and the portion of total budget optimally 

distributed to the counties for conservation investments that benefit biodiversity of particular 

taxonomic groups under four risk-tolerances using a hypothetical total budget of US$1 million. 

Fig. S1 displays 193 of 246 counties that are used in the two-step approach. Fig. S2 displays a 

schematic diagram of the empirical frameworks and their related scenarios. Fig. S3 displays the 

mean-standard deviation relationships for 12 portfolio frontiers (i.e., 5 counties at 5% risk-

tolerance, 3 counties at 15% risk-tolerance, 3 counties at 25% risk-tolerance, and 1 county at 

maximum risk-tolerance) from the second step for taxonomic diversification, given the selected 

counties at the four risk-tolerances in the first step represented by the four dashed vertical lines in 

Fig.1.   
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S1. Predicting future species distributions  

 We projected future species distributions by estimating climatically suitable areas for 

258 forest-dependent vertebrate species (75 amphibians, 89 mammals, 40 reptiles, and 54 birds) 

that are of policy concern for the U.S. Fish and Wildlife Service (2020), Landscape Conservation 

Cooperative Network (2020), and USGS Science Analytics and Synthesis program (2020). We 

used suitable areas to measure biodiversity because vast primary biodiversity data are established 

based on species’ spatial distributions under the assumption that the spatial distributions of 

species are direct functions of the areas where species can be found and are protected (Fuentes-

Castillo et al. 2019, Zhu et al. 2021). We used Maxent as the species distribution model (SDM) 

algorithm under climate scenarios from six General Circulation Models (GCMs, Phillips 1956, 

Flato et al. 2014) under two representative concentration pathways (RCPs) (see schematic 

diagram in Fig. S2). The twelve future climate scenarios were established using data from the 

ClimateNA database (Wang et al. 2016).  

Maxent estimates the association between locations where species are known to occur 

today and a range of relevant biophysical characteristics of sites, including temperature, 

precipitation, and elevation (Phillips & Dudík 2008, Abdelaal et al. 2019). Then, the model 

projects the probability of future climatic suitability at sites for species under 12 future climate 

scenarios (i.e., 6 GCMs × 2 RCPs). Projections take the form of predicted probabilities that a 

species will be found in different locations in the future given a particular climate scenario. The 

predicted probabilities of climate suitability were transformed into binary variables using a 10% 

training presence threshold, which means that the top 90% are considered suitable and the 

remaining 10% unsuitable. The binary suitability variables of species within a particular 

taxonomic group at the 1-km2 pixel level are aggregated at the county level for the benefit 

measure of all species within that taxonomic group. The benefit measures for the four taxonomic 
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groups are then combined to provide the county-level overall biodiversity measure. See Zhu et 

al. (2021) for the details of the methodology used to generate the future estimated distributions 

for the 258 forest-dependent vertebrate species.  
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S2. Predicting relative opportunity costs  

To predict the forest landowners’ relative opportunity costs (i.e., urban return minus 

forest return), we needed forecasts of annualized forest and urban returns (see schematic diagram 

in Fig. S2). We first estimated future annualized forest return using the Soil Expectation Value 

(SEV) based on forecasted timber prices, per-hectare timber harvest volume, an infinite series of 

identical harvest rotations with lengths of 50-75 years depending on the tree species, and a 

discount rate of 5%, assuming the same timber management practices. A Brownian motion 

model was used to forecast future timber prices. The stumpage prices used in the model came 

from Timber Mart-South (Timber Mart-South 2015) and the State Division of Forestry in 8 states 

(AL, GA, KY, NC, SC, TN, VA, WV). To account for timber price uncertainty, three timber 

price scenarios (high, moderate, low) were introduced. The high, moderate, and low scenarios 

were specified by projected mean price plus its standard deviation, mean price, and mean price 

minus its standard deviation, respectively, all at the state level. To predict the future timber 

harvest volumes, forest rotation models (Sims et al. 2021) were applied using the historic timber 

harvest volumes from the Forest Inventory and Analysis (FIA) database (USDA Forest Service 

2018) under future climate scenarios (see Cho et al. 2018 for more details).  

To predict the urban return, we estimated the annualized median assessed land value 

roughly following Lubowski et al. (2006). First, we estimated the ratio of assessed land value per 

hectare to total assessed value at the parcel level as land value ratios per hectare for sample 

counties where data were available. Then, we converted the land value ratio at the parcel level to 

the census block group (CBG) level by regressing the land value ratio per hectare on 

socioeconomic and location data at the CBG level (see Liu et al. 2019 for more details). We 

multiplied the predicted land value ratio per hectare by the median housing price for three market 
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scenarios (upturn, moderate, downturn) to estimate the median assessed land value per hectare 

for three market conditions. Then, we used the median assessed land value as a proxy for urban 

return, which was averaged at the county level and annualized (see Mingie & Cho 2020 for more 

details).  
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S3. Estimating scenario-specific expected ROIs 

We estimated scenario-specific ROIs for overall biodiversity and four individual 

taxonomic groups for each county in 2050 by employing a modeling framework developed by 

Armsworth et al. (2020). First, we considered the marginal change in hectares of unprotected 

forest resulting from conservation investment in each county using a share-based, county-level 

land use model that explains the shifting of counties from one type of land use to another over a 

transition period (Plantinga & Wu 2003, Du et al. 2014, Plantinga 2017). The share-based, 

county-level land use model quantifies the relationship between shares of land allocated to 

different uses and hypothesized determinants of land use such as the net return of a particular use 

at the county level (Plantinga 2017). The estimation results specify which land-use determining 

factors are important in explaining land-use changes and are commonly used to estimate how 

land use will change if determinants of land use change (Plantinga 2017).  

In the absence of specific location information from the share-based, county-level land 

use model, we simply assumed that the increase in forest within the future species distributions 

predicted by the SDMs (Zhu et al. 2021) was proportional to both the amount of future 

distributions of the species and the forest area within a relevant county. Furthermore, we 

assumed the probability that each species would survive and persist was independent across 

species and was also an increasing function of aggregate forest area within the area of future 

species distribution based on the species overall distribution range size (Polak et al. 2016, 

Armsworth et al. 2020). The dependence of persistence probabilities on remaining private forest 

and protected forest was assumed to be a linear, piecewise continuous, hockey-stick function 

(Armsworth et al. 2020). By using these assumptions, we allowed species to go extinct if there 

was no forest, while we let the persistence probabilities increase linearly with greater amounts of 
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forest area within its range until a species-specific saturation threshold (Armsworth et al. 2020). 

The species-specific saturation threshold was assigned for each species based on the thresholds 

used in Armsworth et al. (2020), which are broadly comparable to those used in other studies and 

to those used in the IUCM Red list (Rodrigues et al. 2004, IUCN 2012). While we assumed the 

whole range for the small range species (<106 hectares) would be needed to ensure its 

persistence, persistence of large range species (>108 hectares) would be guaranteed once only 

10% of the range of that species was protected (Armsworth et al. 2020). The threshold on the 

size of species range for intermediate cases was assumed to be a decreasing linear function. 

Finally, we defined the scenario-specific future ROIs (i.e., the expected marginal benefit 

of investing in a county) as the change in the expected number of species that will persist 

calculated by summing the relevant probabilities. We aggregated the relevant probabilities for 

each of the four taxonomic groups, which are accumulated for the overall biodiversity measure, 

to represent the benefit of the scenario-specific ROIs for the four taxonomic groups and overall 

biodiversity, respectively. We differentiated protected and unprotected private forests by 

assigning relative weights of 1 to 1 hectare of protected forest land and 𝛼 to 1 hectare of 

unprotected private forest land, based on the subjective assumption that the ecological quality of 

usable habitat is different in protected forest than unprotected private forest, following 

Armsworth et al. (2020). Because we could not exclude development pressure when unprotected 

private forest and protected forest are equally valuable, 𝛼 should be less than 1. Hence, we 

analyzed the MPT outcome under the assumption that ecological quality of unprotected private 

forest is one quarter of the protected forest (i.e., 𝛼 = 0.25). For the sensitivity analysis, we also 

presented the MPT outcome under the assumption that the ecological quality of unprotected 

private forest is one-half of the protected forest (i.e., 𝛼 = 0.5). The sensitivity outcomes for 
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relative ecological quality of unprotected private forest are presented in section S7 

(Supplementary Material).   
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S4. Scenario design 

The scenario-specific expected ROIs for a total of 486 scenarios were structured by 

combining the scenarios of the predicted benefits, described in section S4, and relative 

opportunity costs, described in section S3. See Fig. S2 for the schematic diagram that shows how 

these scenarios are organized and are linked to the empirical frameworks. The scenarios for 

predicting overall biodiversity and for taxonomic-group benefits were only related to climate 

changes, and thus we considered 12 climate scenarios from six GCMs under RCP4.5, 

representing an intermediate stabilization emission scenario, and six GCMs under RCP 8.5, 

representing a high emission scenario. In comparison, the relative opportunity costs were 

forecasted under 81 scenarios associated with both climate and market changes from scenarios 

for nine timber volumes derived from three GCMs and three Special Report on Emission 

Scenarios (SRES, Nakicenovic et al. 2000), three timber prices, and three economic growth rates. 

As the relative opportunity costs are specified by urban return minus forestland return, the urban 

return was forecasted by an autoregressive distributed lag (ARDL) model under three economic 

growth scenarios (USDA Forest Service 2012), while the forestland return was forecasted using 

the stochastic forest rotation model under twenty-seven scenarios with nine timber volumes 

based on three GCMs, three SRES and three timber price scenarios (Wear & Greis 2013).  

Among the three SRES, the A1B-SRES and A2-SRES scenarios assume rapid economic 

and technological growth, while scenario B2-SRES represents more sustainable practices 

(Nakicenovic et al. 2000). Thus, we matched RCP 8.5 with A1B-SRES and A2-SRES, and RCP 

4.5 with B2-SRES for consistency between climate and market scenarios. As a result, a total of 

162 scenarios were created for each of the two SRES (A1B and A2) under RCP 8.5 with six 

GCMs for the benefits and three GCMs, three timber price scenarios, and three economic growth 

scenarios for the relative opportunity costs. Likewise, a total of 162 scenarios were created for 
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B2-SRES under RCP 4.5 with six GCMs for the benefits, and three GCMs, three timber price 

scenarios, and three economic growth scenarios for the relative opportunity cost. Note that the 

six GCMs used for predicting the overall biodiversity and taxonomic-group benefits and the 

three GCMs for forecasting the relative opportunity costs were different from each other (see 

Fig. S2). The nine GCMs were selected based on the availability of climate-related variables and 

those with high statistical validation (Knutti et al. 2013). 
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S5. Average elasticity of the efficient frontier 

The rate of change in the slope of the efficient frontier from the first step and the 8 unique 

efficient frontiers from the second step represent the effectiveness of MPT at mitigating portfolio 

risk (referred to as ‘MPT effectiveness’). We quantified MPT effectiveness by estimating the 

percentage of a portfolio’s expected ROI that must be foregone to lower its standard deviation by 

1% from the riskiest points to the most conservative points on the frontier (referred to as 

‘average elasticity’). The average elasticity of the frontier from the first step for spatial 

diversification of overall biodiversity is 0.983, which is interpreted as an average decrease in a 

portfolio’s expected ROI by 0.98% resulting from a decrease of its standard deviation by 1% 

from the riskiest point to the most conservative point on the frontier.  

The means of the average elasticities for taxonomic diversification of the efficient 

frontiers from the second step for the 5, 3, 3, and 1 counties selected at 5%, 15%, 25%, and 

maximum risk-tolerances in the first step are 0.74, 0.81, 0.89, and 0.93, respectively. The higher 

means of the average elasticities for taxonomic diversification of the selected counties at higher 

risk-tolerances can be explained by their higher average pairwise covariance among taxonomic 

groups. For example, the average pairwise covariances among taxonomic groups for the selected 

counties at 5%, 15%, 25%, and maximum risk-tolerances in the first step are 0.000010, 

0.000016. 0.000177, and 0.00484, respectively. These relationships suggest that the lower 

average pairwise covariances among taxonomic groups for the selected counties at lower risk-

tolerances result in higher average elasticities for taxonomic diversification within those 

counties.  

The inverses of the average elasticities at the four risk-tolerances suggest that a 1% 

decrease in a portfolio’s expected ROI decreases its standard deviation from the riskiest point to 

the most conservative point on the frontier by 1.35%, 1.23%, 1.12% and 1.08%, respectively, for 
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the counties selected in the first step at the 5%, 15%, 25%, maximum risk-tolerances. The higher 

inverses of the average elasticities suggest sacrificing in the same unit of expected return 

mitigates more risk (or simply, higher MPT effectiveness).These findings imply that taxonomic 

diversification from the second step works better for portfolios of counties targeted for spatial 

diversification of biodiversity at lower risk-tolerances in the first step. With the same average 

elasticity of the frontier from the first step for spatial diversification of biodiversity, this result 

further implies that the two-step MPT approach as a whole works better at lower risk-tolerances.    
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S6. Sensitivity outcomes for the minimum constraint on portfolio weights 

Table S3 shows alternative portfolio weights for the four taxonomic groups with a 

minimum portfolio weight of 10% required for each taxonomic group in all counties to avoid 

yielding zero or extremely small portfolio weights for any of the four taxonomic groups. We note 

that changes in the portfolio weights triggered by the constraint can be mostly explained by 

covariance structure among taxonomic groups. For example, at 5% risk-tolerance without the 

minimum constraint, portfolio weights of 30%, 6%, 44%, and 19% were assigned to amphibian, 

bird, mammal, and reptile groups, respectively, while at the same risk-tolerance level with the 

minimum constraint, portfolio weights of 26%, 10%, 47%, and 17% were assigned to the 

respective taxonomic groups. With the minimum constraint, the portfolio weights for bird and 

mammal groups increased, whereas those for amphibian and retile groups decreased. As the 

portfolio weight for the bird group increased from 6% to 10% to meet the minimum constraint, 

the portfolio weight for the mammal group, which has a negative covariance with the bird group 

(i.e., -0.0000004) increased to mitigate risk, and the portfolio weights for the other taxonomic 

groups, which have positive covariance with the bird group (i.e., 0.0000046 and 0.0000014, 

respectively, with the amphibian and reptile groups) decreased to mitigate the portfolio’s risk.    
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S7. Sensitivity outcomes for alternative relative ecological quality of unprotected private forest 

Table S2 shows portfolio weights for the four taxonomic groups when we assume relative 

ecological quality of unprotected private forest is one-half of that for protected forest instead of 

one-quarter as described in the main text. The sensitivity outcomes for spatial diversification for 

biodiversity in the first step show some differences and similarities to the optimal portfolio 

weights at previously stated risk-tolerances. For example, Clay County (AL), Preston County 

(WV), and Coosa County (AL) were commonly selected for both optimal solutions. In contrast, 

Jackson County (KY), Leslie County (KY), and Wolfe County (KY) were selected at least once 

for 5%, 15%, 25% and maximum risk-tolerances when 𝛼 = 0.25, but were not selected at any 

risk-tolerance when 𝛼 = 0.5. Furthermore, Bibb County (AL), which was not selected when 𝛼 =

0.25, was selected when 𝛼 = 0.5 at 5% risk-tolerance (compare Table 1 and Table S2). The 

difference in county selection can be explained by a pattern of counties with larger areas of 

unprotected private forest receiving larger portfolio weights, relative to other counties, as the 

weight on unprotected private forest increases from 𝛼 = 0.25 to 𝛼 = 0.5. For example, the area 

of unprotected private forest in Bibb County (AL) (151,628 hectares), which was selected at 5% 

risk-tolerance when 𝛼 = 0.5 but not 𝛼 = 0.25, is relatively larger than areas in Jackson County 

(KY) (51,330 hectares), Leslie County (KY) (255 hectares), and Wolfe County (KY) (53,030 

hectare), which were selected when 𝛼 = 0.25 but never when 𝛼 = 0.5.  

In addition, the sensitivity outcomes for taxonomic diversification in different counties 

for the second step are similar to the overall optimal portfolio weights for each taxonomic group 

at the previously stated risk-tolerance. Even though different counties were selected in the first 

step at different risk-tolerance levels, the overall portfolio weights at 5%, 15%, 25%, and 

maximum risk-tolerance were focused on the mammal group, bird group, reptile group, and 

amphibian group, respectively, for both optimal solutions. Conversely, when comparing optimal 
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portfolio weight among taxonomic groups in Clay County (AL), Preston County (WV), and 

Coosa County (AL), commonly selected counties for both optimal solutions, the amphibian 

group and the reptile group were not selected for Clay County (AL) and Coosa County (AL), 

respectively at the 25% risk-tolerance level. Moreover, while the largest portfolio weight was 

assigned to the bird group at 5% and 15% risk-tolerance levels when 𝛼 = 0.25, the largest 

weight was assigned to the mammal group when 𝛼 = 0.5 (compare Table 1 and Table S2). 

Similar to the discussion above, differences in taxonomic group allocation can be explained by 

the size of predicted species ranges in unprotected private forest areas. 
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Table S1. Expected ROIs and their standard deviations (SD) for the counties selected in the first step under different risk-tolerances (i.e., 5%, 15%, 

25%, maximum) represented by the four dashed vertical lines in Fig.3, and for taxonomic groups in selected counties in the second step 

Risk-

tolerances 
Counties 

Step 1 Step 2 

Expected ROIs 

(SD) 
Average 

Expected ROIs (SD) 

Amphibian Bird Mammal Reptile 

5% 

Clay (AL) 0.0415 (0.0254) 

0.0300 (0.0140) 

0.01513 (0.01262) 0.00833 (0.00536) 0.00463 (0.00377) 0.01342 (0.00766) 

Jackson (KY) 0.0200 (0.0066) 0.00703 (0.00285) 0.00537 (0.00233) 0.00293 (0.00149) 0.00461 (0.00189) 

Leslie (KY) 0.0235 (0.0076) 0.00861 (0.00312) 0.00600 (0.00259) 0.00365 (0.00169) 0.00519 (0.00220) 

Wolfe (KY) 0.0463 (0.0238) 0.01572 (0.01096) 0.01346 (0.00777) 0.00539 (0.00416) 0.01170 (0.00617) 

Preston (WV) 0.0185 (0.0067) 0.00594 (0.00257) 0.00472 (0.00217) 0.00591 (0.00284) 0.00196 (0.00165) 

15% 

Clay (AL) 0.0415 (0.0254) 

0.0354 (0.0186) 

0.01513 (0.01262) 0.00833 (0.00536) 0.00463 (0.00377) 0.01342 (0.00766) 

Wolfe (KY) 0.0463 (0.0238) 0.01572 (0.01096) 0.01346 (0.00777) 0.00539 (0.00416) 0.01170 (0.00617) 

Preston (WV) 0.0185 (0.0067) 0.00594 (0.00257) 0.00472 (0.00217) 0.00591 (0.00284) 0.00196 (0.00165) 

25% 

Clay (AL) 0.0415 (0.0254) 

0.0703 (0.0521) 

0.01513 (0.01262) 0.00833 (0.00536) 0.00463 (0.00377) 0.01342 (0.00766) 

Coosa (AL) 0.1230 (0.1070) 0.03979 (0.04145) 0.03237 (0.02714) 0.01376 (0.01303) 0.03733 (0.03493) 

Wolfe (KY) 0.0463 (0.0238) 0.01572 (0.01096) 0.01346 (0.00777) 0.00539 (0.00416) 0.01170 (0.00617) 

maximum Coosa (AL) 0.1230 (0.1070) 0.1230 (0.1070) 0.03979 (0.04145) 0.03237 (0.02714) 0.01376 (0.01303) 0.03733 (0.03493) 
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Table S2. The optimal portfolio weights for the counties in the first step (referred to as ‘Portfolio weights 1’), portfolio weights for the four 

taxonomic groups in the second step, and the portion of total budget optimally distributed to the counties for conservation investments that benefit 

biodiversity of particular taxonomic groups under four risk-tolerances using a hypothetical total budget of US$1 million (referred to as ‘Optimal 

budget distribution of US$1 million’) when the relative weight on unprotected forest land is 0.5 

Four risk-

tolerances 
Counties 

Portfolio 

weights 1 

Alternative portfolio weights 2 Optimal budget distribution of US$1 million 

Amphibian Bird Mammal Reptile Amphibian Bird Mammal Reptile 

5% 

Bibb (AL) 51% 40% 15% 45% 0%  $204,000   $76,500   $229,500   $0 

Clay (AL) 9% 1% 52% 29% 18%  $900   $46,800   $26,100   $16,200  

Coosa (AL) 2% 4% 19% 77% 0%  $800   $3,800   $15,400   $0 

Preston (WV) 38% 5% 34% 45% 16%  $19,000   $129,200   $171,000   $60,800  

15% 

Clay (AL) 26% 4% 53% 0% 43%  $10,400   $137,800   $0  $111,800  

Coosa (AL) 10% 8% 42% 50% 0%  $8,000   $42,000   $50,000  $0 

Preston (WV) 64% 19% 23% 37% 21%  $121,600   $147,200   $236,800   $134,400  

25% 

Clay (AL) 41% 0% 25% 0% 75%  $0   $100,524   $0    $309,476  

Coosa (AL) 16% 11% 61% 28% 0%  $17,600   $97,600   $44,800  $0 

Preston (WV) 43% 31% 13% 31% 25%  $133,300   $55,900   $133,300   $107,500  

maximum Coosa (AL) 100% 100% 0% 0% 0%  $1,000,000   $0  $0  $0  
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Table S3. Portfolio weights for the counties in the first step (referred to as ‘Portfolio weights 1’), portfolio weights for the four taxonomic groups in 

the alternative second step (referred to as ‘Alternative portfolio weights 2’) with 10% of minimum of portfolio weight required for each taxonomic 

group, and the portion of total budget optimally distributed to the counties for the conservation investments that benefit biodiversity of particular 

taxonomic groups under four risk-tolerances using a hypothetical total budget of US$1 million (referred to as ‘Optimal budget distribution of US$1 

million’)  

Four risk-

tolerances 
Counties 

Portfolio 

weight 1 

Alternative portfolio weights 2 Optimal budget distribution of US$1 million 

Amphibian Bird Mammal Reptile Amphibian Bird Mammal Reptile 

5% 

Bibb (AL) 5% 10% 32% 48% 10%  $5,000    $16,000   $24,000   $5,000  

Clay (AL) 18% 26% 10% 47% 17%  $46,800   $18,000   $84,600   $30,600  

Coosa (AL) 25% 25% 13% 52% 10%  $62,500  $32,500   $130,000   $25,000  

Preston (WV) 49% 26% 28% 13% 33%  $127,400   $137,200   $63,700   $161,700  

15% 

Clay (AL) 21% 10% 56% 17% 17%  $21,000   $117,600   $35,700   $35,700  

Wolfe (KY) 53% 11% 17% 35% 37%  $58,300   $90,100   $185,500   $196,100  

Preston (WV) 26% 30% 31% 17% 22%  $78,000   $80,600   $44,200   $57,200  

25% 

Clay (AL) 13% 10% 45% 10% 35%  $13,000   $58,500   $13,000   $45,500  

Coosa (AL) 6% 10% 39% 37% 14%  $6,000   $23,400   $22,200   $8,400  

Wolfe (KY) 81% 13% 23% 23% 41%  $105,300   $186,300   $186,300  $332,100  

maximum Coosa (AL) 100% 70% 10% 10% 10%  $700,000  $100,000   $100,000   $100,000  
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Fig. S1. Map of 193 of 246 counties that are used in the two-step approach 

Filtered out counties (city-counties or counties without urban development pressure)  

193 counties  
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 6 GCMs include ACCESS1a -0, CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3, INM-CM4. 

 3 GCMs include HadCM3, CSIRO − Mk2, CGCM2.b  

 3 GCMs include MIROC32c , CSIRO-Mk35, CGCM3 

Fig. S2. Schematic diagram of the empirical frameworks and their related scenarios 
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A – 5%  risk-tolerance    B – 15% risk-tolerance 

  

C – 25% risk-tolerance    D – maximum risk-tolerance 

 

 

Note: The risk-tolerance in each graph title is the same as for spatial diversification in the first step. 

 

Fig. S3. Mean-standard deviation relationships for 12 portfolio frontiers (i.e., 5 counties at 5% risk-tolerance, 3 

counties at 15% risk-tolerance, 3 counties at 25% risk-tolerance, and 1 county at maximum risk-tolerance) from 

the second step for taxonomic diversification, given the counties selected in the first step at the four risk-

tolerances represented by the four dashed vertical lines in Fig.1 

 

0

0.006

0.012

0.018

0 0.005 0.01 0.015

E
x
p

ec
te

d
 R

O
I

(#
 o

f 
sp

ec
ie

s 
co

n
se

rv
ed

 /
 $

1
 m

il
li

o
n
 i

n
v
es

t)

Standard deviation of ROIs

Clay (AL) Jackson (KY)
Leslie (KY) Wolfe (KY)
Preston (WV)

0

0.006

0.012

0.018

0 0.005 0.01 0.015

Clay (AL) Wolfe (KY)
Preston (WV)

0

0.015

0.03

0.045

0 0.02 0.04 0.06

Clay (AL) Wolfe (KY) Coosa (AL)

0

0.015

0.03

0.045

0 0.02 0.04 0.06

Clay (AL) Wolfe (KY) Coosa (AL)



22 

  

References 

Abdelaal M, Fois M, Fenu G, Bacchetta G (2019) Using MaxEnt Modeling to Predict the 

Potential Distribution of the Endemic Plant Rosa Arabica Crép. in Egypt. Ecological 

Informatics 50: 68–75.  

Armsworth PR, Benefield AE, Dilkina B, Fovargue R, Jackson HB, Bouille DL, Nolte C (2020) 

Allocating Resources for Land Protection Using Continuous Optimization: Biodiversity 

Conservation in the United States. Ecological Applications 30: e02118. 

Cho SH, Lee J, Roberts R, Yu ET, Armsworth PR (2018) Impact of Market Conditions on the 

Effectiveness of Payments for Forest-Based Carbon Sequestration. Forest Policy and 

Economics 92: 33–42.  

Du  J, Thill  JC, Peiser RB, Feng C (2014) Urban Land Market and Land-Use Changes in Post-

Reform China: A Case Study of Beijing. Landscape and Urban Planning 124: 118–128. 

Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W et al. (2014) Evaluation of 

Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of 

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change, ed. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J et 

al., pp. 741–866. Cambridge, UK and NY: Cambridge University Press. 

Fuentes-Castillo T, Scherson RA, Marquet PA, Fajardo J, Corcoran D, Román MJ et al. (2019) 

Modelling the Current and Future Biodiversity Distribution in the Chilean Mediterranean 

Hotspot. The Role of Protected Areas Network in a Warmer Future. Diversity and 

Distributions 25: 1897–1909.  



23 

  

International Union for Conservation of Nature (IUCN) (2012) Guidelines for Application of 

IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland 

and Cambridge, UK: IUCN. iii + 41pp 

Knutti R, Masson D, Gettelman A (2013) Climate Model Genealogy: Generation CMIP5 and 

How We Got There. Geophysical Research Letters 40(6): 1194–1199.  

Landscape Conservation Cooperative Network (2020) Appalachian. URL 

https://lccnetwork.org/lcc/appalachian 

Liu X, Cho SH, Hayes DJ, Armsworth PR (2019) Potential Efficiency Gains in Payment 

Programs from Resolving Spatial and Temporal Heterogeneity in the Cost of Supplying 

Forest Carbon. Journal of Environmental Management 250: 109421. 

Lubowski RN, Plantinga AJ, Stavins RN (2006) Land-Use Change and Carbon Sinks: 

Econometric Estimation of the Carbon Sequestration Supply Function. Journal of 

Environmental Economics and Management 51: 135–152.  

Mingie JC, Cho S (2020) Spatial Targeting of Payments for Ecosystem Services under Growth 

Uncertainties. Applied Spatial Analysis and Policy 13: 805–822.  

Nakicenovic N, Alcamo J, Davis G, Vries BD, Fenhann J, Gaffin S, et al. (2000) Special report 

on emissions scenarios. 

Phillips NA (1956) The General Circulation of the Atmosphere: A Numerical Experiment. 

Quarterly Journal of the Royal Meteorological Society 82: 123–164.  

Phillips SJ, Dudík M (2008) Modeling of Species Distributions with Maxent: New Extensions 

and a Comprehensive Evaluation. Ecography 31: 161–175.  

Plantinga AJ (2017) An Application of the Land-Use Shares Model. In Economics of Rural 

Land-Use Change. pp. 151–162. Routledge. 



24 

  

Plantinga AJ, Wu J (2003) Co-benefits from Carbon Sequestration in Forests: Evaluating 

Reductions in Agricultural Externalities from an Afforestation Policy in Wisconsin. Land 

Economics, 79(1): 74–85. 

Polak T, Watson JEM, Bennett JR, Possingham HP, Fuller RA, Carwardine J (2016) Balancing 

Ecosystem and Threatened Species Representation in Protected Areas and Implications 

for Nations Achieving Global Conservation Goals. Conservation Letters, 9(6):438–445. 

Rodrigues AS, Akcakaya HR, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Chanson JS et al 

(2004) Global Gap Analysis: Priority Regions for Expanding the Global Protected-Area 

Network. BioScience 54(12):1092–100. 

Sims C, Welch J, Yang S (2021) Where do climate forecasts impact economic returns from 

forestland? University of Tennessee, Department of Economics Working Paper Series. 

Timber Mart-South (TMS) (2015) Product and services. URL http://www.timbermart-south.com 

U.S. Department of Agriculture, Forest Service (2012) Future of America’s forest and 

rangelands: Forest Service 2010 Resources Planning Act Assessment. USDA Forest 

Service, Washington, D.C., Gen. Tech. Rep. WO-87. URL 

https://www.fs.usda.gov/treesearch/pubs/41976 

U.S. Department of Agriculture, Forest Service (2018) FIA data and tools. URL 

https://www.fia.fs.fed.us/tools-data/index.php 

U.S. Fish and Wildlife Service (2020) Endangered Species Act. URL 

https://www.fws.gov/endangered/laws-policies 

U.S. Geological Survey, Science Analytics and Synthesis (SAS) (2020) State Wildlife Action 

Plans (SWAP). URL www1.usgs.gov/csas/swap/ 



25 

  

Wang T, Hamann A, Spittlehouse D, Carroll C (2016) Locally downscaled and spatially 

customizable climate data for historical and future periods for North America. PloS one 

11(6): e0156720. 

Wear DN, Greis JG (2013) The southern forest futures project: Technical report. Gen. Tech. 

Rep. SRS-GTR-178. Asheville, NC: USDA-Forest Service, Southern Research Station 

178: 1–542.  

Zhu G, Papeş M, Giam X, Cho SH, Armsworth PR (2021) Are Protected Areas Well-Sited to 

Support Species in the Future in a Major Climate Refuge and Corridor in the United 

States? Biological Conservation 255: 108982. 

 

 


