1 Setting up analysis

knitr::opts_chunk$set(
    echo = TRUE,
    message = FALSE,
    warning = FALSE
)
library(psych)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2     ✓ purrr   0.3.4
## ✓ tibble  3.0.4     ✓ dplyr   1.0.3
## ✓ tidyr   1.1.2     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x ggplot2::%+%()   masks psych::%+%()
## x ggplot2::alpha() masks psych::alpha()
## x dplyr::filter()  masks stats::filter()
## x dplyr::lag()     masks stats::lag()
library(broom)
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
library(ggplot2)
library(sjstats)
## 
## Attaching package: 'sjstats'
## The following object is masked from 'package:broom':
## 
##     bootstrap
## The following object is masked from 'package:psych':
## 
##     phi
library(MuMIn)
library(relaimpo)
## Loading required package: boot
## 
## Attaching package: 'boot'
## The following object is masked from 'package:psych':
## 
##     logit
## Loading required package: survey
## Loading required package: grid
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## Loading required package: survival
## 
## Attaching package: 'survival'
## The following object is masked from 'package:boot':
## 
##     aml
## 
## Attaching package: 'survey'
## The following object is masked from 'package:sjstats':
## 
##     cv
## The following object is masked from 'package:graphics':
## 
##     dotchart
## Loading required package: mitools
## This is the global version of package relaimpo.
## If you are a non-US user, a version with the interesting additional metric pmvd is available
## from Ulrike Groempings web site at prof.beuth-hochschule.de/groemping.
library(mclogit)
## Registered S3 methods overwritten by 'car':
##   method                          from
##   influence.merMod                lme4
##   cooks.distance.influence.merMod lme4
##   dfbeta.influence.merMod         lme4
##   dfbetas.influence.merMod        lme4
library(reshape2)
## 
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(ppcor)
library(rms)
## Loading required package: Hmisc
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## The following object is masked from 'package:boot':
## 
##     melanoma
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:survey':
## 
##     deff
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following object is masked from 'package:psych':
## 
##     describe
## The following objects are masked from 'package:base':
## 
##     format.pval, units
## Loading required package: SparseM
## 
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
## 
##     backsolve
## 
## Attaching package: 'rms'
## The following object is masked from 'package:survey':
## 
##     calibrate
multinom.cat.data <- here::here("dataset/Eguchi_et_al_SSLA_WA_response_type_dataset.csv")%>%
  read.csv()

background <- here::here("dataset/Background.csv") %>%
  read.csv()

1.1 Session info

sessionInfo()
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Catalina 10.15.7
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] grid      stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] rms_6.1-0       SparseM_1.78    Hmisc_4.4-1     Formula_1.2-3  
##  [5] lattice_0.20-41 ppcor_1.1       reshape2_1.4.4  mclogit_0.8.5.1
##  [9] relaimpo_2.2-3  mitools_2.4     survey_4.0      survival_3.2-7 
## [13] Matrix_1.2-18   boot_1.3-24     MuMIn_1.43.17   sjstats_0.18.0 
## [17] MASS_7.3-53     broom_0.7.0     forcats_0.5.0   stringr_1.4.0  
## [21] dplyr_1.0.3     purrr_0.3.4     readr_1.3.1     tidyr_1.1.2    
## [25] tibble_3.0.4    ggplot2_3.3.2   tidyverse_1.3.0 psych_2.0.12   
## 
## loaded via a namespace (and not attached):
##   [1] TH.data_1.0-10      minqa_1.2.4         colorspace_2.0-0   
##   [4] ellipsis_0.3.1      rio_0.5.16          rprojroot_2.0.2    
##   [7] sjlabelled_1.1.7    htmlTable_2.0.1     estimability_1.3   
##  [10] corpcor_1.6.9       parameters_0.10.1   base64enc_0.1-3    
##  [13] fs_1.5.0            rstudioapi_0.13     MatrixModels_0.4-1 
##  [16] fansi_0.4.1         mvtnorm_1.1-1       lubridate_1.7.9    
##  [19] xml2_1.3.2          codetools_0.2-16    splines_3.6.3      
##  [22] mnormt_1.5-7        knitr_1.30          sjmisc_2.8.5       
##  [25] jsonlite_1.7.2      nloptr_1.2.2.2      cluster_2.1.0      
##  [28] dbplyr_1.4.4        png_0.1-7           effectsize_0.4.1.1 
##  [31] compiler_3.6.3      httr_1.4.2          emmeans_1.5.3      
##  [34] backports_1.1.10    assertthat_0.2.1    cli_2.2.0          
##  [37] quantreg_5.61       htmltools_0.5.0     tools_3.6.3        
##  [40] coda_0.19-4         gtable_0.3.0        glue_1.4.2         
##  [43] Rcpp_1.0.5          carData_3.0-4       cellranger_1.1.0   
##  [46] vctrs_0.3.5         nlme_3.1-144        conquer_1.0.2      
##  [49] insight_0.11.1.1    xfun_0.19           openxlsx_4.1.5     
##  [52] lme4_1.1-23         rvest_0.3.6         lifecycle_0.2.0    
##  [55] statmod_1.4.34      polspline_1.1.19    zoo_1.8-8          
##  [58] scales_1.1.1        hms_0.5.3           parallel_3.6.3     
##  [61] sandwich_2.5-1      RColorBrewer_1.1-2  yaml_2.2.1         
##  [64] curl_4.3            gridExtra_2.3       rpart_4.1-15       
##  [67] latticeExtra_0.6-29 stringi_1.5.3       bayestestR_0.8.0.1 
##  [70] memisc_0.99.25.6    checkmate_2.0.0     zip_2.1.1          
##  [73] repr_1.1.0          matrixStats_0.57.0  rlang_0.4.9        
##  [76] pkgconfig_2.0.3     evaluate_0.14       htmlwidgets_1.5.3  
##  [79] tidyselect_1.1.0    here_0.1            plyr_1.8.6         
##  [82] magrittr_2.0.1      R6_2.5.0            generics_0.1.0     
##  [85] multcomp_1.4-14     DBI_1.1.0           pillar_1.4.7       
##  [88] haven_2.3.1         foreign_0.8-75      withr_2.3.0        
##  [91] nnet_7.3-12         abind_1.4-5         performance_0.6.1  
##  [94] modelr_0.1.8        crayon_1.3.4        car_3.0-10         
##  [97] rmarkdown_2.3       jpeg_0.1-8.1        readxl_1.3.1       
## [100] data.table_1.12.8   blob_1.2.1          reprex_0.3.0       
## [103] digest_0.6.27       xtable_1.8-4        stats4_3.6.3       
## [106] munsell_0.5.0

1.2 glimps into the dataset

head(multinom.cat.data)

1.3 Removing individuals based on WA responses

  • Deleting cases who produced the same response type 60% or more.
multinom.cat.data_sub <- multinom.cat.data[-18,] # Exclusively form oriented, may be using strategy
multinom.cat.data_sub <- multinom.cat.data_sub[-88,] # Exclusively Erratic association oriented, may be using strategy

1.4 creating residual variables for priming measures

res_sem <- lm(Priming_Semantic_Cleaned ~ LDT_Unrelated_Cleaned, data = multinom.cat.data_sub)
summary(res_sem)
## 
## Call:
## lm(formula = Priming_Semantic_Cleaned ~ LDT_Unrelated_Cleaned, 
##     data = multinom.cat.data_sub)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -124.80  -23.98   -1.24   29.37  133.57 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)           -30.19512   29.02164  -1.040    0.300
## LDT_Unrelated_Cleaned   0.05209    0.03820   1.364    0.176
## 
## Residual standard error: 50.13 on 107 degrees of freedom
## Multiple R-squared:  0.01708,    Adjusted R-squared:  0.007894 
## F-statistic: 1.859 on 1 and 107 DF,  p-value: 0.1756
multinom.cat.data_sub$Priming_semantic_residual <- res_sem$residuals
res_col <- lm(Priming_Collocation_Cleaned ~ LDT_Unrelated_Cleaned, data = multinom.cat.data_sub)
summary(res_col)
## 
## Call:
## lm(formula = Priming_Collocation_Cleaned ~ LDT_Unrelated_Cleaned, 
##     data = multinom.cat.data_sub)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -154.409  -21.648   -2.213   25.396  123.425 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -75.64208   24.56085  -3.080  0.00263 ** 
## LDT_Unrelated_Cleaned   0.18625    0.03233   5.762  8.1e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 42.43 on 107 degrees of freedom
## Multiple R-squared:  0.2368, Adjusted R-squared:  0.2297 
## F-statistic:  33.2 on 1 and 107 DF,  p-value: 8.104e-08
multinom.cat.data_sub$Priming_collocation_residual <- res_col$residuals
res_LDT <- lm(LDT_Unrelated_Cleaned ~ PVLT_LDS , data = multinom.cat.data_sub)
summary(res_LDT)
## 
## Call:
## lm(formula = LDT_Unrelated_Cleaned ~ PVLT_LDS, data = multinom.cat.data_sub)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -266.53  -73.38   -8.18   67.73  374.07 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  946.640     40.297  23.492  < 2e-16 ***
## PVLT_LDS      -8.188      1.610  -5.087 1.56e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 113.9 on 107 degrees of freedom
## Multiple R-squared:  0.1947, Adjusted R-squared:  0.1872 
## F-statistic: 25.88 on 1 and 107 DF,  p-value: 1.563e-06
multinom.cat.data_sub$LDT_Unrelated_residual <- res_LDT$residuals

1.5 Removing outliers

attach(multinom.cat.data_sub)
multinom.cat.data_sub2 <- multinom.cat.data_sub[ which(scale(mtld_original_aw.y) >= -3 & scale(mtld_original_aw.y) <= 3),]  #deleted 2 109

multinom.cat.data_sub2 <- multinom.cat.data_sub2[ which(scale(multinom.cat.data_sub2$Priming_semantic_residual) >= -3 & scale(multinom.cat.data_sub2$Priming_semantic_residual) <= 3),] # two deleted => 109

multinom.cat.data_sub2 <- multinom.cat.data_sub2[ which(scale(multinom.cat.data_sub2$Priming_collocation_residual) >= -3 & scale(multinom.cat.data_sub2$Priming_collocation_residual) <= 3),] # one deleted => 108

multinom.cat.data_sub2 <- multinom.cat.data_sub2[ which(scale(multinom.cat.data_sub2$Brysbaert_Concreteness_Combined_CW.y) >= -3 & scale(multinom.cat.data_sub2$Brysbaert_Concreteness_Combined_CW.y) <= 3),] # no one deleted => 107

multinom.cat.data_sub2 <- multinom.cat.data_sub2[ which(scale(multinom.cat.data_sub2$PVLT_LDS) >= -3 & scale(multinom.cat.data_sub2$PVLT_LDS) <= 3),] # no one deleted => 107

multinom.cat.data_sub2 <- multinom.cat.data_sub2[ which(scale(multinom.cat.data_sub2$LDT_Unrelated_Cleaned) >= -3 & scale(multinom.cat.data_sub2$LDT_Unrelated_Cleaned) <= 3),] # no one deleted => 107


## Changing the category name for clarity
multinom.cat.data_sub2 %>% 
  rename(
    "Lexical Set" = Direct_meaning,
    "Other Conceptual" = Indirect_meaning,
    "Free Combination" = Free_combination,
    "No Response" = No_response,
    "Form and Meaning" = Form_and_Meaning,
    "Position and Meaning" = Position_and_Meaning
    ) -> multinom.cat.data_sub2

2 Descriptive statistics and plots

2.1 Descriptive stats

desc_vocab <- cbind(PVLT_LDS, LDT_Unrelated_Cleaned, Priming_Semantic_Cleaned, Priming_Collocation_Cleaned, mtld_original_aw.y, Brysbaert_Concreteness_Combined_CW.y, COCA_spoken_bi_MI.y, WA_RT_M_3SD, Priming_semantic_residual, Priming_collocation_residual) %>%
  psych::describe()
print(desc_vocab, digit = 3)
##                                      vars   n    mean      sd  median trimmed
## PVLT_LDS                                1 109  24.101   6.807  25.000  24.382
## LDT_Unrelated_Cleaned                   2 109 749.303 126.295 730.112 744.485
## Priming_Semantic_Cleaned                3 109   8.833  50.333   8.237   9.377
## Priming_Collocation_Cleaned             4 109  63.917  48.341  60.300  61.496
## mtld_original_aw.y                      5 109  24.570   5.091  23.982  24.423
## Brysbaert_Concreteness_Combined_CW.y    6 109   3.343   0.209   3.363   3.348
## COCA_spoken_bi_MI.y                     7 109   1.205   0.190   1.225   1.214
## WA_RT_M_3SD                             8 107   2.858   0.590   2.821   2.849
## Priming_semantic_residual               9 109   0.000  49.902  -1.240   1.362
## Priming_collocation_residual           10 109   0.000  42.231  -2.213   0.500
##                                          mad      min      max   range   skew
## PVLT_LDS                               7.413    6.000   38.000  32.000 -0.386
## LDT_Unrelated_Cleaned                132.230  473.970 1107.824 633.854  0.383
## Priming_Semantic_Cleaned              41.175 -110.747  157.902 268.648  0.016
## Priming_Collocation_Cleaned           37.909  -65.125  254.118 319.243  0.810
## mtld_original_aw.y                     5.657   14.250   37.067  22.817  0.282
## Brysbaert_Concreteness_Combined_CW.y   0.224    2.678    3.900   1.222 -0.264
## COCA_spoken_bi_MI.y                    0.187    0.675    1.560   0.886 -0.449
## WA_RT_M_3SD                            0.613    1.682    4.240   2.558  0.097
## Priming_semantic_residual             40.142 -124.795  133.575 258.370 -0.189
## Priming_collocation_residual          33.449 -154.409  123.425 277.835 -0.215
##                                      kurtosis     se
## PVLT_LDS                               -0.436  0.652
## LDT_Unrelated_Cleaned                  -0.326 12.097
## Priming_Semantic_Cleaned                0.405  4.821
## Priming_Collocation_Cleaned             2.354  4.630
## mtld_original_aw.y                     -0.682  0.488
## Brysbaert_Concreteness_Combined_CW.y    0.169  0.020
## COCA_spoken_bi_MI.y                    -0.175  0.018
## WA_RT_M_3SD                            -0.489  0.057
## Priming_semantic_residual               0.307  4.780
## Priming_collocation_residual            1.878  4.045
#write.csv(desc_vocab, "descriptive_vocab_190719.csv")

2.1.1 Confidence intervals for each measure

desc_vocab_ci <- cbind(desc_vocab, (desc_vocab$mean - (desc_vocab$se * 1.96)), (desc_vocab$mean + desc_vocab$se * 1.96))
desc_vocab_ci
#write.csv(desc_vocab_ci, "descriptive_vocab_190719.csv")
multinom.cat.data_sub2 <- merge(multinom.cat.data_sub2, background, by = "ID")

head(multinom.cat.data_sub2)
attach(multinom.cat.data_sub2)

2.2 Boxplots of response frequencies

attach(multinom.cat.data_sub2)
wa_resp <- as.data.frame(cbind(ID, `Lexical Set`, `Other Conceptual`, Collocation, `Free Combination`, Form, Erratic, `No Response`, `Form and Meaning`, `Position and Meaning`))

wa_long <- melt(wa_resp, value.name = "Frequency", variable.name = "Response type", id.vars= 'ID')
colnames(wa_long)[2] <- "Response type"

boxplot_wa <- ggplot(wa_long, aes(x = `Response type`, y = Frequency, color = `Response type`)) +
  geom_boxplot(outlier.shape = NA) +
  geom_jitter(alpha = .4) +
  theme_bw()+
  theme(axis.text.x = element_text(color = "black",angle = 30, hjust = 1,size = 10), axis.text.y = element_text(size = 10), legend.position = 'None') +
  scale_x_discrete(name = "Response Type", labels = c("Lexical Set", "Other Conceptual", "Collocation", "Free combination", "Form", "Erratic", "No response","Form and Meaning", "Position and meaning")) 

desc_plot <- boxplot_wa +
  scale_y_continuous(
    name = "Frequency",
    sec.axis = sec_axis(trans = ~./96, name = "Proportion (Frequency / 96)")
  )

desc_plot

#ggsave('Fig.boxplot_of_WA.png', desc_plot, width = 9,height = 6, unit = 'in')

3 Research Question 1

RQ1: To what extent are WA task response type profiles predicted by (a) knowledge of form-meaning mappings, (b) semantic and collocational priming, (c) lexical decision time, and (d) lexical richness?

3.0.1 Baseline model without any predictors

ID_mod.null <- mblogit(cbind(`Other Conceptual`, `Lexical Set`, Collocation, `Free Combination`, Form, Erratic, `Form and Meaning`, `Position and Meaning`)  ~  1, data=multinom.cat.data_sub2, random=NULL, dispersion = TRUE, na.action = "na.fail")
## 
## Iteration 1 - Deviance = 2516.741
## Iteration 2 - Deviance = 2455.381
## Iteration 3 - Deviance = 2454.468
## Iteration 4 - Deviance = 2454.458
## Iteration 5 - Deviance = 2454.458
## converged
summary(ID_mod.null)
## 
## Call:
## mblogit(formula = cbind(`Other Conceptual`, `Lexical Set`, Collocation, 
##     `Free Combination`, Form, Erratic, `Form and Meaning`, `Position and Meaning`) ~ 
##     1, data = multinom.cat.data_sub2, random = NULL, na.action = "na.fail", 
##     dispersion = TRUE)
## 
## Equation for Lexical Set vs Other Conceptual:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.49067    0.05782  -8.486   <2e-16 ***
## 
## Equation for Collocation vs Other Conceptual:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.28732    0.05442  -5.279 1.71e-07 ***
## 
## Equation for Free Combination vs Other Conceptual:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.73937    0.06268  -11.79   <2e-16 ***
## 
## Equation for Form vs Other Conceptual:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.93067    0.06701  -13.89   <2e-16 ***
## 
## Equation for Erratic vs Other Conceptual:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.84330    0.09639  -19.12   <2e-16 ***
## 
## Equation for Form and Meaning vs Other Conceptual:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -3.1548     0.1762  -17.91   <2e-16 ***
## 
## Equation for Position and Meaning vs Other Conceptual:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -5.3606     0.5211  -10.29   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Dispersion:  3.51328  on  742  degrees of freedom
## Null Deviance:     9183 
## Residual Deviance: 2454 
## Number of Fisher Scoring iterations:  5 
## Number of observations:  107
BIC(ID_mod.null)
## [1] 2487.168

3.0.2 Best-subset regression

ID_mod.full <- mblogit(cbind(`Other Conceptual`, `Lexical Set`, Collocation, `Free Combination`, Form, Erratic, `Form and Meaning`, `Position and Meaning`) ~  PVLT_LDS + LDT_Unrelated_Cleaned + Priming_collocation_residual + Priming_semantic_residual + mtld_original_aw.y + Brysbaert_Concreteness_Combined_CW.y + COCA_spoken_bi_MI.y + COCA_spoken_Frequency_Log_CW.y, data=multinom.cat.data_sub2, random=NULL, dispersion = TRUE, estimator = "ML",na.action = "na.fail")
## 
## Iteration 1 - Deviance = 2229.591
## Iteration 2 - Deviance = 2163.54
## Iteration 3 - Deviance = 2161.526
## Iteration 4 - Deviance = 2161.389
## Iteration 5 - Deviance = 2161.388
## Iteration 6 - Deviance = 2161.388
## converged
summary(ID_mod.full)
## 
## Call:
## mblogit(formula = cbind(`Other Conceptual`, `Lexical Set`, Collocation, 
##     `Free Combination`, Form, Erratic, `Form and Meaning`, `Position and Meaning`) ~ 
##     PVLT_LDS + LDT_Unrelated_Cleaned + Priming_collocation_residual + 
##         Priming_semantic_residual + mtld_original_aw.y + Brysbaert_Concreteness_Combined_CW.y + 
##         COCA_spoken_bi_MI.y + COCA_spoken_Frequency_Log_CW.y, 
##     data = multinom.cat.data_sub2, random = NULL, na.action = "na.fail", 
##     estimator = "ML", dispersion = TRUE)
## 
## Equation for Lexical Set vs Other Conceptual:
##                                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)                           0.2034196  2.5703763   0.079    0.937
## PVLT_LDS                              0.0180040  0.0110060   1.636    0.102
## LDT_Unrelated_Cleaned                -0.0001169  0.0004892  -0.239    0.811
## Priming_collocation_residual          0.0016811  0.0015256   1.102    0.271
## Priming_semantic_residual            -0.0005039  0.0012433  -0.405    0.685
## mtld_original_aw.y                   -0.0139163  0.0120430  -1.156    0.248
## Brysbaert_Concreteness_Combined_CW.y -0.0740592  0.3947442  -0.188    0.851
## COCA_spoken_bi_MI.y                   0.0980892  0.3516858   0.279    0.780
## COCA_spoken_Frequency_Log_CW.y       -0.2335223  0.4837171  -0.483    0.629
## 
## Equation for Collocation vs Other Conceptual:
##                                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                           3.046e+00  2.400e+00   1.269   0.2048  
## PVLT_LDS                              5.550e-03  1.031e-02   0.538   0.5907  
## LDT_Unrelated_Cleaned                -2.000e-04  4.688e-04  -0.427   0.6698  
## Priming_collocation_residual         -3.353e-03  1.464e-03  -2.289   0.0224 *
## Priming_semantic_residual             4.431e-05  1.170e-03   0.038   0.9698  
## mtld_original_aw.y                    4.588e-03  1.108e-02   0.414   0.6789  
## Brysbaert_Concreteness_Combined_CW.y -8.201e-01  3.676e-01  -2.231   0.0260 *
## COCA_spoken_bi_MI.y                   5.507e-03  3.350e-01   0.016   0.9869  
## COCA_spoken_Frequency_Log_CW.y       -2.769e-01  4.578e-01  -0.605   0.5454  
## 
## Equation for Free Combination vs Other Conceptual:
##                                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                           0.7597434  2.7444985   0.277   0.7820  
## PVLT_LDS                             -0.0046650  0.0116911  -0.399   0.6900  
## LDT_Unrelated_Cleaned                -0.0004105  0.0005432  -0.756   0.4501  
## Priming_collocation_residual         -0.0042261  0.0017100  -2.471   0.0137 *
## Priming_semantic_residual             0.0001330  0.0013399   0.099   0.9209  
## mtld_original_aw.y                    0.0067457  0.0126294   0.534   0.5934  
## Brysbaert_Concreteness_Combined_CW.y -0.2425182  0.4235059  -0.573   0.5671  
## COCA_spoken_bi_MI.y                   0.2020506  0.3859240   0.524   0.6008  
## COCA_spoken_Frequency_Log_CW.y       -0.2697270  0.5211058  -0.518   0.6049  
## 
## Equation for Form vs Other Conceptual:
##                                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                           5.7679608  2.9709520   1.941   0.0526 .
## PVLT_LDS                             -0.0185427  0.0124622  -1.488   0.1372  
## LDT_Unrelated_Cleaned                -0.0001684  0.0005637  -0.299   0.7653  
## Priming_collocation_residual          0.0013078  0.0017714   0.738   0.4606  
## Priming_semantic_residual            -0.0024138  0.0014166  -1.704   0.0888 .
## mtld_original_aw.y                   -0.0311561  0.0139985  -2.226   0.0264 *
## Brysbaert_Concreteness_Combined_CW.y -0.7100803  0.4563094  -1.556   0.1201  
## COCA_spoken_bi_MI.y                  -0.4450701  0.4025407  -1.106   0.2693  
## COCA_spoken_Frequency_Log_CW.y       -0.9865541  0.5598997  -1.762   0.0785 .
## 
## Equation for Erratic vs Other Conceptual:
##                                        Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                           1.0774290  4.1759549   0.258  0.79648   
## PVLT_LDS                             -0.0494073  0.0167658  -2.947  0.00332 **
## LDT_Unrelated_Cleaned                 0.0003434  0.0008219   0.418  0.67621   
## Priming_collocation_residual         -0.0053832  0.0026478  -2.033  0.04242 * 
## Priming_semantic_residual            -0.0001321  0.0019653  -0.067  0.94644   
## mtld_original_aw.y                    0.0174641  0.0184864   0.945  0.34515   
## Brysbaert_Concreteness_Combined_CW.y  0.0460459  0.6513888   0.071  0.94367   
## COCA_spoken_bi_MI.y                   0.0012020  0.5891591   0.002  0.99837   
## COCA_spoken_Frequency_Log_CW.y       -1.0578056  0.7825394  -1.352  0.17690   
## 
## Equation for Form and Meaning vs Other Conceptual:
##                                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)                           9.7584134  7.9697990   1.224    0.221
## PVLT_LDS                             -0.0033130  0.0329663  -0.100    0.920
## LDT_Unrelated_Cleaned                 0.0004780  0.0014625   0.327    0.744
## Priming_collocation_residual          0.0012327  0.0045729   0.270    0.788
## Priming_semantic_residual             0.0006282  0.0037479   0.168    0.867
## mtld_original_aw.y                   -0.0296824  0.0369757  -0.803    0.422
## Brysbaert_Concreteness_Combined_CW.y -1.5879551  1.2226528  -1.299    0.194
## COCA_spoken_bi_MI.y                  -1.0033097  1.0462551  -0.959    0.338
## COCA_spoken_Frequency_Log_CW.y       -2.3883575  1.4628738  -1.633    0.103
## 
## Equation for Position and Meaning vs Other Conceptual:
##                                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)                           9.676114  23.955184   0.404    0.686
## PVLT_LDS                             -0.068494   0.091897  -0.745    0.456
## LDT_Unrelated_Cleaned                -0.003728   0.004461  -0.836    0.404
## Priming_collocation_residual          0.009921   0.014672   0.676    0.499
## Priming_semantic_residual             0.010378   0.013159   0.789    0.431
## mtld_original_aw.y                   -0.013324   0.104484  -0.128    0.899
## Brysbaert_Concreteness_Combined_CW.y -1.974680   3.641861  -0.542    0.588
## COCA_spoken_bi_MI.y                  -0.385241   3.182993  -0.121    0.904
## COCA_spoken_Frequency_Log_CW.y       -1.398382   4.435118  -0.315    0.753
## 
## Dispersion:  3.193018  on  686  degrees of freedom
## Null Deviance:     9183 
## Residual Deviance: 2161 
## Number of Fisher Scoring iterations:  6 
## Number of observations:  107

3.0.3 Printing best subset using BIC

BIC[1:10]

3.0.4 Best subset regression using AICc

AIC_ID[1:6]

3.0.5 Final model based on the result of the best-subset regression

ID_mod.best_d <- mblogit(cbind(`Other Conceptual`, `Lexical Set`, Collocation, `Free Combination`, Form, Erratic, `Form and Meaning`, `Position and Meaning`) ~  scale(PVLT_LDS) + scale(Priming_collocation_residual) + scale(mtld_original_aw.y) + scale(Brysbaert_Concreteness_Combined_CW.y), data=multinom.cat.data_sub2, random=NULL, dispersion = TRUE, estimator = "REML", na.action = "na.fail")
## 
## Iteration 1 - Deviance = 2273.86
## Iteration 2 - Deviance = 2208.262
## Iteration 3 - Deviance = 2207.032
## Iteration 4 - Deviance = 2207.007
## Iteration 5 - Deviance = 2207.007
## converged
summary(ID_mod.best_d)
## 
## Call:
## mblogit(formula = cbind(`Other Conceptual`, `Lexical Set`, Collocation, 
##     `Free Combination`, Form, Erratic, `Form and Meaning`, `Position and Meaning`) ~ 
##     scale(PVLT_LDS) + scale(Priming_collocation_residual) + scale(mtld_original_aw.y) + 
##         scale(Brysbaert_Concreteness_Combined_CW.y), data = multinom.cat.data_sub2, 
##     random = NULL, na.action = "na.fail", estimator = "REML", 
##     dispersion = TRUE)
## 
## Equation for Lexical Set vs Other Conceptual:
##                                              Estimate Std. Error t value
## (Intercept)                                 -0.505033   0.055356  -9.123
## scale(PVLT_LDS)                              0.140008   0.063385   2.209
## scale(Priming_collocation_residual)          0.058151   0.056228   1.034
## scale(mtld_original_aw.y)                   -0.062247   0.058756  -1.059
## scale(Brysbaert_Concreteness_Combined_CW.y) -0.006992   0.060255  -0.116
##                                             Pr(>|t|)    
## (Intercept)                                   <2e-16 ***
## scale(PVLT_LDS)                               0.0275 *  
## scale(Priming_collocation_residual)           0.3014    
## scale(mtld_original_aw.y)                     0.2898    
## scale(Brysbaert_Concreteness_Combined_CW.y)   0.9077    
## 
## Equation for Collocation vs Other Conceptual:
##                                             Estimate Std. Error t value
## (Intercept)                                 -0.29893    0.05198  -5.751
## scale(PVLT_LDS)                              0.06371    0.05928   1.075
## scale(Priming_collocation_residual)         -0.13418    0.05381  -2.494
## scale(mtld_original_aw.y)                    0.02959    0.05455   0.542
## scale(Brysbaert_Concreteness_Combined_CW.y) -0.13663    0.05643  -2.421
##                                             Pr(>|t|)    
## (Intercept)                                 1.32e-08 ***
## scale(PVLT_LDS)                               0.2829    
## scale(Priming_collocation_residual)           0.0129 *  
## scale(mtld_original_aw.y)                     0.5877    
## scale(Brysbaert_Concreteness_Combined_CW.y)   0.0157 *  
## 
## Equation for Free Combination vs Other Conceptual:
##                                             Estimate Std. Error t value
## (Intercept)                                 -0.74488    0.05970 -12.478
## scale(PVLT_LDS)                              0.01507    0.06729   0.224
## scale(Priming_collocation_residual)         -0.16253    0.06207  -2.618
## scale(mtld_original_aw.y)                    0.04438    0.06242   0.711
## scale(Brysbaert_Concreteness_Combined_CW.y) -0.03269    0.06479  -0.505
##                                             Pr(>|t|)    
## (Intercept)                                  < 2e-16 ***
## scale(PVLT_LDS)                              0.82282    
## scale(Priming_collocation_residual)          0.00902 ** 
## scale(mtld_original_aw.y)                    0.47730    
## scale(Brysbaert_Concreteness_Combined_CW.y)  0.61403    
## 
## Equation for Form vs Other Conceptual:
##                                               Estimate Std. Error t value
## (Intercept)                                 -0.9447205  0.0642143 -14.712
## scale(PVLT_LDS)                             -0.1132575  0.0718623  -1.576
## scale(Priming_collocation_residual)          0.0003976  0.0651658   0.006
## scale(mtld_original_aw.y)                   -0.1509702  0.0682033  -2.214
## scale(Brysbaert_Concreteness_Combined_CW.y) -0.0665081  0.0696659  -0.955
##                                             Pr(>|t|)    
## (Intercept)                                   <2e-16 ***
## scale(PVLT_LDS)                               0.1155    
## scale(Priming_collocation_residual)           0.9951    
## scale(mtld_original_aw.y)                     0.0272 *  
## scale(Brysbaert_Concreteness_Combined_CW.y)   0.3401    
## 
## Equation for Erratic vs Other Conceptual:
##                                             Estimate Std. Error t value
## (Intercept)                                 -1.92384    0.09741 -19.749
## scale(PVLT_LDS)                             -0.31074    0.09797  -3.172
## scale(Priming_collocation_residual)         -0.20765    0.09508  -2.184
## scale(mtld_original_aw.y)                    0.10691    0.09170   1.166
## scale(Brysbaert_Concreteness_Combined_CW.y)  0.08940    0.09961   0.897
##                                             Pr(>|t|)    
## (Intercept)                                  < 2e-16 ***
## scale(PVLT_LDS)                              0.00158 ** 
## scale(Priming_collocation_residual)          0.02930 *  
## scale(mtld_original_aw.y)                    0.24407    
## scale(Brysbaert_Concreteness_Combined_CW.y)  0.36976    
## 
## Equation for Form and Meaning vs Other Conceptual:
##                                             Estimate Std. Error t value
## (Intercept)                                 -3.16370    0.16858 -18.767
## scale(PVLT_LDS)                              0.02509    0.19285   0.130
## scale(Priming_collocation_residual)          0.05971    0.16985   0.352
## scale(mtld_original_aw.y)                   -0.12324    0.18030  -0.684
## scale(Brysbaert_Concreteness_Combined_CW.y) -0.05806    0.18310  -0.317
##                                             Pr(>|t|)    
## (Intercept)                                   <2e-16 ***
## scale(PVLT_LDS)                                0.897    
## scale(Priming_collocation_residual)            0.725    
## scale(mtld_original_aw.y)                      0.494    
## scale(Brysbaert_Concreteness_Combined_CW.y)    0.751    
## 
## Equation for Position and Meaning vs Other Conceptual:
##                                             Estimate Std. Error t value
## (Intercept)                                 -5.45411    0.53575 -10.180
## scale(PVLT_LDS)                             -0.14870    0.56541  -0.263
## scale(Priming_collocation_residual)          0.36651    0.46933   0.781
## scale(mtld_original_aw.y)                   -0.06047    0.51696  -0.117
## scale(Brysbaert_Concreteness_Combined_CW.y) -0.10220    0.54727  -0.187
##                                             Pr(>|t|)    
## (Intercept)                                   <2e-16 ***
## scale(PVLT_LDS)                                0.793    
## scale(Priming_collocation_residual)            0.435    
## scale(mtld_original_aw.y)                      0.907    
## scale(Brysbaert_Concreteness_Combined_CW.y)    0.852    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Dispersion:  3.149546  on  714  degrees of freedom
## Null Deviance:     9183 
## Residual Deviance: 2207 
## Number of Fisher Scoring iterations:  5 
## Number of observations:  107

3.0.6 Pseudo R Effect sizes for the final model

# Constructing function for psuwo R squared
Nag_R2 <- function(mod0, mod1){
  n <- mod1$N
  M1 <- deviance(mod0) - deviance(mod1)
  M2 <- deviance(mod0) - deviance(mod0)
  M3 <- abs(M2 - M1)
  R2 <- as.numeric((1 - exp(- M3/ n ))/(1 - exp(2*as.numeric(logLik(mod0)/ n ))))  
  return(R2)
}


Nag_R2(ID_mod.null, ID_mod.best_d)
## [1] 0.9009988
#confirming with external package
r = r.squaredLR(ID_mod.best_d, evaluate = TRUE)
## 
## Iteration 1 - Deviance = 2516.741
## Iteration 2 - Deviance = 2455.381
## Iteration 3 - Deviance = 2454.468
## Iteration 4 - Deviance = 2454.458
## Iteration 5 - Deviance = 2454.458
## converged
r
## [1] 0.9009988
## attr(,"adj.r.squared")
## [1] 0.9009988

3.1 Plotting the marginal effects of the four predictors

– First define a function that allows to extract prediction and their Confidence intervals from the mblogit model. This was necessary because the package does not currently provide visualization for CIs.

## rescale the variables
multinom.cat.data_sub2 %>%
  mutate(
    PVLT_LDS_scale = scale(PVLT_LDS),
    Priming_collocation_residual_scale = scale(Priming_collocation_residual),
    mtld_original_aw.y_scale = scale(mtld_original_aw.y),
    Brysbaert_Concreteness_Combined_CW.y_scale = scale(Brysbaert_Concreteness_Combined_CW.y),
    COCA_lemma_spoken_bi_MI.y_scale = scale(COCA_lemma_spoken_bi_MI.y)
  ) -> multinom.cat.data_sub2_scale
attach(multinom.cat.data_sub2_scale)

multinomial_prediction <- function(mbmodel, new_dataset) {
  pred.data_temp <- predict(mbmodel, type = "response", newdata = new_dataset, se.fit = T)

  pred_upper <- pred.data_temp[[1]] + (1.96 * pred.data_temp[[2]])
  pred_lower <- pred.data_temp[[1]] - (1.96 * pred.data_temp[[2]])
  
  
  pred.mid.data <- as.data.frame(cbind(new_dataset,  pred.data_temp[[1]]))
  
  pred_upper.data <- as.data.frame(cbind(new_dataset,  pred_upper))
  
  pred_lower.data <- as.data.frame(cbind(new_dataset,  pred_lower))
  
  
  pred_long_mid <- melt(pred.mid.data, id.vars = c("PVLT_LDS_scale", "mtld_original_aw.y_scale", "Priming_collocation_residual_scale", "Brysbaert_Concreteness_Combined_CW.y_scale"),
                        variable.name = "Response.type",
                        value.name = "Predicted.Proportion")
  
  pred_long_upper <- melt(pred_upper.data, id.vars = c("PVLT_LDS_scale",  "mtld_original_aw.y_scale", "Priming_collocation_residual_scale", "Brysbaert_Concreteness_Combined_CW.y_scale"),
                        variable.name = "Response.type",
                        value.name = "upper")
  
  pred_long_lower <- melt(pred_lower.data, id.vars = c( "PVLT_LDS_scale",  "mtld_original_aw.y_scale", "Priming_collocation_residual_scale", "Brysbaert_Concreteness_Combined_CW.y_scale"),
                        variable.name = "Response.type",
                        value.name = "lower")
  
  pred_long <- as.data.frame(cbind(pred_long_mid, 
                                   pred_long_upper$upper, 
                                   pred_long_lower$lower))
  
  colnames(pred_long)[7] <- "upper"
  colnames(pred_long)[8] <- "lower"
  
  return (pred_long)
  
}


multinomial_prediction2 <- function(mbmodel, new_dataset) {
  pred.data_temp <- predict(mbmodel, type = "response", newdata = new_dataset, se.fit = T)

  pred_upper <- pred.data_temp[[1]] + (1.96 * pred.data_temp[[2]])
  pred_lower <- pred.data_temp[[1]] - (1.96 * pred.data_temp[[2]])
  
  
  pred.mid.data <- as.data.frame(cbind(new_dataset,  pred.data_temp[[1]]))
  
  pred_upper.data <- as.data.frame(cbind(new_dataset,  pred_upper))
  
  pred_lower.data <- as.data.frame(cbind(new_dataset,  pred_lower))
  
  
  pred_long_mid <- melt(pred.mid.data, id.vars = c("PVLT_LDS_scale", "mtld_original_aw.y_scale", "Priming_collocation_residual_scale", "Brysbaert_Concreteness_Combined_CW.y_scale", "COCA_lemma_spoken_bi_MI.y_scale"),
                        variable.name = "Response.type",
                        value.name = "Predicted.Proportion")
  
  pred_long_upper <- melt(pred_upper.data, id.vars = c("PVLT_LDS_scale",  "mtld_original_aw.y_scale", "Priming_collocation_residual_scale", "Brysbaert_Concreteness_Combined_CW.y_scale" , "COCA_lemma_spoken_bi_MI.y_scale"),
                        variable.name = "Response.type",
                        value.name = "upper")
  
  pred_long_lower <- melt(pred_lower.data, id.vars = c( "PVLT_LDS_scale",  "mtld_original_aw.y_scale", "Priming_collocation_residual_scale", "Brysbaert_Concreteness_Combined_CW.y_scale" , "COCA_lemma_spoken_bi_MI.y_scale"),
                        variable.name = "Response.type",
                        value.name = "lower")
  
  pred_long <- as.data.frame(cbind(pred_long_mid, 
                                   pred_long_upper$upper, 
                                   pred_long_lower$lower))
  
  colnames(pred_long)[8] <- "upper"
  colnames(pred_long)[9] <- "lower"
  
  return (pred_long)
  
}

3.1.1 Constructing the same finale model with standardized variable.

best_mod_scale <- mblogit(cbind(`Other Conceptual`, `Lexical Set`, Collocation, `Free Combination`, Form, Erratic, `Form and Meaning`, `Position and Meaning`) ~  PVLT_LDS_scale + Priming_collocation_residual_scale + mtld_original_aw.y_scale + Brysbaert_Concreteness_Combined_CW.y_scale, data=multinom.cat.data_sub2_scale, random=NULL, dispersion = TRUE, estimator = "REML", na.action = "na.fail")
## 
## Iteration 1 - Deviance = 2273.86
## Iteration 2 - Deviance = 2208.262
## Iteration 3 - Deviance = 2207.032
## Iteration 4 - Deviance = 2207.007
## Iteration 5 - Deviance = 2207.007
## converged
summary(best_mod_scale)
## 
## Call:
## mblogit(formula = cbind(`Other Conceptual`, `Lexical Set`, Collocation, 
##     `Free Combination`, Form, Erratic, `Form and Meaning`, `Position and Meaning`) ~ 
##     PVLT_LDS_scale + Priming_collocation_residual_scale + mtld_original_aw.y_scale + 
##         Brysbaert_Concreteness_Combined_CW.y_scale, data = multinom.cat.data_sub2_scale, 
##     random = NULL, na.action = "na.fail", estimator = "REML", 
##     dispersion = TRUE)
## 
## Equation for Lexical Set vs Other Conceptual:
##                                             Estimate Std. Error t value
## (Intercept)                                -0.505033   0.055356  -9.123
## PVLT_LDS_scale                              0.140008   0.063385   2.209
## Priming_collocation_residual_scale          0.058151   0.056228   1.034
## mtld_original_aw.y_scale                   -0.062247   0.058756  -1.059
## Brysbaert_Concreteness_Combined_CW.y_scale -0.006992   0.060255  -0.116
##                                            Pr(>|t|)    
## (Intercept)                                  <2e-16 ***
## PVLT_LDS_scale                               0.0275 *  
## Priming_collocation_residual_scale           0.3014    
## mtld_original_aw.y_scale                     0.2898    
## Brysbaert_Concreteness_Combined_CW.y_scale   0.9077    
## 
## Equation for Collocation vs Other Conceptual:
##                                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                                -0.29893    0.05198  -5.751 1.32e-08
## PVLT_LDS_scale                              0.06371    0.05928   1.075   0.2829
## Priming_collocation_residual_scale         -0.13418    0.05381  -2.494   0.0129
## mtld_original_aw.y_scale                    0.02959    0.05455   0.542   0.5877
## Brysbaert_Concreteness_Combined_CW.y_scale -0.13663    0.05643  -2.421   0.0157
##                                               
## (Intercept)                                ***
## PVLT_LDS_scale                                
## Priming_collocation_residual_scale         *  
## mtld_original_aw.y_scale                      
## Brysbaert_Concreteness_Combined_CW.y_scale *  
## 
## Equation for Free Combination vs Other Conceptual:
##                                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                                -0.74488    0.05970 -12.478  < 2e-16
## PVLT_LDS_scale                              0.01507    0.06729   0.224  0.82282
## Priming_collocation_residual_scale         -0.16253    0.06207  -2.618  0.00902
## mtld_original_aw.y_scale                    0.04438    0.06242   0.711  0.47730
## Brysbaert_Concreteness_Combined_CW.y_scale -0.03269    0.06479  -0.505  0.61403
##                                               
## (Intercept)                                ***
## PVLT_LDS_scale                                
## Priming_collocation_residual_scale         ** 
## mtld_original_aw.y_scale                      
## Brysbaert_Concreteness_Combined_CW.y_scale    
## 
## Equation for Form vs Other Conceptual:
##                                              Estimate Std. Error t value
## (Intercept)                                -0.9447205  0.0642143 -14.712
## PVLT_LDS_scale                             -0.1132575  0.0718623  -1.576
## Priming_collocation_residual_scale          0.0003976  0.0651658   0.006
## mtld_original_aw.y_scale                   -0.1509702  0.0682033  -2.214
## Brysbaert_Concreteness_Combined_CW.y_scale -0.0665081  0.0696659  -0.955
##                                            Pr(>|t|)    
## (Intercept)                                  <2e-16 ***
## PVLT_LDS_scale                               0.1155    
## Priming_collocation_residual_scale           0.9951    
## mtld_original_aw.y_scale                     0.0272 *  
## Brysbaert_Concreteness_Combined_CW.y_scale   0.3401    
## 
## Equation for Erratic vs Other Conceptual:
##                                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                                -1.92384    0.09741 -19.749  < 2e-16
## PVLT_LDS_scale                             -0.31074    0.09797  -3.172  0.00158
## Priming_collocation_residual_scale         -0.20765    0.09508  -2.184  0.02930
## mtld_original_aw.y_scale                    0.10691    0.09170   1.166  0.24407
## Brysbaert_Concreteness_Combined_CW.y_scale  0.08940    0.09961   0.897  0.36976
##                                               
## (Intercept)                                ***
## PVLT_LDS_scale                             ** 
## Priming_collocation_residual_scale         *  
## mtld_original_aw.y_scale                      
## Brysbaert_Concreteness_Combined_CW.y_scale    
## 
## Equation for Form and Meaning vs Other Conceptual:
##                                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                                -3.16370    0.16858 -18.767   <2e-16
## PVLT_LDS_scale                              0.02509    0.19285   0.130    0.897
## Priming_collocation_residual_scale          0.05971    0.16985   0.352    0.725
## mtld_original_aw.y_scale                   -0.12324    0.18030  -0.684    0.494
## Brysbaert_Concreteness_Combined_CW.y_scale -0.05806    0.18310  -0.317    0.751
##                                               
## (Intercept)                                ***
## PVLT_LDS_scale                                
## Priming_collocation_residual_scale            
## mtld_original_aw.y_scale                      
## Brysbaert_Concreteness_Combined_CW.y_scale    
## 
## Equation for Position and Meaning vs Other Conceptual:
##                                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                                -5.45411    0.53575 -10.180   <2e-16
## PVLT_LDS_scale                             -0.14870    0.56541  -0.263    0.793
## Priming_collocation_residual_scale          0.36651    0.46933   0.781    0.435
## mtld_original_aw.y_scale                   -0.06047    0.51696  -0.117    0.907
## Brysbaert_Concreteness_Combined_CW.y_scale -0.10220    0.54727  -0.187    0.852
##                                               
## (Intercept)                                ***
## PVLT_LDS_scale                                
## Priming_collocation_residual_scale            
## mtld_original_aw.y_scale                      
## Brysbaert_Concreteness_Combined_CW.y_scale    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Dispersion:  3.149546  on  714  degrees of freedom
## Null Deviance:     9183 
## Residual Deviance: 2207 
## Number of Fisher Scoring iterations:  5 
## Number of observations:  107
#show summary first

3.1.1.1 Simulating values

length(seq(min(PVLT_LDS_scale), max(PVLT_LDS_scale), by= .1))
## [1] 47
pvlt_sim <- data.frame(
  PVLT_LDS_scale = seq(min(PVLT_LDS_scale), max(PVLT_LDS_scale), by= .1),
  Priming_collocation_residual_scale = rep(0, 47),
  mtld_original_aw.y_scale = rep(0, 47),
  Brysbaert_Concreteness_Combined_CW.y_scale = rep(0, 47)
)
pvlt_sim

3.1.1.2 Plotting the effects of PVLT

pred_pvlt_sim <- multinomial_prediction(best_mod_scale, pvlt_sim)
PVLT_marginal <- ggplot(pred_pvlt_sim, aes(x = PVLT_LDS_scale, y = Predicted.Proportion, color = Response.type, linetype = Response.type)) +
  geom_smooth(se = F) +
  geom_ribbon(aes(y = NULL, ymin = lower, ymax = upper, color = NULL, fill = Response.type), alpha = .15) +
  xlab("Productive Vocabulary Levels Test (z-score)") +
  ylab("Predicted probabilities") +
  scale_linetype_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  scale_color_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  scale_fill_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  theme_bw()

PVLT_marginal

#ggsave('Fig_PVLT_marginal.png', PVLT_marginal, width = 6,height = 4, unit = 'in')

3.1.1.3 Plotting the effects of collocation priming

length(seq(min(Priming_collocation_residual_scale), max(Priming_collocation_residual_scale), by= .1))
## [1] 61
col_prime_sim <- data.frame(
  PVLT_LDS_scale = rep(0,61),
  Priming_collocation_residual_scale = seq(min(Priming_collocation_residual_scale), max(Priming_collocation_residual_scale), by= .1),
  mtld_original_aw.y_scale = rep(0, 61),
  Brysbaert_Concreteness_Combined_CW.y_scale = rep(0, 61)
)

pred_col_prime_sim <- multinomial_prediction(best_mod_scale, col_prime_sim)
col_prime_marginal <- ggplot(pred_col_prime_sim, aes(x = Priming_collocation_residual_scale, y = Predicted.Proportion, color = Response.type, linetype = Response.type)) +
  geom_smooth(se = F) +
  geom_ribbon(aes(y = Predicted.Proportion, ymin = lower, ymax = upper, color = NULL, fill = Response.type), alpha = .15) +
  xlab("Collocation Priming (z-score)") +
  ylab("Predicted probabilities") +
  scale_linetype_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  scale_color_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  scale_fill_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  theme_bw()
col_prime_marginal

#ggsave('Fig_Colprime_marginal.png', col_prime_marginal, width = 6,height = 4, unit = 'in')

3.1.1.4 Plotting the effects of MTLD

length(seq(min(mtld_original_aw.y_scale), max(mtld_original_aw.y_scale), by= .1))
## [1] 45
mtld_sim <- data.frame(
  PVLT_LDS_scale = rep(0,45),
  Priming_collocation_residual_scale = rep(0,45),
  mtld_original_aw.y_scale = seq(min(mtld_original_aw.y_scale), max(mtld_original_aw.y_scale), by= .1),
  Brysbaert_Concreteness_Combined_CW.y_scale = rep(0, 45)
)

pred_mtld_sim <- multinomial_prediction(best_mod_scale, mtld_sim)

mtld_marginal <- ggplot(pred_mtld_sim, aes(x = mtld_original_aw.y_scale, y = Predicted.Proportion, color = Response.type, linetype = Response.type)) +
  geom_smooth(se = F) +
  geom_ribbon(aes(y = Predicted.Proportion, ymin = lower, ymax = upper, color = NULL, fill = Response.type), alpha = .15) +
  xlab("the Measure of Textual Lexical Diversity (z-score)") +
  ylab("Predicted probabilities") +
  scale_linetype_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  scale_color_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  scale_fill_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  theme_bw()

mtld_marginal

#ggsave('Fig_MTLD_marginal.png', mtld_marginal, width = 6,height = 4, unit = 'in')

3.1.1.5 Plotting the effects of Concreteness

length(seq(min(Brysbaert_Concreteness_Combined_CW.y_scale), max(Brysbaert_Concreteness_Combined_CW.y_scale), by= .1))
## [1] 50
concreteness_sim <- data.frame(
  PVLT_LDS_scale = rep(0,50),
  Priming_collocation_residual_scale = rep(0,50),
  mtld_original_aw.y_scale = rep(0,50),
  Brysbaert_Concreteness_Combined_CW.y_scale = seq(min(Brysbaert_Concreteness_Combined_CW.y_scale), max(Brysbaert_Concreteness_Combined_CW.y_scale), by= .1)
)

pred_concreteness_sim_sim <- multinomial_prediction(best_mod_scale, concreteness_sim)

conc_marginal <- ggplot(pred_concreteness_sim_sim, aes(x = Brysbaert_Concreteness_Combined_CW.y_scale, y = Predicted.Proportion, color = Response.type, linetype = Response.type)) +
  geom_smooth(se = F) +
  geom_ribbon(aes(y = Predicted.Proportion, ymin = lower, ymax = upper, color = NULL, fill = Response.type), alpha = .15) +
  xlab("Brysbaert Concreteness Content Word (z-score)") +
  ylab("Predicted probabilities") +
  scale_linetype_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  scale_color_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  scale_fill_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  scale_x_reverse() +
  theme_bw()

conc_marginal

#ggsave('Fig_concreteness_marginal.png', conc_marginal, width = 6,height = 4, unit = 'in')

3.1.1.6 Plotting the effects of Bigram Mutual information

bi_scale <- mblogit(cbind(`Other Conceptual`, `Lexical Set`, Collocation, `Free Combination`, Form, Erratic, `Form and Meaning`, `Position and Meaning`) ~  PVLT_LDS_scale +COCA_lemma_spoken_bi_MI.y_scale , data=multinom.cat.data_sub2_scale, random=NULL, dispersion = TRUE, estimator = "REML", na.action = "na.fail")
## 
## Iteration 1 - Deviance = 2378.164
## Iteration 2 - Deviance = 2318.831
## Iteration 3 - Deviance = 2317.865
## Iteration 4 - Deviance = 2317.854
## Iteration 5 - Deviance = 2317.854
## converged
attach(multinom.cat.data_sub2_scale)
length(seq(min(COCA_lemma_spoken_bi_MI.y_scale), max(COCA_lemma_spoken_bi_MI.y_scale), by= .1))
## [1] 56
pvlt_sim <- data.frame(
  PVLT_LDS_scale = seq(min(PVLT_LDS_scale), max(PVLT_LDS_scale), by= .1),
  Priming_collocation_residual_scale = rep(0, 47),
  mtld_original_aw.y_scale = rep(0, 47),
  Brysbaert_Concreteness_Combined_CW.y_scale = rep(0, 47)
)

bigram <- data.frame(
  PVLT_LDS_scale = rep(0, 56),
  Priming_collocation_residual_scale = rep(0, 56),
  mtld_original_aw.y_scale = rep(0, 56),
  Brysbaert_Concreteness_Combined_CW.y_scale = rep(0, 56),
  COCA_lemma_spoken_bi_MI.y_scale= seq(min(COCA_lemma_spoken_bi_MI.y_scale), max(COCA_lemma_spoken_bi_MI.y_scale), by= .1)
)
pred_bi_sim <- multinomial_prediction2(bi_scale, bigram)

bigram_plot <- ggplot(pred_bi_sim, aes(x = COCA_lemma_spoken_bi_MI.y_scale, y = Predicted.Proportion, color = Response.type, linetype = Response.type)) +
  geom_smooth(se = F) +
  geom_ribbon(aes(y = NULL, ymin = lower, ymax = upper, color = NULL, fill = Response.type), alpha = .15) +
  xlab("COCA spoken Bigrams (z-score)") +
  ylab("Predicted probabilities") +
  scale_linetype_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  scale_color_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  scale_fill_discrete(name = "Response Type", labels = c("Other Conceptual", "Lexical Set", "Collocation", "Free combination", "Form", "Erratic", "Form and Meaning", "Position and meaning")) +
  theme_bw()

bigram_plot

ggsave('Fig_bigram_marginal.png', bigram_plot, width = 6,height = 4, unit = 'in')

4 Research Question 2

  • RQ2: To what extent are WA response times (RTs) predicted by (a) knowledge of form-meaning mappings, (b) semantic and collocational priming, (c) lexical decision time, and (d) lexical richness?

4.1 Best-subset regression

multinom.cat.data_sub_rt <- data.frame(cbind(WA_RT_M_3SD, PVLT_LDS, Priming_collocation_residual, Priming_semantic_residual, LDT_Unrelated_Cleaned, LDT_Unrelated_residual, mtld_original_aw.y, Brysbaert_Concreteness_Combined_CW.y, COCA_lemma_spoken_bi_MI.y, COCA_spoken_Frequency_Log_CW.y)) %>%
  na.omit()

attach(multinom.cat.data_sub_rt)
WA_RT.mod.residual <- lm(WA_RT_M_3SD ~ PVLT_LDS + Priming_collocation_residual + Priming_semantic_residual + LDT_Unrelated_residual + mtld_original_aw.y + Brysbaert_Concreteness_Combined_CW.y, data = multinom.cat.data_sub_rt,  na.action = "na.fail")
WA_RT.mod.BIC2 <- dredge(WA_RT.mod.residual, rank = "BIC")
WA_RT.mod.BIC2[1:10]
WA_RT.mod.AICc2 <- dredge(WA_RT.mod.residual, rank = "AICc")
WA_RT.mod.AICc2[1:10]
WA_RT.best <- lm(WA_RT_M_3SD ~ LDT_Unrelated_Cleaned + PVLT_LDS , data = multinom.cat.data_sub_rt,  na.action = "na.fail")
summary(WA_RT.best)
## 
## Call:
## lm(formula = WA_RT_M_3SD ~ LDT_Unrelated_Cleaned + PVLT_LDS, 
##     data = multinom.cat.data_sub_rt, na.action = "na.fail")
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.28873 -0.36312 -0.00174  0.38363  1.39390 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            2.896555   0.444421   6.518 2.76e-09 ***
## LDT_Unrelated_Cleaned  0.001079   0.000430   2.510   0.0136 *  
## PVLT_LDS              -0.034879   0.007964  -4.380 2.89e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5024 on 102 degrees of freedom
## Multiple R-squared:  0.2992, Adjusted R-squared:  0.2854 
## F-statistic: 21.77 on 2 and 102 DF,  p-value: 1.339e-08

4.1.1 Torelance

1/vif(WA_RT.best)
## LDT_Unrelated_Cleaned              PVLT_LDS 
##             0.8071218             0.8071218

4.1.2 Standardized beta

lm.beta::lm.beta(WA_RT.best)
## 
## Call:
## lm(formula = WA_RT_M_3SD ~ LDT_Unrelated_Cleaned + PVLT_LDS, 
##     data = multinom.cat.data_sub_rt, na.action = "na.fail")
## 
## Standardized Coefficients::
##           (Intercept) LDT_Unrelated_Cleaned              PVLT_LDS 
##             0.0000000             0.2316216            -0.4040972

4.1.3 Relative importance of the predictors

calc.relimp(WA_RT.best)
## Response variable: WA_RT_M_3SD 
## Total response variance: 0.3531745 
## Analysis based on 105 observations 
## 
## 2 Regressors: 
## LDT_Unrelated_Cleaned PVLT_LDS 
## Proportion of variance explained by model: 29.92%
## Metrics are not normalized (rela=FALSE). 
## 
## Relative importance metrics: 
## 
##                             lmg
## LDT_Unrelated_Cleaned 0.1053288
## PVLT_LDS              0.1938265
## 
## Average coefficients for different model sizes: 
## 
##                                 1X          2Xs
## LDT_Unrelated_Cleaned  0.001906348  0.001079343
## PVLT_LDS              -0.043659472 -0.034879310
cor(PVLT_LDS, LDT_Unrelated_Cleaned)
## [1] -0.439179

4.1.3.1 Plotting the relationships betwwen RT and predictor variables (descriptive-based)

ggplot(multinom.cat.data_sub_rt, aes(x = PVLT_LDS, y = WA_RT_M_3SD* 1000)) +
  geom_smooth(method = 'lm') +
  geom_point() +
  theme_bw() +
  labs(title = " ",
    x = "Productive Vocabulary Levels Test (Original scale)",
       y = 'Average WA Response Time (ms)')

ggplot(multinom.cat.data_sub_rt, aes(x = LDT_Unrelated_Cleaned, y = WA_RT_M_3SD * 1000)) +
  geom_smooth(method = 'lm') +
  geom_point() +
    theme_bw() +
  labs(title = " ", 
       x = "Average Lexical Decision Time (ms)",
       y = 'Average WA Response Time (ms)')

WA_RT.pvlt <- lm(WA_RT_M_3SD ~ PVLT_LDS, data = multinom.cat.data_sub_rt,  na.action = "na.fail")
summary(WA_RT.pvlt)
## 
## Call:
## lm(formula = WA_RT_M_3SD ~ PVLT_LDS, data = multinom.cat.data_sub_rt, 
##     na.action = "na.fail")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2921 -0.3867 -0.0372  0.3619  1.5462 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.917175   0.184054  21.283  < 2e-16 ***
## PVLT_LDS    -0.043659   0.007337  -5.951 3.71e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5151 on 103 degrees of freedom
## Multiple R-squared:  0.2559, Adjusted R-squared:  0.2486 
## F-statistic: 35.41 on 1 and 103 DF,  p-value: 3.711e-08
WA_RT.ldt <- lm(WA_RT_M_3SD ~ LDT_Unrelated_Cleaned, data = multinom.cat.data_sub_rt,  na.action = "na.fail")
summary(WA_RT.ldt)
## 
## Call:
## lm(formula = WA_RT_M_3SD ~ LDT_Unrelated_Cleaned, data = multinom.cat.data_sub_rt, 
##     na.action = "na.fail")
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.08530 -0.36841  0.01856  0.36884  1.43513 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.435146   0.318402   4.507 1.74e-05 ***
## LDT_Unrelated_Cleaned 0.001906   0.000419   4.550 1.47e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5449 on 103 degrees of freedom
## Multiple R-squared:  0.1674, Adjusted R-squared:  0.1593 
## F-statistic:  20.7 on 1 and 103 DF,  p-value: 1.471e-05

4.1.3.2 Second best model including concreteness

WA_RT.best2 <- lm(WA_RT_M_3SD ~ PVLT_LDS + LDT_Unrelated_Cleaned + Brysbaert_Concreteness_Combined_CW.y, data = multinom.cat.data_sub_rt,  na.action = "na.fail")
summary(WA_RT.best2)
## 
## Call:
## lm(formula = WA_RT_M_3SD ~ PVLT_LDS + LDT_Unrelated_Cleaned + 
##     Brysbaert_Concreteness_Combined_CW.y, data = multinom.cat.data_sub_rt, 
##     na.action = "na.fail")
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.28191 -0.37567  0.00085  0.38547  1.36063 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           2.1596509  1.1109045   1.944 0.054672 .  
## PVLT_LDS                             -0.0325803  0.0085907  -3.793 0.000254 ***
## LDT_Unrelated_Cleaned                 0.0011039  0.0004323   2.554 0.012158 *  
## Brysbaert_Concreteness_Combined_CW.y  0.1978171  0.2731897   0.724 0.470677    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5035 on 101 degrees of freedom
## Multiple R-squared:  0.3028, Adjusted R-squared:  0.2821 
## F-statistic: 14.62 on 3 and 101 DF,  p-value: 5.593e-08
anova(WA_RT.best, WA_RT.best2, test = "Chi")
calc.relimp(WA_RT.best2)
## Response variable: WA_RT_M_3SD 
## Total response variance: 0.3531745 
## Analysis based on 105 observations 
## 
## 3 Regressors: 
## PVLT_LDS LDT_Unrelated_Cleaned Brysbaert_Concreteness_Combined_CW.y 
## Proportion of variance explained by model: 30.28%
## Metrics are not normalized (rela=FALSE). 
## 
## Relative importance metrics: 
## 
##                                            lmg
## PVLT_LDS                             0.1745220
## LDT_Unrelated_Cleaned                0.1031348
## Brysbaert_Concreteness_Combined_CW.y 0.0251181
## 
## Average coefficients for different model sizes: 
## 
##                                                1X          2Xs          3Xs
## PVLT_LDS                             -0.043659472 -0.038509683 -0.032580323
## LDT_Unrelated_Cleaned                 0.001906348  0.001448831  0.001103867
## Brysbaert_Concreteness_Combined_CW.y  0.698051552  0.361944905  0.197817061

5 Assumption of the linear model is checked for the final model

plot(WA_RT.best)

5.1 Supplementary result—comparison of simple correlation coeffients with prior study.

  • Fisher’s r-to-z comparison with previous results Fitzpatrick (2006)-

Our results concur with those in Fitzpatrick (2006), who found weak correlations between Yes/No Vocabulary test and WA responses.To formally test the hypothesis that our data shows the similar results to Fitzpatrick (2006) under the simple Pearson correlations, we conducted Fisher’s r-to-z transformation. The result showed that our correlation coeffieicnts were not statistically different from theirs for any type of association (based on Fisher’s r-to-z transformation performed with the cocor package; Diedenhofen & Musch, 2015): meaning-based (z = 0.175; p = .861), position-based (z = .504; p = .614), and form-based responses (z = .252; p = .801).

5.2 This study

pairs.panels(cbind(PVLT_LDS, `Lexical Set`,  Collocation, Form), stars = T, ci = T)

cor(cbind(PVLT_LDS, `Lexical Set`,  Collocation,   Form))
##                PVLT_LDS Lexical Set Collocation        Form
## PVLT_LDS     1.00000000  0.23021034   0.2829667 -0.08145828
## Lexical Set  0.23021034  1.00000000  -0.5026281 -0.09978168
## Collocation  0.28296666 -0.50262814   1.0000000 -0.36693475
## Form        -0.08145828 -0.09978168  -0.3669348  1.00000000
cor(cbind(PVLT_LDS, Form))
##             PVLT_LDS        Form
## PVLT_LDS  1.00000000 -0.08145828
## Form     -0.08145828  1.00000000
library(cocor)
cocor.indep.groups(-.088, -0.1352041, 40, 113, alternative = "two.sided",
      test = "all", alpha = 0.05, conf.level = 0.95, null.value = 0,
      data.name = NULL, var.labels = NULL, return.htest = FALSE)
## 
##   Results of a comparison of two correlations based on independent groups
## 
## Comparison between r1.jk = -0.088 and r2.hm = -0.1352
## Difference: r1.jk - r2.hm = 0.0472
## Group sizes: n1 = 40, n2 = 113
## Null hypothesis: r1.jk is equal to r2.hm
## Alternative hypothesis: r1.jk is not equal to r2.hm (two-sided)
## Alpha: 0.05
## 
## fisher1925: Fisher's z (1925)
##   z = 0.2516, p-value = 0.8014
##   Null hypothesis retained
## 
## zou2007: Zou's (2007) confidence interval
##   95% confidence interval for r1.jk - r2.hm: -0.3065 0.4109
##   Null hypothesis retained (Interval includes 0)
cocor.indep.groups(.244, 0.230210336, 40, 113, alternative = "two.sided",
      test = "all", alpha = 0.05, conf.level = 0.95, null.value = 0,
      data.name = NULL, var.labels = NULL, return.htest = FALSE)
## 
##   Results of a comparison of two correlations based on independent groups
## 
## Comparison between r1.jk = 0.244 and r2.hm = 0.2302
## Difference: r1.jk - r2.hm = 0.0138
## Group sizes: n1 = 40, n2 = 113
## Null hypothesis: r1.jk is equal to r2.hm
## Alternative hypothesis: r1.jk is not equal to r2.hm (two-sided)
## Alpha: 0.05
## 
## fisher1925: Fisher's z (1925)
##   z = 0.0769, p-value = 0.9387
##   Null hypothesis retained
## 
## zou2007: Zou's (2007) confidence interval
##   95% confidence interval for r1.jk - r2.hm: -0.3449 0.3417
##   Null hypothesis retained (Interval includes 0)
cocor.indep.groups(.305, 0.282966658, 40, 107, alternative = "two.sided",
      test = "all", alpha = 0.05, conf.level = 0.95, null.value = 0,
      data.name = NULL, var.labels = NULL, return.htest = FALSE)
## 
##   Results of a comparison of two correlations based on independent groups
## 
## Comparison between r1.jk = 0.305 and r2.hm = 0.283
## Difference: r1.jk - r2.hm = 0.022
## Group sizes: n1 = 40, n2 = 107
## Null hypothesis: r1.jk is equal to r2.hm
## Alternative hypothesis: r1.jk is not equal to r2.hm (two-sided)
## Alpha: 0.05
## 
## fisher1925: Fisher's z (1925)
##   z = 0.1260, p-value = 0.8997
##   Null hypothesis retained
## 
## zou2007: Zou's (2007) confidence interval
##   95% confidence interval for r1.jk - r2.hm: -0.3314 0.3393
##   Null hypothesis retained (Interval includes 0)