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Abstract

We begin this appendix by laying out the notation that will be used throughout. This is done in

Section A. Section B then proves the asymptotic results presented in Section 4 of the main paper.

Section C discusses conditions that ensure that the asymptotic distribution of β̂ is unbiased. The

appendix is concluded with Section D, which provides an empirical application to the long-run

relationship between US house prices and income.

A Notation

The matrices ΣF 0 and ΣΓ0 have been defined in Assumption 1. In this appendix, we use ΣF 0
g

and ΣΓ0
g
to denote the sub-matrices of ΣF 0 and ΣΓ0 corresponding to T−νgF0′

g F
0
g and N−1Γ0′

g Γ
0
g,

respectively, for g = 1, . . . , G. We also define Vg = diag(λ̂g,1, . . . , λ̂g,dmax), where λ̂g,d has been

defined in Step 2 of the IPC estimation procedure. We partition F0 = (F0
1, . . . ,F

0
g,F

0
+g) and CT =

diag(T−ν1/2Id1 , . . . , T
−νg/2Idg ,C+g,T ), where F0

+g = (F0
g+1, . . . ,F

0
G) is T × (dg+1 + · · · + dG), and

C+g,T = diag(T−νg+1/2Idg+1 , . . . , T
−νG/2IdG) is (dg+1+· · ·+dG)×(dg+1+· · ·+dG). We partition F̂, γ0

i

and Γ0 conformably as F̂ = (F̂1, . . . , F̂g, F̂+g), γ
0
i = (γ0′

1,i, . . . ,γ
0′
g,i,γ

0′
+g,i)

′ and Γ0 = (Γ0
1, . . . ,Γ

0
g,Γ

0
+g),

respectively.
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We introduce λg,d = T−νgh0′
g,dF

0′
g Σ

0
gF

0
gh

0
g,d, where Σ0

g = N−1F0
gΓ

0′
g Γ

0
gF

0′
g and h0

g,d is the d-th

column of H0
g = N−1T (νg−δ)/2Γ0′

g Γ
0
gF

0′
g F̂

0
g(V

0
g)

−1 with F̂0
g being the T × dg matrix consisting of the

first dg columns of F̂g and V0
g being the leading dg×dg principal submatrix of Vg. In other words, F̂0

g

and V0
g are F̂g and Vg based on treating the number of factors for each group g, dg, as known. We also

define Hg = T−(νg−δ)/2H0
g. In order to appreciate the implication of the difference in normalization

with respect to T , let us consider H0
g. By Assumption 1, N−1Γ0′

g Γ
0
g is asymptotically of full rank,

and hence ∥N−1Γ0′
g Γ

0
g∥ = OP (1). Hence, since

∥T−(νg+δ)/2F0′
g F̂g∥2 ≤ T−δ∥F̂g∥22T−νg∥F0

g∥2 = T−νg∥F0
g∥2 = OP (1) (A.1)

and ∥(T−ν1V0
1)

−1∥ = OP (1) as explained under (B.28), we can show that

∥H0
g∥ ≤ ∥N−1Γ0′

g Γ
0
g∥∥T−(νg+δ)/2F0′

g F̂
0
g∥∥(T−νgV0

g)
−1∥ = OP (1), (A.2)

which in turn implies

∥Hg∥ = T−(νg−δ)/2∥H0
g∥ = OP (T

−(νg−δ)/2). (A.3)

We further use F̂0
g,d to refer to the d-th column of F̂0

g. In this notation, λ̂g,d = T−δF̂0′
g,dΣ̂gF̂

0
g,d for

d = 1, . . . , dg.

We also partition Xi as Xi = (X1,i, . . . ,Xdx,i) with Xj,i being the j-th column of Xi. The j-

th column of XiDT is therefore given by T−κj/2Xj,i. Moreover, vecA, rankA, spanA and λ(A)

denote the vectorized version, rank, span and eigenvalues of A, respectively, a ∧ b = min{a, b} and

a ∨ b = max{a, b}. For two random variables x and y, x ≍ y means that x = OP (y) and y = OP (x).

B Proofs

B.1 Outline

In this section, we describe the outline of the proofs of this section. We assume throughout that G ≥ 2.

The proofs for the cases when G ∈ {0, 1} are much simpler, and can be obtained by manipulating the

proofs for G ≥ 2.

Sections B.2 and B.3 contain a number of auxiliary lemmas that will be used later in Section

B.4 to prove the results reported in the main paper and their proofs. The proofing is done stepwise,

starting with Step 1 of the IPC estimation procedure. Lemma B.1 is a widely used result for the

eigenvalues of large dimensional matrices (Lam et al., 2011), and is presented here for convenience.

Lemma B.2 is more novel. It presents two order results that will be used repeatedly in the proofs.

Given Lemma B.2, we are able to establish Lemma 1 of the main text, which provides a lower bound
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on the rate of convergence of the initial Step 1 estimator β̂0. As a first step towards establishing

the consistency of the Step 2 estimators of (d1, . . . , dG), in Lemma B.3 we study limiting behavior

of the eigenvalues of Σ̂1 in equation (6) of the main paper. Lemmas B.4 and B.5 enable consistent

estimation of (d2, . . . , dG), and are thus key in proving Lemma 2 of the main text. Sections B.2 and

B.3 also establish the rate of convergence of β̂0 under the conditions of Theorem 1. This rate is

provided as a part of Lemma B.6.

As already mentioned, Section B.4 provides the proofs of Lemmas 1 and 2, and Theorem 1 of the

main paper. Corollary 1 is an immediate consequence of Theorem 1.

B.2 Auxiliary lemmas

Lemma B.1. Suppose that A and A + E are n × n symmetric matrices and that Q = (Q1,Q2),

where Q1 is n × r and Q2 is n × (n − r), is an orthogonal matrix such that spanQ1 is an invariant

subspace for A. Decompose Q′AQ and Q′EQ as Q′AQ = diag(D1,D2) and

Q′EQ =

 E11 E12

E21 E22

 .

Let sep(D1,D2) = minλ1∈λ(D1), λ2∈λ(D2) |λ1 − λ2|. If sep(D1,D2) > 0 and ∥E∥2 ≤ sep(D1,D2)/5,

then there exists a (n − r) × r matrix P with ∥P∥2 ≤ 4∥E21∥2/sep(D1,D2), such that the columns

of Q0
1 = (Q1 +Q2P)(Ir +P′P)−1/2 define an orthonormal basis for a subspace that is invariant for

A+E.

Lemma B.2. Under Assumption 1, as N, T → ∞,

(a) supF∈DF
(NT )−1

∑N
i=1 ε

′
iPFεi = OP (N

−1 ∨ T−1);

(b) supF∈DF
∥(NT )−1

∑N
i=1DTX

′
iPFεi∥ = OP (N

−1/2 ∨ T−1/2).

If Assumption 3 also holds, then

(c) (NT )−1∥εε′∥ = OP (N
−1/2 ∨ T−1/2) and (NT )−1∥ε′ε∥ = OP (N

−1/2 ∨ T−1/2);

(d) ∥Γ0′ε∥ = OP (
√
NT ).

Lemma B.3. Let Assumptions 1–4 hold. Then, as N, T → ∞,

(a) T−ν1 |λ̂1,d − λ1,d| = OP (T
−(ν1−ν2)/2) for d = 1, . . . , d1;

(b) T−ν1 |λ̂1,d| = OP (T
−(ν1−ν2)) for d = d1 + 1, . . . , dmax.

Lemma B.4. As N, T → ∞, the following results hold under Assumptions 1–4:

3



(a) T−δ∥F0′
2 F̂1∥ = OP (T

−(δ+ν1−ν2)/2+N−1/2T−(δ+ν1−ν2−1)/2+N−(1−p)T−(δ+ν1−2ν2)/2+T−(ν1+δ)/2−q);

(b)
∑N

i=1 ∥F0′
1 γ

0
1,i − F̂1γ̂1,i∥2 = OP (N ∨ T +NT 2q−ν1 +N−(1−2p)T ν2).

Lemma B.5. Let τNT = N−1/2T−(ν2−1)/2+T−ν2/2+T−(ν2−ν3)+T q−(ν1+ν2)/2+N−(1−p). As N, T →

∞, the following results hold under the conditions of Lemma B.4:

(a) T−ν2 |λ̂2,d − λ2,d| = OP (τNT ) for d = 1, . . . , d2;

(b) T−ν2 |λ̂2,d| = OP (τ
2
NT ) for d = d2 + 1, . . . , dmax.

Lemma B.6. Let Assumptions 1–4 hold. In addition, let NT−νG < ∞, as N, T → ∞,

(a) ∥D−1
T (β̂1 − β̂0)∥ = OP ((NT )−1/2 ∨ ∥D−1

T (β̂0 − β0)∥);

(b) ∥D−1
T (β̂0 − β0)∥ = OP ((NT )−1/2).

B.3 Proofs of auxiliary lemmas

Proof of Lemma B.1.

This is Lemma 3 of Lam et al. (2011). The proof is therefore omitted. ■

Proof of Lemma B.2.

Consider (a). We have

sup
F∈DF

1

NT

N∑
i=1

ε′iPFεi = sup
F∈DF

(NT )−1tr(PFε
′ε) ≤ O(1) sup

F∈DF

(NT )−1∥PF ∥2∥ε′ε∥2

≤ O(1) sup
F∈DF

(NT )−1∥ε∥22 = OP (N
−1 ∨ T−1), (B.1)

where the first inequality follows from the fact that |trA| ≤ rankA ∥A∥2, the second inequality follows

from the fact that ∥PF ∥2 = 1, and the second equality holds by Assumption 1 (b).

The result in (b) is due to

sup
F∈DF

∥∥∥∥∥ 1

NT

N∑
i=1

DTX
′
iPFεi

∥∥∥∥∥ ≤ 1

NT

dx∑
j=1

sup
F∈DF

∣∣∣tr (T−κj/2XjPFε
′)
∣∣∣

≤ O(1)
1

NT

dx∑
j=1

sup
F∈DF

∥T−κj/2Xj∥2∥PF ∥2∥ε∥2

= O(1)(NT )−1OP (
√
NT )OP (

√
N ∨

√
T )

= OP (N
−1/2 ∨ T−1/2), (B.2)
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where, with a slight abuse of notation and in this proof only, Xj = (Xj,1, . . . ,Xj,N )′, the second

inequality follows from |trA| ≤ rankA ∥A∥2, while the first equality is due to Assumption 1.

For (c), we use

(NT )−2E∥ε′ε∥2 = 1

(NT )2

T∑
t=1

T∑
s=1

 N∑
i=1

E[ε2i,tε2i,s] +
N∑
i=1

∑
j ̸=i

E[εi,tεi,sεj,tεj,s]


=

1

(NT )2

T∑
t=1

 N∑
i=1

E(ε4i,t) +
N∑
i=1

∑
j ̸=i

E[(εi,tεj,t − σε,ij)
2]


+

1

(NT )2

T∑
t=1

∑
s ̸=t

 N∑
i=1

E[ε2i,tε2i,s] +
N∑
i=1

∑
j ̸=i

E[(εi,tεj,t − σε,ij)(εi,sεj,s − σε,ij)]


+

1

N2

N∑
i=1

∑
j ̸=i

σ2
ε,ij = O(N−1) +O(T−1), (B.3)

where the third equality follows from using the mixing condition on εi,tεj,t across t. The above result

implies that (NT )−1∥ε′ε∥ = OP (N
−1/2)+OP (T

−1/2) as required for the first result in (c). The second

follows from

(NT )−2E∥εε′∥2 = 1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E[εi,tεj,tεi,sεj,s]

=
1

(NT )2

T∑
t=1

T∑
s=1

 N∑
i=1

E[ε2i,tε2i,s] +
N∑
i=1

∑
j ̸=i

E[εi,tεi,sεj,tεj,s)


= O(N−1) +O(T−1), (B.4)

where the last step follows by the same arguments used to establish the first result of (c).

It remains to prove (d), which is a direct consequence of Assumptions 1 and 3, as seen from

E∥Γ0′ε∥2 =
T∑
t=1

N∑
i=1

N∑
j=1

E[γ0′
i γ

0
jεi,tεj,t] ≤ O(T )

N∑
i=1

N∑
j=1

|σε,ij | = O(NT ). (B.5)

This establishes (d) and hence the proof of the lemma is complete. ■

Proof of Lemma B.3.

Consider (a). As in Appendix A, decompose F0 = (F0
1,F

0
+1) and CT = diag(T−ν1/2Id1 ,C+1,T ), where

F0
+1 = (F0

2, . . . ,F
0
G) is T×(df−d1) andC+1,T = diag(T−ν2/2Id2 , . . . , T

−νG/2IdG) is (df−d1)×(df−d1).

We partition F̂, γ0
i and Γ0 conformably as F̂ = (F̂1, F̂+1), γ

0
i = (γ0′

1,i,γ
0′
+1,i)

′ and Γ0 = (Γ0
1,Γ

0
+1),

respectively.

By the definition of the eigenvectors and eigenvalues, Σ̂1F̂1 = F̂1V1. By using this and the
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definition of Σ̂1,

T−(ν1+δ)/2F̂1V1

=
1

NT (ν1+δ)/2

N∑
i=1

Xi(β
0 − β̂0)(β

0 − β̂0)
′X′

iF̂1

+
1

NT (ν1+δ)/2

N∑
i=1

Xi(β
0 − β̂0)γ

0′
1,iF

0′
1 F̂1 +

1

NT (ν1+δ)/2

N∑
i=1

F0
1γ

0
1,i(β

0 − β̂0)
′X′

iF̂1

+
1

NT (ν1+δ)/2

N∑
i=1

Xi(β
0 − β̂0)(F

0
+1γ

0
+1,i + εi)

′F̂1

+
1

NT (ν1+δ)/2

N∑
i=1

(F0
+1γ

0
+1,i + εi)(β

0 − β̂0)
′X′

iF̂1

+
1

NT (ν1+δ)/2

N∑
i=1

(F0
+1γ

0
+1,i + εi)(F

0
+1γ

0
+1,i + εi)

′F̂1

+
1

NT (ν1+δ)/2

N∑
i=1

F0
1γ

0
1,i(F

0
+1γ

0
+1,i + εi)

′F̂1 +
1

NT (ν1+δ)/2

N∑
i=1

(F0
+1γ

0
+1,i + εi)γ

0′
1,iF

0′
1 F̂1

+
1

NT (ν1+δ)/2

N∑
i=1

F0
1γ

0
1,iγ

0′
1,iF

0′
1 F̂1

=
9∑

j=1

Jj , (B.6)

with implicit definitions of J1, . . . ,J9. Note that

J9 = F0
1(N

−1Γ0′
1 Γ

0
1)(T

−(ν1+δ)/2F0′
1 F̂1). (B.7)

Hence, moving this term over to the left-hand side, the above expression for T−(ν1+δ)/2F̂1V1 becomes

T−(ν1+δ)/2F̂1V1 − J9 =
8∑

j=1

Jj . (B.8)

We now evaluate each of the terms on the right-hand side.

Because T−δ∥F̂1∥2 = dmax and (NT )−1
∑N

i=1 ∥XiDT ∥2 = Op(1) by Assumption 1, the order of J1

is given by

T−δ/2∥J1∥ ≤

∥∥∥∥∥ 1

NT (ν1+δ)/2

N∑
i=1

Xi(β
0 − β̂0)(β

0 − β̂0)
′X′

i

∥∥∥∥∥T−δ/2∥F̂1∥

≤ O(1)
1

NT (ν1+δ)/2

N∑
i=1

∥XiDTD
−1
T (β0 − β̂0)∥2

= OP (T
1−(ν1+δ)/2∥D−1

T (β0 − β̂0)∥2). (B.9)
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Moreover, since

1

NT ν1

N∑
i=1

∥F0
1γ

0
1,i∥2 ≤

1

N

N∑
i=1

∥γ0
1,i∥2T−ν1∥F0

1∥2 = OP (1) (B.10)

by Assumption 1, we can show that

T−δ/2∥J2∥ ≤ O(1)
1

NT (ν1+δ)/2

N∑
i=1

∥Xi(β
0 − β̂0)γ

0′
1,iF

0′
1 ∥

≤ O(1)

(
1

NT δ

N∑
i=1

∥XiDTD
−1
T (β0 − β̂0)∥2

)1/2(
1

NT ν1

N∑
i=1

∥F0
1γ

0
1,i∥2

)1/2

= OP (T
(1−δ)/2∥D−1

T (β0 − β̂0)∥), (B.11)

and by exactly the same arguments,

T−δ/2∥J3∥ = OP (T
(1−δ)/2∥D−1

T (β0 − β̂0)∥). (B.12)

For J4, we use

1

NT (ν1+δ)/2

∥∥∥∥∥
N∑
i=1

XiDTD
−1
T (β0 − β̂0)(F

0
+1γ

0
+1,i)

′

∥∥∥∥∥
≤

(
1

NT δ

N∑
i=1

∥XiDTD
−1
T (β0 − β̂0)∥2

)1/2(
1

NT ν1

N∑
i=1

∥F0
+1γ

0
+1,i∥2

)1/2

≤ OP (T
(1−δ)/2∥D−1

T (β0 − β̂0)∥)OP (T
−ν1/2∥C−1

+1,T ∥)

= OP (T
(1−δ−ν1+ν2)/2∥D−1

T (β0 − β̂0)∥), (B.13)

where the last equality makes use of the fact that ∥C−1
+1,T ∥ = O(T ν2/2), as ν2 > · · · > νG by Assump-

tion 1. We can further show that

1

NT (ν1+δ)/2

∥∥∥∥∥
N∑
i=1

XiDTD
−1
T (β0 − β̂0)ε

′
i

∥∥∥∥∥
=

∥∥∥∥∥ 1

NT (ν1+δ)/2

N∑
i=1

vec [XiDTD
−1
T (β0 − β̂0)ε

′
i]

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT (ν1+δ)/2

N∑
i=1

(εi ⊗XiDT )

∥∥∥∥∥ ∥D−1
T (β0 − β̂0)∥

= OP (N
−1/2T (2−ν1−δ)/2∥D−1

T (β0 − β̂0)∥), (B.14)

7



where the last equality holds, because by Assumption 3 and (trA′B)2 ≤ (trA′A)(trB′B), we have

E

∥∥∥∥∥ 1

NT (ν1+δ)/2

N∑
i=1

(εi ⊗XiDT )

∥∥∥∥∥
2

=
1

N2T ν1+δ

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

E(x′
j,tD

2
Txi,tεi,sεj,s) ≤

1

N2T ν1+δ

N∑
i=1

N∑
j=1

E|tr(DTX
′
jXiDT )||σε,ij |

≤ 1

N2T ν1+δ−2

N∑
i=1

N∑
j=1

√
T−1E∥DTXj∥2

√
T−1E∥XiDT ∥2|σε,ij |

= O(1)
1

N2T ν1+δ−2

N∑
i=1

N∑
j=1

|σε,ij | = O(N−1T 2−ν1−δ). (B.15)

Hence, by adding the results,

T−δ/2∥J4∥ ≤ O(1)
1

NT (ν1+δ)/2

∥∥∥∥∥
N∑
i=1

Xi(β
0 − β̂0)(F

0
+1γ

0
+1,i + εi)

′

∥∥∥∥∥
= OP (T

(1−δ−ν1+ν2)/2∥D−1
T (β0 − β̂0)∥+N−1/2T (2−ν1−δ)/2∥D−1

T (β0 − β̂0)∥)

= oP (T
−(1−δ)/2∥D−1

T (β0 − β̂0)∥), (B.16)

where we have used Assumptions 1 and 4 (T/N2 = O(1) under νG < 1) to show that T (1−δ−ν1+ν2)/2

and N−1/2T (2−ν1−δ)/2 are o(1). The same steps can be used to show that

T−δ/2∥J5∥ ≤ oP (T
−(1−δ)/2∥D−1

T (β0 − β̂0)∥). (B.17)

For J6, we use

T−δ/2∥J6∥ ≤ O(1)

∥∥∥∥∥ 1

NT (ν1+δ)/2

N∑
i=1

(F0
+1γ

0
+1,i + εi)(F

0
+1γ

0
+1,i + εi)

′

∥∥∥∥∥
≤ O(1)(N−1T−(ν1+δ)/2∥F0

+1Γ
0′
+1Γ

0
+1F

0′
+1∥+N−1T−(ν1+δ)/2∥ε′ε∥

+ 2N−1T−(ν1+δ)/2∥F0
+1Γ

0′
+1ε∥). (B.18)

By Assumption 1,

N−1T−(ν1+δ)/2∥F0
+1Γ

0′
+1Γ

0
+1F

0′
+1∥ = OP (T

ν2−(ν1+δ)/2). (B.19)

Another application of Assumption 1 and Lemma B.2 gives

N−1T−(ν1+δ)/2∥ε′ε∥ = OP (T
1−(ν1+δ)/2(N−1/2 ∨ T−1/2)), (B.20)

N−1T−(ν1+δ)/2∥F0
+1Γ

0′
+1ε∥ ≤ N−1/2T−(ν1+δ−ν2−1)/2T−ν2/2∥F0

+1∥(NT )−1/2∥Γ0′
+1ε∥

8



= OP (N
−1/2T−(ν1+δ−ν2−1)/2). (B.21)

These results can be inserted into the expression for T−δ/2∥J6∥, giving

T−δ/2∥J6∥ = OP (T
ν2−(ν1+δ)/2 +N−1/2T 1−(ν1+δ)/2). (B.22)

Next up is J7. By using Assumptions 1 and 4, and Lemma B.2, and the arguments use in evaluating

J6,

T−δ/2∥J7∥ ≤ O(1)

∥∥∥∥∥ 1

NT (ν1+δ)/2

N∑
i=1

F0
1γ

0
1,i(F

0
+1γ

0
+1,i + εi)

′

∥∥∥∥∥
≤ O(1)N−1T−(ν1+δ)/2∥F0

1Γ
0′
1 Γ

0
+1F

0′
+1∥+O(1)N−1T−(ν1+δ)/2∥F0

1Γ
0′
1 ε∥

= OP (T
(ν2−δ)/2 +N−1/2T (1−δ)/2) = OP (T

(ν2−δ)/2), (B.23)

and we can similarly show that

T−δ/2∥J8∥ = OP (T
(ν2−δ)/2). (B.24)

By putting everything together, (B.8) becomes

T−δ/2∥T−(ν1+δ)/2F̂1V1 − J9∥ = OP (T
−(δ−1)/2∥D−1

T (β0 − β̂0)∥)

+OP (N
−1/2T 1−(ν1+δ)/2) +OP (T

−(δ−ν2)/2). (B.25)

We now left multiply (B.8) by T−(ν1+δ)/2F̂′
1 to obtain that

T−ν1V1 − (T−(ν1+δ)/2F̂′
1F

0
1)(N

−1Γ0′
1 Γ

0
1)(T

−(ν1+δ)/2F0′
1 F̂1)

= T−(ν1−δ)/2OP (T
−(δ−1)/2∥D−1

T (β0 − β̂0)∥+N−1/2T 1−(ν1+δ)/2 + T−(δ−ν2)/2)

= OP (T
−(ν1−1)/2∥D−1

T (β0 − β̂0)∥) +OP (T
−(ν1−ν2)/2)

= OP (T
−(ν1−ν2)/2), (B.26)

where the third equality follows from Assumption 4 and Lemma 1. This implies that V1 is at most

of rank d1. Similarly, we can left-multiply (B.8) by T−ν1F0′
1 to obtain

∥T−(ν1+δ)/2F0′
1 F̂1(T

−ν1V1)− T−ν1F0′
1 J9∥ = OP (T

−(ν1−ν2)/2), (B.27)

which in turn implies that

ΣF 0
1
ΣΓ0

1
(T−(ν1+δ)/2F0′

1 F̂) = (T−(ν1+δ)/2F0′
1 F̂)(T

−ν1V1) + oP (1). (B.28)

9



Note that T−(ν1+δ)/2F0′
1 F̂ is of rank d1, which then further indicates that V1 has at least d1 non-zero

elements on the main diagonal which converge to the eigenvalues of ΣF 0
1
ΣΓ0

1
. We now can conclude

that V1 is of rank d1 in limit.

We are now ready to investigate λ̂1,d for d ≤ d1. Because here d ≤ d1, we then focus on F̂0
1 and

V0
1, which are defined in Appendix A. Let us write (B.8) as follows:

T−(ν1+δ)/2F̂0
1V

0
1 − J0

9 = (T (ν1−δ)/2F̂0
1 − F0

1H
0
1)(T

−ν1V0
1), (B.29)

where H0
1 is defined in Appendix A. The above expression implies that (B.8) can be written as

T (ν1−δ)/2F̂0
1 − F0

1H
0
1 =

8∑
j=1

J0
j (T

−ν1V0
1)

−1, (B.30)

where J0
1, . . . ,J

0
9 are J1, . . . ,J9 as defined in (B.6), except that now d1 is taken as known. Note that

by the above development

8∑
j=1

T−ν1/2∥J0
j∥ = T−(ν1−δ)/2

8∑
j=1

T−δ/2∥J0
j∥ = OP (T

−(ν1−ν2)/2). (B.31)

Moreover, since T−ν1V0
1 converges to a full rank matrix by the argument under (B.28), we have

∥(T−ν1V0
1)

−1∥ = OP (1), which in turn implies

T−ν1/2∥T (ν1−δ)/2F̂0
1 − F0

1H
0
1∥ ≤

8∑
j=1

T−ν1/2∥J0
j∥∥(T−ν1V0

1)
−1∥ = OP (T

−(ν1−ν2)/2). (B.32)

This is an important result and in what follows we will use it frequently.

Let us now consider T−ν1(λ̂1,d − λ1,d). By the definitions of λ1,d and λ̂1,d given in Section A,

T−ν1(λ̂1,d − λ1,d) = (T−δ/2F̂0
1,d − T−ν1/2F0

1h
0
1,d + T−ν1/2F0

1h
0
1,d)

′−ν1(Σ̂1 −Σ0
1 +Σ0

1)

× (T−δ/2F̂0
1,d − T−ν1/2F0

1h
0
1,d + T−ν1/2F0

1h
0
1,d)− T−2ν1h0′

1,dF
0′
1 Σ

0
1F

0
1h

0
1,d

= (T−δ/2F̂0
1,d − T−ν1/2F0

1h
0
1,d)

′−ν1(Σ̂1 −Σ0
1)(T

−δ/2F̂0
1,d − T−ν1/2F0

1h
0
1,d)

+ 2(T−δ/2F̂0
1,d − T−ν1/2F0

1h
0
1,d)

′−ν1(Σ̂1 −Σ0
1)T

−ν1/2F0
1h

0
1,d

+ (T−δ/2F̂0
1,d − T−ν1/2F0

1h
0
1,d)

′−ν1Σ0
1(T

−δ/2F̂0
1,d − T−ν1/2F0

1h
0
1,d)

+ 2(T−δ/2F̂0
1,d − T−ν1/2F0

1h
0
1,d)

′−3ν1/3Σ0
1F

0
1h

0
1,d

+ T−2ν1h0′
1,dF

0′
1 (Σ̂1 −Σ0

1)F
0
1h

0
1,d

= J1 + 2J2 + J3 + 2J4 + J5, (B.33)
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with obvious definitions of J1, . . . , J5. From (B.32),

T−ν1/2∥T (ν1−δ)/2F̂0
1,d − F0

1h
0
1,d∥ = ∥T−δ/2F̂0

1,d − T−ν1/2F0
1h

0
1,d∥ = OP (T

−(ν1−ν2)/2), (B.34)

which is oP (1) under Assumption 1. This implies |J1| = oP (|J5|), |J2| = oP (|J5|) and |J3| = oP (|J4|).

It remains to consider J4 and J5. The order of the first of these terms is given by

|J4| ≤ ∥T−δ/2F̂0
1,d − T−ν1/2F0

1h
0
1,d∥T−3ν1/2∥Σ0

1F
0
1h

0
1,d∥

≤ ∥T−δ/2F̂0
1,d − T−ν1/2F0

1h
0
1,d∥T−ν1/2∥F0

1∥∥(N−1Γ0′
1 Γ

0
1)∥T−ν1∥F0′

1 F
0
1∥∥h0

1,d∥

= OP (T
−(ν1−ν2)/2), (B.35)

where we have made use of the fact that ∥H0
g∥ = OP (1) (see Appendix A), which implies that ∥h0

1,d∥

is of the same order.

The order of J5 is the same as that of J4. In order to appreciate this, we begin by noting

T−ν1(Σ̂1 −Σ0
1) =

1

NT ν1

N∑
i=1

Xi(β
0 − β̂0)(β

0 − β̂0)
′X′

i

+
1

NT ν1

N∑
i=1

Xi(β
0 − β̂0)γ

0′
1,iF

0′
1 +

1

NT ν1

N∑
i=1

F0
1γ

0
1,i(β

0 − β̂0)
′X′

i

+
1

NT ν1

N∑
i=1

Xi(β
0 − β̂0)(F

0
+1γ

0
+1,i + εi)

′

+
1

NT ν1

N∑
i=1

(F0
+1γ

0
+1,i + εi)(β

0 − β̂0)
′X′

i

+
1

NT ν1

N∑
i=1

(F0
+1γ

0
+1,i + εi)(F

0
+1γ

0
+1,i + εi)

′

+
1

NT ν1

N∑
i=1

F0
1γ

0
1,i(F

0
+1γ

0
+1,i + εi)

′ +
1

NT ν1

N∑
i=1

(F0
+1γ

0
+1,i + εi)γ

0′
1,iF

0′
1 . (B.36)

By the proof for each term of (B.6), it is easy to know that

T−ν1∥Σ̂1 −Σ0
1∥ = OP (T

−(ν1−ν2)/2), (B.37)

and so

|J5| ≤ ∥h0
1,d∥2T−ν1∥F0

1∥2T−ν1∥Σ̂1 −Σ0
1∥ = OP (T

−(ν1−ν2)/2). (B.38)

Hence, by putting everything together,

T−ν1 |λ̂1,d − λ1,d| ≤ |J1|+ 2|J2|+ |J3|+ 2|J4|+ |J5| = OP (T
−(ν1−ν2)/2), (B.39)
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which establishes (a).

Consider (b). This proof is based on Lemma B.1. We therefore start by introducing some notation

in order to make the problem here fit the one in Lemma B.1. Let us therefore denote by F⊥
1 a

T × (dmax − d1) matrix such that T−ν1(F⊥
1 ,F

0
1R)′(F⊥

1 ,F
0
1R) = diag(Idmax−d1 , Id1), where R is a

d1 × d1 rotation matrix. The matrices T−ν1/2F⊥
1 , T

−ν1/2F0
1R, Σ0

1 and Σ̂1 − Σ0
1 correspond to Q1,

Q2, A and E of Lemma B.1. Our counterpart of the matrix Q0
1 appearing in this other lemma is thus

given by

F̂⊥ = T−ν1/2(F⊥
1 + F0

1RP)(Idmax−d1 +P′P)−1/2, (B.40)

where

∥P∥2 ≤
4

sep(0, T−2ν1F0′
1 Σ

0
1F

0
1)
T−ν1∥Σ̂1 −Σ0

1∥ ≤ OP (1)T
−ν1∥Σ̂1 −Σ0

1∥

= OP (T
−(ν1−ν2)/2). (B.41)

Since F̂⊥ is an orthonormal basis for a subspace that is invariant for Σ̂1, we have λ̂1,d1+d = F̂⊥′
d Σ̂1F̂

⊥
d ,

where d = 1, . . . , dmax − d1 and F̂⊥
d is the d-th column of F̂⊥. Consider ∥F̂⊥ − T−ν1/2F⊥

1 ∥2. By the

definition of F̂⊥,

∥F̂⊥ − T−ν1/2F⊥
1 ∥2

= T−ν1/2∥[F⊥
1 + F0

1RP− F⊥
1 (Idmax−d1 +P′P)1/2](Idmax−d1 +P′P)−1/2∥2

≤ T−ν1/2∥F⊥
1 (Idmax−d1 − (Idmax−d1 +P′P)1/2)(Idmax−d1 +P′P)−1/2∥2

+ T−ν1/2∥F0
1RP(Idmax−d1 +P′P)−1/2∥2

≤ ∥(Idmax−d1 − (Idmax−d1 +P′P)1/2)(Idmax−d1 +P′P)−1/2∥2 + ∥P(Idmax−d1 +P′P)−1/2∥2

≤ ∥Idmax−d1 − (Idmax−d1 +P′P)1/2∥2 + ∥P∥2 ≤ 2∥P∥2

= OP (T
−(ν1−ν2)/2), (B.42)

where the second and third inequalities follow from (Magnus and Neudecker, 2007, Exercise 1 on page

231). This last result can be used to show that

T−ν1 |λ̂1,d1+d| = |F̂⊥′
d (T−ν1Σ̂1)F̂

⊥
d |

= |(F̂⊥
d − T−ν1/2F⊥

1,d + T−ν1/2F⊥
1,d)

′−ν1(Σ̂1 −Σ0
1 +Σ0

1)(F̂
⊥
d − T−ν1/2F⊥

1,d + T−ν1/2F⊥
1,d)|

≤ ∥F̂⊥
d − T−ν1/2F⊥

1,d∥2T−ν1∥Σ̂1 −Σ0
1∥

+ 2∥F̂⊥
d − T−ν1/2F⊥

1,d∥T−ν1∥Σ̂1 −Σ0
1∥T−ν1/2∥F⊥

1,d∥+ ∥F̂⊥
d − T−ν1/2F⊥

1,d∥2T−ν1∥Σ0
1∥

= OP (T
−(ν1−ν2)), (B.43)
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where F⊥
1,d is the d-th column of F⊥

1 , and the last equality follows from (B.42) and the proof of part

(a). This completes the proof of the lemma. ■

Proof of Lemma B.4.

For (a), we take the same starting point as in the proof of part (a) in Lemma B.3, which is (B.8)

with F̂1 and V1 based on treating d1 as known. The rationale for doing so is, as already explained in

Appendix A, that d̂1 is consistent. Pre-multiplying this equation through by T−(ν1+δ)/2F0′
2 gives

T−(ν1+δ)F0′
2 F̂1V1 − T−(ν1+δ)/2F0′

2 J9

= T−(ν1+δ)F0′
2 F̂1V1 − T−(ν1+δ)/2F0′

2 F
0
1(N

−1Γ0′
1 Γ

0
1)(T

−(ν1+δ)/2F0′
1 F̂1)

=
8∑

j=1

T−(ν1+δ)/2F0′
2 Jj , (B.44)

or

T−δF0′
2 F̂1 − T−(ν1+δ)/2F0′

2 J9(T
−ν1V1)

−1

= T−δF0′
2 F̂1 − T−(ν1+δ)/2F0′

2 F
0
1(N

−1Γ0′
1 Γ

0
1)(T

−(ν1+δ)/2F0′
1 F̂1)(T

−ν1V1)
−1

= T−(ν1−ν2)/2
8∑

j=1

T−(δ+ν2)/2F0′
2 Jj(T

−ν1V1)
−1. (B.45)

Under Assumption 4, the orders of J1, . . . ,J6 are the same as in those in the proof of the first result

of Lemma B.3. The stated orders of J7 and J8 are, however, not sharp and can be improved upon.

The order of T−(δ+ν2)/2∥F0′
2 J7∥ is given by

T−(δ+ν2)/2∥F0′
2 J7∥ ≤ OP (1)T

−ν2/2

∥∥∥∥∥ 1

NT (ν1+δ)/2

N∑
i=1

F0′
2 F

0
1γ

0
1,i(F

0
+1γ

0
+1,i + εi)

′

∥∥∥∥∥
≤ OP (1)

1

NT (ν2+ν1+δ)/2
∥F0′

2 F
0
1Γ

0′
1 Γ

0
+1F

0′
+1∥

+OP (1)
1

NT (ν2+ν1+δ)/2
∥F0′

2 F
0
1Γ

0′
1 ε∥

= OP (N
−(1−p)T q−(ν1+δ)/2) +OP (N

−1/2T q−(ν2+ν1+δ−1)/2), (B.46)

where the last equality follows from Assumption 4 and Lemma B.2. We can similarly show that

T−(δ+ν2)/2∥F0′
2 J8∥ ≤ OP (1)T

−ν2/2

∥∥∥∥∥ 1

NT (ν1+δ)/2

N∑
i=1

F0′
2 (F

0
2γ

0
2,i + F0

+2γ
0
+2,i + εi)γ

0′
1,iF

0′
1

∥∥∥∥∥
≤ OP (1)

1

NT (ν2+ν1+δ)/2
∥F0′

2 F
0
2Γ

0′
2 Γ

0
1F

0′
1 ∥

+OP (1)N
−1T−(ν2+ν1+δ)/2∥F0′

2 F
0
+2Γ

0′
+2Γ

0
1F

0′
1 ∥

+OP (1)N
−1T−(ν2+ν1+δ)/2∥F0′

2 ε
′Γ0

1F
0′
1 ∥
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= OP (N
−(1−p)T−(δ−ν2)/2) +OP (N

−1/2T−(δ−1)/2), (B.47)

where F0
+2 and Γ0

+2 are defined analogously to F0
+1 and Γ0

+1 in the proof of Lemma B.3. By using

these last two results together with the orders of J1, . . . ,J6 given in the proof of the first result of

Lemma B.3,∥∥∥∥∥∥
8∑

j=1

T−(δ+ν2)/2F0′
2 Jj

∥∥∥∥∥∥
≤ OP (T

−(δ−1)/2∥D−1
T (β0 − β̂0)∥) +OP (T

ν2−(ν1+δ)/2) +OP (N
−1/2T 1−(ν1+δ)/2)

+OP (N
−(1−p)T−(δ−ν2)/2) +OP (N

−1/2T−(δ−1)/2)

= OP (T
−δ/2 +N−1/2T−(δ−1)/2 +N−(1−p)T−(δ−ν2)/2), (B.48)

where we have used ∥D−1
T (β0 − β̂0)∥ = OP (N

−1/2 ∨ T−1/2) of Lemma 1, and Assumptions 3 and 4.

Hence,

∥T−δF0′
2 F̂1 − T−(ν1+δ)/2F0′

2 J9(T
−ν1V1)

−1∥

≤ T−(ν1−ν2)/2

∥∥∥∥∥∥
8∑

j=1

T−(δ+ν2)/2F0′
2 Jj

∥∥∥∥∥∥ ∥(T−ν1V1)
−1∥

= T−(ν1−ν2)/2[OP (T
−δ/2 +N−1/2T−(δ−1)/2 +N−(1−p)T−(δ−ν2)/2)]

= OP (T
−(δ+ν1−ν2)/2 +N−1/2T−(δ+ν1−ν2−1)/2 +N−(1−p)T−(δ+ν1−2ν2)/2), (B.49)

which together with Assumption 4 yields

∥T−δF0′
2 F̂1∥ ≤ ∥T−(ν1+δ)/2F0′

2 J9∥∥(T−ν1V1)
−1∥

+ T−(ν1−ν2)/2

∥∥∥∥∥∥
8∑

j=1

T−(δ+ν2)/2F0′
2 Jj

∥∥∥∥∥∥ ∥(T−ν1V1)
−1∥

= OP (T
q−(ν1+δ)/2 + T−(δ+ν1−ν2)/2 +N−1/2T−(δ+ν1−ν2−1)/2

+N−(1−p)T−(δ+ν1−2ν2)/2), (B.50)

as was to be shown for (a).

Let us now consider (b). Analogously to the proof of (a), by invoking Assumption 4 we can

improve the orders of J7 and J8. For J7,

T−δ/2∥J7∥ ≤ OP (1)N
−1T−(ν1+δ)/2∥F0

1Γ
0′
1 Γ

0
+1F

0′
+1∥+OP (1)N

−1T−(ν1+δ)/2∥F0
1Γ

0′
1 ε∥

= OP (N
−(1−p)T−(δ−ν2)/2) +OP (N

−1/2T−(δ−1)/2), (B.51)
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where the equality follows from Assumption 4 and Lemma B.2. For J8,

T−δ/2∥J8∥ ≤ OP (N
−(1−p)T−(δ−ν2)/2) +OP (N

−1/2T−(δ−1)/2). (B.52)

This implies that the result in (B.32) changes to (after replacing T−ν1/2 by T−δ/2)

T−δ/2∥T (ν1−δ)/2F̂1 − F0
1H

0
1∥ ≤

8∑
j=1

T−δ/2∥Jj∥∥(T−ν1V1)
−1∥

= OP (T
−δ/2 +N−1/2T−(δ−1)/2 +N−(1−p)T−(δ−ν2)/2). (B.53)

Hence, since H0
1 is invertible with ∥H0

1∥ = OP (1) and H1 = T−(ν1−δ)/2H0
1,

T−δ/2∥F̂1H
−1
1 − F0

1∥ = OP (T
−δ/2 +N−1/2T−(δ−1)/2 +N−(1−p)T−(δ−ν2)/2). (B.54)

We are now ready to consider
∑N

i=1 ∥F0′
1 γ

0
1,i − F̂1γ̂1,i∥2.

N∑
i=1

∥F0′
1 γ

0
1,i − F̂1γ̂1,i∥2 =

N∑
i=1

∥F0
1γ

0
1,i − T−δF̂1F̂

′
1(yi −Xiβ̂0)∥2

≤ O(1)
N∑
i=1

[∥P
F̂1
Xi(β

0 − β̂0)∥2 + ∥M
F̂1
F0
1γ

0
1,i∥2 + ∥P

F̂1
F0
+1γ

0
+1,i∥2 + ∥P

F̂1
εi∥2]. (B.55)

We now evaluate each of the terms on the right-hand side one by one. Making use of Assumption 1

and Lemma 1, we get

N∑
i=1

∥P
F̂1
Xi(β

0 − β̂0)∥2 ≤
N∑
i=1

∥XiDT ∥2∥D−1
T (β0 − β̂0)∥2

= OP (NT )OP (N
−1 ∨ T−1) = OP (N ∨ T ), (B.56)

and by another application of Lemma B.2,

N∑
i=1

∥P
F̂1
εi∥2 ≤

N∑
i=1

∥εi∥2 = OP (N ∨ T ). (B.57)

For
∑N

i=1 ∥MF̂1
F0
1γ

0
1,i∥2, we use (B.54) from which it follows that

∥M
F̂1
F0
1∥2 = ∥M

F̂1
(F0

1 − F̂1H
−1
1 )∥2 ≤ T δ(T−δ∥F0

1 − F̂1H
−1
1 ∥2)

= OP (1) +OP (N
−1T ) +OP (N

−2(1−p)T ν2), (B.58)
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which in turn implies

N∑
i=1

∥M
F̂1
F0
1γ

0
1,i∥2 = OP (N) +OP (T ) +OP (N

−(1−2p)T ν2). (B.59)

For
∑N

i=1 ∥PF̂1
F0
+1γ

0
+1,i∥2, we use the result given in part (a), giving

N∑
i=1

∥P
F̂1
F0
2γ

0
2,i∥2 =

N∑
i=1

∥T−δF̂1F̂
′
1F

0
2γ

0
2,i∥2 = OP (NT δ)∥T−δF̂′

1F
0
2∥2

= OP (NT δ)[OP (T
q−(ν1+δ)/2) +OP (T

−(δ+ν1−ν2)/2)

+OP (N
−1/2T−(δ+ν1−ν2−1)/2) +OP (N

−(1−p)T−(δ+ν1−2ν2)/2)]2

= OP (N)[OP (T
−(ν1−ν2)/2) +OP (N

−1/2T−(ν1−ν2−1)/2)

+OP (N
−(1−p)T−(ν1−2ν2)/2) +OP (T

q−ν1/2)]2. (B.60)

The order of
∑N

i=1 ∥PF̂1
F0
+2γ

0
+2,i∥2 is the same. Hence, by adding the above results, (b) follows after

simple algebra. The proof is now complete. ■

Proof of Lemma B.5.

Let Ui = F0
+2γ

0
+2,i + F0′

1 γ
0
1,i − F̂1γ̂1,i. In this notation,

T−(ν2+δ)/2F̂2V2

=
1

NT (ν2+δ)/2

N∑
i=1

[(Xi(β
0 − β̂0) + F0

2γ
0
2,i +Ui + εi)

× (Xi(β
0 − β̂0) + F0

2γ
0
2,i +Ui + εi)

′]F̂2

=
1

NT (ν2+δ)/2

N∑
i=1

Xi(β
0 − β̂0)(β

0 − β̂0)
′X′

iF̂2

+
1

NT (ν2+δ)/2

N∑
i=1

Xi(β
0 − β̂0)γ

0′
2,iF

0′
2 F̂2 +

1

NT (ν2+δ)/2

N∑
i=1

F0
2γ

0
2,i(β

0 − β̂0)
′X′

iF̂2

+
1

NT (ν2+δ)/2

N∑
i=1

Xi(β
0 − β̂0)U

′
iF̂2 +

1

NT (ν2+δ)/2

N∑
i=1

Ui(β
0 − β̂0)

′X′
iF̂2

+
1

NT (ν2+δ)/2

N∑
i=1

Xi(β
0 − β̂0)ε

′
iF̂2 +

1

NT (ν2+δ)/2

N∑
i=1

εi(β
0 − β̂0)

′X′
iF̂2

+
1

NT (ν2+δ)/2

N∑
i=1

εiε
′
iF̂2 +

1

NT (ν2+δ)/2

N∑
i=1

F0
2γ

0
2,iε

′
iF̂2 +

1

NT (ν2+δ)/2

N∑
i=1

εiγ
0′
2,iF

0′
2 F̂2

+
1

NT (ν2+δ)/2

N∑
i=1

εiU
′
iF̂2 +

1

NT (ν2+δ)/2

N∑
i=1

Uiε
′
iF̂2 +

1

NT (ν2+δ)/2

N∑
i=1

Uiγ
0′
2,iF

0′
2 F̂2

+
1

NT (ν2+δ)/2

N∑
i=1

F0
2γ

0
2,iU

′
iF̂2 +

1

NT (ν2+δ)/2

N∑
i=1

UiU
′
iF̂2 +

1

NT (ν2+δ)/2

N∑
i=1

F0
2γ

0
2,iγ

0′
2,iF

0′
2 F̂2

16



=
16∑
j=1

Kj , (B.61)

where K1, . . . ,K16 are implicitly defined. Analogously to the proof of the first result of Lemma B.3

we move K16 = F0
2(N

−1Γ0′
2 Γ

0
2)(T

−(ν2+δ)/2F0′
2 F̂2) over to the left, giving

T−(ν2+δ)/2F̂2V2 − F0
2(N

−1Γ0′
2 Γ

0
2)(T

−(ν2+δ)/2F0′
2 F̂2) =

15∑
j=1

Kj . (B.62)

By using the same steps employed in the proof of the first result of Lemma B.3, we can show that

T−δ/2∥K1 +K2 +K3∥ = OP (T
−(δ−1)/2∥D−1

T (β0 − β̂0)∥). (B.63)

For K4,

T−δ/2∥K4∥ = T−δ/2

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

Xi(β
0 − β̂0)U

′
iF̂2

∥∥∥∥∥
≤ O(1)

(
1

NT δ

N∑
i=1

∥Xi(β
0 − β̂0)∥2

)1/2

×

(
1

NT ν2

N∑
i=1

∥F0
+2γ

0
2,i∥2 +

1

NT ν2

N∑
i=1

∥F0′
1 γ

0
1,i − F̂1γ̂1,i∥2

)1/2

= OP (1)T
−(δ−1)/2∥D−1

T (β0 − β̂0)∥[OP (T
−(ν2−ν3)) +OP (T

−ν2) +OP (N
−1T−(ν2−1))

+OP (T
−(ν1−ν2)) +OP (T

−(ν2+ν1−2q)) +OP (N
−1T−(ν1+ν2−2)) +OP (N

−2(1−p))]

= oP (T
−(δ−1)/2∥D−1

T (β0 − β̂0)∥), (B.64)

where the second equality follows Lemma B.4, and the third follows from Assumptions 1, 3, and 4.

The same arguments can be used to show that

T−δ/2∥K5∥ = oP (T
−(δ−1)/2∥D−1

T (β0 − β̂0)∥). (B.65)

For K6,

T−δ/2∥K6∥ ≤ T−δ/2∥F̂2∥

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

Xi(β
0 − β̂0)ε

′
i

∥∥∥∥∥
= OP (N

−1/2T−(δ+ν2−2)/2∥D−1
T (β0 − β̂0)∥)

= oP (T
−(δ−1)/2∥D−1

T (β0 − β̂0)∥), (B.66)

where the development is similar to (B.14). The order of T−δ/2∥K7∥ is the same.

17



For K8,

T−δ/2∥K8∥ = T−δ/2

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

εiε
′
iF̂2

∥∥∥∥∥ ≤ T−δ/2∥F̂2∥N−1T−(ν2+δ)/2∥ε′ε∥

= OP (T
1−(ν2+δ)/2(N−1/2 ∨ T−1/2)), (B.67)

where the last equality holds by Lemma B.2.

Further use of Lemma B.2 gives

T−δ/2∥K9∥ = T−δ/2

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

F0
2γ

0
2,iε

′
iF̂2

∥∥∥∥∥ ≤ N−1T−(ν2+δ)/2∥F0
2Γ

0′
2 ε∥T−δ/2∥F̂2∥

= OP (N
−1/2T−(δ−1)/2), (B.68)

and we can show that T−δ/2∥K10∥ is of the same order.

K11 requires more work. We begin by expanding it in the following way:

T−δ/2∥K11∥ = T−δ/2

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

εi(F
0
1γ

0
1,i − F̂1γ̂1,i + F0

+2γ
0
2,i)

′F̂2

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

εi(F
0
1γ

0
1,i − F̂1T

−δF̂′
1(yi −Xiβ̂0) + F0

+2γ
0
2,i)

′

∥∥∥∥∥T−δ/2∥F̂2∥

≤ O(1)

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

εi(β
0 − β̂0)

′X′
iPF̂1

∥∥∥∥∥
+O(1)

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

εiγ
0′
1,iF

0′
1 MF̂1

∥∥∥∥∥+O(1)

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

εiγ
0′
+1,iF

0′
+1PF̂1

∥∥∥∥∥
+O(1)

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

εiε
′
iPF̂1

∥∥∥∥∥+O(1)

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

εiγ
0′
+2,iF

0′
+2

∥∥∥∥∥
= O(1)(K111 +K112 +K113 +K114 +K115), (B.69)

where, similarly to the analysis of K6 and using ∥P
F̂1
∥2 = 1,

K111 ≤

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

εi(β
0 − β̂0)

′X′
i

∥∥∥∥∥ = OP (N
−1/2T−(δ+ν2−2)/2∥D−1

T (β0 − β̂0)∥)

= oP (T
−(δ−1)/2∥D−1

T (β0 − β̂0)∥). (B.70)

Also, making use of (B.58), we can show that

K112 ≤ N−1T−(ν2+δ)/2∥Γ0′
1 ε∥∥MF̂1

F0
1∥

= OP (N
−1/2T−(ν2+δ−1)/2) +OP (N

−1T 1−(ν2+δ)/2) +OP (N
−(3/2−p)T−(δ−1)/2). (B.71)
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Similarly, for K113, we can show that

K113 = oP (K112) +OP (N
−1/2T q−(ν1+ν2+δ−1)/2), (B.72)

where we have used Lemmas B.2 and B.4, and Assumption 1. Further use of Lemma B.2 shows that

K114 is of the following order:

K114 ≤ N−1T−(ν2+δ)/2∥ε′ε∥ = OP (T
−(ν2+δ−2)/2(N−1/2 ∨ T−1/2)), (B.73)

while the order of K115 is

K115 = N−1T−(ν2+δ)/2∥ε′Γ0
+2F

0′
+2∥ = OP (N

−1/2T−(ν2+δ−1−ν3)/2). (B.74)

By inserting the above results into (B.69), we obtain

T−δ/2∥K11∥ = OP (N
−(3/2−p)T−(δ−1)/2) +OP (N

−1/2T q−(ν1+ν2+δ−1)/2)

+OP (T
−(ν2+δ−2)/2(N−1/2 ∨ T−1/2)) +OP (N

−1/2T−(ν2+δ−1−ν3)/2)

+ oP (T
−(δ−1)/2∥D−1

T (β0 − β̂0)∥). (B.75)

The order of T−δ/2∥K12∥ is the same, which can be shown using the above steps.

We move on to K13, whose order is given by

T−δ/2∥K13∥ ≤

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

(F0
+2γ

0
2,i + F0

1γ
0
1,i − F̂1γ̂1,i)γ

0′
2,iF

0′
2

∥∥∥∥∥T−δ/2∥F̂2∥

≤ O(1)N−1T−(ν2+δ)/2∥F0
+2Γ

0′
+2Γ

0
2F

0′
2 ∥

+O(1)

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

(F0′
1 γ

0
1,i − F̂1γ̂1,i)γ

0′
2,iF

0′
2

∥∥∥∥∥
= OP (N

−(1−p)T−(δ−ν3)/2) +

(
1

NT δ

N∑
i=1

∥F0
1γ

0
1,i − F̂1γ̂1,i∥2

)1/2(
1

NT ν2

N∑
i=1

∥F0
2γ

0
2,i∥2

)1/2

= OP (N
−1/2T−(δ−1)/2) +OP (T

−δ/2) +OP (T
q−(δ+ν1)/2) +OP (N

−(1−p)T−(δ−ν2)/2), (B.76)

where the second equality follows from Lemma B.4 and Assumption 1. The order of T−δ/2∥K14∥ is

the same.

For K15,

T−δ/2∥K15∥ = T−δ/2

∥∥∥∥∥ 1

NT (ν2+δ)/2

N∑
i=1

UiU
′
iF̂2

∥∥∥∥∥
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≤ OP (1)
1

NT (ν2+δ)/2

N∑
i=1

∥F0
1γ

0
1,i − F̂1γ̂1,i∥2 +OP (1)

1

NT (ν2+δ)/2

N∑
i=1

∥F0
+2γ

0
+2,i∥2

= OP (T
−(ν2+δ)/2) +OP (N

−1T 1−(ν2+δ)/2) +OP (T
2q−ν1−(ν2+δ)/2)

+OP (N
−2(1−p)T−(δ−ν2)/2) +OP (T

ν3−(ν2+δ)/2), (B.77)

where the second equality follows from Lemma B.4.

We now insert the above results for K1, . . . ,K15 into (B.62). But first we left multiply by T−ν2F0′
2

and T−(ν2+δ)/2F̂2 respectively. It then gives

∥T−(ν2+δ)/2F0′
2 F̂2(T

−ν2V2)− (T−ν2F0′
2 F

0
2)(N

−1Γ0′
2 Γ

0
2)(T

−(ν2+δ)/2F0′
2 F̂2)∥

= OP (N
−1/2T−(ν2−1)/2) +OP (T

−ν2/2) +OP (T
−(ν2−ν3))

+OP (T
q−(ν1+ν2)/2) +OP (N

−(1−p)) (B.78)

and

∥T−ν2V2 − (T−(ν2+δ)/2F̂′
2F

0
2)(N

−1Γ0′
2 Γ

0
2)(T

−(ν2+δ)/2F0′
2 F̂2)∥

= OP (N
−1/2T−(ν2−1)/2) +OP (T

−ν2/2) +OP (T
−(ν2−ν3))

+OP (T
q−(ν1+ν2)/2) +OP (N

−(1−p)). (B.79)

The rest of the proofs of (a) and (b) follows from the same arguments used in Lemma B.3. It is

therefore omitted. ■

Before continuing onto the proof of Lemma B.6, we note that the rates given in Lemma B.5 can

actually be improved upon. Suppose that d2 in known. Consider the next term which is a part of

K15:

N−1T−(ν2/2+δ)∥F0
+2Γ

0′
+2Γ

0
+2F

0′
+2F̂2∥

= N−1T−(ν2/2+δ)∥F0
+2Γ

0′
+2Γ

0
+2F

0′
+2(F̂2V

0
2 − F0

2H2V
0
2 + F0

2H2V
0
2)(V

0
2)

−1∥

≤ N−1T−(ν2/2+δ)∥F0
+2Γ

0′
+2Γ

0
+2F

0′
+2(F̂2V

0
2 − F0

2H2V
0
2)(V

0
2)

−1∥

+N−1T−(ν2/2+δ)∥F0
+2Γ

0′
+2Γ

0
+2F

0′
+2F

0
2H2∥

≤ OP (1)T
ν3−ν2T−(ν2/2+δ)∥F̂2V

0
2 − F0

2H2V
0
2∥+OP (1)T

ν3/2−(ν2+δ/2)∥F0′
+2F

0
2∥, (B.80)

where V0
2 and H2 are defined in Appendix A. Simple algebra shows that the term T−(ν2−ν3) in τNT

of Lemma B.5 can be dropped.

Proof of Lemma B.6.

Consider (a). Let us assume without loss of generality that β0 = 0dx×1, as in Bai (2009). It then
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follows that

(NT )−1[SSR(β̂1, F̂)− SSR(β̂0, F̂)]

=
1

NT

N∑
i=1

(−Xiβ̂1 + F0γ0
i )

′M
F̂
(−Xiβ̂1 + F0γ0

i )

− β̂
′
1

2

NT

N∑
i=1

X′
iMF̂

εi +
2

NT

N∑
i=1

γ0′
i F

0′M
F̂
εi +

1

NT

N∑
i=1

ε′iMF̂
εi

− 1

NT

N∑
i=1

(−Xiβ̂0 + F0γ0
i )

′M
F̂
(−Xiβ̂0 + F0γ0

i )

+ β̂
′
0

2

NT

N∑
i=1

X′
iMF̂

εi −
2

NT

N∑
i=1

γ0′
i F

0′M
F̂
εi −

1

NT

N∑
i=1

ε′iMF̂
εi

≥ 1

NT

N∑
i=1

(β̂1 − β̂0)
′X′

iMF̂
Xi(β̂1 − β̂0)

− 2

(
1

NT

N∑
i=1

(β̂1 − β̂0)
′X′

iMF̂
Xi(β̂1 − β̂0)

)1/2(
1

NT

N∑
i=1

(β̂0 − β0)′X′
iMF̂

Xi(β̂0 − β0)

)1/2

− 2

NT

N∑
i=1

(β̂1 − β̂0)
′X′

iMF̂
F0γ0

i − (β̂1 − β̂0)
′ 2

NT

N∑
i=1

X′
iMF̂

εi. (B.81)

Note that by expanding the term M
F̂
F0 as in the proof for the second result of this lemma, we can

obtain that ∥∥∥∥∥ 1

NT

N∑
i=1

(β̂1 − β̂0)
′X′

iMF̂
F0γ0

i

∥∥∥∥∥
≤ ∥D−1

T (β̂1 − β̂0)∥

∥∥∥∥∥ 1

NT

N∑
i=1

DTX
′
iMF̂

F0γ0
i

∥∥∥∥∥
= OP (∥D−1

T (β̂1 − β̂0)∥)[OP ((NT )−1/2) + oP (∥D−1
T (β̂0 − β0)∥)]. (B.82)

It follows that

0 ≥ (NT )−1[SSR(β̂1, F̂)− SSR(β̂0, F̂)]

=
1

NT

N∑
i=1

(β̂1 − β̂0)
′X′

iMF̂
Xi(β̂1 − β̂0)

+OP (∥D−1
T (β̂1 − β̂0)∥)[OP ((NT )−1/2) + oP (∥D−1

T (β̂0 − β0)∥)]

≥ λmin

(
1

NT

N∑
i=1

DTX
′
iMF̂

XiDT

)
∥D−1

T (β̂1 − β̂0)∥2

+OP (∥D−1
T (β̂1 − β̂0)∥)[OP ((NT )−1/2) + oP (∥D−1

T (β̂0 − β0)∥)], (B.83)

where the first term on the right is quadratic in ∥D−1
T (β̂1−β̂0)∥. Hence, to ensure the right-hand side is
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non-positive, ∥D−1
T (β̂1−β̂0)∥ cannot converge to zero at a rate faster than (NT )−1/2∨∥D−1

T (β̂0−β0)∥.

It follows that

∥D−1
T (β̂1 − β̂0)∥ = OP ((NT )−1/2 ∨ ∥D−1

T (β̂0 − β0)∥), (B.84)

as was to be shown.

We now turn to (b). Note that

β̂1 − β0 = DT

(
1

NT

N∑
i=1

DTX
′
iMF̂

XiDT

)−1

×

(
1

NT

N∑
i=1

DTX
′
iMF̂

F0γ0
i +

1

NT

N∑
i=1

DTX
′
iMF̂

εi

)

= DTB
−1

(
L+

1

NT

N∑
i=1

DTX
′
iMF̂

εi

)
, (B.85)

with obvious definitions of L and B.

Consider L. Let Qg = (N−1Γ0′
g Γ

0
g)(T

−(νg+δ)/2F0′
g F̂g), such that H−1

g = T−(νg+δ)/2V0
gQ

−1
g . We

also introduce eg,i, which is defined to be zero for g = 1 and eg,i =
∑g−1

j=1(F
0
jγ

0
j,i − F̂jγ̂j,i) for

g = 2, . . . , G. In this notation,

L =
1

NT

N∑
i=1

DTX
′
iMF̂

F0γ0
i = − 1

NT

G∑
g=1

N∑
i=1

DTX
′
iMF̂

(F̂gH
−1
g − F0

g)γ
0
g,i

= −(L1 + · · ·+ L15), (B.86)

where

L1 =
1

NT

G∑
g=1

N∑
i=1

DTX
′
iMF̂

1

NT (νg+δ)/2

N∑
j=1

Xj(β
0 − β̂0)(β

0 − β̂0)
′X′

jF̂gQ
−1
g γ0

g,i,

L2 =
1

NT

G∑
g=1

N∑
i=1

DTX
′
iMF̂

1

NT (νg+δ)/2

N∑
j=1

Xj(β
0 − β̂0)γ

0′
g,jF

0′
g F̂gQ

−1
g γ0

g,i,

L3 =
1

NT

G∑
g=1

N∑
i=1

DTX
′
iMF̂

1

NT (νg+δ)/2

N∑
j=1

F0
gγ

0
g,j(β

0 − β̂0)
′X′

jF̂gQ
−1
g γ0

g,i,

L4 =
1

NT

G∑
g=1

N∑
i=1

DTX
′
iMF̂

1

NT (νg+δ)/2

N∑
j=1

Xj(β
0 − β̂0)e

′
g,jF̂gQ

−1
g γ0

g,i,

L5 =
1

NT

G∑
g=1

N∑
i=1

DTX
′
iMF̂

1

NT (νg+δ)/2

N∑
j=1

eg,j(β
0 − β̂0)

′X′
jF̂gQ
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L12 =
1

NT

G∑
g=1

N∑
i=1

DTX
′
iMF̂

1

NT (νg+δ)/2

N∑
j=1

eg,jε
′
jF̂gQ

−1
g γ0

g,i,
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We now evaluate each of these terms. From the analysis of L2 below, it is easy to show that ∥L1∥ =

oP (∥D−1
T (β̂0 − β0)∥). We therefore start from L2, which we write as

L2 =
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N∑
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0
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N∑
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′
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T (β0 − β̂0). (B.87)

We will use this expression for L2 later.

Let us now move on to L3.

L3 =
1

NT

G∑
g=1

N∑
i=1

DTX
′
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1
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N∑
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=
1
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g )

× 1
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γ0
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′X′

jF̂gQ
−1
g γ0

g,i, (B.88)

where, by using arguments that are similar to those used in the proofs of Lemmas B.3 and B.5,

1
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∥∥∥∥∥∥
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∥∥∥∥∥∥
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implying

∥L3∥ ≤

(
1
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21/2

= oP (∥D−1
T (β0 − β̂0)∥). (B.90)

The same steps can be used to show that L4 and L5 are of the same order.

For L6, write

L6 =
1

NT
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N∑
i=1

N∑
j=1

DTX
′
iMF̂

Xj(β
0 − β̂0)ε

′
jF

0
gHgQ

−1
g γ0

g,i

+
G∑

g=1

1

N2T (νg+δ)/2+1

N∑
i=1

N∑
j=1

DTX
′
iMF̂

Xj(β
0 − β̂0)ε

′
j(F̂g − F0

gHg)Q
−1
g γ0

g,i, (B.91)

where the first term on the right is bounded by
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The second term is of the same order. Thus, ∥L6∥ = oP (∥D−1
T (β0− β̂0)∥). The same is true for ∥L7∥.

We now examine L8. Let us define Σε = N−1
∑N

i=1Σε,i, in which Σε,i has been defined in

Assumption 3. L8 can then be written as
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For the first term on the right,
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where the last equality holds by NT−νG < ∞. Let

A1 =
1
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Note how A1 = plimN,T→∞ E(A1|C). In this notation,
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1
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where the second equality follows from arguments similar to those used in (B.30). Note also that

lim
√
NT−νG/2 < ∞. Further use of the same steps used by Jiang et al. (2021) establishes that the

second and third terms of L8 are oP (∥D−1
T (β̂0 − β0)∥) + oP ((NT )−1/2). Hence,

L8 = T−(νG+1)/2A1 + oP (∥D−1
T (β̂0 − β0)∥) + oP ((NT )−1/2). (B.97)

L9 can be written as
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where the first term on the right-hand side is bounded by

G∑
g=1

1

N2T (νg+δ)/2+1

N∑
i=1

∥DTX
′
iMF̂

∥∥F0
g − F̂gH

−1
g ∥∥T−(νg−1)/2Γ0′

g εF
0
g∥

× T (νg−1)/2∥Hg∥∥Q−1
g γ0

g,i∥

≤ OP (1)

G∑
g=1

N−1T−(νg+δ)/2−1OP (
√
T )∥F0

g − F̂gH
−1
g ∥OP (

√
NT )OP (T

(νg−1)/2)OP (T
−(νg−δ)/2)

≤ OP (1)
G∑

g=1

(NT )−1/2T−νg/2∥F0
g − F̂gH

−1
g ∥

= oP ((NT )−1/2), (B.99)

where the first inequality follows from ∥T−(νg−1)/2Γ0′
g εF

0
g∥ = OP (

√
NT ). The second term on the

right-hand side of L9 is also oP ((NT )−1/2). We therefore conclude that ∥L9∥ = oP ((NT )−1/2).

L10 can be written more compactly as
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which we will again make use of later.

Let us move on to L11. We begin by rewriting eg,j as
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where F0
+d = (F0

d+1, . . . ,F
0
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Hence, L11 can be written as a sum of five terms. There is no need to study the fourth term, the

one due to P
F̂d
ed,j , as we can keep expanding ed,j until we cannot. The first and fifth terms are

oP (∥D−1
T (β̂0 − β0)∥) and oP ((NT )−1/2), respectively, by the same arguments used for evaluating L7

and L8. Moreover, the steps used for evaluating L9 can be used to show that∥∥∥∥∥∥
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The second term in L11 is therefore negligible. It remains to consider the third term, which is∥∥∥∥∥∥
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where we have used Assumption 4. Therefore, ∥L11∥ = oP ((NT )−1/2).

For L12,
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where the second equality follows from the construction of eg,j . Hence, since L9 is negligible, L12 is

also negligible.

Next up is L13, whose order can be worked out in the following way:
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where the first inequality follows from the construction of eg,j , and the last equality follows by going

through a development similar to the first result of Lemma B.5 and further using a development

similar to (B.80). The same arguments show that ∥L14∥ and ∥L15∥ are negligible, too.

We now put everything together. This yields
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which in turn implies

D−1
T (β̂1 − β0) = B−1

(
L+

1

NT

N∑
i=1

DTX
′
iMF̂

εi

)

= (B−1N+ oP (1))D
−1
T (β̂0 − β0) +B−1 1

NT

N∑
i=1

DTZi(F̂)
′εi

− T−(νG+1)/2B−1A1 + oP ((NT )−1/2), (B.108)

where Zi(F) is defined in Assumption 2, and

N =
1

NT

N∑
i=1

N∑
j=1

DTX
′
iMF̂

XjDTaij .

This expression for D−1
T (β̂1 − β0) can be inserted into D−1

T (β̂0 − β0), giving

D−1
T (β̂0 − β0) = D−1

T (β̂1 − β0)−D−1
T (β̂1 − β̂0)

= (B−1N+ oP (1))D
−1
T (β̂0 − β0) +B−1 1

NT

N∑
i=1

DTZi(F̂)
′εi

−D−1
T (β̂1 − β̂0)− T−(νG+1)/2B−1A1 + oP ((NT )−1/2), (B.109)

which can be solved for D−1
T (β̂0 − β0)

D−1
T (β̂0 − β0) = B(F̂)−1

(
1

NT

N∑
i=1

DTZi(F̂)
′εi −BD−1

T (β̂1 − β̂0)− T−(νG+1)/2A1

)

+ oP (∥D−1
T (β̂1 − β̂0)∥) + oP ((NT )−1/2). (B.110)

Also, making use of Assumption 3, it is not difficult to show that (NT )−1
∑N

i=1DTZi(F̂)
′εi =

OP ((NT )−1/2). Hence,

D−1
T (β̂0 − β0) +B(F̂)−1BD−1

T (β̂1 − β̂0)

= B(F̂)−1 1

NT

N∑
i=1

DTZi(F̂)
′εi − T−(νG+1)/2B(F̂)−1A1

+ oP (∥D−1
T (β̂1 − β̂0)∥) + oP ((NT )−1/2). (B.111)

By using the fact that

B(F̂)−1BD−1
T = D−1

T

(
N∑
i=1

Zi(F̂)
′Zi(F̂)

)−1 N∑
i=1

X′
iMF̂

Xi, (B.112)
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the left-hand side of this last equation can be written as

D−1
T (β̂0 − β0) +B(F̂)−1BD−1

T (β̂1 − β̂0)

= D−1
T

β̂0 +

(
N∑
i=1

Zi(F̂)
′Zi(F̂)

)−1 N∑
i=1

X′
iMF̂

Xi(β̂1 − β̂0)− β0

 . (B.113)

It follows that

√
NTD−1

T

β̂0 +

(
N∑
i=1

Zi(F̂)
′Zi(F̂)

)−1 N∑
i=1

X′
iMF̂

Xi(β̂1 − β̂0)− β0


= B(F̂)−1 1√

NT

N∑
i=1

DTZi(F̂)
′εi −

√
NT−νG/2B(F̂)−1A1

+ oP (
√
NT∥D−1

T (β̂1 − β̂0)∥) + oP (1). (B.114)

Consider the oP (
√
NT∥D−1

T (β̂1− β̂0)∥) reminder term. By the first result of this lemma, ∥D−1
T (β̂1−

β̂0)∥ = OP ((NT )−1/2 ∨ ∥D−1
T (β̂0 − β0)∥). This can be inserted into (B.111), giving

D−1
T (β̂0 − β0) = B(F̂)−1 1

NT

N∑
i=1

DTZi(F̂)
′εi + oP ((NT )−1/2 ∨ ∥D−1

T (β̂0 − β0)∥)

= OP ((NT )−1/2) + oP (∥D−1
T (β̂0 − β0)∥), (B.115)

which in turn implies

∥D−1
T (β̂0 − β0)∥ = OP ((NT )−1/2). (B.116)

The second result then follows. ■

B.4 Proofs of main results

Proof of Lemma 1.

Without loss of generality, we assume that β0 = 0dx×1. This implies

(NT )−1[SSR(β,F)− SSR(β0,F0)]

=
1

NT

N∑
i=1

(Xiβ + F0γ0
i )

′MF (Xiβ + F0γ0
i )

+ β′ 2

NT

N∑
i=1

X′
iMFεi +

2

NT

N∑
i=1

γ0′
i F

0′MFεi +
1

NT

N∑
i=1

ε′i(PF 0 −PF )εi

=
1

NT

N∑
i=1

(XiDTD
−1
T β + F0γ0

i )
′MF (XiDTD

−1
T β + F0γ0

i )
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+ β′D−1
T

2

NT

N∑
i=1

DTX
′
iMFεi +

2

NT

N∑
i=1

γ0′
i F

0′MFεi +OP (N
−1 ∨ T−1)

= β′D−1
T B(F)D−1

T β + θ′Bθ + β′D−1
T

2

NT

N∑
i=1

DTX
′
iMFεi

+
2

NT

N∑
i=1

γ0′
i F

0′MFεi +OP (N
−1 ∨ T−1), (B.117)

where the second equality follows from Lemma B.2, and θ = η + B−1Cβ and B = N−1Γ0′Γ0 ⊗ IT

are defined as on page 1265 of Bai (2009). Note that for β ∈ Rdx , we may have

sup
β∈Rdx ,F∈DF

∣∣∣∣∣β′D−1
T

2

NT

N∑
i=1

DTX
′
iMFεi

∣∣∣∣∣ ̸= oP (1). (B.118)

In our proof of consistency, we consider two cases; (i) ∥D−1
T β∥ ≤ C and (ii) ∥D−1

T β∥ > C, where C

is a large positive constant. Under (i),

sup
∥D−1

T β∥≤C,F∈DF

∣∣∣∣∣β′D−1
T

2

NT

N∑
i=1

DTX
′
iMFεi

∣∣∣∣∣ = OP (N
−1/2 ∨ T−1/2) (B.119)

by Lemma B.2. The expression given in (B.117) for (NT )−1[SSR(β, F ) − SSR(β0,F0)] therefore

reduces to

(NT )−1[SSR(β,F)− SSR(β0,F0)] = β′D−1
T B(F)D−1

T β + θ′Bθ +
2

NT

N∑
i=1

γ0′
i F

0′MFεi

+OP (N
−1/2 ∨ T−1/2), (B.120)

where β′D−1
T B(F)D−1

T β does not involve F0 and
∑N

i=1 γ
0′
i F

0′MFεi is independent of β. Hence,

provided dmax ≥ df , the consistency of D−1
T β̂0 in case (i) follows from the same arguments as in Bai

(2009).

Under (ii), (B.117) can be written as

(NT )−1[SSR(β,F)− SSR(β0,F0)]

= β′D−1
T B(F)D−1

T β + θ′Bθ + β′D−1
T

2

NT

N∑
i=1

DTX
′
iMFεi +

2

NT

N∑
i=1

γ0′
i F

0′MFεi

+OP (N
−1/2 ∨ T−1/2)

≥ c0∥D−1
T β∥2 + β′D−1

T

2

NT

N∑
i=1

DTX
′
iMFεi + θ′Bθ +

2

NT

N∑
i=1

γ0′
i F

0′MFεi

+OP (N
−1/2 ∨ T−1/2)
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≥ c0
2
C2 + θ′Bθ +

2

NT

N∑
i=1

γ0′
i F

0′MFεi +OP (N
−1/2 ∨ T−1/2), (B.121)

where c0 is defined in Assumption 2, and the second inequality follows from the fact that the quadratic

term dominates the linear one for large values of C. Hence, (NT )−1[SSR(β,F) − SSR(β0,F0)] > 0,

but from the definition of β̂0 we also know that SSR(β̂0, F̂) − SSR(β0,F0) ≤ 0, which means that

D−1
T β̂0 cannot belong to (ii).

Note that since ∥(NT )−1
∑N

i=1DTX
′
iMFεi∥ = OP (N

−1/2 ∨ T−1/2) by Lemma B.2, all we need

is C = C0(N−1/2 ∨ T−1/2) for some large constant C0 in order to ensure that the last inequality of

(B.121) holds. This implies D−1
T (β̂0 − β0) = OP (N

−1/2 ∨ T−1/2), so the proof is complete. ■

Proof of Lemma 2.

We start with part (a). Suppose first that d1 = 0, such that df = 0. In this case,

1

NT

N∑
i=1

∥yi −Xiβ̂0∥2 =
1

NT

N∑
i=1

∥XiDTD
−1
T (β0 − β̂0) + εi∥2

=
1

NT

N∑
i=1

∥εi∥2 + oP (1). (B.122)

This implies τN ≍ 1/ ln(T ∨N), which is much larger than λ̂1,1/λ̂1,0. The result then follows imme-

diately.

Suppose now instead that d1 > 0. Straightforward algebra reveals that

1

NT ν1

N∑
i=1

∥yi −Xiβ̂0∥2 =
1

NT ν1

N∑
i=1

∥XiDTD
−1
T (β0 − β̂0) + F0γ0

i + εi∥2

=
1

NT ν1

N∑
i=1

∥F0
1γ

0
1,i∥2 + oP (1)

= (vecΣΓ0
1
)′vecΣF 0

1
+ oP (1), (B.123)

which together with Assumption 1 implies τN ≍ 1/ ln(T ∨N). Note that for d = 1, . . . , d1,

T ν1

λ1,d
=

T 2ν1

h0′
1,dF

0′
1 Σ

0
1F

0
1h

0
1,d

=
NT 2ν1

h0′
1,dF

0′
1 F

0
1Γ

0′
1 Γ

0
1F

0′
1 F

0
1h

0
1,d

=
1

(T−ν1h0′
1,dF

0′
1 F

0
1)(N

−1Γ0′
1 Γ

0
1)(T

−ν1F0′
1 F

0
1h

0
1,d)

=
1

(T−(ν1+δ)/2F̂0′
1,dF

0
1)(N

−1Γ0′
1 Γ

0
1)(T

−(ν1+δ)/2F0′
1 F̂

0
1,d)

(1 + oP (1)) ≍ 1, (B.124)

where the fourth equality follows from (B.32) and the last step is due to (B.28) and Assumption 1.
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Further use of Lemma B.3, (B.123) and (B.124), we obtain

λ̂1,1

λ̂1,0

=
T−ν1 λ̂1,1

(NT ν1)−1
∑N

i=1 ∥yi −Xiβ̂0∥2
≍ 1, (B.125)

λ̂1,d+1

λ̂1,d

=
T−ν1 λ̂1,d+1

T−ν1 λ̂1,d

≍ 1 (B.126)

for d = 1, . . . , d1 − 1 and

λ̂1,d1+1

λ̂1,d1

= OP (T
−(ν1−ν2)). (B.127)

For d = d1 + 1, . . . , dmax, we get

T−ν1 λ̂1,d

T−ν1 λ̂1,0

= OP (T
−(ν1−ν2)), (B.128)

which is less than τN by (B.123) and Lemma B.3. The required result follows from this and the

definition of d̂1.

Each step in the sequential procedure of Step 2 introduces additional remainder terms that all

converge to zero under Assumptions 3 and 4 by Lemmas B.3 and B.5. This proves (a).

Part (b) follows from the (rotational) consistency of F̂g established as a part of the proofs of

Lemmas B.3 and B.5. ■

Proof of Theorem 1.

By Lemma B.6, the rate of convergence given in Lemma 1 is not the best one possible. However,

under Assumptions 1–6, we have

∥D−1
T (β̂1 − β̂0)∥ = OP ((NT )−1/2 ∨ ∥D−1

T (β̂0 − β0)∥) = OP ((NT )−1/2), (B.129)

which can be inserted back into (B.114), leading to

√
NTD−1

T

β̂0 +

(
N∑
i=1

Zi(F̂)
′Zi(F̂)

)−1 N∑
i=1

X′
iMF̂

Xi(β̂1 − β̂0)− β0


= B(F̂)−1 1√

NT

N∑
i=1

DTZi(F̂)
′εi −

√
NT−νG/2B(F̂)−1A1 + oP (1). (B.130)

Note that Zi(F̂) is Ẑi with âij replaced by aij . We now show that the effect of the estimation of aij
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is negligible. We begin by noting how

1

NT

N∑
i=1

[DTZi(F̂)
′Zi(F̂)DT −DT Ẑ

′
iẐiDT ]

=
1

NT

N∑
i=1

N∑
j=1

DTX
′
iMF̂

XjDT âij −
1

NT

N∑
i=1

N∑
j=1

DTX
′
iMF̂

XjDTaij . (B.131)

Here,

1

NT

N∑
i=1

N∑
j=1

DTX
′
iMF̂

XjDT âij

=
1

NT

N∑
i=1

N∑
j=1

DTX
′
iMF̂

XjDT

G∑
g=1

(yj −Xjβ̂0 − F̂−gγ̂−g,j)
′F̂g

× (F̂′
gΣ̂gF̂g)

−1F̂′
g(yi −Xiβ̂0 − F̂−gγ̂−g,i)

=
1

NT

N∑
i=1

N∑
j=1

DTX
′
iMF̂

XjDT

G∑
g=1

[Xj(β
0 − β̂0) + F0

gγ
0
g,j + eg,j + εj ]

′F̂g

× T−δV−1
g F̂′

g[Xj(β
0 − β̂0) + F0

gγ
0
g,i + eg,i + εi]

=
1

NT

N∑
i=1

N∑
j=1

DTX
′
iMF̂

XjDT

G∑
g=1

[Xj(β
0 − β̂0) + F0

gγ
0
g,j + eg,j + εj ]

′F̂g

× T−(νg+δ)(T−νgVg)
−1F̂′

g[Xj(β
0 − β̂0) + F0

gγ
0
g,i + eg,i + εi](1 + oP (1))

=
1

NT

N∑
i=1

N∑
j=1

DTX
′
iMF̂

XjDTaij(1 + oP (1)), (B.132)

where the second equality here follows from the definition of V0
g, which is again based on taking dg

as known, while the last equality follows from direct calculation. The effect of the estimation of aij

in Ẑi is therefore negligible, which in turn implies that the right-hand side of (B.130) becomes

√
NTD−1

T

β̂0 +

(
N∑
i=1

Zi(F̂)
′Zi(F̂)

)−1 N∑
i=1

X′
iMF̂

Xi(β̂1 − β̂0)− β0


=

√
NTD−1

T

β̂0 +

(
N∑
i=1

Ẑ′
iẐi

)−1 N∑
i=1

X′
iMF̂

Xi(β̂1 − β̂0)− β0

+ oP (1)

=
√
NTD−1

T (β̂ − β0) + oP (1). (B.133)

It follows that

√
NTD−1

T (β̂ − β0) = B(F̂)−1 1√
NT

N∑
i=1

DTZi(F̂)
′εi −

√
NT−νG/2B(F̂)−1A1

+ oP (1). (B.134)
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Consider (NT )−1/2
∑N

i=1DTZi(F̂)
′εi. From the definition of Zi(F),

1√
NT

N∑
i=1

DTZi(F̂)
′εi =

1√
NT

N∑
i=1

DTZi(F
0)′εi +

1√
NT

N∑
i=1

DT [Zi(F̂)− Zi(F
0)]′εi

=
1√
NT

N∑
i=1

DTZi(F
0)′εi −

√
NT (R1 −R2), (B.135)

where

R1 =
1

NT

N∑
i=1

DTX
′
i(PF̂

−PF 0)εi, (B.136)

R2 =
1

NT

N∑
i=1

N∑
j=1

aijDTX
′
j(PF̂

−PF 0)εi. (B.137)

Here,

R1 =
1

NT 1+δ

N∑
i=1

DTX
′
i(F̂− F0H)H′F0′εi +

1

NT 1+δ

N∑
i=1

DTX
′
i(F̂− F0H)(F̂− F0H)′εi

+
1

NT 1+δ

N∑
i=1

DTX
′
iF

0H(F̂− F0H)′εi +
1

NT 1+δ

N∑
i=1

DTX
′
iF

0[HH′δ(F0′F0)−1]F0′εi

= R11 +R12 +R13 +R14, (B.138)

with obvious implicit definitions of R11, . . . ,R14 and H = diag(H1, . . . ,HG). Let R1m,j be the j-th

row of R1m for m ∈ {1, . . . , 4}. In this notation,

∥R11,j∥ ≤

∥∥∥∥∥ 1

NT δ/2+1

N∑
i=1

(ε′iF
0H)⊗ (T−κj/2Xj,i)

′

∥∥∥∥∥ ∥T−δ/2vec(F̂− F0H)∥

= OP ((NT )−1/2)T−δ/2∥F̂− F0H∥ = oP ((NT )−1/2), (B.139)

where the equality follows from Lemma B.2 and the fact that T (νg−δ)/2Hg = OP (1). Similarly, for

R12,

∥R12,j∥ ≤

∥∥∥∥∥ 1

NT

N∑
i=1

ε
′−κj/2
i Xj,i)

′

∥∥∥∥∥ ∥T−δvec[(F̂− F0H)(F̂− F0H)′]∥

= OP (N
−1/2)T−δ∥F̂− F0H∥2 = oP ((NT )−1/2), (B.140)

where the second equality is due to (B.54).

Consider R14. From T−δ/2∥F̂− F0H∥ = oP (1) and ∥T (νg−δ)/2Hg∥ = OP (1), we obtain

∥Idf − T δ(H′F0′F0H)−1∥ = oP (1), (B.141)
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∥T νg−δHgH
′−νg
g F0′

g F
0
g)

−1∥ = oP (1). (B.142)

Together with Lemma B.2 this implies

∥R14,j∥ =

∥∥∥∥∥ 1

NT 1+δ

N∑
i=1

T−κj/2X′
j,iF

0[HH′δH(H′F0′F0H)−1H′]F0′εi

∥∥∥∥∥
=

∥∥∥∥∥ 1

NT 1+δ

N∑
i=1

T−κj/2X′
j,iF

0H[Idf − T δ(H′F0′F0H)−1]H′F0′εi

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT 1+δ

N∑
i=1

(ε′iF
0H)⊗ (T−κj/2X′

j,iF
0H)

∥∥∥∥∥ ∥Idf − T δ(H′F0′F0H)−1∥

= OP ((NT )−1/2)∥Idf − T δ(H′F0′F0H)−1∥ = oP ((NT )−1/2). (B.143)

Finally, let us consider R13.

R13 =
1

NT 1+δ

N∑
i=1

DTX
′
iF

0H(F̂− F0H)′εi

=
G∑

g=1

1

NT 1+δ

N∑
i=1

DTX
′
iF

0
gHg(F̂g − F0

gHg)
′εi

=

G∑
g=1

1

NT 1+δ

N∑
i=1

DTX
′
iF

0
gHgH

′
g(F̂gH

−1
g − F0

g)
′εi (B.144)

Expanding F̂gH
−1
g − F0

g as we did for L above, we then just need to focus on the leading terms

equivalent to L2, L8, and L10.

R13 =

G∑
g=1

1

NT 1+δ

N∑
i=1

DTX
′
iF

0
gHgH

′
g

 1

NT (νg+δ)/2

N∑
j=1

Xj(β
0 − β̂0)γ

0′
g,jF

0′
g F̂gQ

−1
g

′

εi

+
G∑

g=1

1

NT 1+δ

N∑
i=1

DTX
′
iF

0
gHgH

′
g

 1

NT (νg+δ)/2

N∑
j=1

εjγ
0′
g,jF

0′
g F̂gQ

−1
g

′

εi

+
G∑

g=1

1

NT 1+δ

N∑
i=1

DTX
′
iF

0
gHgH

′
g

 1√
T νg+1

Σε

F0
g

T (νg−1)/2

(
F0′
g F

0
g

T νg

)−1(
Γ0′
g Γ

0
g

N

)−1
′

εi

+ oP

(
1√
NT

)
= R131 +R132 +R133 + oP

(
1√
NT

)
.

It is easy to see that ∥R131∥ = oP (∥β0 − β̂0∥), so negligible. We now examine R133. Then we can
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write

R133 =

G∑
g=1

1

NT 1+νg

N∑
i=1

DTX
′
iF

0
g

(
F0′
g F

0
g

T νg

)−1
 Σε√

T νg+1

F0
g

T (νg−1)/2

(
F0′
g F

0
g

T νg

)−1(
Γ0′
g Γ

0
g

N

)−1
′

εi

=

G∑
g=1

1

T νg+1

1

NT

N∑
i=1

DTX
′
i

F0
g

T (νg−1)/2

(
F0′
g F

0
g

T νg

)−1(
Γ0′
g Γ

0
g

N

)−1(
F0′
g F

0
g

T νg

)−1
F0′
g

T (νg−1)/2
Σεεi

= oP

(
1√
NT

)
, (B.145)

where the first equality follows from (B.142), and the last step follows from some routine analysis

using Assumption 3. Below, we investigate R132, which is one source of the bias term.

R132 =

G∑
g=1

1
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N∑
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gHgH
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 1
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where the second equality follows from the definition of Qg, and the third equality follows from

(B.142). Then we are able to further write

√
NTR32 =

G∑
g=1

T√
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Hence, by adding the results,

√
NTR1 =

√
NT (R11 +R12 +R13 +R14)

= T (2−νG)/2N−1/2 1

N

N∑
i=1

N∑
j=1

T−(νG+1)/2DTX
′
iF

0
G(T

−νGF0′
GF

0
G)

−1

× (N−1Γ0′
GΓ

0
G)

−1γ0
G,jT

−1ε′jεi + oP (1) (B.148)
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√
NTR2 can be evaluated in exactly the same way, and the limiting representation is analogous to the

one given above for
√
NTR1 with Xi replaced by −

∑N
j=1Xjaij . Moreover, ∥B(F̂)−B(F0)∥ = oP (1).

It follows that if we define

A2 =
1

N

N∑
i=1

N∑
j=1

T−(νG+1)/2DTZi(0)
′F0

G(T
−νGF0′

GF
0
G)

−1(N−1Γ0′
GΓ

0
G)

−1γ0
G,jT

−1ε′jεi, (B.149)

where Zi(0) = Xi −
∑N

j=1Xjaij , then (B.135) reduces to

1√
NT

N∑
i=1

DTZi(F̂)
′εi =

1√
NT

N∑
i=1

DTZi(F
0)′εi − T (2−νG)/2N−1/2A2 + oP (1), (B.150)

which in turn implies that (B.134) becomes

√
NTD−1

T (β̂ − β0) = B(F0)−1 1√
NT

N∑
i=1

DTZi(F
0)′εi −

√
NT−νG/2B(F0)−1A1

− T (2−νG)/2N−1/2B(F0)−1A2 + oP (1). (B.151)

The required result is now implied by Assumption 6. ■

C Conditions that ensure asymptotic unbiasedness

In this section, we provide a set of assumptions that ensure that the asymptotic distribution of
√
NTDT (β̂ − β0) given in Theorem 1 is free of bias without for that matter requiring that εi,t is

serially and cross-sectionally independent. One way to accomplish this is to assume that ρ1 = ρ2 = 0,

as in Corollary 1. The assumptions considered here, which are stated in Assumption C.1, can be

seen as alternatives to this last condition. In terms of the notation of Theorem 1, they ensure that

A1 = A2 = 0dx×1.

Assumption C.1 (No asymptotic bias). One of the following set of conditions is met:

(a) T 1−νgE(f0′g,tf0g,s|xt,xs) = ϕts w.p.a.1 and
∑T

t=1

∑T
s=1 |ϕts| = O(T ), where xt = (x1,t, . . . ,xN,t)

′.

If G ≥ 2, then q < (νG + νG−1)/2− 1/4 and νg−1 − νg > 1/2 for g = 2, . . . , G.

(b) T/N → c4 ∈ (0,∞) and νG > 1. If G ≥ 2, then q < (νG + νG−1 − 1)/2 and νg−1 − νg > 1/2.

(c) T 1−νg−κjE(
∑T

t=1

∑T
s=1 xj,i,txj,k,sf

0′
g,tf

0
g,s) = O(T 2−r), where r < 2, r+ νG− 1 > 0 and xj,i,t is the

j-th row of xi,t. If G ≥ 2, then νg−1 − νg > 1/2.

Assumption C.1 ensures that the asymptotic distribution of
√
NTDT (β̂ − β0) is bias-free. It is,

however, not necessary, and (a)–(b) should therefore be viewed as examples of conditions under which

there is no asymptotic distribution bias. These conditions all have their strengths and weaknesses,
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and so their suitability will in general depend on the context. Take as an example condition (b),

which has the advantage of not requiring any more moment conditions than those that are already in

Assumption 1. It does, however, require that νG > 1, which rules out both signal-weak and stationary

factors (νG ≤ 1). Conditions (a) and (c) are more general in this regard, but then at the expense

of requiring additional moment conditions. Condition (c) is a functional central limit theorem style

moment condition.

The next corollary to Theorem 1 verifies that the asymptotic distribution of
√
NTD−1

T (β̂−β0) is

indeed bias-free under Assumption C.1.

Corollary C.1 (Unbiased asymptotic distribution). Suppose that Assumptions 1–4, 6, and C.1 are

met and that N/T νG → 0. Then, as N, T → ∞,

√
NTD−1

T (β̂ − β0) →D MN(0dx×1,B
−1
0 ΩB−1

0 ).

Proof: Under NT−νG → 0, (B.134) in the proof of Theorem 1 may be written as

√
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N∑
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As in the proof of Theorem 1,

R1 =
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DTX
′−δ
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=
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0[HH′ − (F0′F0)−1]F0′εi

= R11 +R12 +R13 +R14, (C.2)

where ∥R11∥, ∥R12∥ and ∥R14∥ are all oP ((NT )−1/2), just as before. Let us therefore consider R13,

which is the source of the bias in the asymptotic distribution of
√
NTD−1

T (β̂ − β0). The purpose of

Assumption C.1 is to control this term. Suppose first that condition (b) holds. Let xj,k,t denote the
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j-th row of xk,t. In this notation,

E
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Moreover, by applying Assumption 6 (b) to the expression given for ∥T−δ/2F̂2,d − T−ν2/2F0
2h

0
2,d∥ in

the proof of Lemma B.5, we can show that

∥T−δ/2vec(F̂− F0H)′∥ = oP (T
−1/2). (C.4)

Making use of these results, we obtain
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Alternatively, we may invoke Assumption 6 (a) to arrive at the same result. In this case, ∥T−δ/2vec(F̂−

F0H)′∥ = oP (1), but we also have
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|ϕts||σε,ik| = O((NT )−1), (C.6)

and so ∥R3,j∥ is of the same order as before. The proof under Assumption 6 (c) is simpler and is

therefore omitted.
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Hence, by adding the results,

√
NT∥R1∥ ≤

√
NT (∥R11∥+ ∥R12∥+ ∥R13∥+ ∥R14∥) = oP (1). (C.7)

We have therefore shown that

√
NT

∥∥∥∥∥ 1

NT

N∑
i=1

DTX
′
i(PF̂

−PF 0)εi

∥∥∥∥∥ = oP (1), (C.8)

and we can similarly show that

√
NT

∥∥∥∥∥∥ 1

NT

N∑
i=1

N∑
j=1

DTX
′
i(PF̂

−PF 0)XjDTaij

∥∥∥∥∥∥ = oP (1). (C.9)

These results can be inserted into (B.134), giving

√
NTD−1

T (β̂ − β0) = B(F0)−1 1√
NT

N∑
i=1

DTZi(F
0)′εi + oP (1). (C.10)

The sought result now follows from Assumption 6. ■

The asymptotic distribution in Corollary C.1 is the same as the one given in Corollary 1.

If ρ1, ρ2, A1 and A2 are all different from zero, one possibility is to use bias correction. Dhaene

and Jochmans (2015) were first to bring attention to the relevance of the half-panel jacknife approach

for bias correction in panel data. These authors focus on the fixed effects case, but Chen et al.

(2021) have shown that the Jackknife can be used to correct for bias also in models with interactive

effects. In our setting, the value of νG is unknown, and therefore the standard Jackknife is not directly

applicable. We thus turn to the hybrid half-panel Jackknife correction proposed by Fernández-Val

and Weidner (2018). The bias-corrected version of the IPC estimator is given by

β̂bc = 3β̂ − 1

2
(β̂1,N + β̂2,N + β̂1,T + β̂2,T ), (C.11)

where β̂ is the standard IPC estimator defined in (9), β̂1,N and β̂2,N are defined in the same way

but applied to cross-sectional units {1, . . . , ⌊N/2⌋} and {⌊N/2⌋ + 1, . . . , N}, respectively, and β̂1,T

and β̂2,T are the IPC estimators applied to odd and even numbered time periods, respectively. The

splitting in even and odd numbered time periods is needed in order to account for the behaviour of the

factors. See Fernández-Val and Weidner (2018) for a more detailed discussion of the hybrid Jackknife

approach.
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D Empirical illustration

Economists have become concerned that recently house prices have grown too quickly, and that prices

are now too high relative to per capita incomes. If this is correct and there is any truth to the

theory on the matter, prices should stagnate or fall until they are better aligned with income, which

in statistical terms mean that house prices should be cointegrated with income. The validity of this

assumption has important implications for policy, because a failure could be due to a housing bubble.

In this section, we revisit the real house price data set of Holly et al. (2010), which comprises data

on log real house prices (pi,t) and log real per capita income (wi,t) for 49 US states across the 1975-

2003 period. According to the economic theory, pi,t and wi,t should be cointegrated with cointegrating

vector (1, −1)′. The previous empirical evidence of this prediction has, however, been mixed and far

from convincing (see, for example, Gallin, 2006). Holly et al. (2010) argue that this lack of empirical

support can be attributed in part to a failure to account for cross-sectional dependence, leading to

deceptive conclusions. The authors therefore apply the “CIPS” panel unit root test of Pesaran (2007),

which allows for cross-section dependence in the form of a common factor. The test is applied both

to pi,t and wi,t separately, and to pi,t−wi,t. According to the results, while the variables are unit root

non-stationary, their difference is not. Holly et al. (2010) also report CCE results suggesting that

the estimated income elasticity is indeed close to one. They therefore conclude that pi,t and wi,t are

cointegrated with cointegrating vector (1, −1)′, just as predicted by the theory.

Our interest in the work of Holly et al. (2010) stems from their preference to apply the CIPS test,

which tests for a unit root in the defactored data. This means that if pi,t and wi,t are not cointegrated

by themselves but only when conditioning on unit root common factors, because of the way that the

data are defactored prior to the testing, the unit root null hypothesis is likely to be rejected by the

CIPS test. That is, the test is likely to lead to the conclusion of cointegration when in fact there is

none. In this section, we use IPC as a means to investigate this possibility.

Insert Figure D.1 about here

We begin by plotting the variables. This is done in Figure D.1. As expected, both variables are

highly persistent and the ADF test provides no evidence against the unit root null. This corroborates

the unit root test results reported by Holly et al. (2010). However, we also see that the trending

behaviors of pi,t and wi,t are very different, suggesting that their stochastic trends are not the same,

which they should be under cointegration. We also see that the trending behavior is very similar

across states, which is suggestive of non-stationary common factors. Of course, the IPC procedure

does not require cointegration and it does allow for very general types of factors. We therefore proceed

with the estimation of the model.

Insert Table D.1 and Figure D.2 about here
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In the usual notation, yi,t = pi,t and xi,t = wi,t in this illustration. For comparison purposes, the

IPC results are presented together with the results obtained by applying the PC estimator of Bai

(2009), as well as the usual OLS estimator with time and state fixed effects. The results are reported

in Table D.1. The first thing to note is that the estimated slopes vary substantially depending on

the estimation methods used. Interestingly, the point estimates are increasing in the generality of the

estimator with fixed effects OLS (IPC) leading to the lowest (highest) estimate. We therefore begin

by considering the IPC results. The point estimate of 2.1024 is far from the theoretically predicted

value of one, which is also not included in the reported 95% confidence interval.

As for the factors, we estimate d̂1 = d̂2 = d̂3 = 1, implying that the estimated number of factors is

equal to d̂f = d̂1+ d̂2+ d̂3 = 3 and that the estimated number of groups equals Ĝ = 3. The estimated

factors based on setting δ = 1, denoted f̂1,t, f̂2,t and f̂3,t, are plotted in Figure D.2. As is well known

in the literature, and as we formally prove in Section B, F̂ is not consistent for F0 itself but only for a

certain rotation of F0. This means that while the level and sign cannot be interpreted, we can look at

the behavior of f̂1,t, f̂2,t and f̂3,t over time. As expected given Figure D.1, all three factors are highly

persistent, and f̂1,t and f̂2,t are even trending, which we take as evidence against cointegration between

pi,t and wi,t, since under cointegration the factors should be stationary. We also note that f̂1,t and

f̂2,t look rather similar even though we estimate Ĝ = 3 distinct groups, which could be due to over-

specification of the number of groups. Of course, since in this paper ν1, · · · , νG are not necessarily well

separated integers, it may be that in this application ν1 and ν2 are similar yet different enough for the

IPC procedure to put f̂1,t and f̂2,t in different groups. As a measure of the difference between ν1 and

ν2, we look at
∑N

i=1 γ̂
2
1,i/
∑N

i=1 γ̂
2
2,i. By using the results provided in Section B, we can show that this

ratio should be OP (T
ν1−ν2), implying ln(

∑N
i=1 γ̂

2
1,i/
∑N

i=1 γ̂
2
2,i)/ lnT = ν1 − ν2 + oP (1). By plugging

in the known values of T and
∑N

i=1 γ̂
2
1,i/
∑N

i=1 γ̂
2
2,i, we get ln(

∑N
i=1 γ̂

2
1,i/
∑N

i=1 γ̂
2
2,i)/ lnT ≈ 0.41, which

is thus an estimate of ν1 − ν2. There is therefore a clear difference in the degree of trending of the

two factors, which we take as evidence in support of the three-group IPC estimate. By repeating this

exercise, we estimate ν2−ν3 to ln(
∑N

i=1 γ̂
2
2,i/
∑N

i=1 γ̂
2
3,i)/ lnT ≈ 0.73. Hence, as expected given Figure

D.1, f̂2,t is more similar to f̂2,t than to f̂3,t.

Because we estimate three time-varying factors, fixed effects OLS is invalid as it only allows for

a common time effect. Moreover, since the factors come from three distinct groups, and are not all

stationary, PC is invalid, too. This leaves us with the IPC estimator, which again provides strong

evidence against the theoretically predicted one-to-one cointegrated relationship between pi,t and wi,t.

Holly et al. (2010, page 172) conclude that “[o]ur results support the hypothesis that real house prices

have been rising in line with fundamentals (real incomes), and there seems little evidence of house

price bubbles at the national level.” The results reported here reveal a completely different picture

with housing prices being long run disconnected with real income.
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Figure D.1: Plots of the variables.

Table D.1: Empirical estimation results.

Estimator Point estimate Wald p-value

FE 0.3453 0.0000

PC 1.1602 0.0000

IPC 2.1024 0.0000

Notes: “FE”, “PC” and “IPC” refer to the two-way fixed effects OLS estimator, the PC estimator
of Bai (2009) and the proposed IPC estimator, respectively, in a regression of pi,t onto wi,t. The
reported Wald p-values test the null hypothesis that the relevant coefficient is zero.

45



Figure D.2: Plots of the estimated factors.
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