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A Appendix: Size control over other heteroskedasticity

models

As already noted earlier, if size control is possible over CHet, then the same is true over any

conceivable class of heteroskedasticity structures, since these can (possible after normalization)

be cast as a subset C of CHet; and, in fact, any critical value delivering size control over CHet

also delivers size control over any such C, but even smaller critical values may already suffice for

size control over C. Also, for some heteroskedasticity models C ⊆ CHet, the sufficient conditions

employed in Theorems 5.1 and 6.4 (which imply size control over CHet) may be unnecessarily

restrictive, if one wants to establish size control over C only. For this reason, we show in the

following how the general theory laid out in Section 5 of Pötscher and Preinerstorfer (2018) can

be used to derive size control results tailored to various subsets C by exemplarily treating the

cases C = C(n1,...,nm) and C = CHet,τ∗ defined below. Size control results over other choices of C

can be derived from the results in Section 5 of Pötscher and Preinerstorfer (2018) in a similar

manner, see Subsection A.1.2 further below for some discussion. Here C(n1,...,nm) is defined as

follows: Let m ∈ N, and let nj ∈ N for j = 1, . . . ,m satisfy
∑m

j=1 nj = n. Set n+
j =

∑j
l=1 nl and

define

C(n1,...,nm) =
{
diag(τ21, . . . , τ

2
n) ∈ CHet : τ

2
n+
j−1+1

= . . . = τ2
n+
j

for j = 1, . . . ,m
}

with the convention that n+
0 = 0. This may be a natural heteroskedasticity model when the

observations come from m groups and when it is reasonable to assume homoskedasticity within

groups.63 Note that in case nj = 1 for all j, then m = n and C(n1,...,nm) = CHet hold; and in

case m = 1 we have C(n1,...,nm) = {n−1In}, i.e., we have homoskedasticity. Furthermore, CHet,τ∗

is given by

CHet,τ∗ =
{
diag(τ21, . . . , τ

2
n) ∈ CHet : τ

2
i ≥ τ2∗ for all i

}
,

where the lower bound τ∗, 0 < τ∗ < n−1/2, is set by the user.

A.1 Size control results for THet and Tuc

A.1.1 Size control over C(n1,...,nm)

Proofs of the results in this subsection can be found in Appendix C.

Theorem A.1. Let m ∈ N, and let nj ∈ N for j = 1, . . . ,m satisfy
∑m

j=1 nj = n. Then:

(a) For every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C(n1,...,nm)

Pµ0,σ
2Σ(Tuc ≥ C(α)) ≤ α (A.1)

63As long as we assume that the grouping is known, there is little loss of generality to assume that the elements
belonging to the same group are numbered contiguously, since we otherwise only need to relabel the data.
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holds, provided that

span
({

ei(n) : i ∈ (n+
j−1, n

+
j ]
})

⫅̸ span(X) for every j = 1, . . . ,m with (n+
j−1, n

+
j ]∩I1(M

lin
0 ) ̸= ∅.
(A.2)

Furthermore, under condition (A.2), even equality can be achieved in (A.1) by a proper choice of

C(α), provided α ∈ (0, α∗]∩(0, 1) holds, where α∗ = supC∈(C∗,∞) supΣ∈C(n1,...,nm)
Pµ0,Σ(Tuc ≥ C)

is positive and where C∗ is defined as in Lemma 5.11 of Pötscher and Preinerstorfer (2018) with

C = C(n1,...,nm), T = Tuc, N
† = span(X), and L = Mlin

0 (with neither α∗ nor C∗ depending on

the choice of µ0 ∈M0).

(b) Suppose Assumption 1 is satisfied. Then for every 0 < α < 1 there exists a real number

C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C(n1,...,nm)

Pµ0,σ
2Σ(THet ≥ C(α)) ≤ α (A.3)

holds, provided that

span
({

ei(n) : i ∈ (n+
j−1, n

+
j ]
})

⫅̸ B for every j = 1, . . . ,m with (n+
j−1, n

+
j ] ∩ I1(M

lin
0 ) ̸= ∅.

(A.4)

Furthermore, under condition (A.4), even equality can be achieved in (A.3) by a proper choice of

C(α), provided α ∈ (0, α∗] ∩ (0, 1) holds, where α∗ = supC∈(C∗,∞) supΣ∈C(n1,...,nm)
Pµ0,Σ(THet ≥

C) is positive and where C∗ is defined as in Lemma 5.11 of Pötscher and Preinerstorfer (2018)

with C = C(n1,...,nm), T = THet, N
† = B, and L = Mlin

0 (with neither α∗ nor C∗ depending on

the choice of µ0 ∈M0).

(c) Under the assumptions of Part (a) (Part (b), respectively) implying existence of a critical

value C(α) satisfying (A.1) ((A.3), respectively), a smallest critical value, denoted by C♢(α),

satisfying (A.1) ((A.3), respectively) exists for every 0 < α < 1. And C♢(α) corresponding to

Part (a) (Part (b), respectively) is also the smallest among the critical values leading to equality

in (A.1) ((A.3), respectively) whenever such critical values exist. [Although C♢(α) corresponding

to Part (a) and (b), respectively, will typically be different, we use the same symbol.]64

It is easy to see that the discussion in the first paragraph following Theorem 5.1 applies

mutatis mutandis also to the above theorem. Similarly, Remarks 5.2, 5.3, 5.4, 5.6, 5.9, and

Proposition 5.5 carry over. Furthermore, we have the following result corresponding to Proposi-

tion 5.7:

Proposition A.2. (a) If (A.2) is violated, then supΣ∈C(n1,...,nm)
Pµ0,σ

2Σ(Tuc ≥ C) = 1 for every

choice of critical value C, every µ0 ∈ M0, and every σ2 ∈ (0,∞) (implying that size equals 1

for every C). As a consequence, the sufficient condition for size control (A.2) in Part (a) of

Theorem A.1 is also necessary.

(b) Suppose Assumption 1 is satisfied.65 If (A.2) is violated, then supΣ∈C(n1,...,nm)
Pµ0,σ

2Σ(THet ≥

64Cf. also Appendix A.3.
65If this assumption is violated then THet is identically zero, an uninteresting trivial case.
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C) = 1 for every choice of critical value C, every µ0 ∈ M0, and every σ2 ∈ (0,∞) (implying

that size equals 1 for every C). [In case X and R are such that B = span(X), conditions (A.2)

and (A.4) coincide; hence the sufficient condition for size control (A.4) in Part (b) of Theorem

A.1 is then also necessary in this case.]

Remark A.3. (Homoskedasticity) Theorem A.1 allows also for the case m = 1, in which case

C(n1,...,nm) =
{
n−1In

}
, i.e., errors are homoskedastic. In this case it is easy to see that the

sufficient conditions for size control in the theorem are trivially satisfied and size control for THet

(and Tuc) is possible.66 Of course, this is in line with the fact that THet and Tuc are obviously

pivotal under the null if the errors are homoskedastic.

Remark A.4. (Behrens-Fisher problem) Consider again the problem of testing the equality of

the means of two independent normal populations as in Example 5.4 with the only difference that

the variance within each of the two groups is now assumed to be constant, i.e., the heteroskedas-

ticity model used is now given by C(n1,n2), where n1 ≥ 2 and n2 ≥ 2 are the group sizes. This is

the celebrated Behrens-Fisher problem. The square of the two-sample t-statistic tFB , say, often

used in this context coincides with THet for the choice di = (1− hii)
−1

. The size controllability

of THet over CHet established in Example 5.4 therefore a fortiori implies size controllability of

THet (and hence of t2FB) over C(n1,n2). Of course, this does not add anything new to the lit-

erature on the Behrens-Fisher problem, since it is known that under the null hypothesis |tFB |
is stochastically not larger than a t-distributed random variable with min(n1, n2) − 1 degrees

of freedom when C(n1,n2) is the heteroskedasticity model, see Mickey and Brown (1966). For

more on the Behrens-Fisher problem see Kim and Cohen (1998), Ruben (2002), Lehmann and

Romano (2005), Belloni and Didier (2008), and the references cited therein.

A.1.2 Further size control results

In this subsection it is understood that Assumption 1 is maintained when discussing results

relating to THet.

(i) Given a heteroskedasticity model C (i.e., ∅ ≠ C ⊆ CHet), with the property that J(Mlin
0 ,C)

is empty (where the collection J(Mlin
0 ,C) is defined on p. 421 of Pötscher and Preinerstorfer

(2018), see also Appendix B further below), the tests based on Tuc and THet are always size

controllable over C. This follows from Corollary 5.6 and Remark 5.7 in Pötscher and Preiner-

storfer (2018). In fact, exact size control is then possible for every α ∈ (0, 1) as a consequence

of Proposition 5.12 in the same reference upon noting that then C∗ = −∞ and α∗ = 1 hold.

[We note in passing that for such a heteroskedasticity model C the size of the rejection region

{Tuc ≥ C} ({THet ≥ C}, respectively) is less than 1 for every C > 0 (this follows from Proposi-

tion 5.2 and Remark 5.4 in Pötscher and Preinerstorfer (2018) as well as Part 6 of Lemma 5.15

66A related but slightly different argument proceeds by directly noting from its definition that
J(Mlin

0 ,C(n1,...nm)) is empty in case m = 1 (cf. Apendix B), and then to appeal to Remark 5.7 (or Proposi-
tion 5.12) in Pötscher and Preinerstorfer (2018).
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in Preinerstorfer and Pötscher (2016)).]67

(ii) A particular instance of the situation described in (i) is provided by heteroskedasticity

models C that are subsets of a set of the form CHet,τ∗ (0 < τ∗ < n−1/2), as in this case J(Mlin
0 ,C)

is easily seen to be empty.

(iii) More generally, the tests based on Tuc (on THet, respectively) are size controllable over a

heteroskedasticity model C, provided any S ∈ J(Mlin
0 ,C) is not contained in span(X) (B, respec-

tively). This follows easily from Corollary 5.6 and Proposition 5.12 in Pötscher and Preinerstorfer

(2018), the latter proposition also providing an exact size result, which we refrain from spelling

out in detail. Again there is a (partial) converse: If an S ∈ J(Mlin
0 ,C) exists with S ⊆ span(X),

then the size over C of the rejection region {Tuc ≥ C} ({THet ≥ C}, respectively) is equal to 1;

see Theorem 3.1 in Pötscher and Preinerstorfer (2019). Furthermore, lower bounds for critical

values that lead to size less than 1 (in particular, for size-controlling critical values) can be had

with the help of Corollary 5.17 in Preinerstorfer and Pötscher (2016), Lemma 5.11 and Propo-

sition 5.12 in Pötscher and Preinerstorfer (2018), or Lemma 4.1 in Pötscher and Preinerstorfer

(2019).

A.2 Size control results for T̃Het and T̃uc

The proof of the subsequent theorem is given in Appendix D. We note that the first statement

in Part (a) of the subsequent theorem is actually trivial, since T̃uc is bounded as has been shown

in Section 6.2.1.

Theorem A.5. Let m ∈ N, and let nj ∈ N for j = 1, . . . ,m satisfy
∑m

j=1 nj = n. Then:

(a) For every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C(n1,...,nm)

Pµ0,σ
2Σ(T̃uc ≥ C(α)) ≤ α (A.5)

holds. Furthermore, even equality can be achieved in (A.5) by a proper choice of C(α), provided

α ∈ (0, α∗]∩ (0, 1) holds, where α∗ = supC∈(C∗,∞) supΣ∈C(n1,...,nm)
Pµ0,Σ(T̃uc ≥ C) and where C∗

is defined as in Lemma 5.11 of Pötscher and Preinerstorfer (2018) with C = C(n1,...,nm), T = T̃uc,

N† = M0, and L = Mlin
0 (with neither α∗ nor C∗ depending on the choice of µ0 ∈M0).

(b) Suppose Assumption 2 is satisfied. Suppose further that T̃Het is not constant on Rn\B̃.68

Then for every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C(n1,...,nm)

Pµ0,σ
2Σ(T̃Het ≥ C(α)) ≤ α (A.6)

67The verification of the assumptions in Corollary 5.6 and Propositions 5.2 and 5.12 of Pötscher and Preiner-
storfer (2018) proceeds as in the proofs of Theorems 5.1 and A.1.

68Cf. Footnote 39.
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holds, provided that for some µ0 ∈M0 (and hence for all µ0 ∈M0)

µ0 + span
({

ei(n) : i ∈ (n+
j−1, n

+
j ]
})

⫅̸ B̃ for every j = 1, . . . ,m with (n+
j−1, n

+
j ] ∩ I1(M

lin
0 ) ̸= ∅.

(A.7)

Furthermore, under condition (A.7), even equality can be achieved in (A.6) by a proper choice of

C(α), provided α ∈ (0, α∗] ∩ (0, 1) holds, where α∗ = supC∈(C∗,∞) supΣ∈C(n1,...,nm)
Pµ0,Σ(T̃Het ≥

C) and where C∗ is defined as in Lemma 5.11 of Pötscher and Preinerstorfer (2018) with C =

C(n1,...,nm), T = T̃Het, N
† = B̃, and L = Mlin

0 (with neither α∗ nor C∗ depending on the choice

of µ0 ∈M0).

(c) Under the assumptions of Part (a) (Part (b), respectively) implying existence of a critical

value C(α) satisfying (A.5) ((A.6), respectively), a smallest critical value, denoted by C♢(α),

satisfying (A.5) ((A.6), respectively) exists for every 0 < α < 1.69 And C♢(α) corresponding to

Part (a) (Part (b), respectively) is also the smallest among the critical values leading to equality

in (A.5) ((A.6), respectively) whenever such critical values exist. [Although C♢(α) corresponding

to Part (a) and (b), respectively, will typically be different, we use the same symbol.]70

It is easy to see that the discussion in the first paragraph following Theorem 6.4 applies mu-

tatis mutandis also to the above theorem. Similarly, Remarks 6.5, 6.6, 6.8, 6.11, and Proposition

6.7 carry over.

A discussion of size control results for T̃uc and T̃Het over other choices of C based on the

results in Section 5 of Pötscher and Preinerstorfer (2018) can also be given (cf. the discussion in

Subsection A.1.2), but we refrain from spelling out the details. We only note that the test based

on T̃Het is always size controllable over CHet,τ∗ (0 < τ∗ < n−1/2), and the same is trivially true

for T̃uc.

A.3 A useful observation

Let C be an arbitrary heteroskedasticity model (i.e., ∅ ≠ C ⊆ CHet), let 0 < α < 1, and

let T stand for Tuc or THet, respectively, where in case of T = THet we assume that As-

sumption 1 is satisfied. Suppose that T is size-controllable at significance level α (i.e., that

supµ0∈M0
sup0<σ2<∞ supΣ∈C Pµ0,σ

2Σ(T ≥ C) ≤ α holds for some real C). Then a smallest size-

controlling critical value C♢(α) always exists.71 And if a critical value C ∈ R exists such that

supµ0∈M0
sup0<σ2<∞ supΣ∈C Pµ0,σ

2Σ(T ≥ C) = α holds, then C♢(α) is also the smallest among

these critical values. This follows from Remark 5.10 and Lemma 5.16 in Pötscher and Preiner-

storfer (2018) combined with Remark C.1 in Appendix C. The same is true for T = T̃uc and

T = T̃Het, where in case of T = T̃Het we assume that Assumption 2 is satisfied and that T̃Het

69Note that there are in fact no assumptions for Part (a). We have chosen this formulation for reasons of
brevity.

70Cf. also Appendix A.3.
71Note that this, e.g., covers the case discussed in Example 5.5, where size-control can be established for THet

despite the fact that the sufficient conditions in Theorem 5.1 are not satisfied (and hence Part (c) of that theorem
can not be used).
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is not constant on Rn\B̃. This follows again from Remark 5.10 in Pötscher and Preinerstorfer

(2018) now together with Lemma D.1 in Appendix D.

B Appendix: Characterization of J(L,C) for C = CHet and

C = C(n1,...,nm)

A key ingredient in the proof of size control results such as Theorem 5.1 or 6.4 is a certain

collection J(L,C) of linear subspaces of Rn introduced in Pötscher and Preinerstorfer (2018).

For the convenience of the reader we reproduce this definition, specialized to the present setting,

below. The leading case in the applications will be the case L = Mlin
0 .

Definition B.1. Let C be a heteroskedasticity model (i.e., ∅ ̸= C ⊆ CHet). Given a linear

subspace L of Rn with dim(L) < n and an element Σ ∈ C, we let

L(Σ) = ΠL⊥ΣΠL⊥

∥ΠL⊥ΣΠL⊥∥

and L(C) = {L(Σ) : Σ ∈ C}. Furthermore, we define

J(L,C) =
{
span(Σ̄) : Σ̄ ∈ cl(L(C)), rank(Σ̄) < n− dim(L)

}
,

where the closure cl(·) is to be understood w.r.t. Rn×n.

Recalling the definition of I0(L), it is easy to see that I0(L) =
{
i : 1 ≤ i ≤ n, πL⊥,i = 0

}
holds, where πL⊥,i denotes the i-th column of ΠL⊥ . Also recall that I1(L) is nonempty in case

dim(L) < n holds. The characterization of J(L,CHet) is now given in the next proposition.

Proposition B.1. Suppose dim(L) < n holds. Then the set J(L,CHet) is given by

{
span

({
πL⊥,i : i ∈ I

})
: ∅ ≠ I ⊆ I1(L), dim

(
span

({
πL⊥,i : i ∈ I

}))
< n− dim(L)

}
. (B.1)

This proposition is a special case of Proposition B.2 given below since CHet coincides with

C(n1,...,nm) in case m = n and nj = 1 for all j = 1, . . . ,m.

We next turn to the characterization of J(L,C(n1,...,nm)), where C(n1,...,nm) has been defined

in Appendix A. Here m ∈ N, and nj ∈ N for j = 1, . . . ,m satisfy
∑m

j=1 nj = n. Consider the

partition of the set {1, . . . , n} into the intervals (n+
0 , n

+
1 ], (n

+
1 , n

+
2 ],..., (n

+
m−1, n

+
m] where n+

j has

been defined in Appendix A. Let I(n1,...,nm) consist of all non-empty subsets I of {1, . . . , n} that
can be represented as a union of intervals of the form (n+

j−1, n
+
j ].

Proposition B.2. Suppose dim(L) < n holds. Let m ∈ N, and let nj ∈ N for j = 1, . . . ,m

8



satisfy
∑m

j=1 nj = n. Then the set J(L,C(n1,...,nm)) is given by

{
span

({
πL⊥,i : i ∈ I

})
: I ∈ I(n1,...,nm), ∅ ≠ I ∩ I1(L), dim

(
span

({
πL⊥,i : i ∈ I

}))
< n− dim(L)

}
.

(B.2)

Note that in (B.2) we have span
({

πL⊥,i : i ∈ I
})

= span
({

πL⊥,i : i ∈ I ∩ I1(L)
})

.

Proof: Suppose S is an element of J(L,C(n1,...,nm)). Then there exist a sequence Σm ∈
C(n1,...,nm) such that ΠL⊥ΣmΠL⊥/ ∥ΠL⊥ΣmΠL⊥∥ converges to a limit Σ̄, say, in Rn×n with

span(Σ̄) = S. Now,

ΠL⊥ΣmΠL⊥/ ∥ΠL⊥ΣmΠL⊥∥ = ∥ΠL⊥ΣmΠL⊥∥−1
n∑

i=1

τ2i (m)πL⊥,iπ
′
L⊥,i

= ∥ΠL⊥ΣmΠL⊥∥−1
m∑
j=1

∑
i∈(n+

j−1,n
+
j ]

τ2i (m)πL⊥,iπ
′
L⊥,i

=
∑

j:(n+
j−1,n

+
j ]∩I1(L)̸=∅

∥ΠL⊥ΣmΠL⊥∥−1
τ2
n+
j

(m)
∑

i∈(n+
j−1,n

+
j ]

πL⊥,iπ
′
L⊥,i,

where τ2i (m) denotes the i-th diagonal element of Σm. Here we have used the fact that variances

are constant within groups, as well as that πL⊥,i = 0 for all i ∈ (n+
j−1, n

+
j ] if (n+

j−1, n
+
j ] is

disjoint from I1(L). Also note that the outer sum extends over a nonempty index set since

card(I1(L)) ≥ 1 must hold in view of dim(L) < n. Since the l.h.s. converges to the limit

Σ̄ ∈ Rn×n, since the r.h.s. is bounded from below in the Loewner order by

∥ΠL⊥ΣmΠL⊥∥−1
τ2
n+
j

(m)
∑

i∈(n+
j−1,n

+
j ]

πL⊥,iπ
′
L⊥,i,

for every j appearing in the range of the outer sum, and since πL⊥,i ̸= 0 for at least one

i ∈ (n+
j−1, n

+
j ] holds when (n+

j−1, n
+
j ] ∩ I1(L) ̸= ∅, it follows that the sequence

(∥ΠL⊥ΣmΠL⊥∥−1
τ2
n+
j

(m) : m ∈ N)

is bounded for every j satisfying (n+
j−1, n

+
j ]∩ I1(L) ̸= ∅. Possibly after passing to a subsequence,

we may thus assume that these sequences converge to nonnegative real numbers γj for such j.

It follows that

Σ̄ =
∑

j:(n+
j−1,n

+
j ]∩I1(L)̸=∅

γj

∑
i∈(n+

j−1,n
+
j ]

πL⊥,iπ
′
L⊥,i

=
∑

j:(n+
j−1,n

+
j ]∩I1(L)̸=∅

∑
i∈(n+

j−1,n
+
j ]

γ
1/2
j πL⊥,i

(
γ
1/2
j πL⊥,i

)′
.

Let I be the union of those intervals (n+
j−1, n

+
j ] satisfying (i) (n+

j−1, n
+
j ] ∩ I1(L) ̸= ∅ and (ii)

9



γj > 0. Note that I cannot be the empty set as this would imply Σ̄ = 0, which is impossible

since it is the limit of a sequence of matrices residing in the unit sphere of Rn×n. Furthermore,

by construction, I ∈ I(n1,...,nm) and I ∩ I1(L) ̸= ∅ hold. Using the fact that span(
∑L

l=1 AlA
′
l) =

span(A1, . . . , AL) holds for arbitrary real matrices of the same row-dimension, we obtain S =

span(Σ̄) = span
({

πL⊥,i : i ∈ I
})

for the before constructed set I. [Note that πL⊥,i = 0 if

i ∈ (n+
j−1, n

+
j ] but i /∈ I1(L).] Since S, being an element of J(L,C(n1,...,nm)), satisfies dim(S) <

n− dim(L), we have established that S is also an element of (B.2).

To prove the converse, suppose that S is an element of (B.2), i.e., that S = span
({

πL⊥,i : i ∈ I
})

for some I ∈ I(n1,...,nm) with ∅ ≠ I ∩ I1(L) and that dim (S) < n − dim(L) holds. Note that

card(I) < n holds, since otherwise S = L⊥ would follow, contradicting dim (S) < n − dim(L).
Also note that card(I) ≥ 1 as ∅ ≠ I∩I1(L). Define diagonal n×n matrices Σm via their diagonal

elements

τ2i (m) =

{
(card(I))

−1 − δm if i ∈ I

(card(I)/(n− card(I))) δm if i /∈ I

where 0 < δm < 1/ card(I) with δm → 0 for m→∞. Then τ2i (m) > 0 as well as
∑n

i=1 τ
2
i (m) = 1

hold, and τ2
n+
j−1+1

(m) = . . . = τ2
n+
j

(m) holds for j = 1, . . . ,m since I ∈ I(n1,...,nm). That is, Σm

belongs to C(n1,...,nm). Obviously, Σm converges to a diagonal matrix Σ∗ with diagonal elements

given by

τ∗2i =

{
(card(I))

−1
if i ∈ I

0 if i /∈ I
.

Consequently, ΠL⊥ΣmΠL⊥/ ∥ΠL⊥ΣmΠL⊥∥ converges to Σ̄ := ΠL⊥Σ∗ΠL⊥/ ∥ΠL⊥Σ∗ΠL⊥∥, since
ΠL⊥Σ∗ΠL⊥ ̸= 0 in view of

ΠL⊥Σ∗ΠL⊥ =

n∑
i=1

τ∗2i πL⊥,iπ
′
L⊥,i = (card(I))

−1
∑
i∈I

πL⊥,iπ
′
L⊥,i

and the fact that ∅ ≠ I ∩ I1(L) holds and thus πL⊥,i ̸= 0 must hold at least for one i ∈ I. Again

using span(
∑L

l=1 AlA
′
l) = span(A1, . . . , AL) we arrive at

span(Σ̄) = span(ΠL⊥Σ∗ΠL⊥) = span

(
(card(I))

−1
∑
i∈I

πL⊥,iπ
′
L⊥,i

)
= span

({
πL⊥,i : i ∈ I

})
= S.

Because we have assumed that dim (S) < n − dim(L) holds, the preceding display shows that

S ∈ J(L,C(n1,...,nm)). ■

Remark B.3. Note that J(L,C(n1,...,nm)) is empty if m = 1 (as can be seen directly from the

definition of J(L,C(n1,...,nm)) or from (B.2)).

Remark B.4. It is easy to see that the concentration spaces of CHet in the sense of Preinerstor-

fer and Pötscher (2016) are precisely given by all spaces of the form span ({ei(n) : i ∈ I}) where
I varies through all subsets of {1, . . . , n} that satisfy 0 < card(I) < n. More generally, the con-
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centration spaces of C(n1,...,nm) are precisely given by all spaces of the form span ({ei(n) : i ∈ I})
where I ∈ I(n1,...,nm) satisfies 0 < card(I) < n. [In view of Remark 5.1(i) in Pötscher and Prein-

erstorfer (2018) these results correspond to the case dim(L) = 0 in the preceding propositions.]

C Appendix: Proofs for Section 5 and Appendix A.1

The facts collected in the subsequent remark will be used in the proofs further below.

Remark C.1. (i) Suppose Assumption 1 holds. Then the test statistic THet is a non-sphericity

corrected F-type test statistic in the sense of Section 5.4 in Preinerstorfer and Pötscher (2016).

More precisely, THet is of the form (28) in Preinerstorfer and Pötscher (2016) and Assumption

5 in the same reference is satisfied with β̌ = β̂, Ω̌ = Ω̂Het, and N = ∅. Furthermore, the set N∗

defined in (27) of Preinerstorfer and Pötscher (2016) satisfies N∗ = B. And also Assumptions 6

and 7 of Preinerstorfer and Pötscher (2016) are satisfied. All these claims follow easily in view

of Lemma 4.1 in Preinerstorfer and Pötscher (2016), see also the proof of Theorem 4.2 in that

reference.

(ii) The test statistic Tuc is also a non-sphericity corrected F-type test statistic in the sense of

Section 5.4 in Preinerstorfer and Pötscher (2016) (terminology being somewhat unfortunate here

as no correction for the non-sphericity is being attempted). More precisely, Tuc is of the form

(28) in Preinerstorfer and Pötscher (2016) and Assumption 5 in the same reference is satisfied

with β̌ = β̂, Ω̌ = σ̂2R (X ′X)
−1

R′, and N = ∅. Furthermore, the set N∗ defined in (27) of

Preinerstorfer and Pötscher (2016) satisfies N∗ = span(X). And also Assumptions 6 and 7 of

Preinerstorfer and Pötscher (2016) are satisfied. All these claims are evident (and obviously do

not rely on Assumption 1).

(iii) We note that any non-sphericity corrected F-type test statistic (for testing (3)) in the

sense of Section 5.4 in Preinerstorfer and Pötscher (2016), i.e., any test statistic T of the form

(28) in Preinerstorfer and Pötscher (2016) that also satisfies Assumption 5 in that reference, is

invariant under the group G(M0). Furthermore, the associated set N∗ defined in (27) of Preiner-

storfer and Pötscher (2016) is even invariant under the larger group G(M). See Sections 5.1 and

5.4 of Preinerstorfer and Pötscher (2016) as well as Lemma 5.16 in Pötscher and Preinerstorfer

(2018) for more information.

Proof of Theorem 5.1: We first prove Part (b). We apply Part (b) of Theorem A.1 with

nj = 1 for j = 1, . . . , n = m observing that then C(n1,...,nm) = CHet and that condition (A.4)

reduces to (10) (exploiting that B is a finite union of proper linear subspaces as discussed in

Lemma 3.1). This establishes (9). The final claim in Part (b) of the theorem follows from Part

(b) of Theorem A.1, if we can show that α∗ and C∗ given there can be written as claimed in

Theorem 5.1: To this end we proceed as follows:72 Choose an element µ0 of M0. Observe that

I1(M
lin
0 ) ̸= ∅ (since dim(Mlin

0 ) = k − q < n), and that for every i ∈ I1(M
lin
0 ) the linear space

72Alternatively, one could base a proof on Lemma C.1 in Pötscher and Preinerstorfer (2019).
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Si = span(Π
(Mlin

0 )
⊥ei(n)) is 1-dimensional (since Si = {0} is impossible in view of i ∈ I1(M

lin
0 )),

and belongs to J(Mlin
0 ,CHet) (since n− k+ q > 1 = dim(Si) holds) in view of Proposition B.1 in

Section B. Since THet is G(M0)-invariant (Remark C.1 above), it follows that THet is constant

on (µ0 + Si)\ {µ0}, cf. the beginning of the proof of Lemma 5.11 in Pötscher and Preinerstorfer

(2018). Hence, Si belongs to H (defined in Lemma 5.11 in Pötscher and Preinerstorfer (2018))

and consequently for C∗ as defined in that lemma

C∗ ≥ max

{
THet(µ0 +Π

(Mlin
0 )

⊥ei(n)) : i ∈ I1(M
lin
0 )

}
must hold (recall that Π

(Mlin
0 )

⊥ei(n) ̸= 0). To prove the opposite inequality, let S be an arbitrary

element of H, i.e., S ∈ J(Mlin
0 ,CHet) and THet is λµ0+S -almost everywhere equal to a constant

C(S), say. Then Proposition B.1 in Section B shows that Si ⊆ S holds for some i ∈ I1(M
lin
0 ).

Because of Condition (10) we have Si ⫅̸ B since Π
(Mlin

0 )
⊥ei(n) and ei(n) differ only by an element

of Mlin
0 ⊆ span(X) and since B + span(X) = B. Thus µ0 + Si ⫅̸ B by the same argument as

µ0 ∈M0 ⊆ span(X). We thus can find s ∈ Si such that µ0 + s /∈ B. Note that s ̸= 0 must hold,

since µ0 ∈M0 ⊆ span(X) ⊆ B. In particular, THet is continuous at µ0+s, since µ0+s /∈ B. Now,

for every open ball Aε in Rn with center s and radius ε > 0 we can find an element aε ∈ Aε ∩ S
such that THet(µ0 + aε) = C(S). Since aε → s for ε → 0, it follows that C(S) = THet(µ0 + s).

Since s ̸= 0 and since THet is constant on (µ0 +Si)\ {µ0} as shown before, we can conclude that

C(S) = THet(µ0 + s) = THet(µ0 +Π
(Mlin

0 )
⊥ei(n)), where we recall that Π

(Mlin
0 )

⊥ei(n) ̸= 0. But

this now implies

C∗ = max

{
THet(µ0 +Π

(Mlin
0 )

⊥ei(n)) : i ∈ I1(M
lin
0 )

}
.

Using G(M0)-invariance of THet we conclude that

C∗ = max
{
THet(µ0 + ei(n)) : i ∈ I1(M

lin
0 )
}
.

The expression for α∗ given in the theorem now follows immediately from the expression for α∗

given in Part (b) of Theorem A.1.

We next prove Part (a): Apply Part (a) of Theorem A.1 with nj = 1 for j = 1, . . . , n = m

observing that then C(n1,...,nm) = CHet and that condition (A.2) reduces to (8) (exploiting that

span(X) is a linear space). This establishes (7). The final claim in Part (a) of the theorem

follows similarly as the corresponding claim of Part (b) upon replacing the set B by span(X) in

the argument and by noting that Tuc is G(M0)-invariant.

Part (c) follows from Part (c) of Theorem A.1 upon setting nj = 1 for j = 1, . . . , n = m (and

upon noting that then the conditions in Theorem A.1 reduce to the conditions of the present

theorem). ■

Proof of Proposition 5.5: Follows from Part A.1 of Proposition 5.12 of Pötscher and
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Preinerstorfer (2018) and the sentence following this proposition. Note that the assumptions of

this proposition have been verified in the proof of Theorem 5.1 (see also the proof of Theorem

A.1, on which the proof of Theorem 5.1 is based), where it is also shown that the quantity

C∗ used in Proposition 5.12 of Pötscher and Preinerstorfer (2018) coincides with C∗ defined in

Theorem 5.1. ■

We note that the result for THet in Proposition 5.5 can also be obtained from Theorem 4.2

in Preinerstorfer and Pötscher (2016).

Proof of Proposition 5.7: (a) This can be seen as follows (cf. also the discussion on p.302

of Preinerstorfer and Pötscher (2016)): By Remark C.1 above, Tuc satisfies the assumptions in

Corollary 5.17 in Preinerstorfer and Pötscher (2016) (with β̌ = β̂, Ω̌(y) = σ̂2(y)R (X ′X)
−1

R′,

N = ∅, and N∗ = span(X)). Let ei(n) be one of the standard basis vectors with i ∈ I1(M
lin
0 )

that does belong to span(X). Set Z = span(ei(n)) and note that this is a concentration space

of CHet, cf. Remark B.4 in Appendix B. The nonnegative definiteness assumption on Ω̌ in

Part 3 of Corollary 5.17 in Preinerstorfer and Pötscher (2016) is clearly satisfied. We also have

Ω̌(λei(n)) = 0 (since ei(n) ∈ span(X)) for every λ ∈ R and Rβ̂(λei(n)) ̸= 0 for every λ ∈ R\{0}
(since ei(n) ∈ span(X) but ei(n) /∈ Mlin

0 in view of i ∈ I1(M
lin
0 )). Part 3 of Corollary 5.17 in

Preinerstorfer and Pötscher (2016) then proves the claim for C > 0. A fortiori it then also holds

for all real C.

(b) This follows for C > 0 from Part 3 of Theorem 4.2 in Preinerstorfer and Pötscher (2016)

upon observing that a vector ei(n) satisfying ei(n) ∈ span(X) for some i ∈ I1(M
lin
0 ) clearly

satisfies B(ei(n)) = 0 (as ei(n) ∈ span(X)) and Rβ̂(ei(n)) ̸= 0 (since ei(n) ∈ span(X) but

ei(n) /∈Mlin
0 in view of i ∈ I1(M

lin
0 )). A fortiori it then also holds for all real C. ■

Proof of Theorem A.1: We first prove Part (b). We wish to apply Part A of Proposition

5.12 of Pötscher and Preinerstorfer (2018) with C = C(n1,...,nm), T = THet, L = Mlin
0 , and

V = {0}. First, note that dim(Mlin
0 ) = k − q < n. Second, under Assumption 1, THet is a non-

sphericity corrected F-type test with N∗ = B, which is a closed λRn -null set (see Remarks 3.2 and

C.1 as well as Lemma 3.1). Hence, the general assumptions on T = THet, on N† = N∗ = B, on

L = Mlin
0 , as well as on V in Proposition 5.12 of Pötscher and Preinerstorfer (2018) are satisfied

in view of Part 1 of Lemma 5.16 in the same reference. [Alternatively, this can be gleaned from

Lemma 3.1 and the attending discussion.] Next, observe that condition (A.4) is equivalent to

span

({
Π
(Mlin

0 )
⊥ei(n) : i ∈ (n+

j−1, n
+
j ]

})
⫅̸ B

for every j = 1, . . . ,m, such that (n+
j−1, n

+
j ]∩ I1(Mlin

0 ) ̸= ∅, since Π
(Mlin

0 )
⊥ei(n) and ei(n) differ

only by an element of Mlin
0 ⊆ span(X) and since B + span(X) = B (as noted in Lemma 3.1).

In view of Proposition B.2 in Appendix B, this implies that any S ∈ J(Mlin
0 ,C(n1,...,nm)) is not

contained in B, and thus not in N†. Using M0 ⊆ span(X) and B + span(X) = B, it follows

that µ0 + S ⫅̸ B = N† for every µ0 ∈ M0. Since µ0 + S is an affine space and N† = B is

a finite union of proper affine (even linear) spaces under Assumption 1 as discussed in Lemma
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3.1, we may conclude (cf. Corollary 5.6 in Pötscher and Preinerstorfer (2018) and its proof)

that λµ0+S(N
†) = 0 for every S ∈ J(Mlin

0 ,C(n1,...,nm)) and every µ0 ∈ M0. This completes

the verification of the assumptions of Proposition 5.12 in Pötscher and Preinerstorfer (2018)

that are not specific to Part A (or Part B) of this proposition. We next verify the assumptions

specific to Part A of this proposition: Assumption (a) is satisfied (even for every C ∈ R) as a

consequence of Part 2 of Lemma 5.16 in Pötscher and Preinerstorfer (2018) and of Remark C.1(i)

above. And Assumption (b) in Part A follows from Lemma 5.19 of Pötscher and Preinerstorfer

(2018), since THet results as a special case of the test statistics TGQ defined in Section 3.4 of

Pötscher and Preinerstorfer (2018) upon choosing W∗
n = n−1 diag(di). Part A of Proposition

5.12 of Pötscher and Preinerstorfer (2018) now immediately delivers claim (A.3), since C∗ <∞
as noted in that proposition. That C∗ and α∗ do not depend on the choice of µ0 ∈ M0 is

an immediate consequence of G(M0)-invariance of THet. Also note that α∗ as defined in the

theorem coincides with α∗ as defined in Proposition 5.12 of Pötscher and Preinerstorfer (2018)

in view of G(M0)-invariance of THet. Positivity of α∗ then follows from Part 5 of Lemma 5.15

in Preinerstorfer and Pötscher (2016) in view of Remark C.1(i), noting that λRn and Pµ0,Σ

are equivalent measures (since Σ ∈ CHet is positive definite); cf. Remark 5.13(vi) in Pötscher

and Preinerstorfer (2018). In case α < α∗, the remaining claim in Part (b) of the theorem,

namely that equality can be achieved in (A.3), follows from the definition of C∗ in Lemma 5.11

of Pötscher and Preinerstorfer (2018) and from Part A.2 of Proposition 5.12 of Pötscher and

Preinerstorfer (2018) (and the observation immediately following that proposition allowing one

to drop the suprema w.r.t. µ0 and σ2, and to set σ2 = 1); in case α = α∗ < 1, it follows

from Remarks 5.13(i),(ii) in Pötscher and Preinerstorfer (2018) using Lemma 5.16 in the same

reference.

The proof of Part (a) proceeds along the same lines with some minor differences: Observe

that Tuc is a non-sphericity corrected F-type test with N† = N∗ = span(X), which obviously

is a closed λRn -null set (see Remark C.1(ii)), showing similarly that the general assumptions on

T = Tuc, on N† = N∗ = span(X), as well as on L = Mlin
0 in Proposition 5.12 of Pötscher and

Preinerstorfer (2018) are again satisfied (with C = C(n1,...,nm)). A similar, even simpler argument

as in the proof of Part (b), again shows that condition (A.2) implies λµ0+S(N
†) = 0 for every

S ∈ J(Mlin
0 ,C(n1,...,nm)) and every µ0 ∈M0, thus completing the verification of the assumptions

of Proposition 5.12 of Pötscher and Preinerstorfer (2018) that are not specific to Part A (or Part

B) of this proposition. Verification of Assumption (a) in Part A of Proposition 5.12 of Pötscher

and Preinerstorfer (2018) proceeds exactly as before. For Assumption (b) we now use Lemma

5.19(iii) of Pötscher and Preinerstorfer (2018), since Tuc results as a special case of the test

statistics TE,W defined in Section 3 of Pötscher and Preinerstorfer (2018) upon choosing W as

n(n−k)−1In. Part A of Proposition 5.12 of Pötscher and Preinerstorfer (2018) then delivers the

claim (A.1), again since C∗ < ∞ as noted in that proposition. Again, G(M0)-invariance of Tuc

implies that C∗ and α∗ do not depend on the choice of µ0 ∈M0, and that α∗ as defined in the

theorem coincides with α∗ as defined in Proposition 5.12 of Pötscher and Preinerstorfer (2018).
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Positivity of α∗ follows exactly as before making now use of Remark C.1(ii). The remaining

claim in Part (a) is proved completely analogous as the corresponding claim in Part (b).

We finally prove Part (c): The claims follow from Remark 5.10 and Lemma 5.16 in Pötscher

and Preinerstorfer (2018) combined with Remark C.1 above; cf. also Appendix A.3. ■

Proof of Proposition A.2: (a) This follows from Part 3 of Corollary 5.17 in Preinerstorfer

and Pötscher (2016): As shown in the proof of Proposition 5.7(a) Tuc satisfies the assump-

tions of this corollary (with β̌ = β̂, Ω̌(y) = σ̂2(y)R (X ′X)
−1

R′, N = ∅, and N∗ = span(X)).

Set now Z = span({ei(n) : i ∈ (n+
j−1, n

+
j ]}), where j is such that (n+

j−1, n
+
j ] ∩ I1(M

lin
0 ) ̸= ∅

and Z ⊆ span(X) hold. Note that Z is not contained in Mlin
0 by construction. Observe that

Z is a concentration space of C(n1,...,nm) in view of Remark B.4 in Appendix B (note that

card((n+
j−1, n

+
j ]) < n must hold in view of Z ⊆ span(X) and k < n, while 0 < card((n+

j−1, n
+
j ])

is obvious). The nonnegative definiteness assumption on Ω̌ in Part 3 of Corollary 5.17 in Prein-

erstorfer and Pötscher (2016) is clearly satisfied. Obviously Ω̌(z) = 0 holds for every z ∈ Z since

Z ⊆ span(X). It remains to establish that Rβ̂(z) ̸= 0 holds λZ -everywhere: Clearly, Rβ̂(z) = 0

for z ∈ Z occurs precisely for z ∈ Z ∩Mlin
0 since Z ⊆ span(X). But Z ∩Mlin

0 is a λZ -null set in

view of the fact that Z is not contained in Mlin
0 as noted before (and hence Z ∩Mlin

0 is a proper

linear subspace of Z). Part 3 of Corollary 5.17 in Preinerstorfer and Pötscher (2016) then proves

the claim for C > 0. A fortiori it then also holds for all real C.

(b) This follows in the same way as Part (a) by applying Part 3 of Corollary 5.17 in Prein-

erstorfer and Pötscher (2016) now to THet (with β̌ = β̂, Ω̌ = Ω̂Het, N = ∅, and N∗ = B).

■

We note that Propositions 5.7 and A.2 could also be proved by making use of Theorem 3.1

in Pötscher and Preinerstorfer (2019).

Remark C.2. (i) Condition (8) ((10), respectively) in Theorem 5.1 can equivalently be written

as span({π
(Mlin

0 )
⊥
,i
}) ⫅̸ span(X) (⫅̸ B, respectively) for every i ∈ I1(M

lin
0 ) as discussed in the

proof. Since the spaces span({π
(Mlin

0 )
⊥
,i
}) are one-dimensional for i ∈ I1(M

lin
0 ) and since 1 <

n−k+ q = n−dim(Mlin
0 ), it follows that these spaces are necessarily elements of J(Mlin

0 ,CHet);

in fact, they are precisely the minimal elements of J(Mlin
0 ,CHet) w.r.t. the order induced by

inclusion.

(ii) Condition (A.2) ((A.4), respectively) in Theorem A.1 can equivalently be written as

span({Π
(Mlin

0 )
⊥ei(n) : i ∈ (n+

j−1, n
+
j ]}) ⫅̸ span(X) ( ⫅̸ B, respectively)

for every j = 1, . . . ,m with (n+
j−1, n

+
j ] ∩ I1(M

lin
0 ) ̸= ∅ as discussed in the proof. However, in

this more general case, it can happen that such a space appearing on the l.h.s. of the non-

inclusion relation has a dimension not smaller than n− dim(Mlin
0 ), and hence is not a member

of J(Mlin
0 ,C(n1,...,nm)). In light of the general results in Pötscher and Preinerstorfer (2018)

(e.g., Corollary 5.6) one may wonder if requiring the non-inclusion condition in (A.2) (A.4,

respectively) for such spaces does not add an unnecessary restriction. However, this is not so
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as this non-inclusion is easily seen to be automatically satisfied for such spaces.73 Furthermore,

the collection of all spaces of the form span({Π
(Mlin

0 )
⊥ei(n) : i ∈ (n+

j−1, n
+
j ]}) for j = 1, . . . ,m,

such that (n+
j−1, n

+
j ] ∩ I1(Mlin

0 ) ̸= ∅ and such that the dimension of these spaces is smaller than

n − dim(Mlin
0 ) is precisely the collection of minimal elements of J(Mlin

0 ,C(n1,...,nm)) w.r.t. the

order induced by inclusion. [Note that J(Mlin
0 ,C(n1,...,nm)) may be empty.]

Proposition C.3. Suppose we are in the setting of Example 5.5 with nj ≥ 2 for all j. Then

THet is size controllable over CHet, i.e., (9) holds for every 0 < α < 1.

Proof: Note that B is a subset of

S := {y ∈ Rn : ûi(y) = 0 for some i = 1, . . . , n} ,

and that S is a λRn-null set, as it is a finite union of λRn -null sets (since ei(n) /∈ span(X) in

view of nj ≥ 2 for all j). Also note that Sj > 0 holds for y /∈ S. Now, for y /∈ S, by the

Sherman-Morrison formula, the inverse of S1ιι
′ + diag(S2, . . . , Sk) equals

diag(S−1
2 , . . . , S−1

k )− diag(S−1
2 , . . . , S−1

k )ιι′ diag(S−1
2 , . . . , S−1

k )/

k∑
j=1

1/Sj .

We may thus write

THet(y) =

k∑
j=2

(ȳ(1) − ȳ(j))
2

Sj
−

 k∑
j=2

ȳ(1) − ȳ(j)

Sj

2

/

k∑
j=1

1/Sj for every y /∈ S. (C.1)

As noted in Remark 3.3, for any invertible q × q-dimensional matrix A, the test statistic

THet based on R and the analogous test statistic, but computed with AR instead of R, coincide

everywhere (note r = 0). We apply this observation in the following way: fix l ∈ {2, . . . , k},
and choose A with l-th column (−1, . . . ,−1)′, l-th row(0, . . . 0,−1, 0, . . . , 0), and such that after

deleting the l-th column and the l-th row we obtain Iq−1. Then

AR = RPl,

where Pl is the k × k permutation matrix that interchanges the first and l-th coordinate (and

keeps all other coordinates fixed). By a similar computation as the one that led to the expression

in (C.1), but now with RPl in place of R, we can now conclude that for every l ∈ {1, . . . , k} we

73Note that any such space is necessarily equal to
(
Mlin

0

)⊥
. If now

(
Mlin

0

)⊥
were contained in span(X) (B,

respectively), then Rn would also have to be contained in span(X) (B, respectively), since Rn can be written as

the direct sum of
(
Mlin

0

)⊥
and Mlin

0 and since span(X) (B, respectively) are invariant under addition of elements

of Mlin
0 . However, span(X) is a proper subspace of Rn (since we always assume k < n) and B is a finite union of

proper linear subspaces of Rn under Assumption 1. This gives a contradiction.
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have

THet(y) =

k∑
j=1,j ̸=l

(ȳ(l) − ȳ(j))
2

Sj
−

 k∑
j=1,j ̸=l

ȳ(l) − ȳ(j)

Sj

2

/

k∑
j=1

1/Sj for every y /∈ S.

For y /∈ S we may thus upper bound THet(y) by
∑k

j ̸=l(ȳl − ȳj)
2/Sj , and we are free to choose

l. Setting l = l(y) ∈ argminj=1,...,k Sj , the upper bound for THet(y) just derived, together with

Sj ≥ (Sj + Sl)/2 > 0, gives for y /∈ S

THet(y) ≤
k∑

j=1,j ̸=l

(ȳ(l) − ȳ(j))
2

Sj
≤ 2

k∑
j=1,j ̸=l

(ȳ(l) − ȳ(j))
2

Sj + Sl

≤ 2

k∑
i,j=1,i̸=j

(ȳ(i) − ȳ(j))
2

Si + Sj
= 2

k∑
i,j=1,i̸=j

Ti,j(y),

where Ti,j(y) = (ȳ(i) − ȳ(j))
2/(Si + Sj). Note that the quantity to the far right does not depend

on our particular choice of l. For y ∈ S, define Ti,j by the same formula as long as Si + Sj > 0

and as Ti,j = 0 else. Since S is a λRn -null set, we have for any C > 0

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈CHet

Pµ0,σ
2Σ(THet ≥ C) ≤

k∑
i,j=1,i̸=j

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈CHet

Pµ0,σ
2Σ(Ti,j ≥ C/2(k2−k)).

Now observe that Ti,j depends only on the coordinates of y corresponding to groups i and j and

furthermore coincides with the test statistic of the form (4) for a two sample mean comparison

as considered in Example 5.4 (with sample size being equal to ni+nj). A simple argument then

shows that the terms in the sum on the r.h.s of the preceding display can be rewritten as the

sizes of the test statistic (4) as considered in Example 5.4 with sample size now being given by

ni + nj . Hence, all these terms can be made arbitrarily small by choosing C large enough by

what has been established in Example 5.4. ■

We provide here a further example, where the sufficient condition of Part (b) of Theorem 5.1

fails, but size control is possible.

Example C.1. Suppose we are given k ≥ 2 integers nj describing group sizes satisfying n1 ≥ 2

and nj ≥ 1 for j ≥ 2. Sample size is n =
∑k

j=1 nj . Clearly k < n is then satisfied. The regressors

xti indicate group membership, i.e., they satisfy xti = 1 for
∑i−1

j=1 nj < t ≤
∑i

j=1 nj and xti = 0

otherwise. The heteroskedasticity model is again given by CHet. Let R = (1, 0, . . . , 0), i.e., the

coefficient of the first regressor is subject to test. Then I0(M
lin
0 ) = {

∑j
l=1 nl : nj = 1, j =

2, . . . , k}. With regard to Tuc we immediately see that ei(n) /∈ span(X) for i ∈ I1(M
lin
0 ) holds,

and thus the sufficient condition (8) for size control of Tuc is satisfied. Turning to THet, observe

that Assumption 1 is satisfied as is easily seen. Furthermore, it is not difficult to see that

B = {y ∈ Rn : y1 = . . . = yn1}. Note that span(X) ⊆ B, but B ̸= span(X), except if nj = 1 for
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all j ≥ 2 holds. In the latter case it is then easy to see that ei(n) /∈ span(X) = B for every

i ∈ I1(M
lin
0 ) holds, and thus the sufficient condition (10) for size control of THet is satisfied. But

if nj > 1 for some j ≥ 2 holds, then for any index i satisfying
∑j−1

l=1 nl < i ≤
∑j

l=1 nl we have

i ∈ I1(M
lin
0 ) as well as ei(n) ∈ B. Consequently, the sufficient condition (10) for size control

of THet is not satisfied and hence Theorem 5.1 does not inform us about size controllability of

THet in this case. However, the following argument shows that size control for THet is possible

also in this case: The test statistic THet for the given problem coincides with a corresponding

test statistic (again of the form (6) for an appropriate choice of di’s) in the “reduced” problem

that one obtains by throwing away all data points for t > n1 and by also deleting all regressors

from the regression model but the first one. This leads one to the heteroskedastic location

model discussed in Example 5.3 albeit with sample size reduced to n1. It is now not difficult

to see that the size of THet in the original formulation of the problem coincides with the size

of the corresponding test statistic in the “reduced” problem, which – in light of the discussion

in Example 5.3 – shows that size control for THet in the original problem is possible also in the

case where nj > 1 for some j ≥ 2 holds. [If n1 = 1 and if nj ≥ 2 for some j, condition (8) in

Theorem 5.1(a) is violated, implying – in view of Proposition 5.7 – that the size of the rejection

region {Tuc > C} is 1 for every choice of C; and that the test statistic THet is identically zero

(since Assumption 1 is violated and, in fact, Ω̂Het is identically zero). The case where all nj are

equal to 1 even falls outside of our framework since we always require n > k.]

Remark C.4. Alternatively to the argument given in Example C.1 for the case where nj > 1 for

some j ≥ 2 holds, size controllability of THet can also be established by the following reasoning:

Keep the sample of size n, but replace the regressors x·i for 2 ≤ i ≤ k by new regressors

given by the standard basis vectors ej(n) for j > n1 (the number of regressors now being

k∗ = n−n1+1 < n and R = (1, 0, . . . , 0) now being 1×k∗). Then one observes that (i) this does

not affect the test statistic, (ii) makes the set M0 at most larger, and (ii) in the new model the

sufficient condition (10) is now satisfied (as in the new model nj = 1 holds for j > n1). Hence, size

control (even over the larger M0) follows. A third possibility to establish the size-controllability

result is to observe that the test statistic THet as well as the set B in the original model are

– additional to being G(M0)-invariant – also invariant w.r.t. addition of the elements ei(n)

for i > n1 and then to appeal to a generalization of Theorem 5.1 that exploits this additional

invariance and provides sufficient conditions for size control that can be seen to be satisfied in

the model considered in this example. Such a generalization of Theorem 5.1, which we refrain

from stating, can be obtained from the general size control results presented in Pötscher and

Preinerstorfer (2018).

Remark C.5. Example C.1 is an instance of the following observation: Suppose X is block-

diagonal of rank k with blocks X1 and X2 where Xi is ni× ki with n1+n2 = n and k1+ k2 = k.

Assume k1 < n1 (which entails k < n). Assume that the q × k restriction matrix R is of rank

q and has the form R = (R1 : 0) with R1 of dimension q × k1. The heteroskedasticity model is

given by CHet. Then, using the same reasoning as in Example C.1, we see that the question of
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size control of THet is equivalent to the question of size control of the corresponding test statistic

in the “reduced” problem where one considers the regression model with regressor matrix equal

to X1 using only observations with t ≤ n1 (and as heteroskedasticity model the analogue of CHet

for sample size n1). As Example C.1 has shown, it is possible that the sufficient conditions for

size control of THet are violated in the “original” problem, while at the same time the sufficient

conditions may be satisfied in the “reduced” problem. Alternatively, one can argue similarly as

in Remark C.4.

D Appendix: Proofs for Section 6 and Appendix A.2

Lemma D.1. (a) Let S be a linear subspace of Rn and µ an element of Rn such that T̃uc

restricted to µ+S is not equal to a constant λµ+S-almost everywhere. Then λµ+S(T̃uc = C) = 0

holds for every C ∈ R.
(b) λRn(T̃uc = C) = 0 holds for every C ∈ R .

(c) Let S be a linear subspace of Rn and µ an element of Rn such that T̃Het restricted to

µ + S is not equal to a constant λµ+S-almost everywhere. Then λµ+S(T̃Het = C) = 0 holds for

every C ∈ R.
(d) Suppose Assumption 2 holds and T̃Het is not constant on Rn\B̃. Then λRn(T̃Het = C) = 0

holds for every C ∈ R.

Proof: (a) Since T̃uc is constant on M0 by definition, it follows that µ + S ̸⊆ M0 must

hold, and hence M0 is a λµ+S -null set (cf. the argument in Remark 5.9(i) in Pötscher and

Preinerstorfer (2018)). Consequently, T̃uc restricted to (µ + S)\M0 is not constant. Suppose

now there exists a C ∈ R so that λµ+S({y ∈ Rn : T̃uc(y) = C}) > 0. Then, since M0 is a λµ+S -

null set as just shown, it follows that even λµ+S({y ∈ Rn\M0 : T̃uc(y) = C}) > 0 must hold,

which can be written as λµ+S({y ∈ Rn\M0 : p(y) = 0}) > 0, with the multivariate polynomial

p given by p(y) = (Rβ̂ (y) − r)′
(
R(X ′X)−1R′)−1

(Rβ̂ (y) − r) − Cσ̃2(y). This implies that p

restricted to µ + S vanishes on a set of positive λµ+S -measure. Since p restricted to µ + S can

clearly be expressed as a polynomial in coordinates parameterizing the affine space µ + S, it
follows that p vanishes identically on µ+ S. But this implies that T̃uc restricted to (µ+ S)\M0

is constant equal to C, a contradiction (as M0 is a λµ+S -null set).

(b) Follows from Part (a) upon choosing S = Rn, if we can show that T̃uc is not λRn -almost

everywhere constant. Given that T̃uc is continuous on Rn\M0 (the complement of a proper

affine subspace), it suffices to show that T̃uc is not constant on Rn\M0. To this end consider

first y = Xβ with Rβ − r ̸= 0 (such a β obviously exists). Observe that σ̃2(y) ̸= 0 as y /∈ M0

and that Rβ̂(y) − r = Rβ − r ̸= 0. Hence, T̃uc(y) ̸= 0 for this choice of y. Next, choose

y = Xβ + w, where Rβ − r = 0 (such a β obviously exists) and where w ̸= 0 is orthogonal to

span(X) (which is possible since k < n is always maintained). Then β̂(y) = β = β̃(y), implying

Rβ̂(y)− r = Rβ − r = 0 and σ̃2(y) = w′w/(n− (k − q)) ̸= 0. Note that y /∈M0. It follows that

T̃uc(y) = 0 holds for this choice of y. This establishes non-constancy of T̃uc on Rn\M0.
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(c) Completely analogous to the proof of Part (a) except that T̃uc andM0 are replaced by T̃Het

and B̃, respectively, and that p now takes the form p(y) = (Rβ̂ (y) − r)′ adj(Ω̃Het(y))(Rβ̂ (y) −
r) − C det(Ω̃Het(y)), where adj(·) denotes the adjoint of the square matrix indicated, with the

convention that the adjoint of a 1 × 1 dimensional matrix equals one. [We note that under

the assumptions for Part (c) the set B̃ cannot coincide with Rn (since otherwise T̃Het would be

constant equal to zero), and thus Assumption 2 must hold.]

(d) Follows from Part (c) upon choosing S = Rn, if we can show that T̃Het is not λRn -almost

everywhere constant. Given that T̃Het is continuous on Rn\B̃ (the complement of a finite union

of proper affine subspaces by Lemma 6.1), this follows from the assumed non-constancy on Rn\B̃.
■

Remark D.2. The additional assumption that T̃Het is not constant on Rn\B̃ in Part (d) of the

preceding lemma can not be dropped as can be seen from the following example: Consider the

case where k = q = 1, R = 1, r = 0, the regressor is given by e1(n), and the constants d̃i satisfy

d̃i = 1 for all i. Then M0 = Mlin
0 = {0}, Assumption 2 is satisfied, and B̃ = span(e1(n))

⊥.

Furthermore, T̃Het(y) = 1 for every y ∈ Rn\B̃. As a point of interest we note that T̃Het is

trivially size controllable for every 0 < α < 1, but that the condition (17) for size controllability

is violated since ej(n) ∈ B̃ for j > 1. [Of course, neither a smallest size-controlling critical

value exists (when considering rejection regions of the form {T̃Het ≥ C}) nor can exact size

controllability be achieved for 0 < α < 1.] An extension of this example to the case q = k > 1 is

discussed in the proof of Remark 6.10 given further below.

Lemma D.3. Let C be a given critical value. Then the rejection probabilities Pµ0,σ
2Σ(T̃uc ≥ C)

as well as Pµ0,σ
2Σ(T̃Het ≥ C) for µ0 ∈ M0, σ2 ∈ (0,∞), Σ ∈ CHet, do not depend on r. [It

is understood here that the constants d̃i appearing in the definition of T̃Het have been chosen

independently of the value of r.]

Proof: Fix µ0 ∈M0. Observe that T̃Het(y) = T̃ 0
Het(y − µ0), where

T̃ 0
Het (z) =

 (Rβ̂ (z))′
(
Ω̃0

Het(z)
)−1

(Rβ̂ (z)) if rank B̃0 (z) = q,

0 if rank B̃0 (z) < q,

where

Ω̃0
Het(z) = R(X ′X)−1X ′ diag

(
d̃1(ũ

0
1 (z))

2, . . . , d̃n(ũ
0
n (z))

2
)
X(X ′X)−1R′,

where ũ0 (z) = Π(Mlin
0 )⊥z, and where B̃0 (z) = R(X ′X)−1X ′ diag(e′1(n)Π(Mlin

0 )⊥(z), . . . , e
′
n(n)Π(Mlin

0 )⊥(z)).

Here we have made use of (13) and the fact that ũ (y) = ũ0(y − µ0). Now

Pµ0,σ
2Σ(T̃Het(y) ≥ C) = Pµ0,σ

2Σ(T̃
0
Het(y − µ0) ≥ C) = P0,σ2Σ(T̃

0
Het(z) ≥ C)

and the far right-hand side does not depend on r as T̃ 0
Het does not depend on r. The proof for
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T̃uc is completely analogous, noting that T̃uc(y) = T̃ 0
uc(y − µ0), where

T̃ 0
uc (z) =

{
(Rβ̂ (z))′

(
(σ̃0(z))2R(X ′X)−1R′)−1

(Rβ̂ (z)) if z /∈Mlin
0 ,

0 if z ∈Mlin
0 ,

and where (σ̃0(z))2 = (ũ0 (z))′ũ0 (z) /(n− (k − q)). ■

Proof of Theorem 6.4: We first prove Part (b). We apply Part (b) of Theorem A.5 with

nj = 1 for j = 1, . . . , n = m observing that then C(n1,...,nm) = CHet and that condition (A.7)

reduces to (17) (exploiting that B̃ − µ0 is a finite union of proper linear subspaces as discussed

in Lemma 6.1). This establishes (16). The final claim in Part (b) of the theorem follows from

Part (b) of Theorem A.5, if we can show that C∗ given there can be written as claimed in

Theorem 6.4: To this end we proceed as follows:74 Choose an element µ0 of M0. Observe that

I1(M
lin
0 ) ̸= ∅ (since dim(Mlin

0 ) = k − q < n), and that for every i ∈ I1(M
lin
0 ) the linear space

Si = span(Π
(Mlin

0 )
⊥ei(n)) is 1-dimensional (since Si = {0} is impossible in view of i ∈ I1(M

lin
0 )),

and belongs to J(Mlin
0 ,CHet) (since n − k + q > 1 = dim(Si) holds) in view of Proposition B.1

in Section B. Since T̃Het is G(M0)-invariant (Remark 6.2), it follows that T̃Het is constant on

(µ0 + Si)\ {µ0}, cf. the beginning of the proof of Lemma 5.11 in Pötscher and Preinerstorfer

(2018). Hence, Si belongs to H (defined in Lemma 5.11 in Pötscher and Preinerstorfer (2018))

and consequently for C∗ as defined in that lemma

C∗ ≥ max

{
T̃Het(µ0 +Π

(Mlin
0 )

⊥ei(n)) : i ∈ I1(M
lin
0 )

}
must hold. To prove the opposite inequality, let S be an arbitrary element of H, i.e., S ∈
J(Mlin

0 ,CHet) and T̃Het is λµ0+S -almost everywhere equal to a constant C(S), say. Then Propo-

sition B.1 in Section B shows that Si ⊆ S holds for some i ∈ I1(M
lin
0 ). Because of Condition

(17) we have µ0 + Si ⫅̸ B̃ since Π
(Mlin

0 )
⊥ei(n) and ei(n) differ only by an element of Mlin

0 and

since B̃ + Mlin
0 = B̃. We thus can find s ∈ Si such that µ0 + s /∈ B̃. Note that s ̸= 0 must

hold, since µ0 ∈ M0 ⊆ B̃ (see Lemma 6.1). In particular, T̃Het is continuous at µ0 + s, since

µ0 + s /∈ B̃. Now, for every open ball Aε in Rn with center s and radius ε > 0 we can find an

element aε ∈ Aε ∩ S such that T̃Het(µ0 + aε) = C(S). Since aε → s for ε → 0, it follows that

C(S) = T̃Het(µ0+ s). Since s ̸= 0 and since T̃Het is constant on (µ0+Si)\ {µ0} as shown before,

we can conclude that C(S) = T̃Het(µ0 + s) = T̃Het(µ0 + Π
(Mlin

0 )
⊥ei(n)), where we recall that

Π
(Mlin

0 )
⊥ei(n) ̸= 0. But this now implies

C∗ = max

{
T̃Het(µ0 +Π

(Mlin
0 )

⊥ei(n)) : i ∈ I1(M
lin
0 )

}
.

74Alternatively, one could base a proof on Lemma C.1 in Pötscher and Preinerstorfer (2019).
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Using G(M0)-invariance of T̃Het we conclude that

C∗ = max
{
T̃Het(µ0 + ei(n)) : i ∈ I1(M

lin
0 )
}
.

We next prove Part (a): Apply Part (a) of Theorem A.5 with nj = 1 for j = 1, . . . , n = m,

observing that then C(n1,...,nm) = CHet. This establishes (15).75 The final claim in Part (a) of

the theorem follows similarly as the corresponding claim of Part (b) upon replacing the set B̃

by M0 in the argument, by noting that T̃uc is G(M0)-invariant, and that µ0 + Si ⫅̸ M0 holds

because of i ∈ I1(M
lin
0 ).

Part (c) follows from Part (c) of Theorem A.5 upon setting nj = 1 for j = 1, . . . , n = m (and

upon noting that then the conditions in Theorem A.5 reduce to the conditions of the present

theorem). ■

Proof of Proposition 6.7: Follows from Part A.1 of Proposition 5.12 of Pötscher and

Preinerstorfer (2018) and the sentence following this proposition. Note that the assumptions of

this proposition have been verified in the proof of Theorem 6.4 (see also the proof of Theorem

A.5, on which the proof of Theorem 6.4 is based), where it is also shown that the quantity

C∗ used in Proposition 5.12 of Pötscher and Preinerstorfer (2018) coincides with C∗ defined in

Theorem 6.4. ■

Proof of Remark 6.10: (i) From the definition of B̃(y) and since here ũ(y) = y − µ0 we

obtain for i = 1, . . . , n

B̃(µ0 + ei(n)) = R(X ′X)−1 (0, . . . , 0, x′
i·, 0, . . . , 0)

where x′
i· appears in the i-th position (recall that x′

i· is the i-th column of X ′). But then

rank(B̃(µ0 + ei(n))) ≤ 1 < q, implying that µ0 + ei(n) ∈ B̃. [In case q = k = 1, rank(B̃(µ0 +

ei(n))) = 1 = q for every i = 1, . . . , n whenever the matrix X has no zero entry. This then

implies that (17) is satisfied. However, if X contains a zero at the m-th position, say, then

B̃(µ0 + em(n)) = 0 < 1 = q, implying that µ0 + em(n) ∈ B̃, thus leading to violation of (17) as

I1(M
lin
0 ) = {1, . . . , n}.]

(ii) Define β0 = (X ′X)−1X ′µ0 and note that Rβ0 = r holds. Observing that R is nonsingular,

that d̃i > 0 for 1, . . . , n, and that ũ(y) = y − µ0, we obtain for y /∈ B̃

T̃Het(y) = (y − µ0)
′
X
[
X ′ diag

(
d̃1ũ

2
1(y), . . . , d̃nũ

2
n(y)

)
X
]−1

X ′ (y − µ0)

= ũ(y)′X
[
X ′ diag

(
d̃1ũ

2
1(y), . . . , d̃nũ

2
n(y)

)
X
]−1

X ′ũ(y)

≤
(

min
1≤i≤n

d̃i

)−1

e′A(y) [A′(y)A(y)]
−1

A′(y)e ≤ n

(
min

1≤i≤n
d̃i

)−1

where e = (1, . . . , 1)′ and A(y) = diag(ũ1(y), . . . , ũn(y))X. Note that A′(y)A(y) is nonsingular

75This argument is actually superfluous since T̃uc is bounded as noted in Section 6.2.1.
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for y /∈ B̃ and that the matrix in the quadratic form is a projection matrix. For y ∈ B̃ we have

T̃Het(y) = 0. Hence, T̃Het(y) is bounded from above, and is trivially bounded from below as

T̃Het(y) ≥ 0 for every y ∈ Rn.

(iii) In the following examples we always set µ0 = 0 (i.e., r = 0) for the sake of simplicity.

Remark D.2 provides an example where T̃Het is constant on Rn\B̃. This example has q = k = 1.

It can be easily extended to the case q = k ≥ 2 by considering a design matrix X, the columns

of which are given by the first k standard basis vectors, by setting R = Iq, and d̃i = 1 for every

i = 1, . . . , n. Then T̃Het(y) = k for every y ∈ Rn\B̃ = {y ∈ Rn : y1 ̸= 0, . . . , yk ̸= 0}. An

example where T̃Het is not constant on Rn\B̃ is in case q = k = 1 given by the location model:

Here T̃Het(y) = (
∑n

t=1 yt)
2/
∑n

t=1 y
2
t for every y ∈ Rn\B̃ = {y ∈ Rn : y ̸= 0}, which obviously is

not constant (as n > k = 1).76 This example can again be extended to the case q = k > 1 as

follows: Let R = Iq and let X be the design matrix where each of the columns correspond to a

dummy variable describing membership in one of k disjoint groups Gj , each group of the same

cardinality n1 with n1 > 1. Consequently, n = kn1. W.l.o.g., we may assume that the elements

G1 have the lowest indices, followed by the elements of G2, and so on. It is then easy to see that

T̃Het(y) =
k∑

j=1

[
(
∑

t∈Gj

yt)
2/
∑

t∈Gj

y2t

]
(D.1)

for y ∈ Rn\B̃ =
⋂k

j=1{y ∈ Rn : yt ̸= 0 for at least one t ∈ Gj}. Obviously, the expression in

(D.1) is not constant: Choosing y = e gives the value kn1 = n, whereas choosing y such that

y1 = yn1+1 = y2n1+1 = . . . = y(k−1)n1+1 = 1 with all the other coordinates being zero gives a

value of k < n = kn1 since n1 > 1.

Proof of Theorem 6.12: From the definition of C∗ we see that C∗ is nonnegative and

finite. Let C be arbitrary but satisfying C∗ < C < supy∈Rn T̃Het(y). We can then choose

y0 ∈ Rn with T̃Het(y0) > C > 0. In view of the definition of T̃Het it follows that y0 /∈ B̃, and

hence T̃Het is continuous at y0. We can thus find an open neighborhood U(y0) of y0 in Rn such

that T̃Het is larger than C on U(y0). In particular, Pµ0,Σ(T̃Het ≥ C) ≥ Pµ0,Σ(U(y0)) > 0 for

every µ0 ∈M0 and every Σ ∈ CHet. This establishes α
∗ > 0. Choose δ > 0 such that δ ≤ α and

δ < α∗. Then the size of the rejection region {T̃Het ≥ C♢(δ)} is exactly equal to δ by Parts (b)

and (c) of Theorem 6.4. Consequently, {T̃Het ≥ C♢(δ)} is not a λRn -null set. By construction,

C♢(α) ≤ C♢(δ) holds, and hence {T̃Het ≥ C♢(α)} contains {T̃Het ≥ C♢(δ)}, which completes

the proof. ■

Proof of Theorem A.5: We first prove Part (b). We wish to apply Part A of Proposition

5.12 of Pötscher and Preinerstorfer (2018) with C = C(n1,...,nm), T = T̃Het, L = Mlin
0 , and

V = {0}. First, note that dim(Mlin
0 ) = k − q < n. Second, under Assumption 2, T̃Het is clearly

Borel-measurable and is continuous on the complement of B̃, where B̃ is a closed λRn -null set

76In this example condition (17) is satisfied as ei(n) /∈ B̃ for every i = 1, . . . , n. To arrive at an example
where again T̃Het is not constant on Rn\B̃ but where condition (17) is not satisfied, consider the case where
X = (1, . . . , 1, 0)′ with n ≥ 2. Observe that then I1(Mlin

0 ) = {1, . . . , n}.
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(see Lemma 6.1 and the paragraph following this lemma). Because of Remark 6.2, we hence see

that the general assumptions on T = T̃Het, on N† = B̃, on L = Mlin
0 , as well as on V = {0}

in Proposition 5.12 of Pötscher and Preinerstorfer (2018) are satisfied. Next, observe that the

validity of condition (A.7) clearly does not depend on the choice of µ0 ∈M0 since B̃+Mlin
0 = B̃

as shown in Lemma 6.1. For the same reason condition (A.7) can equivalently be written as

µ0 + span

({
Π
(Mlin

0 )
⊥ei(n) : i ∈ (n+

j−1, n
+
j ]

})
⫅̸ B̃

for every j = 1, . . . ,m, such that (n+
j−1, n

+
j ]∩ I1(Mlin

0 ) ̸= ∅, since Π
(Mlin

0 )
⊥ei(n) and ei(n) differ

only by an element of Mlin
0 . In view of Proposition B.2 in Appendix B, this implies that µ0 + S

for any S ∈ J(Mlin
0 ,C(n1,...,nm)) is not contained in B̃, and thus not in N†. Since µ0 + S is an

affine space and N† = B̃ is a finite union of proper affine spaces under Assumption 2 as discussed

in Lemma 6.1, we may conclude (cf. Corollary 5.6 in Pötscher and Preinerstorfer (2018) and

its proof) that λµ0+S(N
†) = 0 for every S ∈ J(Mlin

0 ,C(n1,...,nm)) and every µ0 ∈ M0. This

completes the verification of the assumptions of Proposition 5.12 in Pötscher and Preinerstorfer

(2018) that are not specific to Part A (or Part B) of this proposition. We next verify the

assumptions specific to Part A of this proposition: Assumption (a) is satisfied (even for every

C ∈ R) as a consequence of Part (d) of Lemma D.1 (note that we have assumed that T̃Het is not

constant on Rn\B̃). And Assumption (b) in Part A follows from Part (c) of Lemma D.1. Part A

of Proposition 5.12 of Pötscher and Preinerstorfer (2018) now immediately delivers claim (A.6),

since C∗ < ∞ as noted in that proposition. That C∗ and α∗ do not depend on the choice of

µ0 ∈M0 is an immediate consequence of G(M0)-invariance of T̃Het. Also note that α∗ as defined

in the theorem coincides with α∗ as defined in Proposition 5.12 of Pötscher and Preinerstorfer

(2018) in view of G(M0)-invariance of T̃Het. In case α < α∗, the remaining claim in Part (b)

of the theorem, namely that equality can be achieved in (A.3), follows from the definition of C∗

in Lemma 5.11 of Pötscher and Preinerstorfer (2018) and from Part A.2 of Proposition 5.12 of

Pötscher and Preinerstorfer (2018) (and the observation immediately following that proposition

allowing one to drop the suprema w.r.t. µ0 and σ2, and to set σ2 = 1); in case α = α∗ < 1, it

follows from Remarks 5.13(i),(ii) in Pötscher and Preinerstorfer (2018) using Part (d) of Lemma

D.1. [In case α∗ = 0, there is nothing to prove.]

The proof of Part (a) proceeds similarly, but with some differences: Noting that T̃uc is

clearly Borel-measurable and is continuous on the complement of M0, where M0 is a closed

λRn -null set, and using Remark 6.2, we now see that the general assumptions on T = T̃uc, on

N† = M0, on L = Mlin
0 , as well as on V = {0} in Proposition 5.12 of Pötscher and Preinerstorfer

(2018) are satisfied (again with C = C(n1,...,nm)). Let now S ∈ J(Mlin
0 ,C(n1,...,nm)). In view

of Proposition B.2 in Appendix B, S must then contain an element of the form Π
(Mlin

0 )
⊥ei(n)

for some i ∈ I1(M
lin
0 ). Observe that Π

(Mlin
0 )

⊥ei(n) /∈ Mlin
0 must hold, since otherwise we

would have ei(n) ∈ Mlin
0 , contradicting i ∈ I1(M

lin
0 ). It follows that S ⫅̸ Mlin

0 , and thus

µ0 + S ⫅̸ M0 for every µ0 ∈ M0. Since µ0 + S is an affine space and N† = M0 is a proper
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affine space we may conclude (cf. Corollary 5.6 in Pötscher and Preinerstorfer (2018) and its

proof) that λµ0+S(N
†) = 0 for every S ∈ J(Mlin

0 ,C(n1,...,nm)) and every µ0 ∈ M0. We have

thus now completed the verification of the assumptions of Proposition 5.12 of Pötscher and

Preinerstorfer (2018) that are not specific to Part A (or Part B) of this proposition. We next

verify the assumptions specific to Part A of this proposition: Verification of Assumptions (a)

and (b) in Part A of Proposition 5.12 of Pötscher and Preinerstorfer (2018) proceeds similar as

before except for now using Parts (b) and (a) of Lemma D.1. Part A of Proposition 5.12 of

Pötscher and Preinerstorfer (2018) now immediately delivers claim (A.5), again since C∗ < ∞
as noted in that proposition.77 Again, G(M0)-invariance of T̃uc implies that C∗ and α∗ do not

depend on the choice of µ0 ∈ M0, and that α∗ as defined in the theorem coincides with α∗ as

defined in Proposition 5.12 of Pötscher and Preinerstorfer (2018). The remaining claim in Part

(a) is proved completely analogous as the corresponding claim in Part (b) except for now using

Part (b) of Lemma D.1.

We finally prove Part (c): The claims follow from Remark 5.10 in Pötscher and Preinerstorfer

(2018) and Lemma D.1; cf. also Appendix A.3. ■

E Appendix: Algorithms

In this appendix, we discuss in more detail algorithms for determining (i) rejection probabilities,

(ii) the size of a test based on one of the test statistics THet, Tuc, T̃Het, or T̃uc together with

a given candidate critical value, and (iii) size-controlling critical values. We discuss these algo-

rithms under the Gaussianity assumption made in Section 2, but recall from Section 7.1 that the

algorithms as given here can also be used to calculate null rejection probabilities, size, and size-

controlling critical values in the elliptically symmetric case without any changes; similarly, the

algorithms given here can also be used to calculate the size and size-controlling critical values in

the semiparametric model discussed in (iv) of Section 7.1 as they stand. Furthermore, we restrict

ourselves to the heteroskedasticity model CHet; adapting the algorithms to subsets C of CHet is

rather straightforward (basically one has to appropriately constrain the optimization routines

involved, appropriately redefine some of the quantities like Clow, and refer to the size-control

conditions pertinent to the given heteroskedasticity model C).

E.1 Computing rejection probabilities

Suppose that a G(M0)-invariant test statistic T : Rn → R has the following property: for some

(and hence any) µ0 ∈M0 and a critical value C ∈ R, there exists a symmetric n×n matrix AC ,

such that

T (µ0 + z) ≥ C ⇔ z′ACz ≥ 0 holds for λRn -almost every z ∈ Rn. (E.1)

77This argument is actually superfluous since T̃uc is bounded as noted in Section 6.2.1. However, verification
of the assumptions of Proposition 5.12 in Pötscher and Preinerstorfer (2018) is essential for the proof of the other
claims in Part(a) of Theorem A.5.
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If this property is satisfied, then for all choices of Σ ∈ CHet, µ0 ∈M0, µ ∈M, and σ2 ∈ (0,∞),

setting ν := σ−1Σ−1/2(µ− µ0), we may write

Pµ,σ2Σ({z ∈ Rn : T (z) ≥ C}) = Pν,In({ζ ∈ Rn : ζ ′Σ1/2ACΣ
1/2ζ ≥ 0}); (E.2)

in case µ ∈M0, we may set µ0 = µ to further simplify the right-hand-side in (E.2) to

P0,In({ζ ∈ Rn : ζ ′Σ1/2ACΣ
1/2ζ ≥ 0}). (E.3)

The probability that a Gaussian quadratic form is not less than 0 (such as (E.2) or (E.3))

can numerically be determined by standard algorithms such as Davies (1980). Relation (E.1)

can thus be exploited for efficiently computing rejection probabilities (for a given critical value),

and thus plays an instrumental rôle in numerically determining the size of a test, size-controlling

critical values, or the power function of a test.

For the important case q = 1 we now show that the above approach can indeed be used. It

follows from the subsequent lemma that for any critical value C the property in (E.1) holds for

the following test statistics: (i) THet provided Assumption 1 holds; (ii) Tuc; (iii) T̃Het provided

Assumption 2 holds; (iv) T̃uc. Recall from Lemmata 3.1 and 6.1 that under Assumption 1

(Assumption 2, respectively), the set B (B̃, respectively) is a λRn -null set. Note that v defined

in the lemma satisfies v ̸= 0.

Lemma E.1. Suppose q = 1. Let v = vR,X := X(X ′X)−1R′. Then, for every C ∈ R and every

µ0 ∈M0, we have:

(a) If µ0 + z /∈ B, then THet(µ0 + z) ≥ C (≤ C) is equivalent to z′AHet,Cz ≥ 0 (≤ 0), where

AHet,C := vv′ − CΠspan(X)⊥ diag
(
v21d1, . . . , v

2
ndn

)
Πspan(X)⊥ . (E.4)

(b) If µ0 + z /∈ span(X), then Tuc(µ0 + z) ≥ C (≤ C) is equivalent to z′Auc,Cz ≥ 0 (≤ 0), where

Auc,C := vv′ − C
v′v

n− k
Πspan(X)⊥ . (E.5)

(c) If µ0 + z /∈ B̃, then T̃Het(µ0 + z) ≥ C (≤ C) is equivalent to z′ÃHet,Cz ≥ 0 (≤ 0), where

ÃHet,C := vv′ − CΠ(Mlin
0 )⊥ diag

(
v21 d̃1, . . . , v

2
nd̃n

)
Π(Mlin

0 )⊥ . (E.6)

(d) If µ0 + z /∈M0, then T̃uc(µ0 + z) ≥ C (≤ C) is equivalent to z′Ãuc,Cz ≥ 0 (≤ 0), where

Ãuc,C := vv′ − C
v′v

n− (k − 1)
Π(Mlin

0 )⊥ . (E.7)

Proof: We first observe that there is nothing to prove in Part (a) (Part (c), respectively) if

Assumption 1 (Assumption 2, respectively) is violated, since then B = Rn (B̃ = Rn, respectively)
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by Lemma 3.1 (Lemma 6.1, respectively). In the following we hence may assume for Part (a)

(Part (c), respectively) that Assumption 1 (Assumption 2, respectively) hold, in which case

B (B̃, respectively) is a λRn -null set. The expressions in (E.4), (E.5), (E.6), and (E.7) now

follow directly from the definitions of the test statistics since q = 1, recalling in particular that

û(µ0+z) = Πspan(X)⊥(µ0+z) = Πspan(X)⊥z, and ũ(µ0+z) = Π(Mlin
0 )⊥((µ0+z)−µ0) = Π(Mlin

0 )⊥z,

and noting that for q = 1

Rβ̂(µ0 + z) = r + v′z,

Ω̂Het(µ0 + z) = z′Πspan(X)⊥ diag(v21d1, . . . , dnv
2
n)Πspan(X)⊥z,

Ω̃Het(µ0 + z) = z′Π(Mlin
0 )⊥ diag(v21 d̃1, . . . , d̃nv

2
n)Π(Mlin

0 )⊥z,

σ̂2(µ0 + z) =
z′Πspan(X)⊥z

n− k
, σ̃2(z) =

z′Π(Mlin
0 )⊥z

n− (k − 1)

hold. ■

Remark E.2. The algorithm in Davies (1980) applied to (E.2) requires that the matrix AC is

not the zero matrix. In (i)-(iii) below we always have q = 1.

(i) It is easy to see that AHet,C , Auc,C , and Ãuc,C are never equal to the zero matrix: Note

that v′AHet,Cv = (v′v)2 > 0, since v ∈ span(X) and v ̸= 0. The same argument applies to

Auc,C . Furthermore, for C = 0 the matrix Ãuc,C is obviously not the zero matrix; for C ̸= 0 let

w ∈ (Mlin
0 )⊥, w ̸= 0, w orthogonal to v, then w′Ãuc,Cw = −w′wCv′v/(n − (k − 1)) ̸= 0 (note

that such a w exists, since v ∈ (Mlin
0 )⊥ and dim((Mlin

0 )⊥) = n− (k − q) > n− k ≥ 1 hold).

(ii) For ÃHet,C we have the following: Since v ∈ (Mlin
0 )⊥ holds, v′ÃHet,Cv = (v′v)2 −

Cv′ diag(v21 d̃1, . . . , v
2
nd̃n)v, which is zero only for C = C0 where C0 =

∑n
i=1 v

2
i /
∑n

i=1 v
4
i d̃i (note

that the ratio is well-defined since all the d̃i are positive and since v ̸= 0). Hence, ÃHet,C is

not the zero matrix, except possibly for C = C0. We now show that – in case Assumption

2 is satisfied – ÃHet,C0
= 0 is equivalent to T̃Het(y) being constant for y ∈ Rn\B̃: Suppose

ÃHet,C0
= 0. Since C0 > 0, we obtain Π(Mlin

0 )⊥ diag(v21 d̃1, . . . , v
2
nd̃n)Π(Mlin

0 )⊥ = vv′/C0 and thus

ÃHet,C = vv′(1− C/C0). Fix µ0 ∈M0 arbitrary. For every C > C0 we have z′ÃHet,Cz ≤ 0 for

every z, and hence for every z with µ0 + z /∈ B̃ (note that Rn\B̃ is nonempty under Assumption

2). By Lemma E.1 we can conclude that T̃Het(µ0 + z) ≤ C for every µ0 + z /∈ B̃. By the same

token, we obtain that T̃Het(µ0 + z) ≥ C for every µ0 + z /∈ B̃ when C < C0 holds. We conclude

that T̃Het(µ0+z) = C0 for every µ0+z /∈ B̃, i.e., T̃Het(y) = C0 for every y ∈ Rn\B̃. To prove the

converse, assume T̃Het(y) = C1 for every y /∈ B̃. Fix µ0 ∈M0 arbitrary. Then T̃Het(µ0+ z) = C1

for every z with µ0 + z /∈ B̃. By Lemma E.1 we get z′ÃHet,Cz ≥ 0 (≤ 0, respectively) for

C ≤ C1 (C ≥ C1, respectively) for every z /∈ B̃ − µ0. Under Assumption 2 the set B̃ − µ0 is a

λRn -null set, hence its complement is dense in Rn. By continuity of the quadratic forms, we get

z′ÃHet,Cz ≥ 0 (≤ 0, respectively) for C ≤ C1 (C ≥ C1, respectively) for all z ∈ Rn. We thus

obtain z′ÃHet,C1
z = 0 for every z ∈ Rn. Since ÃHet,C1

is symmetric, ÃHet,C1
= 0 follows and

C1 = C0 must hold.
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(iii) Before applying the algorithm in Davies (1980) to (E.2) with T = THet and AC = AHet,C

we first check that Assumption 1 holds since otherwise Part (a) of the preceding lemma does

not apply. In case of T = T̃Het and AC = ÃHet,C we check that Assumption 2 holds for similar

reasons; and, in case this assumption is satisfied, we then always also compute C0 and check

numerically that ÃHet,C0 (and hence any ÃHet,C) is not the zero matrix.

In case q > 1, the algorithm in Davies (1980) could also be used to compute rejection

probabilities for the tests based on Tuc and T̃uc as is easy to see. Since this is not so for THet

and T̃Het, we do not proceed in this way for reasons of comparability. In case q > 1 we thus

compute the required rejection probabilities by Monte Carlo.

E.2 Determining the size of a test

For simplicity throughout this subsection T denotes any one of the test statistics UC, HC0-HC4,

UCR, HC0R-HC4R. In case of HC0-HC4 we assume in our discussion that the design matrix

X and R are such that Assumption 1 is satisfied, and in case of HC0R-HC4R we assume that

Assumption 2 holds and that the test statistic is not constant on Rn\B̃.78 These conditions should

be checked either theoretically or numerically before using the algorithms described below. Such

numerical checks are implemented in the R-package hrt (Preinerstorfer (2021)) realizing these

algorithms.

We now discuss algorithms for determining the size (over CHet) of the test that rejects if

T ≥ C for a given critical value C > 0 (note that any C ≤ 0 leads to a trivial test that always

rejects). By G(M0)-invariance of T , for any given µ0 ∈M0, the size of this test simplifies to

sup
Σ∈CHet

Pµ0,Σ(T ≥ C), (E.8)

which is what the algorithms described below compute numerically.

Before trying to determine the size numerically, it is advisable to check whether C is not less

than the pertinent lower bound C∗ for size-controlling critical values obtained in our theoretical

results in Propositions 5.5 and 6.7 (and the attending footnotes), since otherwise one already

knows that the size of the test is equal to 1, and hence there is no need to run the algorithm. The

implementations of the algorithms in the R-package hrt (Preinerstorfer (2021)) have an option

that provides such a check and outputs 1 if the check fails without running the algorithm.

Of course, the design matrixX, the restriction (R, r), and the particular choice of test statistic

from the above list, are inputs to all the algorithms that are discussed in this and the subsequent

section E.3, but we do not show these inputs explicitly in the descriptions of the algorithms given

further down.

78This rules out trivial cases only.
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E.2.1 Case q = 1

In the important special case q = 1 we can use (E.3) and Lemma E.1 to compute the rejection

probabilities Pµ0,Σ(T ≥ C) appearing in (E.8) efficiently via, e.g., Davies (1980) (referred to as

DA in what follows). A generic algorithm based on this observation is summarized in Algorithm

1.

Algorithm 1 Computing the size in case q = 1.

1: Input A real number C > 0 and positive integers M0 ≥M1 ≥M2.
2: Stage 0: Initial value search
3: for j = 1 to j = M0 do
4: Choose a candidate Σj ∈ CHet.
5: Obtain p̃j := Pµ0,Σj

(T ≥ C) using DA.
6: end for
7: Rank the candidates Σj according to the value (from largest to smallest) of the corresponding

quantities p̃j to obtain Σ1:M0
, . . . ,ΣM1:M0

, the initial values for the next stage.
8: Stage 1: Coarse localized optimizations
9: for j = 1 to j = M1 do

10: Obtain Σ∗
j by running a numerical algorithm for the optimization problem (E.8) initialized

at Σj:M0 and obtain p̄j,Σ∗
j
:= Pµ0,Σ

∗
j
(T ≥ C) (using DA to evaluate probabilities).

11: end for
12: Rank the obtained matrices Σ∗

j according to the value (from largest to smallest) of the
corresponding p̄j,Σ∗

j
to obtain Σ∗

1:M1
, . . . ,Σ∗

M2:M1
, the initial values for the next stage.

13: Stage 2: Refined localized optimization
14: for j = 1 to j = M2 do
15: Obtain Σ∗∗

j by running a (refined) numerical algorithm for the optimization problem (E.8)
initialized at Σ∗

j:M1
and obtain ¯̄pj,Σ∗∗

j
:= Pµ0,Σ

∗∗
j
(T ≥ C) (using DA to evaluate probabilities).

16: end for
17: Return maxj=1,...,M2

¯̄pj,Σ∗∗
j

Remark E.3. The initial values Σj in Stage 0 of Algorithm 1 can, for example, be obtained

randomly (e.g., by sampling the diagonal elements of Σj from a uniform distribution on the unit

simplex in Rn). Such random choices may then be supplemented by “special” elements of CHet,

e.g., matrices that are close to ei(n)ei(n)
′, i = 1, . . . , n, or the matrix n−1In, or a matrix Σ that

maximizes the expectation of the quadratic form y 7→ y′Σ1/2ACΣ
1/2y under P0,In (where AC is

obtained via Lemma E.1, cf. also the discussion preceding that lemma), the latter choice being

motivated by (E.3). For the particular choice of initial values used in the R-package hrt and in

our numerical calculations see Preinerstorfer (2021) and Appendix F.

Remark E.4. If Algorithm 1 is to be applied to a relatively large critical value C (say C larger

than 5 times the (1 − α)-quantile of the cdf of P0,IN ◦ T ), then one may run Algorithm 1 on

a smaller critical value first (e.g., the just mentioned quantile), and use the covariance matrix

realizing the maximal rejection probability for this smaller critical value (in line 17 of Algorithm

1) as an additional initial value when running Algorithm 1 for determining the size corresponding
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to the originally given C. This can help to ameliorate numerical difficulties due to the rejection

probabilities being close to zero over large portions of CHet. The just described procedure is

available as an option in the R-package hrt.

Remark E.5. The concrete choice of the numerical optimization algorithm used in Stages 1

and 2 of Algorithm 1 is left unspecified here, but may, for example, be a constrained Nelder

and Mead (1965) algorithm (as provided in R’s “constrOptim” function), where in Stage 2 the

parameters in this algorithm (and in principle also in DA) should be chosen to guarantee a higher

accuracy. For the particular choice of optimization routines used in the R-package hrt and in

our numerical calculations see Preinerstorfer (2021) and Appendix F.

Remarks E.3 and E.5 also apply to other algorithms introduced further down, and will not

be repeated.

E.2.2 General case

An algorithm that is similar to Algorithm 1, but uses Monte-Carlo simulation instead of DA to

compute the rejection probabilities Pµ0,Σ(T ≥ C) is discussed in Algorithm 2; this algorithm

is a modification of Algorithm 2 in Pötscher and Preinerstorfer (2018).79 In Algorithm 2 the

number of replications used in the Monte-Carlo simulations (and thus their accuracy but also their

runtime) is increased in each stage, leading to an improved accuracy in the rejection probabilities

computed. While this algorithm is also applicable in case q = 1, Algorithm 1 is to be preferred

(and is automatically applied by the R-package hrt in this case), as it is based on a preferable

way of computing the rejection probabilities.

E.3 Determining smallest size-controlling critical values

Again, in this subsection T denotes any one of the test statistics UC, HC0-HC4, UCR, HC0R-

HC4R. In case of HC0-HC4 we assume in our discussion that the design matrix X and R are

such that Assumption 1 is satisfied, and in case of HC0R-HC4R we assume that Assumption

2 holds and that the test statistic is not constant on Rn\B̃.80 Furthermore, we assume that

size-controlling critical values exist. These conditions should be checked either theoretically or

numerically before using the algorithms described below. The last mentioned existence can be

guaranteed by checking (theoretically or numerically) the respective sufficient conditions for size

control in Theorems 5.1 and 6.4.81 We note that the implementations of the algorithms presented

below in the R-package hrt (Preinerstorfer (2021)) include such numerical checks.

79This algorithm involves evaluating the test statistic T . Since the definition of T depends on invertibility of a
covariance matrix estimator, an invertibility check is required. We use the same invertibility check as discussed
in the second paragraph in Appendix E.3 of Pötscher and Preinerstorfer (2022), with a tolerance parameter that
can be specified by the user.

80This rules out trivial cases only.
81In case the respective sufficient conditions are violated, but size-controlling critical values nevertheless exist

(as, e.g., in Example 5.5 or in Remark 6.10), the algorithm still works.
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Algorithm 2 Computing the size for general q.

1: Input A real number C > 0 and positive integers M0 ≥M1 ≥M2, N0 ≤ N1 ≤ N2.
2: Stage 0: Initial value search
3: for j = 1 to j = M0 do
4: Generate a pseudorandom sample Z1, . . . , ZN0

from P0,In .
5: Obtain a candidate Σj ∈ CHet.

6: Compute p̃j = N−1
0

∑N0

i=1 1[C,∞)(T (µ0 +Σ
1/2
j Zi)).

7: end for
8: Rank the candidates Σj according to the value (from largest to smallest) of the corresponding

quantities p̃j to obtain Σ1:M0 , . . . ,ΣM1:M0 , the initial values for the next stage.
9: Stage 1: Coarse localized optimizations

10: for j = 1 to j = M1 do
11: Generate a pseudorandom sample Z1, . . . , ZN1

from P0,In .

12: Define p̄j,Σ = N−1
1

∑N1

i=1 1[C,∞)(T (µ0 +Σ1/2Zi)) for Σ ∈ CHet.
13: Obtain Σ∗

j by running a numerical optimization algorithm for the problem supΣ∈CHet
p̄j,Σ

initialized at Σj:M0 .
14: end for
15: Rank the obtained numbers Σ∗

j according to the value (from largest to smallest) of the
corresponding p̄j,Σ∗

j
to obtain Σ∗

1:M1
, . . . ,Σ∗

M2:M1
, the initial values for the next stage.

16: Stage 2: Refined localized optimization
17: for j = 1 to j = M2 do
18: Generate a pseudorandom sample Z1, . . . , ZN2 from P0,In .

19: Define ¯̄pj,Σ = N−1
2

∑N2

i=1 1[C,∞)(T (µ0 +Σ1/2Zi)) for Σ ∈ CHet.
20: Obtain Σ∗∗

j by running a numerical optimization algorithm for the problem supΣ∈CHet
¯̄pj,Σ

initialized at Σ∗
j:M1

.
21: end for
22: Return maxj=1,...,M2

¯̄pj,Σ∗∗
j
.
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We now proceed to discussing several algorithms for determining the smallest critical value

C♢(α) such that the size of the test, which rejects if T ≥ C♢(α), does not exceed α (0 < α < 1).82

[In fact, for C♢(α) the size then equals α provided a critical value that results in size equal to α

actually exists.] Note that C♢(α) > 0 must hold, in view of Remarks 5.4 and 6.6 since α < 1.

By G(M0)-invariance, for some fixed µ0 ∈M0, the algorithms numerically compute the smallest

critical value that satisfies

sup
Σ∈CHet

Pµ0,Σ(T ≥ C) ≤ α, (E.9)

cf. the discussion surrounding (E.8). For later use we denote by FΣ the cdf of Pµ0,Σ ◦ T , which
by G(M0)-invariance does not depend on the particular choice for µ0 ∈M0.

E.3.1 Computing smallest size-controlling critical values via line search based on

algorithms in Section E.2

Given an algorithm A : (0,∞) → [0, 1] that for C > 0 returns the size of the test that rejects if

T ≥ C, one can use a line-search algorithm to determine the smallest critical value C = C♢(α)

satisfying A(C) ≤ α. To this end, one starts at the lower bound Clow = max(C∗, Chom), where

C∗ is given in the pertinent parts of Theorems 5.1 and 6.4, respectively (cf. also Propositions

5.5 and 6.7, respectively, and the attending footnotes), and Chom denotes the smallest 1 − α

quantile of FIn , i.e., of the cdf of the test statistic under homoskedasticity. Note that then

Pµ0,In(T ≥ Chom) = α and that Pµ0,In(T ≥ C) > α for C < Chom (to see this note that FIn

is continuous as {T = C} is a λRn -null set for all real C, cf. Lemma 5.16 in Pötscher and

Preinerstorfer (2018) and Lemma D.1 in Appendix D). Furthermore, Chom > 0 (since T ≥ 0 and

{T = 0} is a λRn-null set), and consequently Clow > 0 holds. Starting from Clow, one then keeps

increasing the critical value “in a reasonable way” until one obtains, for the first time, a C such

that A(C) ≤ α holds. This procedure is summarized in Algorithm 3, in which the particular

algorithm A used is an input to Algorithm 3. For A one may either use Algorithm 1 if q = 1, or

Algorithm 2 for general q. Note that one may need to terminate the while-loop after a maximal

number of iterations.

Remark E.6. (i) Note that a matrix Σ∗∗ as required for the while-loop in Algorithm 3 can easily

be obtained by implementing Algorithm 1 or 2 in such a fashion as to also return the covariance

matrix for which the maximal rejection probability is attained in the respective Stage 2.

(ii) A smallest C+ as required in line 5 of Algorithm 3 indeed exists since {T = C} is a

λRn -null set for all real C as noted before.

(iii) For details regarding the computation of Clow in the R-package hrt see Preinerstorfer

(2021) and Appendix F.2.

82Such a smallest size-controlling critical value indeed exists under the assumptions of this subsection (which
includes existence of a size-controlling critical value) in view of Appendix A.3. [Under the sufficient conditions
for size control in the respective theorems, this can also be read off directly from these theorems.]
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Algorithm 3 Numerical approximation of the smallest size-controlling critical value via a line
search algorithm.

1: Input α ∈ (0, 1), A, Clow, ϵ ∈ [0, 1− α) (ϵ a small tolerance parameter).
2: C ← Clow

3: while A(C) > α+ ϵ do
4: Let Σ∗∗ be such that Pµ0,Σ

∗∗(T ≥ C) ≈ A(C).
5: Determine, by an upward line search initialized at C, the smallest value C+ such

that Pµ0,Σ
∗∗(T ≥ C+) ≤ α .

6: C ← C+.
7: end while
8: return C

E.3.2 Computing smallest size-controlling critical values via quantile maximization

For completeness and comparison with Pötscher and Preinerstorfer (2018), we briefly describe an

algorithm that is a modification of Algorithm 1 in Pötscher and Preinerstorfer (2018). In contrast

to the algorithm discussed in the previous section, it does not make use of size-computations,

but determines the smallest size-controlling critical value as

sup
Σ∈CHet

F−1
Σ (1− α) (E.10)

where F−1
Σ denotes the quantile function of the cdf FΣ. That (E.10) indeed gives the smallest

size-controlling critical value is not difficult to see keeping in mind that Pµ0,Σ(T = C) = 0 for

every real C, every µ0 ∈M0, and every Σ ∈ CHet (in view of λRn({T = C}) = 0 as noted before).

The algorithm is summarized in Algorithm 4.

F Appendix: Details concerning numerical computations

in Section 11

F.1 Details concerning Section 11.1

To obtain Tables 1 and 2, for each of the test statistics UC, HC0-HC4, UCR, HC0R-HC4R,

we repeated the procedure summarized in Algorithm 5 below 15 times (recall that n = 25,

R = (0, 1), and r = 0). Each time this algorithm returned a design matrix, the corresponding

size of the rejection region {T ≥ Cχ2,0.05} was obtained for the specific test statistic used, as

well as a corresponding lower bound for the smallest size-controlling critical value. Then, we

computed the maximum out of the 15 lower bounds, which (for each test statistic) is reported

in Table 1. We also computed the maximum out of the 15 sizes, which (for each test statistic)

is reported in Table 2. We also did the same with the critical value Cχ2,0.05 replaced by the

95%-quantile of an F1,n−k-distribution (n− k = 23), the corresponding results being reported in

Table 3.
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Algorithm 4 Numerical approximation of the smallest size-controlling critical value via quan-
tiles.

1: Input Positive integers M0 ≥M1 ≥M2, N0 ≤ N1 ≤ N2.
2: Stage 0: Initial value search
3: for j = 1 to j = M0 do
4: Generate a pseudorandom sample Z1, . . . , ZN0

from P0,In .
5: Obtain a candidate Σj ∈ CHet.

6: Compute F̃−1
j (1− α) where F̃j(x) = N−1

0

∑N0

i=1 1(−∞,x](T (µ0 +Σ
1/2
j Zi)) for x ∈ R.

7: end for
8: Rank the candidates Σj according to the value (from largest to smallest) of the corresponding

quantities F̃−1
j (1− α) to obtain Σ1:M0

, . . . ,ΣM1:M0
, the initial values for the next stage.

9: Stage 1: Coarse localized optimizations
10: for j = 1 to j = M1 do
11: Generate a pseudorandom sample Z1, . . . , ZN1 from P0,In .

12: Define F̄j,Σ(x) = N−1
1

∑N1

i=1 1(−∞,x](T (µ0 +Σ1/2Zi)) for x ∈ R and Σ ∈ CHet.
13: Obtain Σ∗

j by running a numerical optimization algorithm for the problem

supΣ∈CHet
F̄−1
j,Σ(1− α) initialized at Σj:M0 .

14: end for
15: Rank the obtained Σ∗

j according to the value (from largest to smallest) of the corresponding

F̄−1
j,Σ∗

j
(1− α) to obtain Σ∗

1:M1
, . . . ,Σ∗

M2:M1
, the initial values for the next stage.

16: Stage 2: Refined localized optimization
17: for j = 1 to j = M2 do
18: Generate a pseudorandom sample Z1, . . . , ZN2 from P0,In .

19: Define ¯̄Fj,Σ(x) = N−1
2

∑N2

i=1 1(−∞,x](T (µ0 +Σ1/2Zi)) for x ∈ R and Σ ∈ CHet.
20: Obtain Σ∗∗

j by running a numerical optimization algorithm for the problem

supΣ∈CHet

¯̄F−1
j,Σ(1− α) initialized at Σ∗

j:M1
.

21: end for
22: Return maxj=1,...,M2

¯̄F−1
j,Σ∗∗

j
(1− α).
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In the description of Algorithm 5, the function f(x) is an abbreviation for C∗ = max{T (µ0+

ei(n)) : i ∈ I1(M
lin
0 )}, the lower bound for the size-controlling critical values (cf. Propositions

5.5, 6.7, and the attending footnotes), with the n×2 design matrix X given by an intercept e, say,

as the first column and a regressor x as the second one. Note that computing C∗ necessitates

the evaluation of the test statistic on a finite set of elements of Rn, and then determining

the maximum among the values obtained.83 Concerning the evaluation of test statistics, the

definition of which depends on the invertibility of a covariance matrix estimator, we used the

same invertibility check as discussed in the second paragraph in Appendix E.3 of Pötscher and

Preinerstorfer (2022) with a tolerance parameter of 10−8. For R = (0, 1) and for each matrix X

returned by Algorithm 5 all relevant assumptions (i.e., the assumptions in the pertinent parts of

Theorems 5.1 and 6.4, respectively) have been checked numerically.

Algorithm 5 Search procedure used for generating Tables 1, 2, and 3.

1: Initialize x← 0 ∈ Rn.
2: for i = 1 to i = 5 do
3: Generate an n-dimensional pseudo-random vector z of independent coordinates each from

a log-standard normal distribution.
4: Run a Nelder and Mead (1965) algorithm initialized at z to maximize f over Rn (with

a maximal number of iterations of 50, and otherwise the default parameters in R’s “optim”
function) to obtain z∗, say.

5: if i = 1, or i ≥ 2 and f(z∗) > f(x) then
6: x← z∗.
7: end if
8: if f(x) > 4 then
9: Go to line 12.

10: end if
11: end for
12: Use Algorithm 1 to determine the size of the test for the test statistic under consideration for

the design matrix (e, x) and based on either of the following two critical values: (i) Cχ2,0.05

and (ii) the 95% quantile of an F1,n−k distribution.
13: return x, f(x), and the two sizes determined in the previous step.

Algorithm 5 uses Algorithm 1 in determining the size of a given test. We made the following

choices concerning the parameters required in Algorithm 1 (and used default settings if not

mentioned otherwise):

1. The candidates in Stage 0 of Algorithm 1 were determined by combining the suggestions

in Remarks E.3 and E.4. That is, denoting Mp = 200 000, we combined: (i) sampling

Mp/4 − 1 points from the unit simplex in Rn, each corresponding to the diagonal of a

83In the present context Mlin
0 is spanned by the intercept. Thus, I1(Mlin

0 ) = {1, . . . , n} holds since n ≥ 2.
In general, to determine I1(Mlin

0 ) numerically, the algorithm implemented in the R-package hrt (Preinerstorfer
(2021)) first obtains a basis for Mlin

0 , and then checks for every i = 1, . . . , n whether or not the rank of the matrix
obtained by appending the basis with ei(n) increases. This is done by a rank computation analogous to the one
described in the last-but-one paragraph of Appendix E.3 of Pötscher and Preinerstorfer (2022), using the same
function “rank” referred to there, and with tolerance parameter 10−8.
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matrix in CHet, and sampling 3Mp/4 + 1 points ξ = (ξ1, . . . , ξn), say, analogously, each

point ξ giving rise to a diagonal of a matrix in CHet via (ξ21, . . . , ξ
2
n)/

∑n
i=1 ξ

2
i ; (ii) trying

all diagonal matrices with a single dominant coordinate 0.9999 and the other coordinates

all equal to 0.0001/(n− 1), so that the trace equals 1; (iii) n−1In; (iv) using a maximizer

of the quadratic form described in Remark E.3; and (v) using an additional initial value in

case of a “large” critical value C as described in Remark E.4, making use of the conventions

discussed in parentheses in that remark. This results in M0 = Mp+n+2 and possible one

more (in case C is large) candidates for initial values.

2. M1 was chosen as 500, the optimization algorithm run in Stage 1 was a constrained Nelder

and Mead (1965) algorithm (the default in R’s “constrOptim” function), which was run

with a relative tolerance parameter of 10−2 and a maximal number of iterations of 20n.

3. M2 was chosen as 1, the optimization algorithm run in Stage 1 was a constrained Nelder

and Mead (1965) algorithm (the default in R’s “constrOptim” function), which was run

with a relative tolerance parameter of 10−3 and a maximal number of iterations of 30n.

4. DA (used by Algorithm 1) was run with the parameters “acc = 10−3” and “lim = 30000”

using the function “davies” of the package CompQuadForm.

F.2 Details concerning Section 11.2

The smallest size-controlling critical values reported in Tables 4 and 5 in Section 11.2 were

obtained by running Algorithm 3 (with algorithm A given by Algorithm 1 and a maximal number

of 25 iterations in the while loop) as implemented in the R-package hrt (Preinerstorfer (2021))

version 1.0.0. Concerning A, the same input parameters as described in the enumeration at the

end of Appendix F.1 were used but with Mp = 500 000 (and with n = 30). Concerning Algorithm

3 we made the following choices for the required inputs:

1. Clow = max(C∗, Chom) is determined as follows: Chom is determined by a line-search

algorithm (using R’s uniroot function and monotonicity of the rejection probabilities in

the critical value) with the rejection probabilities obtained from DA (in case q = 1) or via

Monte Carlo, whereas C∗ is determined as described in Appendix F.1. For more detail see

Preinerstorfer (2021).

2. ϵ was set to 10−3.

For computing the power functions in Section 11.2, we made use of (E.2) with the matrices

AC given in Lemma E.1 together with the implementation of the algorithm by Davies (1980) in

the R-package CompQuadForm (Duchesne and de Micheaux (2010)) version 1.4.3 and with

default parameters.
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Figure F.1: Power functions for n1 = 15. Left column: tests based on unrestricted residuals
(cf. legend). Right column: tests based on restricted residuals (cf. legend). The rows corresponds
to Σa for a = 1, 5, 9 from top to bottom. The abscissa shows δ. In the left panel the HC4-curve
lies on top of the HC0–HC3-curves and the UC-curve. In the right panel the HC4R-curve lies
on top of the HC0R-HC3R-curves and the UCR-curve. See the text for an explanation.

F.3 Additional figures for Section 11.2

The power functions for n1 = 15 are given in Figure F.1.

G Appendix: Comments on Chu et al. (2021) and Hansen

(2021)

In the special case of testing only one restriction (i.e., q = 1), Chu et al. (2021) and Hansen

(2021) recently considered an interesting alternative approach to obtain tests based on the test

statistics THet (for the commonly used choices of the weights di). Their suggestions are based

on the observation (cf. also Section E.1 above) that, assuming Gaussianity of the errors, the

null rejection probability of the test that rejects if THet exceeds a given critical value C can be

rewritten as the probability that a quadratic form in Gaussian variables is nonnegative, which
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can efficiently be determined numerically for any given Σ ∈ CHet by a number of methods.84

That is, if Σ were known, one could use this observation to numerically determine a critical value

(an observation that is also exploited by our algorithms in case q = 1) or a p-value. Because Σ is,

however, not known, this approach is infeasible. One solution, put forward in the present paper,

is to work instead with a “worst-case” critical value, i.e., the smallest critical value that controls

size (if such a critical value exists). In contrast, the idea in Chu et al. (2021) and Hansen (2021)

to obtain a feasible test is a parametric bootstrap idea (cf. their papers for details):85 (i) replace

Σ by an estimate Σ̂; e.g.,

diag
(
d1û

2
1 (y) , . . . , dnû

2
n (y)

)
(G.1)

based on typical choices of di; (ii) numerically determine a critical value (or p-value) from the

cdf of the test statistic acting as if Σ = Σ̂ (e.g., as outlined above); and (iii) reject the null

hypothesis if the observed test statistic exceeds the so-computed critical value (or, equivalently,

if the corresponding p-value obtained is less than the desired significance level). Note that the

critical value in (ii) depends on the data Y through Σ̂ (and is thus data-dependent in this sense).

No theoretical guarantees concerning the size of the tests proposed in Chu et al. (2021) and

Hansen (2021) are given in these papers. Numerical results in both papers suggest that these

parametric bootstrap tests can work well for certain design matricesX and hypotheses (R, r), but

the authors also document some situations where the tests are considerably oversized. Hence,

these tests are not valid, in general, which is in contrast to the procedure we suggest in the

present paper. That a parametric bootstrap approach does not deliver size control is in line

with results in Loh (1985) (see also Leeb and Pötscher (2017)) showing that under appropriate

conditions parametric bootstrap procedures are oversized. It is also in line with a large body

of literature on size distortions of (other) bootstrap-based tests for the testing problem under

consideration, cf. Section 1 and Pötscher and Preinerstorfer (2022). As an aside we note that

any valid data-dependent critical value, i.e., one that leads to a test with correct size (which is

not the case for the proposals in Chu et al. (2021) and Hansen (2021)), must exceed the smallest

size-controlling critical value with positive probability (or must be equal to the smallest size-

controlling critical value with probability 1). Hence, a valid data-dependent critical value cannot

always be smaller than the smallest size-controlling critical values, an observation that seems to

have gone unnoticed in the discussion of the present article given in the introduction of Hansen

(2021) (a discussion that also overlooks that one needs to take the square root of our critical

values and lower bounds when discussing them in the context of the corresponding t-statistics).

To demonstrate further that the parametric bootstrap tests in Chu et al. (2021) and Hansen

(2021) can be considerably oversized, we now report some numerical results for these tests. In

particular, we report null rejection probabilities for a selection of points in the null hypothesis

(i.e., for a selection of Σ’s) and demonstrate that procedures suggested by Chu et al. (2021) and

84A reader has pointed out that the results in Phillips (1993) could also be developed into numerical approxi-
mations similar to the ones in Hansen (2021).

85A similar approach has already been put forward earlier by Welch (1938, 1951) and Satterthwaite (1946).
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Hansen (2021) are not valid in the sense that these null rejection probabilities are considerably

larger than the nominal significance level α = 0.05 that is being used. Note that what we report

are lower bounds for the size of the procedures investigated, which can even be larger, i.e., the

overrejection problem can, in fact, be even more serious than what is seen in the tables below.

Throughout, we study the following procedures

C: the procedure in Chu et al. (2021), when THet based on HC0-HC4 weights, respectively, is

combined with the estimator Σ̂ in (G.1) using the same weights as in the construction of

the test statistic;

C3: the procedure as above, but where the estimator Σ̂ in (G.1) always makes use of the HC3

weights;

H: the procedure in Hansen (2021) when THet is based on HC0-HC4 weights, respectively, and

where for Σ̂ the estimator suggested in Section 7 of Hansen (2021) is used.

We note here that procedure C3 is not considered in Chu et al. (2021); we include it, because

Σ̂ based on HC3 weights can be expected to perform better than if, e.g., HC0 weights are used.

We also point out that Hansen (2021) only considers THet based on HC0-HC3 weights, but not

on HC4; we also report rejection probabilities for the latter choice, because, in the examples we

consider, it actually works better in terms of size than the choices considered in Hansen (2021).

Our implementations of the procedures in Chu et al. (2021) and Hansen (2021) rely on the

algorithm in Davies (1980) (cf. Section E.1) to decide whether or not to reject (i.e., in Step (ii) of

the description of that approach given further above in this section). To compute the rejection

probabilities for the tests we used a Monte Carlo sample of size 100.000 for each of them. The

nominal significance level used is α = 0.05 throughout.

We consider three testing problems: The testing problems considered in Sections 11.2.1 and

11.2.2, as well as an additional one. Note that in all these examples the test statistics are size

controllable and thus our test procedures based on smallest size-controlling critical values are

applicable. [For Examples G.1 and G.2 this has already been discussed in Sections 11.2.1 and

11.2.2, respectively. For Example G.3 validity of Assumption 1 is obvious while condition (10)

we have verified numerically.]

Example G.1. (Comparing the means of two groups) We here consider the same testing problem

and setting (same n, n1, n2, α) as in Section 11.2.1. Table G.1 below shows the null rejection

probabilities for the procedures C, C3, and H for the case n1 = 3 and a = 3 (i.e., for Σ = Σ3

defined in Section 11.2.1). We see from that table that the procedures suggested in Chu et al.

(2021), i.e., procedures C, as well as the modification C3 are all considerably oversized (i.e., show

rejection probabilities greater or equal to 2α). The methods using the idea in Hansen (2021)

(including the case using HC4 weights not considered in Hansen (2021)) are slightly oversized in

this example.
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HC0 HC1 HC2 HC3 HC4
C 0.14 0.14 0.12 0.11 0.10
C3 0.12 0.12 0.12 0.11 0.10
H 0.08 0.08 0.08 0.07 0.06

Table G.1: Null-rejection probabilities of the procedures C, C3, and H for comparing the means
of two groups when n1 = 3 and a = 3.

Example G.2. (High-leverage design) We here consider the same testing problem and setting

(same n, α, X) as in Section 11.2.2. Table G.2 shows the null rejection probabilities for the

procedures C, C3, and H for the case a = 1 (i.e., for Σ = Σ∗
1 defined in Section 11.2.2). The

HC0 HC1 HC2 HC3 HC4
C 0.65 0.65 0.30 0.14 0.09
C3 0.18 0.18 0.17 0.14 0.10
H 0.16 0.16 0.15 0.12 0.08

Table G.2: Null-rejection probabilities of the procedures C, C3, and H for the high-leverage
design matrix when a = 1.

methods based on the approach in Chu et al. (2021) i.e., procedures C, as well as the modification

C3 are all considerably oversized also in this example. The methods using the idea in Hansen

(2021) are now also considerably oversized. The test using the HC4 estimator (which was not

considered in Hansen (2021)) performs somewhat better and has a null rejection probability that

exceeds the nominal significance level α = 0.05 by a factor of 1.6.

The tables in the two preceding examples already show that the tests proposed by Chu et al.

(2021) and Hansen (2021) can be considerably oversized. Note that the overrejection problem

potentially is even more serious than what is seen from the tables as we have not searched over

the space of Σ matrices, i.e., we have not reported size but only the null rejection probability at

a particular value of Σ. Also, we have not made any attempt to search for design matrices X

where overrejection is even more pronounced, but have only used design matrices from Sections

11.2.1 and 11.2.2.

We have seen in the preceding examples that pairing the method in Hansen (2021) with a

HC4 based THet statistic performs more reasonably in these settings (it also is oversized, but less

so). The question then arises whether there is some hope that this generalizes to other settings.

The next example shows that this is unfortunately not the case.

Example G.3. We consider the same model and null hypothesis as in Section 11.2.2 except

that the regressor x (x ∈ Rn, n = 30) is different. Its entries xi can be found plotted (against the

index i) in Figure G.1. For this scenario one can prove (using similar arguments as in Pötscher

and Preinerstorfer (2022)) that the size of the test obtained from pairing Hansen (2021)’s method

with a HC4 based THet statistic actually equals 1. We do not give the details here but rather

compute the null rejection probability of this test for Σ equal to the diagonal matrix with 0.999
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Figure G.1: Regressor used in Example G.3.

at the 21st entry and the other diagonal entries constant so that the diagonal sums up to one.

We used a Monte Carlo simulation (with 100.000 replications) and obtained a null rejection

probability of 0.28, which is more than the five-fold nominal significance level.
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Sankhyā Ser. A, 64 139–155.

Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance compo-

nents. Biometrics Bulletin, 2 110–114.

Welch, B. L. (1938). The significance of the difference between two means when the population

variances are unequal. Biometrika, 29 350–362.

42



Welch, B. L. (1951). On the comparison of several mean values: an alternative approach.

Biometrika, 38 330–336.

43


