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A Online Appendix

A.1 Existence of a solution to the optimality equations

In this section we show that the optimality equations have a solution for the multiserver model
with N < ∞ servers when service can be preempted and when customers during service
can abandon. Whenever possible, we discuss when these results can (or cannot) extended by
relaxing either one of these assumptions. Let A = ∪xA(x) denote the action space with action
a ∈ A denoting an allocation decision of idling servers to stations 1 and 2. The set of actions
available at state x ∈ X is A(x) ⊂ A. Note that A, and hence A(x) for all x ∈ X, are Polish
spaces with the discrete metric on the set of natural numbers. For states y 6= x, let q(y|x, a)

be the rate at which a process leaves x and goes to y given that action a is chosen. Moreover,
let −q(x|x, a) be the rate at which a Markov process leaves state x under action a. Note for
the current study, the transition rate kernel is conservative (i.e.,

∑
y∈X q(y|x, a) = 0 for all

x ∈ X, a ∈ A(x)) and stable (i.e., q(x) := sup{−q(x|x, a) : a ∈ A(x)} < ∞ for all x ∈ X).
The following notation is adopted from [2, 4] and will be used throughout this section.

• For any measurable function h ≥ 1 on X, we define the h-weighted supremum norm
‖ · ‖h of a real-valued measurable function f on X by

‖f‖h := sup
x∈X
{h(x)−1|f(x)|}

and the Banach space Bh(X) := {f : ‖f‖h <∞}.

• Let K := {(x, a) ∈ X× A : a ∈ A(x)} denote the family of state-action pairs.

• Let Π be the set of all randomized Markov policies, Πs the set of all randomized Markov
stationary policies, and F the set of all stationary, non-idling policies.

Customer abandonments imply that the transition rates are unbounded. As a result, we
verify that each process generated by each Markov policy yields a transition kernel that (in the
one-dimensional case) has row sums equal to one for all time. That is to say, we do not have
an infinite number of transitions in finite time. To do so, we verify the following assumption
from [1] (see Assumption A in [1]).
Assumption A. There exists a sequence of subsets of Xm ⊂ X, a non-decreasing function
hA ≥ 1 on X, and constants bA ≥ 0 and cA ∈ R such that

1. Xm ↑ X and for each m ≥ 1, sup{q(x)|x ∈ Xm} <∞.

2. inf{hA(x)|x /∈ Xm} → ∞ as m→∞.
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3.
∑

y∈X q(y|x, a)hA(y) ≤ cAhA(x) + bA for all (x, a) ∈ K.

Lemma A.1 Fix γ ∈ (0, α), where α > 0 is a fixed, positive discount rate, and take hA(x) =

hA ((x1, x2, y1, y2)) = eε(x1+x2) with ε = log(γ/(λ1 +λ2) + 1) > 0. It follows that Assumption
A holds with Xm = {(x1, x2, y1, y2)|x1 + x2 + y1 + y2 ≤ m}; hA(x) = hA ((x1, x2, y1, y2)) =

eε(x1+x2); cA = γ; and bA = 0.

Proof. Only the third statement is nontrivial. For (x1, x2, y1, y2) and a ∈ A((x1, x2, y1, y2)),
a little algebra yields∑

(x′
1,x

′
2,y

′
1,y

′
2)∈X

q((x′1, x
′
2, y
′
1, y
′
2)|(x1, x2, y1, y2), a)hA(x′1, x′2, y′1, y′2)

= eε(x1+x2)
[
(λ1 + λ2)

[
eε − 1

]
+
(
(x1 − y1 − a1)β1 + (x2 − y2 − a2)β2 + qmin{x1, y1 + a1}µ1

+min{x2, y2 + a1}µ2

)[
e−ε − 1

]]
≤ eε(x1+x2)

[
λ1 + λ2

][
eε − 1

]
= γeε(x1+x2)

= γhA ((x1, x2, y1, y2)) ,

as desired.

In addition to Assumption A, we will need to verify the following assumption from [1] (see
Assumption B in [1]).
Assumption B.
With cA and hA (·) as in Assumption A:

1. either cA ≤ 0, or cA − α < 0 when cA > 0; and

2. there exist non-negative constants M1 and M2 such that

|c(x, a)| ≤ |x1(h1 +K1β1) + x2(h2 + β2K2)| ≤M1 +M2hA(x)

for every x ∈ X.

Lemma A.2 Assumption B holds with M1 = 0 and M2 = max{h1+β1K1,h2+β2K1}
ε

, where ε is
defined in Lemma A.1 above.

Proof. Note that we have chosen cA = γ in Assumption A so that 0 < cA < α, and hence,
the first statement trivially holds.
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For the second statement, note that

c(x, a)

hA(x)
≤ x1(h1 + β1K1) + x2(h2 + β2K2)

hA(x)
=
x1(h1 + β1K1) + x2(h2 + β2K2)

eε(x1+x2)

≤ x1(h1 + β1K1) + x2(h2 + β2K2)

1 + ε(x1 + x2)

≤ max{h1 + β1K1, h2 + β2K1}(x1 + x2)

1 + ε(x2 + x2)

≤ max{h1 + β1K1, h2 + β2K2}
ε

= M2,

as desired.

Assumptions A and B imply that the function vα is the unique solution within BhA(X) of the
discounted-cost optimality equations (see part (b) of Theorem 3.2 in [1]).

The final assumption we need to check is Assumption C below (c.f., Assumption C in [1]).
That is, Assumptions A-C imply that Theorem 3.2 in [1] holds. In particular, there exists an
optimal deterministic stationary optimal policy, and this policy attains the minimum in the right
hand side of the DCOE (Theorem 4.2).
Assumption C.

1. For each x ∈ X, the set of available actions in state x, A(x), is compact;
2. The functions q(x′|x, a), c(x, a), and

∑
x′∈X q(x

′|x, a)hA(x′) are continuous in a ∈ A(x)

for each fixed x, x′ ∈ X; and
3. Given hA (the function in Assumption A), there exists a non-negative function hC : X→

R and constants cC > 0, bC ≥ 0, and MC > 0 such that q(x)hA(x) ≤ MChC(x) for
every x ∈ X ∑

x′∈X

q(x′|x, a)hC(y) ≤ cChC(x) + bC

for all (x, a) ∈ K.

Lemma A.3 Assumption C holds with hC(x) = e2ε(x1+x2); cC = cA; bC = 0; and MC > 0

given in the proof below.

Proof. The first and second statements follow as a consequence of A(x) being finite for all
x ∈ X.

Next, observe that hC(x) is a non-negative function. Moreover,

q(x)hA(x)/hC(x) = q(x)/eε(x1+x2)
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Since q(x) is bounded above by a linear function of the state, it is dominated by the expo-
nential function in the denominator, and hence, it follows that there exists MC > 0 such that
q(x)hA(x) ≤MChC(x) for every x ∈ X.

Lastly, fix x ∈ X and note that∑
x′∈Xq(x

′|x, a)hC(x′) ≤ (λ1 + λ2) [eε − 1] e2ε(x1+x2)

= γe2ε(x1+x2)

= γhC(x),

as desired.

Our final step is to show that there exists a solution to the average cost optimality equa-
tions. To do this, we need to verify Assumption D below (c.f., Assumption 3 in [?]). That
is, Assumptions A-D imply that Theorem 3.5 in [?], which we re-state below, holds. To do
this, we will need the following definitions of the hitting time of a state, expected hitting time
of a state, and the total expected cost incurred until the hitting time of state. The following
definitions and notation are adopted from [?] and will be used throughout this section.
Let π ∈ Π and Xπ

s = (Qπ
1 (s), Qπ

2 (s)).

Definition A.4 The hitting time of a state x ∈ X under policy f ∈ F is

τx(f) := inf
t>0
{Xf

t = x and ∃s ∈ (0, t) such that Xf
s 6= x}.

Definition A.5 The expected hitting time of state x (from state x′) under policy f ∈ F is
mx′x(f) = Efx′ τx(f)

Definition A.6 The total expected cost incurred until the hitting time of state x under policy
f ∈ F is given by cx′x(f) = Eπx

∫ τx(f)
0

c(Xt)dt

Assumption D

1. There exists a state x0 ∈ X and a policy f0 ∈ F such that mxx0(f0), cxx0(f0) < ∞ for
all x ∈ X, except for state x0, which may be absorbing. Note that this implies that the
long-run average cost of policy f is independent of x ∈ X.

2. There exists ε > 0 such that D = {x′ ∈ X|c(x′) ≤ g(f0) + ε for some f ∈ F}, is a finite
set.

3. For all x ∈ Dε,π0 , there exists a policy fx (depending on x) with mzx(π), czx(π) <∞.
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If Assumptions A-D hold, then there exist g and w satisfying the ACOEs (Theorem 4.3)
with the property that (1) g is the minimum expected average cost (in F ); (2) any deterministic
stationary policy f that attains the minimum in the ACOE is average cost optimal; and (3)
there exists x∗ ∈ D with w∗x∗ = infxw

∗
x. Moreover, let x0 ∈ X be a fixed state. Any sequence

of discount factors {αn}n with limn→∞ αn = 0 has a subsequence, again denoted by {αn}n,
along which the following limits exists:

w′x = lim
n→∞
{vαn

x − vαx0}, x ∈ X,

g′ = lim
n→∞

αnv
αn
x , x ∈ X,

f ′ = lim
n→∞

fαn .

Furthermore, the tuple (g′, w′) is a solution to the ACOE with properties (1), (2), and (3) above,
so that g′ = g. Moreover, f ′ takes minimizing actions in the ACOE for g = g′ and w = w′.
We next provide conditions which imply that our model satisfies Assumption D.

Lemma A.7 Consider the following mutually exclusive conditions:

1. min{β1, β2} > 0

2. β1 > 0; β2 = 0, and if λ2
µ2

for the multi-server case with non-preemptive service and no

abandonments during service or if λ1 · ( 1
π0(µ1+β1)

+ p(1−P (Ab)
µ2

) + λ2
µ2
< 1 for the single-

server case with preemption and abandonments during service, where π0 is long-run
fraction of time that station 2 is empty under the non-idling policy that prioritizes station
2 when β2 = 0 and P (Ab) is the probability a customer/job receiving service at station
1 abandons before completing service, which is given by β1/(µ1 + β1) ;

3. β1 = 0, β2 > 0 and λ1
µ1
< 1

If Assumption D holds.

Proof. There are several cases to consider.

Case 1 min{β1, β2} > 0

In this case, since abandonments from both phases of service can occur, any stationary policy
yields a stable system.

Case 2 β1 > 0, β2 = 0, and either λ2
µ2

< 1 for the multi-server case with non-preemptive
service and no abandonments during service or if λ1 · ( 1

µ1+β1
+ 1

µ2
) + λ2

µ2
< 1 for the single-

server case with preemption and abandonments during service.
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Since β1 > 0, station 1 is always stable. The condition λ2
µ2

< 1 implies that the potentially
idling policy that prioritizes station 2 with one server yields a stable Markov chain for station 2
since it is akin to an M/M/1 queueing system. As a result, the condition implies the stability of
the Markov chain induced by a policy that prioritizes station 2. Next, consider a single-server
model with preemption and abandonments during service and suppose λ1 · ( 1

µ1+β1
+ 1

µ2
)+ λ2

µ2
<

1. For this system, consider the stationary nonidling policy that prioritizes station 2. First
note that this policy is recurrent. Next, consider the following Lyapunov function s(x1, x2) =

x1
π0(µ1+β1)

+ p·(1−P (Ab)·x1+x2
µ2

+ 1 and (x1, x2) ∈ X \ Xm. For this Lyapunov function, we have

∑
(x′

1,x
′
2)∈X

q((x′1, x
′
2)|(x1, x2), a)s(x′1, x′2) = λ1

[ 1

π0(µ1 + β1)
+
p · (1− P (Ab)

µ2

]
+ λ2

[ 1

µ2

]
+
pµ11(j = 0, i > 0)

µ2
− (µ11(x2 = 0, x1 > 0) + x1β1)

[p · (1− P (Ab))
µ2

]
− (µ11(x2 = 0, x1 > 0) + x1β1)

[ 1

π0(µ1 + β1)

]
− 1(x2 > 0)

If x2 > 0, then this last expression is bounded above by

λ1

[ 1

π0(µ1 + β1)
+
p · (1− P (Ab)

µ2

]
+ λ2

[ 1

µ2

]
− 1,

which is negative as a consequence of our assumption that λ1 · ( 1
µ1+β1

+ 1
µ2

) + λ2
µ2

< 1. If,
however, x2 = 0 so that x1 = m > 0, the first expression above is now bounded above by

λ1

[ 1

π0(µ1 + β1)
+
p · (1− P (Ab)

µ2

]
+ λ2

[ 1

µ2

]
+
pµ1

µ2

− (µ1 + β1)
[p · (1− P (Ab))

µ2

]
− (µ1 + β1)

[ 1

π0(µ1 + β1)

]
≤ λ1

[ 1

π0(µ1 + β1)
+
p · (1− P (Ab)

µ2

]
+ λ2

[ 1

µ2

]
+
pµ1

µ2

− (µ1 + β1)
[p · (1− P (Ab))

µ2

]
− 1

π0

= λ1

[ 1

π0(µ1 + β1)
+
p · (1− P (Ab)

µ2

]
+ λ2

[ 1

µ2

]
− 1

π0
< 0,

where the last inequality again follows from our assumption. Applying an analogue to Foster’s
criterion for continuous-time processes (see Meyn and Tweedie [3]; Theorem 4.2 with f = 1)
yields that the Markov process associated with prioritizing station 2 has all states that commu-
nicate with say (0, 0) as positive recurrent. Theorem 4.3(i) of Meyn and Tweedie [3] (again
with f = 1) implies that under this policy, the Markov process generated starting in any initial
state reaches (0, 0) in finite expected time.

Case 3 β1 = 0, β2 > 0, and λ1
µ1
< 1
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Since β2 > 0, station 2 is always stable. The condition λ1
µ1

< 1 implies that the potentially
idling policy that prioritizes station 1 with one server yields a stable Markov chain for station
1 since it is akin to an M/M/1 queueing system. It follows that the output process into station 2
from station 1 is a Poisson process of rate pλ1. The queue length process at station 2 is bounded
below by the queue length process of an M/M/∞ queue with birth rate equal to pλ1 + λ2 and
death rate equal to x2β2 when there are x2 customers in station 2. As a result, the condition
implies the stability of the Markov chain induced by a policy that prioritizes station 1.

A.2 Proof of of Theorem 4.5 under the discounted cost criterion

Proof of 1 continued. Recall we are trying to show that

µ1[pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− vα(x1, x2)] + µ2[vα(x1, x2)− vα(x1, x2 − 1)] ≥ 0.

(A.1)

using a sample path argument. Processes 1-5 started in states (x1−1, x2+1), (x1−1, x2), (x1, x2),
(x1, x2), and (x1, x2 − 1), respectively. Processes 1, 2, and 4 use stationary optimal policies,
which we denotes by π1, π2, and π4, respectively. We are showing how to construct (potentially
sub-optimal) policies for Processes 3 and 5 which we denote by π3 and π5, so that

µ1[pv
π1
α (x1 − 1, x2 + 1) + qvπ2α (x1 − 1, x2)− vπ3α (x1, x2)] + µ2[v

π4
α (x1, x2)− vπ5α (x1, x2 − 1)] ≥ 0.

(A.2)

Since π3 and π5 are potentially sub-optimal, (A.1) follows from (A.2).

Case 2 Customer service completions

Suppose that policies πi(i = 1, 2, 3, 4) all serve a class 2 customer whereas π5 serves a class
1 customer. If the first event is a class 1 service completion in Process 5 (with probability

µ1
λ1+λ2+µ1+µ2+x1β1

), after which all processes follow optimal controls, then the remaining costs
in the left side of the inequality in (A.2) (with the denominator of the probability suppressed)
are

µ1

[
(µ2h2 − µ1[h1 + β1K1 − ph2]) t1 + µ1[pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− vα(x1, x2)]

+ µ2[vα(x1, x2)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)]
]
. (A.3)

If the first event is a class 2 service completion in Processes 1-4 (with probability µ2
λ1+λ2+µ1+µ2+x1β1

),
again after which optimal controls are used, then the remaining costs (with the denominator of
the probability suppressed) are

µ2

[
(µ2h2 − µ1[h1 + β1K1 − ph2]) t1 + µ1[pvα(x1 − 1, x2) + qvα(x1 − 1, x2 − 1)− vα(x1, x2 − 1)]

]
.

(A.4)
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Adding expressions (A.3) and (A.4) yields

(µ1 + µ2) (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+µ1

[
µ1

[
pvα(x1−1, x2+1)+qvα(x1−1, x2)−vα(x1, x2)

]
+µ2

[
vα(x1, x2)−vα(x1, x2−1)

]]
.

The terms inside the brackets in this last expression above are implied by the expression on left
side of the inequality in (A.1). That is, we may restart the argument from here.

Suppose that policy π2 and π5 serve a class 1 customer, whereas π1 and π4 serves a class
2 customer. In this case, let π3 serve a class 2 customer. If the first event is a class 1 service
completion in Processes 2 and 5 (with probability µ1

λ1+λ2+µ1+µ2+x1β1
), after which all processes

follow optimal controls, then the remaining costs in the left side of the inequality in (A.2) are

µ1

[
(µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ µ1[pvα(x1 − 1, x2 + 1) + q(pvα(x1 − 2, x2 + 1) + qvα(x1 − 2, x2))− vα(x1, x2)]

+ µ2[vα(x1, x2)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)]
]
. (A.5)

If the first event is a class 2 service completion in Processes 1, 3, and 4 (with probability
µ2

λ1+λ2+µ1+µ2+x1β1
), again after which optimal controls are used, then the remaining costs are

µ2

[
(µ2h2 − µ1[h1 + β1K1 − ph2]) t1 + µ1[vα(x1 − 1, x2)− vα(x1, x2 − 1)]

]
. (A.6)

Adding (A.5) and (A.6) (and after rearranging terms) we get

(µ1 + µ2) (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ µ1

[
µ1

[
pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− vα(x1, x2)

]
+ µ2

[
vα(x1, x2)− vα(x1, x2 − 1)

]]
+ qµ1

[
µ1

[
pvα(x1 − 2, x2 + 1) + qvα(x1 − 2, x2)− vα(x1 − 1, x2)

]
+ µ2

[
vα(x1 − 1, x2)− vα(x1 − 1, x2 − 1)

]]
.

The expression inside the first and second pair of brackets above are the expression on left side
of inequality in (A.2) evaluated at (x1, x2) and (x1−1, x2), respectively. In both cases, we may
relabel the states and continue as though we had started in these states.

Suppose that policies π1 − π3 and π5 serve a class 1 customer whereas π4 serves a class
2 customer. If the first event is a class 1 service completion in Processes 1-3 and 5 (with
probability µ1

λ1+λ2+µ1+µ2+x1β1
), after which all processes follow an optimal controls, then the
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remaining costs in the left side of the inequality in (A.2) are

µ1 (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ µ1

[
µ1

[
p(pvα(x1 − 2, x2 + 2) + qvα(x1 − 2, x2 + 1)) + q(pvα(x1 − 2, x2 + 1) + qvα(x1 − 2, x2))

− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)
]

+ µ2

[
vα(i, j)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)

]]
(A.7)

If the first event is a class 2 service completion in Process 4 (with probability µ2
λ1+λ2+µ1+µ2+x1β1

),
again after which optimal controls are used, then the remaining costs are

µ2 (µ2h2 − µ1[h1 + β1K1 − ph2]) t1 + µ2

[
µ1

[
pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− vα(x1, x2)

]]
.

(A.8)

Adding (A.7) and (A.8) we get

(µ1 + µ2) (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ pµ1

[
µ1

[
pvα(x1 − 2, x2 + 2) + qvα(x1 − 2, x2 + 1)− vα(x1 − 1, x2 + 1)

]
+ µ2

[
vα(x1 − 1, x2 + 1)− vα(x1 − 1, x2)

]]
+ qµ1

[
µ1

[
pvα(x1 − 2, x2 + 1) + qvα(x1 − 2, x2)− vα(x1 − 1, x2)

]
+ µ2

[
vα(x1 − 1, x2)− vα(x1 − 1, x2 − 1)

]]
.

The expression inside the first pair of brackets above is the expression on the left side of the
inequality in (A.2) but evaluated at (x1 − 1, x2 + 1). Similarly, the expression inside the
second pair of brackets in the expression above is the left side of inequality (A.2) evaluated at
(x1 − 1, x2). In both cases, we may relabel the states and continue as though we had started in
these states.

Suppose that policies π1, π3 and π5 serve a class 1 customer whereas π2 and π4 serve a
class 2 customer. If the first event is a class 1 service completion in Processes 1,3, and 5 (with
probability µ1

λ1+λ2+µ1+µ2+x1β1
), after which all processes follow an optimal controls, then the

remaining costs in the left side of the inequality in (A.2) are

µ1 (µ2h2 − µ1[h1 + β1K1 − ph2]) t1 + µ1

[
µ1

[
p(pvα(x1 − 2, x2 + 2) + qvα(x1 − 2, x2 + 1)) + qvα(x1 − 1, x2)

− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)
]

+ µ2

[
vα(x1, x2)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)

]]
. (A.9)

If the first event is a class 2 service completion in Processes 2 and 4 (with probability µ2
λ1+λ2+µ1+µ2+x1β1

),
again after which optimal controls are used, then the remaining costs are

µ2 (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ µ2

[
µ1

[
pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2 − 1)− vα(x1, x2)

]]
. (A.10)
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Adding (A.9) and (A.10) we get

(µ1 + µ2) (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ pµ1

[
µ1

[
pvα(x1 − 2, x2 + 2) + qvα(x1 − 2, x2 + 1)− vα(x1 − 1, x2 + 1)

]
+ µ2

[
vα(x1 − 1, x2 + 1)− vα(x1 − 1, x2)

]]
.

The expression inside the pair of brackets above is the expression on the left side of the in-
equality in (A.29) but evaluated at (x1 − 1, x2 + 1). In this case, we may relabel the states and
continue as though we had started in these states.

Suppose that policy π4 serves a class 1 customer whereas π1 and π2 serve a class 2 cus-
tomer. In this case, let policies π3 and π5 have the server work at station 2 and 1, respec-
tively. If the first event is a class 1 service completion in Processes 4 and 5 (with probability

µ1
λ1+λ2+µ1+µ2+x1β1

), after which all processes follow an optimal controls, then the remaining
costs in the left side of the inequality in (A.2) are

µ1 (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ µ1

[
µ1

[
pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− vα(x1, x2)

]
+ µ2

[
pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)

]]
.

(A.11)

If the first event is a class 2 service completion in Processes 1-3 (with probability µ2
λ1+λ2+µ1+µ2+x1β1

),
again after which optimal controls are used, then the remaining costs are

µ2 (µ2h2 − µ1[h1 + β1K1 − ph2]) t1 + µ2

[
µ1

[
pvα(x1 − 1, x2) + qvα(x1 − 1, x2 − 1)− vα(x1, x2 − 1)

]
+ µ2

[
vα(x1, x2)− vα(x1, x2 − 1)

]]
. (A.12)

Adding (A.11) and (A.12) we get

(µ1 + µ2) (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ (µ1 + µ2)
[
µ1

[
pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− vα(x1, x2)

]
+ µ2

[
vα(x1, x2)− vα(x1, x2 − 1)

]]
.

The expression inside the pair of brackets above is the expression on the left side of the in-
equality in (A.2). In this case, we may relabel the states and continue as though we had started
in these states.

Suppose that policies π2 and π4 serve a class 1 customer whereas π1 serves a class 2 cus-
tomer. In this case, let policies π3 and π5 have the server work at station 1. If the first event is a
class 1 service completion in Processes 2-5 (with probability µ1

λ1+λ2+µ1+µ2+x1β1
), after which all
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processes follow an optimal controls, then the remaining costs in the left side of the inequality
in (A.2) are

µ1 (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ µ1

[
µ1

[
pvα(x1 − 1, x2 + 1) + q(pvα(x1 − 2, x2 + 1) + qvα(x1 − 2, x2))

− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)
]

+ µ2

[
pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)

]]
.

(A.13)

If the first event is a class 2 service completion in Process 1 (with probability µ2
λ1+λ2+µ1+µ2+x1β1

),
again after which optimal controls are used, then the remaining costs are

µ2 (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ µ2

[
µ1

[
pvα(x1 − 1, x2) + qvα(x1 − 1, x2)− vα(x1, x2)

]
+ µ2

[
vα(x1, x2)− vα(x1, x2 − 1)

]]
.

(A.14)

Adding (A.13) and (A.14) we get

(µ1 + µ2) (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ qµ1

[
µ1

[
pvα(x1 − 2, x2 + 1) + qvα(x1 − 2, x2)− vα(x1 − 1, x2)

]
+ µ2

[
vα(x1 − 1, x2)− vα(x1 − 1, x2 − 1)

]]
+ µ2

[
µ1

[
pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− vα(x1, x2)

]
+ µ2

[
vα(x1, x2)− vα(x1, x2 − 1)

]]
.

The expression inside the first pair of brackets in the expression above is the left side of the
inequality (A.2) evaluated at (x1 − 1, x2). The expression inside the second pair of brackets
in the expression above is the left side of inequality (A.2). In both cases, we may relabel the
states and continue as though we had started in these states.

Suppose that policies π1 and π4 serves a class 1 customer whereas π2 serves a class 2
customer. In this case, let policies π3 and π5 have the server work at station 1. If the first event
is a class 1 service completion in Processes 1, 3, 4, and 5 (with probability µ1

λ1+λ2+µ1+µ2+x1β1
),

after which all processes follow an optimal controls, then the remaining costs in the left side of
the inequality in (A.2) are

µ1 (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ µ1

[
µ1

[
p (pvα(x1 − 2, x2 + 2) + qvα(x1 − 2, x2 + 1)) + qvα(x1 − 1, x2)− pvα(x1 − 1, x2 + 1)

− qvα(x1 − 1, x2)
]

+ µ2

[
pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)

]]
.

(A.15)
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If the first event is a class 2 service completion in Process 2 (with probability µ2
λ1+λ2+µ1+µ2+x1β1

),
again after which optimal controls are used, then the remaining costs are

µ2 (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ µ2

[
µ1

[
pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2 − 1)− vα(x1, x2)

]
+ µ2

[
vα(x1, x2)− vα(x1, x2 − 1)

]]
.

(A.16)

Adding (A.15) and (A.16) we get

(µ1 + µ2) (µ2h2 − µ1[h1 + β1K1 − ph2]) t1

+ pµ1

[
µ1

[
pvα(x1 − 2, x2 + 2) + qvα(x1 − 2, x2 + 1)− vα(x1 − 1, x2 + 1)

]
+ µ2

[
vα(x1 − 1, x2 + 1)

− vα(x1 − 1, x2)
]]

+ µ2

[
µ1

[
vα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− vα(x1, x2)

]
+ µ2

[
vα(x1, x2)− vα(x1, x2 − 1)

]]
.

The expression inside the first pair of brackets in the expression above is the left side of the
inequality (A.2) evaluated at (x1−1, x2 +1). The expression inside the second pair of brackets
in the expression above is the left side of inequality (A.2). In both cases, we may relabel the
states and continue as though we had started in these states.
Proof of 2. The proof is given for the discounted expected cost model. The proof of the long-
run average cost case is similar. Suppose µ1 = µ2 := µ and that β1 − β2 − µ ≥ 0. Note that
the optimality equations imply that it is optimal to prioritize a class 2 customer in state (x1, x2)

with x1, x2 ≥ 1 when

pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− vα(x1, x2 − 1) ≥ 0. (A.17)

We show (A.17) via a sample path argument. Fix x1, x2 ≥ 1 and start three processes on
the same probability space. Processes 1-3 begin in states (x1 − 1, x2 + 1), (x1 − 1, x2), and
(x1, x2 − 1), respectively. Processes 1-2 us a stationary optimal policies, which we denote by
π1 and π2, respectively. In what follows, we show how to construct a (potentially sub-optimal)
policy for Process 3 which we denote by π3, so that

pvπ1α (x1 − 1, x2 + 1) + qvπ2α (x1 − 1, x2)− vπ3α (x1, x2 − 1)] ≥ 0. (A.18)

Since π2 and π3 are potentially sub-optimal, (A.17) follows from (A.18). In what follows,
discounting is suppressed without any loss of generality.

Observe that starting from (A.18), the immediate costs incurred at the next event are ([h2 +

β2K2] − [h1 + β1K1 − p (h2 + β2K2)])t1 ≥ 0, where t1 is the time of the next event and the
inequality is due to the assumption that h2 +β2K2 ≥ h1 +β1K1−p (h2 − β2K2). Moreover, if
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the relative position (as measured by the current states) of the four processes at the next event
remains the same, then we may relabel the initial states and continue from the beginning of
the argument. This occurs when any of the uncontrolled events occur that are seen by all three
processes. It also occurs when π1 and π2 serve a customer class k ∈ {1, 2} by letting π3 also
serve the same customer class k customer provided there is one or more class k customer in
Process 3, and the next event service completion. Consider now the other cases.

Case 1 Customer abandonments

If the first event is a class 2 abandonment in Process 1 only (with probability β2
λ+2µ+x1β1+(x2+1)β2

),
after which all processes follow an optimal control, it follows that the remaining costs in the
left side of (A.18) (with the denominator of the probability of this event suppressed) are

β2

[
([h2 + β2K2]− [h1 + β1K1 − p (h2 + β2K2)]) t1+β2[vα(x1−1, x2)−vα(x1, x2−1)]

]
.

(A.19)

If the first event is a class 2 abandonment in Processes 1-2 (with probability β2
λ+2µ+x1β1+(x2+1)β2

),
again after which optimal controls are used, then the remaining costs (with the denominator of
the probability of this event suppressed) are

β2

[
([h2 + β2K2]− [h1 + β1K1 − p (h2 + β2K2)]) t1

+ β2[pvα(x1 − 1, x2) + qvα(x1 − 1, x2 − 1)− vα(x1, x2 − 1)]
]
. (A.20)

If the first event is a class 1 abandonment in Process 3 (with probability β1
λ+2µ+x1β1+(x2+1)β2

),
again after which optimal controls are used, then the remaining costs (with the denominator of
the probability of this event suppressed) are

β1

[
([h2 + β2K2]− [h1 + β1K1 − p (h2 + β2K2)]) t1

+ β1[pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− vα(x1 − 1, x2 − 1)]
]
. (A.21)

Adding expressions (A.19)- (A.21) and a little algebra yields

([h2 + β2K2]− [h1 + β1K1 − p (h2 + β2K2)]) t1 + (β1 − β2)[pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)

− vα(x1 − 1, x2 − 1)]

+ β2[pvα(x1 − 1, x2 + 1) + qvα(x1 − 1, x2)− vα(x1, x2 − 1)]

+ β2[(1 + p)vα(x1 − 1, x2)− vα(x1, x2 − 1)− pvα(x1 − 1, x2 − 1)].

Note that the expression inside the first pair of brackets is nonnegative as a consequence of
β1 ≥ β2 + µ and Proposition 4.1. The expression inside the second pair of brackets is implied
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by (A.17), and so, for this expression, we may simply restart the argument from there. To
complete the proof it suffices to consider the remaining costs from

(1 + p)vα(x1 − 1, x2)− vα(x1, x2 − 1)− pvα(x1 − 1, x2 − 1). (A.22)

We continue follow the sample paths of three processes (on the same probability space) Pro-
cesses 1-3 begin in states (x1 − 1, x2), (x1, x2 − 1), and (x1 − 1, x2 − 1), respectively. Process
1 uses a stationary optimal policy, which we denote by π1. In what follows, we show how to
construct (potentially sub-optimal) policies for Processes 2 and 3, which we denote by π2 and
π3, respectively, to evaluate

(1 + p)vπ1α (x1 − 1, x2)− vπ2α (x1, x2 − 1)− pvπ3α (x1 − 1, x2 − 1). (A.23)

Since π2 and π3 are potentially sub-optimal, (A.22) follows from (A.23).
Note that if all three processes see an arrival or they all see a an abandonment, the costs

incurred are [(1+p)(h2+β2K2)−(h1+β1K1)]t1 ≥ 0 where t1 is the time of the next event and
the inequality is due to the assumption that h2 + β2K2 ≥ h1 + β1K1 − p(h2 + β2K2), and the
relative position of the new states as measured with respect to the starting states is maintained.
We may relabel the states and continue as though we started in these states. Similarly, if π1
serves station k ∈ {1, 2} by letting π2 and π3 also serve the same phase of service whenever
possible. Consider now the other cases.

Subcase 1.1 Customer abandonments

Suppose that the next event is a class 1 abandonment for Processes 2 and 3 (with probabil-
ity β1

λ1+λ2+2µ+x1β1+x2β2
), after which all processes follow optimal controls. Suppressing the

denominator of the probability, the left hand side of inequality (A.23) becomes

[(1 + p)(h2 + β2K2)− (h1 + β1K1)]t1 + β1 [(1 + p)vα(x1 − 1, x2)− (1 + p)vα(x1 − 1, x2 − 1)] .

(A.24)

If, however, the next event is a class 2 abandonment in Process 1 (with probability β2
λ1+λ2+2µ+x1β1+x2β2

),
after which all processes follow an optimal control, then, after suppressing the denominator of
the probability, the left hand side of inequality (A.23) becomes

[(1 + p)(h2 + β2K2)− (h1 − β1K1)]t1 + β2[vα(x1 − 1, x2 − 1)− vα(x1, x2 − 1)]. (A.25)

Adding (A.24) and (A.25) (with a little algebra) we get

[(1 + p)(h2 + β2K2)− (h1 + β1K1)]t1 + (β1 − β2) [(1 + p)vα(x1 − 1, x2)− (1 + p)vα(x1 − 1, x2 − 1)]

(A.26)

+ β2 [(1 + p)vα(x1 − 1, x2)− vα(x1, x2 − 1)− pvα(x1 − 1, x2 − 1)] .
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The expression inside the second pair of brackets is (A.22). In this case, we may relabel the
starting states and repeat the argument.

Subcase 1.2 Service completions

Suppose policies π1, π2, and π3 assign the server to work at stations 1, 2, and 2, respec-
tively and that the next event is a service completion seen by all processes (with probabil-
ity µ

λ1+λ2+2µ+x1β1+x2β2
), after which all processes follow an optimal control. Suppressing the

denominator of the probability, the left hand side of inequality (A.23) becomes

[(1 + p)(h2 + β2K2)− (h1 + β1K1)]t1 + µ [vα(x1 − 1, x2)− vα(x1, x2 − 1)] . (A.27)

To complete the proof, we add the remaining running costs from (A.26) and (A.27), to
obtain

[(1 + p)(h2 + β2K2)− (h1 + β1K1)]t1 + (β2 − β1) [vα(x1 − 1, x2)− vα(x1 − 1, x2 − 1)]

+ (β2 − β1 − µ) [pvα(x1 − 1, x2)− pvα(x1 − 1, x2 − 1)]

+ µ [(1 + p)vα(x1 − 1, x2)− vα(x1, x2 − 1)− pvα(x1 − 1, x2 − 1)] .

The expression inside the first and second pair of brackets in the expression above are nonneg-
ative while the third one is (A.22) for which we may simply restart the argument.

Case 2 Service completions

This case follows exactly the same arguments in the Proof of Case 2 above with µ2h2 replaced
with h2 + β2K2 and µ1[h1 + β1K1− p(h2− β2K2)] replaced with h1 + β1K2− p(h2 + β2K2).

A.3 Proof of Theorem 4.6 under the discounted cost criterion

Proof of 1. The proof is given for the discounted expected cost model. The proof of the long-
run average cost case is similar. Note that the optimality equations imply that it is optimal to
prioritize a class 1 customer in state (x1, x2) with x1, x2 ≥ 1 when

µ2[vα(x1, x2 − 1)− vα(x1, x2)] + µ1[vα(x1, x2)− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)] ≥ 0.

(A.28)

We show (A.28) via a sample path argument. Fix x1, x2 ≥ 1 and start four processes on the
same probability space. Processes 1-5 begin in states (x1, x2−1), (x1, x2), (x1, x2), (x1−1, x2+

1), and (x1 − 1, x2), respectively. Processes 1 and 3 use stationary optimal policies, which we
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denote by π1, π3, respectively. In what follows, we show how to construct (potentially sub-
optimal) policies for Processes 2, 4, and 5 which we denote by π2, π4, and π5, so that

µ2[v
π1
α (x1, x2 − 1)− vπ2α (x1, x2)] + µ1[v

π3
α (x1, x2)− pvπ4α (x1 − 1, x2 + 1)− qvπ5α (x1 − 1, x2)] ≥ 0.

(A.29)

Since π2, π4, π5 are potentially sub-optimal, (A.28) follows from (A.29). In what follows,
discounting is suppressed without any loss of generality.

Observe that starting from (A.29), the immediate costs incurred at the next event are
(µ1[h1 − p (h2 + β2K2)] − µ2[h2 + β2K2])t1 ≥ 0, where t1 is the time of the next event and
the inequality is due to the assumption that µ1[h1 − p (h2 − β2K2)] ≥ µ2[h2 + β2K2]. More-
over, if the relative position (as measured by the current states) of the four processes at the next
event remains the same, then we may relabel the initial states and continue from the beginning
of the argument. This occurs when any of the uncontrolled events occur that are seen by all
four processes. It also occurs when π1 and π3 both serve the same customer class k ∈ {1, 2}
by letting π2 and π4 also serve the same customer class k customer provided there is one or
more customer class k customer in all four Processes, and the next event service completion.
Consider now the other cases.

Case 1 Customer abandonments

If the first event is an abandonment in Process 4 only (with probability β2
λ1+λ2+µ1+µ2+(x2+1)β2

),
after which all processes follow an optimal control, it follows that the remaining costs in the
left side of (A.29) (with the probability of this event in the expression suppressed) are

(µ1 [h1 − p (h2 + β2K2)]− µ2 [h2 + β2K2]) t1

+ µ2[vα(x1, x2 − 1)− vα(x1, x2)] + µ1[vα(x1, x2)− vα(x1 − 1, x2)]. (A.30)

If the first event is an abandonment in Processes 2-5 (with probability β2
λ1+λ2+µ1+µ2+(x2+1)β2

),
again after which optimal controls are used, then the remaining costs (with the probability of
this event in the expression suppressed) are

(µ1 [h1 − p (h2 + β2K2)]− µ2 [h2 + β2K2]) t1

+ µ1[vα(x1, x2 − 1)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)]. (A.31)

Adding expressions (A.30) and (A.31) yields

(µ1 [h1 − p (h2 + β2K2)]− µ2 [h2 + β2K2]) t1

+ µ2[vα(x1, x2 − 1)− vα(x1, x2)] + µ1[vα(x1, x2)− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)]

+ µ1[pvα(x1 − 1, x2 + 1) + pvα(x1, x2 − 1)− 2pvα(x1 − 1, x2) + qvα(x1, x2 − 1)− qvα(x1 − 1, x2 − 1)].
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To complete the proof it suffices to show that

vα(x1 − 1, x2 + 1) + vα(x1 − 1, x2 − 1)− 2vα(x1 − 1, x2) ≥ 0. (A.32)

We follow the sample paths of three processes (on the same probability space) to show (A.32)
via a sample path argument. Processes 1-3 begin in states (x1−1, x2 +1), (x1−1, x2−1), and
(x1 − 1, x2), respectively. Processes 1 and 2 use stationary optimal policies, which we denote
by π1 and π2. In what follows, we show how to construct (potentially sub-optimal) policy for
Process 3, which we denote by π3, so that

vπ1α (x1 − 1, x2 + 1) + vπ2α (x1 − 1, x2 − 1)− 2vπ3α (x1 − 1, x2) ≥ 0. (A.33)

Since π3 is potentially sub-optimal, (A.32) follows from (A.33). Note that if all three processes
see an arrival or they all see a station 2 abandonment, the immediate costs incurred are 0 and the
relative position of the new states as measured with respect to the starting states is maintained.
We may relabel the states and continue as though we started in these states. Similarly, if π1
and π2 both serve the same customer class k ∈ {1, 2} by letting π3 also serve the same class
k customer. Finally, station 2 abandonments that are not seen by all three processes lead to no
immediate costs incurred followed by all processes coupling. Because the proof is simple, it is
omitted. Consider now the other cases.

Subcase 1.1 Suppose policies π1 and π2 assign the server to work at station 2 and 1, respec-
tively. Assume that π3 works at station 1.

Suppose that the next event is a service completion at station 1 for Processes 2 and 3 (with prob-
ability µ1

λ1+λ2+µ1+µ2+(x2+1)β2
), after which all processes follow optimal controls. Suppressing

the denominator of the probability, the left hand side of inequality (A.33) becomes

µ1 [vα(x1 − 1, x2 + 1) + pvα(x1 − 2, x2) + qvα(x1 − 2, x2 − 1)− 2pvα(x1 − 2, x2 + 1)− 2qvα(x1 − 2, x2)] .

A little algebra yields that this last expression equals

µ2 [vα(x1 − 1, x2)− vα(x1 − 1, x2 + 1)] + µ1[vα(x1 − 1, x2 + 1)− pvα(x1 − 2, x2 + 2)

− qvα(x1 − 2, x2 + 1)]− µ2 [vα(x1 − 1, x2)− vα(x1 − 1, x2 + 1)]

+ pµ1 [vα(x1 − 2, x2 + 2) + vα(x1 − 2, x2)− 2vα(x1 − 2, x2 + 1)]

+ qµ1 [vα(x1 − 2, x2 + 1) + vα(x1 − 2, x2 − 1)− 2vα(x1 − 2, x2)] . (A.34)

If, however, the next event is a service completion at station 2 in Process 1 (with probability
µ2

λ1+λ2+µ1+µ2+(x2+1)β2
), after which all processes follow an optimal control, then, after suppress-

ing the denominator of the probability, the left hand side of inequality (A.33) becomes

µ2[vα(x1 − 1, x2 − 1)− vα(x1 − 1, x2)]. (A.35)
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Adding (A.34) and (A.35) (with a little algebra) we get

µ2 [vα(x1 − 1, x2)− vα(x1 − 1, x2 + 1)] + µ1[vα(x1 − 1, x2 + 1)− pvα(x1 − 2, x2 + 2)

− qvα(x1 − 2, x2 + 1)]

+ pµ1 [vα(x1 − 2, x2 + 2) + vα(x1 − 2, x2)− 2vα(x1 − 2, x2 + 1)]

+ qµ1 [vα(x1 − 2, x2 + 1) + vα(x1 − 2, x2 − 1)− 2vα(x1 − 2, x2)]

+ µ2 [vα(x1 − 1, x2 + 1) + vα(x1 − 1, x2 − 1)− 2vα(x1 − 1, x2)] .

The first expression is (A.28) evaluated at (x1 − 1, x2 + 1). The second, third, and fourth
expressions, respectively, are (A.32) evaluated at (x1−2, x2+1), (x1−2, x2), and (x1−1, x2).
In each case, we can relabel the starting states and repeat the argument.

Subcase 1.2 Suppose policies π1 and π2 assign the server to work at station 1 and 2, respec-
tively. Assume that π3 works at station 1.

Suppose that the next event is a service completion at station 1 for Processes 1 and 3 (with prob-
ability µ1

λ1+λ2+µ1+µ2+(x2+1)β2
), after which all processes follow an optimal control. Suppressing

the denominator of the probability, the left hand side of inequality (A.33) becomes

µ1[pvα(x1 − 2, x2 + 2) + qvα(x1 − 2, x2 + 1) + vα(x1 − 1, x2 − 1)− 2pvα(x1 − 2, x2 + 1)

− 2qvα(x1 − 2, x2)].

A little algebra yields

µ1 [vα(x1 − 1, x2 − 1)− pvα(x1 − 2, x2)− qvα(x1 − 2, x2 − 1)]

+ pµ1 [vα(x1 − 2, x2 + 2) + vα(x1 − 2, x2)− 2vα(x1 − 2, x2 + 1)]

+ qµ1 [vα(x1 − 2, x2 + 1) + vα(x1 − 2, x2 − 1)− 2vα(x1 − 2, x2)] . (A.36)

If, however, the next event is a service completion at station 2 in Process 1 (with probability
µ2

λ1+λ2+µ1+µ2+(x2+1)β2
), after which all processes follow an optimal control, then, after sup-

pressing the probability of this event in the expression, the left hand side of inequality (A.33)
becomes

µ2 [vα(x1 − 1, x2 + 1) + vα(x1 − 1, x2 − 2)− 2vα(x1 − 1, x2)] ,

which equals

µ2[vα(x1 − 1, x2 − 2)− vα(x1 − 1, x2 − 1)]

+ µ2[vα(x1 − 1, x2 + 1) + vα(x1 − 1, x2 − 1)− 2vα(x1 − 1, x2)]. (A.37)
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Adding (A.36) and (A.37) (with a little algebra) we get

µ2[vα(x1 − 1, x2 − 2)− vα(x1 − 1, x2 − 1)] + µ1[vα(x1 − 1, x2 − 1)− pvα(x1 − 2, x2)

− qvα(x1 − 2, x2 + 1)]

+ µ2[vα(x1 − 1, x2 + 1) + vα(x1 − 1, x2 − 1)− 2vα(x1 − 1, x2)]

+ pµ1 [vα(x1 − 2, x2 + 2) + vα(x1 − 2, x2)− 2vα(x1 − 2, x2 + 1)]

+ qµ1 [vα(x1 − 2, x2 + 1) + vα(x1 − 2, x2 − 1)− 2vα(x1 − 2, x2)] .

The first expression is (A.28) evaluated at (x1 − 1, x2 − 1). The second, third, and fourth
expressions, respectively, are (A.32) evaluated at (x1−1, x2), (x1−2, x2 +1) and (x1−2, x2).
In each case, we can relabel the starting states and repeat the argument.

Case 2 Customer service completions.

Suppose that policies πi(i = 1, 2, 3) serve a class 1 customer whereas π4 and π5 serve a class
2 customer. If the first event is a class 1 service completion in Process 1-3 (with probability

µ1
λ1+λ2+µ1+µ2+(x2+1)β2

), after which all processes follow optimal controls, then the remaining
costs in the left side of the inequality in (A.29) (with the denominator of the probability sup-
pressed) are

(µ1 [h1 − p (h2 + β2K2)]− µ2 [h2 + β2K2]) t1

+ µ1

[
µ2

[
pvα(x1 − 1, x2) + qvα(x1 − 1, x2 − 1)− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)

]
.

(A.38)

If the first event is a class 2 service completion in Processes 4 and 5 (with probability µ2
λ1+λ2+µ1+µ2+(x2+1)β2

),
again after which optimal controls are used, then the remaining costs (with the denominator of
the probability suppressed) are

(µ1 [h1 − p (h2 + β2K2)]− µ2 [h2 + β2K2]) t1

+ µ2

[
µ2

[
vα(x1, x2 − 1)− vα(x1, x2)

]
+ µ1 [vα(x1, x2)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)] .

(A.39)

Adding expressions (A.38) and (A.39) yields

(µ1 + µ2) (µ1 [h1 − p (h2 + β2K2)]− µ2 [h2 + β2K2]) t1

+µ2

[
µ2

[
vα(x1, x2−1)−vα(x1, x2)

]
+µ1

[
vα(x1, x2)−pvα(x1−1, x2+1)−qvα(x1−1, x2)

]]
.

The terms inside the brackets in this last expression above are implied by the expression on left
side of the inequality in (A.28). That is, we may restart the argument from here.
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Suppose that policy π1 serves a class 2 customer, whereas π3 serves a class 1 customer.
In this case, let π2 serve a class 1 customer and π4 − π5 a class 2 customer. If the first event
is a class 1 service completion in Processes 2 and 3 (with probability µ1

λ+µ1+µ2+(x2+1)β2
), after

which all processes follow optimal controls, then the remaining costs in the left side of the
inequality in (A.29) are

µ1 (µ1 [h1 − p (h2 + β2K2)]− µ2 [h2 + β2K2]) t1

+ µ1

[
µ2

[
vα(x1, x2 − 1)− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)

]]
. (A.40)

If the first event is a class 2 service completion in Processes 1, 4, and 5 (with probability
µ2

λ+µ1+µ2+(x2+1)β2
), again after which optimal controls are used, then the remaining costs are

µ2 (µ1 [h1 − p (h2 − β2K2)]− µ2 [h2 + β2K2]) t1

+ µ2

[
µ2[vα(x1, x2 − 2)− vα(x1, x2)

]
+ µ1[vα(x1, x2)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)]

]
.

(A.41)

Adding (A.40) and (A.41) we get

(µ1 + µ2) (µ1 [h1 − p (h2 + β2K2)]− µ2 [h2 + β2K2]) t1

+ µ2

[
µ2

[
vα(x1, x2 − 2)− vα(x1, x2 − 1)

]
+ µ1

[
vα(x1, x2 − 1)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)

]]
+ µ2

[
µ2

[
vα(x1, x2 − 1)− vα(x1, x2)

]
+ µ1

[
vα(x1, x2)− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)

]]
.

The expression inside the first and second pair of brackets above are the expression on left side
of inequality in (A.29) evaluated at (x1, x2 − 1) and (x1, x2), respectively. In both cases, we
may relabel the states and continue as though we had started in these states.

Suppose that policy π1 serve a class 1 customer whereas π3 serves a class 2 customer. In
this case, let π2 serve a class 1 customer and π4 and π5 a class 2 customer. If the first event is a
class 1 service completion in Processes 1 and 2 (with probability µ1

λ1+λ2+µ1+µ2+(x2+1)β2
), after

which all processes follow an optimal control, then the remaining costs in the left side of the
inequality in (A.29) are

µ1 (µ1 [h1 − p (h2 + β2K2)]− µ2 [h2 + β2K2]) t1

+ µ1

[
µ2

[
pvα(x1 − 1, x2) + qvα(x1 − 1, x2 − 1)− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)

]
+ µ1

[
vα(x1, x2)− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)

]]
. (A.42)

If the first event is a class 2 service completion in Processes 3-5 (with probability µ2
λ1+λ2+µ1+µ2+(x2+1)β2

),
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again after which optimal controls are used, then the remaining costs are

µ2 (µ1 [h1 − p (h2 + β2K2)]− µ2 [h2 + β2K2]) t1

+ µ2

[
µ2[vα(x1, x2 − 1)− vα(x1, x2)

]
+ µ1

[
vα(x1, x2 − 1)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)

]]
.

(A.43)

Adding (A.42) and (A.43) we get

(µ1 + µ2) (µ1 [h1 − p (h2 + β2K2)]− µ2 [h2 + β2K2]) t1

+(µ1+µ2)
[
µ2

[
vα(x1, x2−1)−vα(x1, x2)

]
+µ1

[
vα(x1, x2)−pvα(x1−1, x2+1)−qvα(x1−1, x2)

]]
.

The expression inside the pair of brackets above is the expression on the left side of the in-
equality in (A.2), and hence, we may relabel the states and continue as though we had started
in these states.

In every case save one (i.e., when a class 2 abandonments that are not seen by all three
process in (A.32)) we may relabel the states and continue. By doing so we can wait until class
2 abandonments that are not seen by all three process in (A.32) occurs. In particular, the latter
case yields the result.
Proof of 2. The proof is given for the discounted expected cost model. The proof of the
long-run average cost case is similar. Suppose µ1 = µ2 and that β2 ≥ β1 > 0. Note that the
optimality equations imply that it is optimal to prioritize a class 1 customer in state (x1, x2)

with i, j ≥ 1 when

vα(x1, x2 − 1)− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2) ≥ 0. (A.44)

We show (A.44) via a sample path argument. Fix x1, x2 ≥ 1 and start three processes on
the same probability space. Processes 1-3 begin in states (x1, x2 − 1), (x1 − 1, x2 + 1), and
(x1 − 1, x2), respectively. Process 1 uses a stationary optimal policy, which we denote by π1.
In what follows, we show how to construct (potentially sub-optimal) policies for Processes 2
and 3 which we denote by π2 and π3, so that

vπ1α (x1, x2 − 1)− pvπ2α (x1 − 1, x2 + 1)− qvπ3α (x1 − 1, x2)] ≥ 0. (A.45)

Since π2 and π3 are potentially sub-optimal, (A.44) follows from (A.45). In what follows,
discounting is suppressed without any loss of generality.

Observe that starting from (A.45), the immediate costs incurred at the next event are ([h1 +

β1K1 − p (h2 + β2K2)] − [h2 + β2K2])t1 ≥ 0, where t1 is the time of the next event and the
inequality is due to the assumption that h1 +β1K1−p (h2 − β2K2) ≥ h2 +β2K2. Moreover, if
the relative position (as measured by the current states) of the four processes at the next event
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remains the same, then we may relabel the initial states and continue from the beginning of
the argument. This occurs when any of the uncontrolled events occur that are seen by all three
processes. It also occurs when π1 serves a customer class k ∈ {1, 2} by letting π2 and π3
also serve the same customer class k customer provided there is one or more customer class
k customer Processes 2 and 3, and the next event service completion. Consider now the other
cases.

Case 1 Customer abandonments

If the first event is an abandonment in Process 2 only (with probability β2
λ1+λ2+2µ+x1β1+(x2+1)β2

),
after which all processes follow an optimal control, it follows that the remaining costs in the
left side of (A.45) are

β2 [([h1 − p (h2 + β2K2)]− [h2 + β2K2]) t1 + [vα(x1, x2 − 1)− vα(x1 − 1, x2)]] . (A.46)

If the first event is an abandonment in Processes 2-3 (with probability β2
λ1+λ2+2µ+x1β1+(x2+1)β2

),
again after which optimal controls are used, then the remaining costs are

β2

[
([h1 − p (h2 + β2K2)]− [h2 + β2K2]) t1

+ [vα(x1, x2 − 1)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)]
]
. (A.47)

If the first event is an abandonment in Process 1, again after which optimal controls are used,
then the remaining costs are

β1

[
([h1 − p (h2 + β2K2)]− [h2 + β2K2]) t1

+ [vα(x1 − 1, x2 − 1)− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)]
]
. (A.48)

Adding expressions (A.46)- (A.48) and a little algebra yields

(β1 + β1 + β2) ([h1 − p (h2 + β2K2)]− [h2 + β2K2]) t1 + (β2 − β1)[vα(x1, x2 − 1)− vα(x1 − 1, x2)]

+ (β2 − β1)[vα(x1, x2 − 1)− pvα(x1 − 1, x2)− qvα(x1 − 1, x2 − 1)]

+ 2β1[vα(x1, x2 − 1)− pvα(x1 − 1, x2 + 1)− qvα(x1 − 1, x2)]

+ pβ1[vα(x1 − 1, x2 + 1) + vα(x1 − 1, x2 − 1)− 2vα(x1 − 1, x2)].

To complete the proof it suffices to show that

vα(x1 − 1, x2 + 1) + vα(x1 − 1, x2 − 1)− 2vα(x1 − 1, x2) ≥ 0. (A.49)

The proof of A.49 is the same as the proof of A.33 (with µ2(h2+β2K2) replaced with h2+β2K2

and µ1(h1−p(h2 +β2K2) with h1 +β1K1−p(h2 +β2K2)) with one exception: when all three
processes see a class 1 abandonment. In this latter case, we may simply relabel the states and
continue from the beginning of the argument.
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Case 2 Service completions.

The proof of this case is the same as the proof of Case 2 above with µ2(h2 + β2K2) replaced
with h2 + β2K2 and µ1(h1 − p(h2 + β2K2) with h1 + β1K1 − p(h2 + β2K2).
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A.4 Numerical simulation of single-server model

Parameters are summarized in Table 1 below for the simulation. Parameters were chosen to
satisfy the four different sets of conditions under which we know prioritizing one phase is opti-
mal. For the single-server model, exponential distributions are assumed for inter-arrival times,
service times, and abandonment times. We then systemically vary parameters for a single-
server model to capture situations when the optimal policy remains elusive. We repeat these
parameters for the simulation of the multi-server model, with minor adjustments to parameters
and distributions, which we describe below. It is without any loss of generality that we can fix
one cost, and so, the abandonment cost K2 at phase 2 is fixed at 1. As in the simulation in the
main text, parameters are given a time unit of hours, and for each set of parameters examined,
we simulated the system over a simulated time horizon of 5 years after a 5 year warm-up period
and then performed 50 replications of this simulation. Average costs were averaged of the time
horizon and then over the replications.

Scenario

Parameters Description 1 2 3 4 General

λ1 Arrival rate at 1 [1.5, 4.5] [1.5, 4.5] [1.5, 4.5] [1.5, 4.5] 3
λ2 Arrival rate at 2 0 0 0 0 [0, 1]
µ1 Service rate at 1 8 8 10 8 [4, 12]
µ2 Service rate at 2 10 8 8 8 [4, 12]
β1 Abandonment rate at 1 0.5 10 0 0.25 [0.1, 3]
β2 Abandonment rate at 2 0 0.5 0.5 0.5 [0.1, 3]
p Joining probability 1 1 1 1 [0.25, 1]
h1 Holding cost rate at 1 1 1.25 2 1.75 [0.1, 3]
h2 Holding cost rate at 2 1 0.75 0.5 0.5 [0.1, 3]
K1 Abandonment cost at 1 2 0.1 2 2 [0.1, 3]
K2 Abandonment cost at 2 1 1 1 1 1

Table 1: Parameters used for the simulation.

Scenario 1 (P2 optimal). Parameters are selected to satisfy β2 = 0 and

µ1[h1 + β1K1 − ph2] ≤ µ2h2,

which from Theorem 4.5, ensures that the policy that prioritizing phase 2 (i.e. P2) is optimal.
Arrival rate λ1 is varied between 1.5 and 4.5 to explore different traffic intensities.

Scenario 2 (P2 optimal). Parameters are selected to satisfy µ1 = µ2 := µ,

β1 − β2 − µ ≥ 0,
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and
h1 + β1K1 − p(h2 + β2K2) ≤ h2 + β2K2.

which from Theorem 4.5, ensures P2 is optimal. Arrival rate λ1 is varied between 1.5 and 4.5.
Scenario 3 (P1 optimal). Parameters are selected to satisfy β1 = 0 and

µ2[h2 + β2K2] ≤ µ1[h1 − p(h2 + β2K2)],

which from Theorem 4.6, ensures that the policy that prioritizing phase 1 (i.e. P1) is optimal.
Arrival rate λ1 is varied between 1.5 and 4.5.

Scenario 4 (P1 optimal). Parameters are selected to satisfy µ1 = µ2, β2 ≥ β1, and

h2 + β2K2 ≤ h1 + β1K1 − p(h2 + β2K2)],

which from Theorem 4.6, ensures P1 is optimal. Arrival rate λ1 is varied between 1.5 and 4.
General single-server scenario. Parameters are selected to explore a variety of situations

in which the optimal policy is unknown. Given the importance of the classic c-µ inequality
and its extended version, parameters were selected and varied to both satisfy and violate these
situations. We first explored parameter space using a full factorial design of 6 parameters (λ2,
µ1, µ2, β1, β2, and p); each parameter had two levels corresponding to the lowest and highest
value in the parameter range listed in Table 1. For each of these 64 parameters, we then sampled
10,000 sets of costs (h1, h2, K1) uniformly from the parameter range listed in Table 1. We then
systematically varied parameters while keeping fixed (unless otherwise specified) λ1 = 3,
λ2 = 0, µ1 = µ2 = 8, p = β1 = β2 = h1 = h2 = K2 = 1, and K1 = 2. Service rates µ1 and
µ2 were systematically varied, followed by abandonment rates β1 and β2, holding cost rates h1
and h2, and arrival rate λ2 and probability of transfer p.

A.4.1 Scenarios 1–4 for the single-server model

For the single-server model, we first benchmarked the heuristic policies in four scenarios when
the optimal policy is known (Figure 1). Table 2 shows how far average cost for each policy is
away from optimal. In Scenario 1, the optimal policy (i.e. policy P2) performs increasingly
better as the traffic intensity increases. For example, policy P1 is only 6% away from optimal
when λ1 = 1.5, but 222% away when λ1 = 4.5. This poor performance is due to no abandon-
ments in phase 2 (β2 = 0), causing customers to aggregate at phase 2. A threshold policy can
be found to perform within 10% of the optimal policy: average costs for the policy P1(5) is 5%
away from optimal when λ1 = 1.5 and 9% away from optimal when λ1 = 4.5.

Policy P2 is also optimal in Scenario 2, but does not dramatically outperform other policies.
In fact, the threshold policy P2(5) is less than 1% away from optimal for all traffic intensities.
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Figure 1: Benchmarking policies for the single-server model when the optimal policy is known
with respect to average costs. To help visualization, average costs that exceed 15 are not shown.

Similar performance in Scenario 2 can be attributed to the large abandonment rates at phase
1 (β1 = 10), causing few customers to aggregate at phase 1 and leaving the server to work at
phase 2 even when they prioritize phase 1.

Many trends reverse when moving from Scenarios 1–2 to Scenarios 3–4. Policy P1 is now
optimal, and policy P2 yields poor performance, especially when traffic is high. In Scenario
3, for instance, policy P2 is only 8% away from optimal when λ1 = 1.5 but 1478% away
when λ2 = 4.5 (which is why it was not plotted in Figure 1). Poor performance can again be
attributed to no abandonments (β1 = 0), causing customers to aggregate at phase 1 and leaving
policies that prioritize phase 2 to neglect these patients. In Scenario 4, however, performance is
closer: policy P2 is 5% away from optimal when λ1 = 1.5 in Scenario 4 and 41% away when
λ2 = 4.5. Meanwhile, the threshold policy P2(5) is close to optimal in both Scenario 3 and 4:
at worst, 16% away from optimal in Scenario 3 and 9% away in Scenario 4.
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Policy

λ1λ1λ1 P1 P2 P1(5) P2(5) Exh Inc

Scenario 1 (P2 optimal)
1.5 6% 0% 5% 0% 3% 2%
2.5 17% 0% 8% 5% 8% 5%
3.5 48% 0% 9% 25% 17% 10%
4.5 222% 0% 8% 182% 32% 16%

Scenario 2 (P2 optimal)
1.5 6% 0% 6% 0% 1% 2%
2.5 11% 0% 10% 0% 2% 3%
3.5 16% 0% 15% 0% 3% 4%
4.5 22% 0% 19% 0% 4% 6%

Scenario 3 (P1 optimal)
1.5 0% 8% 1% 7% 4% 5%
2.5 0% 25% 10% 13% 9% 12%
3.5 0% 81% 57% 16% 19% 27%
4.5 0% 1478% 1420% 14% 34% 54%

Scenario 4 (P1 optimal)
1.5 0% 5% 1% 5% 2% 3%
2.5 0% 13% 5% 8% 5% 7%
3.5 0% 24% 16% 9% 9% 13%
4.5 0% 41% 34% 7% 13% 20%

Table 2: Percent away from optimal average costs in four simulation scenarios of a single-
server model, where the optimal policy is known.

A.4.2 General scenario for single-server model

We varied service rates µ1 and µ2 (Figure 2). We find that the extended c-µ inequality provides
a good guide for deciding which policy to prioritize. When the inequality is satisfied, policy P2
performs the best out of the policies considered, whereas when the inequality is not satisfied,
policy P1 performs best. By contrast, the classic c-µ equality does not enjoy the same insight.
That is, even when µ1h1 > µ2h2, policy P2 is better than policy P1. Again, we find that the
threshold policies perform well in that the threshold policy P1(5) performs at worst 4% away
from the best priority rule.

When varying holding cost rates h1 and h2 (Figure 3), we again find that the extended
c-µ inequality provides a good guide for deciding which policy to prioritize, with policy P2
performing well when this inequality is satisfied and policy P1 otherwise. The classic c-µ
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Figure 2: Average cost comparison for single-server model when the optimal policy is unknown
and service rates µ1 and µ2 are varied.

inequality does not provide similar insight. We do find one case when a threshold policy
outperforms both priority rules, but the improvement is negligible (< 1%).

When varying abandonment rates β1 and β2 (Figure 4), we find that policy P2 can perform
better than P1 even when the extended c-µ inequality is satisfied. This occurs when the aban-
donment rate β2 is low, reinforcing what we found in Scenario 1, i.e. that neglecting phase 2
when there are few abandonments at 2 can yield poor performance. In addition, we find several
cases when the threshold policy P1(5) performs better than the other heuristic policies, albeit
they are all close (≤ 4% away).

The final parameters varied were the joining probability p and arrival rate λ2 (Figure 5).
Once again, we find that when the extended c-µ inequality is satisfied, policy P2 performs best,
whereas when the inequality is not satisfied, policy P1 or the threshold policy P1(5) perform
best.
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Figure 3: Average cost comparison for single-server model when the optimal policy is unknown
and holding cost rates h1 and h2 are varied.
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Figure 4: Average cost comparison for single-server model when the optimal policy is unknown
and abandonment rates β1 and β2 are varied.
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Figure 5: Average cost comparison for single-server model when the optimal policy is unknown
and joining probability p and arrival rate λ2 are varied.

A.4.3 Results from factorial design

Tables below report the results from the 64,000 samples of parameters space. Policy perfor-
mance is averaged over 10,000 samples of costs (h1, h2, and K1) for each set of the remaining
parameters (µ1, µ2, p, λ2, β1, and β2).
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Policy

β1 β2 p λ2 P1 P2 P1(5) P2(5) Exh Inc c-µ Ext. c-µ

0.1 0.1 0.25 0 36.7 62.3 0.3 0 0.7 0 86.4 99
0.1 0.1 0.25 1 37.6 62.4 0 0 0 0 87.3 99.7
0.1 0.1 1 0 20.4 72.4 7.2 0 0 0 70 92.6
0.1 0.1 1 1 17.6 75.4 4.3 2.6 0 0.1 67.3 93
0.1 3 0.25 0 41.3 21.4 0 19.4 0 17.9 55.9 21.4
0.1 3 0.25 1 58.2 14.9 0 20.5 0 6.5 58.1 14.9
0.1 3 1 0 53.3 16.8 0 14.6 0 15.3 57.9 16.8
0.1 3 1 1 62.3 13.6 0 11.6 0 12.5 58.2 13.6
3 0.1 0.25 0 34.1 50.4 15 0 0.5 0 65.3 42.6
3 0.1 0.25 1 17.3 65.2 17.5 0 0 0 59.8 25.8
3 0.1 1 0 5.5 83 11.5 0 0 0 53.7 26.3
3 0.1 1 1 1 89.4 9.6 0 0 0 50.1 21.7
3 3 0.25 0 12.8 84.1 0 0 2.7 0.4 58.8 96.9
3 3 0.25 1 16.1 83.9 0 0 0 0 60.7 98.4
3 3 1 0 0 100 0 0 0 0 49.6 100
3 3 1 1 0 100 0 0 0 0 49.6 100

Table 3: Percent samples of costs that policy yields lowest average costs when µ1 = µ2 = 4.
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Policy

β1 β2 p λ2 P1 P2 P1(5) P2(5) Exh Inc c-µ Ext. c-µ

0.1 0.1 0.25 0 7.8 90.1 0 0.9 1.3 0 92.9 97.8
0.1 0.1 0.25 1 9.7 90.3 0 0 0 0 94.8 99.2
0.1 0.1 1 0 6.2 93.7 0 0 0.1 0 91.3 99.6
0.1 0.1 1 1 6.2 91.4 2.5 0 0 0 91.2 97.3
0.1 3 0.25 0 0 87.5 0 12.5 0 0 79.8 87.5
0.1 3 0.25 1 0 75.8 0 24.2 0 0 70.4 75.8
0.1 3 1 0 0 75 0 24.8 0 0.2 69.7 75
0.1 3 1 1 0 65.2 0 34.6 0 0.2 61.5 65.2
3 0.1 0.25 0 19.8 71.8 8.4 0 0 0 81.5 64.8
3 0.1 0.25 1 16.9 73.1 10.1 0 0 0 81.8 61.9
3 0.1 1 0 9 81.2 9.8 0 0 0 84.8 65.6
3 0.1 1 1 7.1 83.3 9.7 0 0 0 84.9 63.7
3 3 0.25 0 0 100 0 0 0 0 85.1 100
3 3 0.25 1 0 100 0 0 0 0 85.1 100
3 3 1 0 0 100 0 0 0 0 85.1 100
3 3 1 1 0 100 0 0 0 0 85.1 100

Table 4: Percent samples of costs that policy yields lowest average costs when µ1 = 4 and
µ2 = 12.
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Policy

β1 β2 p λ2 P1 P2 P1(5) P2(5) Exh Inc c-µ Ext. c-µ

0.1 0.1 0.25 0 73.7 26.3 0 0 0 0 87.7 99.7
0.1 0.1 0.25 1 73 25.9 0 1.1 0 0 87 98.9
0.1 0.1 1 0 34.2 65.8 0 0 0 0 48.2 99.9
0.1 0.1 1 1 34.1 64.2 1.7 0 0 0 48.1 98.2
0.1 3 0.25 0 37.7 37.3 0 16 0 8.9 51.8 37.3
0.1 3 0.25 1 47.4 30.7 0 18.4 0 3.4 61.5 30.7
0.1 3 1 0 22.7 34.6 0 26.7 0 16 36.8 34.6
0.1 3 1 1 35.8 27.3 0 28.6 0 8.4 49.8 27.3
3 0.1 0.25 0 78.3 12.7 8.6 0 0.1 0.3 74.6 79.4
3 0.1 0.25 1 55.9 19.3 20.8 0 1.4 2.6 57.9 57
3 0.1 1 0 10.2 70.7 17.8 0 1.3 0 23.5 19.8
3 0.1 1 1 3.5 79.7 15.9 0 0.9 0 17.3 13.2
3 3 0.25 0 68.2 31.5 0 0.3 0 0 67.2 97.3
3 3 0.25 1 61.2 30.5 6.2 1.1 0 0.9 61.2 90.3
3 3 1 0 10.3 89.3 0.3 0 0.2 0 24.3 98.8
3 3 1 1 9.3 89.2 1.3 0.2 0 0 23.3 98.5

Table 5: Percent samples of costs that policy yields lowest average costs when µ1 = 12 and
µ2 = 4.
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Policy

β1 β2 p λ2 P1 P2 P1(5) P2(5) Exh Inc c-µ Ext. c-µ

0.1 0.1 0.25 0 73.7 26.3 0 0 0 0 87.7 99.7
0.1 0.1 0.25 1 73 25.9 0 1.1 0 0 87 98.9
0.1 0.1 1 0 34.2 65.8 0 0 0 0 48.2 99.9
0.1 0.1 0.25 0 37.2 62.2 0.1 0.6 0 0 86.8 99.4
0.1 0.1 0.25 1 36.7 62.8 0 0 0 0.5 86.3 99.4
0.1 0.1 1 0 20.5 79.5 0 0 0 0 70.1 99.7
0.1 0.1 1 1 20.3 79.6 0 0 0 0 70 99.9
0.1 3 0.25 0 0 100 0 0 0 0 49.6 100
0.1 3 0.25 1 0 99.8 0 0.2 0 0 49.6 99.8
0.1 3 1 0 0 100 0 0 0 0 49.6 100
0.1 3 1 1 0 100 0 0 0 0 49.6 100
3 0.1 0.25 0 71.7 18.1 10.2 0 0 0 60.1 80.2
3 0.1 0.25 1 63.9 20.7 15.4 0 0 0 59 72.3
3 0.1 1 0 32.5 50.3 17.1 0 0 0 64.2 53.3
3 0.1 1 1 28.8 53.8 17.4 0 0 0 63.6 49.5
3 3 0.25 0 7.6 82.7 9.7 0 0 0 54 90.3
3 3 0.25 1 12.8 82 2.8 1.5 0.9 0 57.6 94.8
3 3 1 0 0 100 0 0 0 0 49.6 100
3 3 1 1 0 100 0 0 0 0 49.7 100

Table 6: Percent samples of costs that policy yields lowest average costs when µ1 = 12 and
µ2 = 12.
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A.5 Additional simulations for multi-server model

Scenarios 1–4 capture a situation when the optimal policy is known for the single-server model,
but not the multi-server model. Parameters are the same as the single-server model with the
following exceptions. First, we fixed the number of workers to be 3. Second, abandonment
and service times were modeled as Gamma random variables as opposed to exponential ran-
dom variables. Gamma shape parameters ranged from 1/2 or 3, yielding random times that
have standard deviations larger than their mean and smaller than their mean, complementing
exponential random times, which have standard deviations equal to their mean. Coefficient
of variation (cv) were respectively 1.4 and 0.6 for the two shape values. Last, parameters µ1,
µ2, β1, and β2 refer to average rates, which meant that the rate parameters for the gamma
distributions needed to be µ1, µ2, β1, β2 scaled by the corresponding shape parameter.

Figure 6 compares average costs for the various policies when the cv is 0.6. The policy
known to be optimal for the single-server model (i.e. P2 for Scenarios 1–2 and P1 for Scenarios
3–4) performs best among the policies. Further for each case, there is at least one threshold
policy that is within 2% of the best priority rule for all arrival rates. Last, neglecting any phase
of service that has no abandonments can have severe consequences: P1 can be over 200,000%
away from the best policy in Scenario 1 and P2 can be over 200,000% away from the best
policy in Scenario 3.

Figure 7 compares average costs for the various policies when the cv is 1.4, which captures
a situation when the random times have a standard deviation that is greater than their mean.
Surprisingly, the policy known to be optimal for the single-server model (i.e. P2 for Scenarios
1–2 and P1 for Scenarios 3–4) performs best among the policies in most, but not all, cases.
Yet, it is still always within 1% of the best policy. For each case, there is at least one threshold
policies that is within 5% of the best priority rule for all arrival rates. Last, neglecting any
phase of service that has no abandonments can have consequences: P1 can be as far as 61%
away from the best policy in Scenario 1 and P2 can be as far as 200,000% away from the best
policy in Scenario 3.
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Figure 7: Average costs for policies for the multi-server model and when the cv is 1.4. The
optimal policy was known for the corresponding scenarios in the single-server model. To help
visualization, average costs that exceed 15 are not shown.
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