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1 Introduction

The material contained in this supplement follows the labelling and numbering of the sections

in the main paper.

2 Assumptions and Background

The following conditions provide a set of primitive regularity requirements under which Assump-

tion 2.2 and Assumption 3.1 will hold.

Regularity Conditions The process wt and moments µt(wt,θ) satisfy the following condi-

tions;

(i) µt(wt,θ) is near-epoch dependent of size −1 on an α-mixing basis process of size −r/(r−2),

r > 2.

(ii) there exists a random sequence Bt where limn→∞
∑n

t=lE[B2+δ
t ] <∞ for some δ > 0, and

a non-negative deterministic function h(·) such that h(x)→ 0 as x→ 0, such that

‖µt(wt,θ1)− µt(wt,θ2)‖ < Bth(‖θ1 − θ2‖) ,

and

(iii) supθ∈ΘE[‖µt(wt,θ)‖2+δ] < ∞ for some δ ≥ r − 2, and the sample moment long-run

covariance matrix Σ̄n(θ)→ Σ(θ).

Condition (i) implies that µt(wt,θ) is a mixingale for which a weak law of large numbers holds,

and condition (i) and the Lipschitz condition in (ii) imply stochastic equicontinuity. Conditions

(i), (ii) and (iii) specify properties from which the required convergence of the finite dimensional

distributions, stochastic equicontinuity, and total boundedness, needed to validate the weak

convergence of Assumption 3.1 are ensured. (See Davidson, 1994, Theorems 17.5, 21.10 and

29.8, for example.)
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See Stock and Wright (2000, Section 2.2) for further discussion of similar conditions in the

context of GMM. An in depth discussion of the technicalities underlying such conditions is be-

yond the scope of this paper, we refer to Davidson (1994) for a text book exposition and the

monograph by Potscher and Prucha (1997) for detailed particulars and extensive references. A

detailed exposition of functional central limit theorems (FCLTs) of the type presented in As-

sumption 3.1 and Assumption 3.2 can be found in Van der Vaart and Wellner (1996). See also

Kleibergen (2005, Assumption 1) and Caner (2010, Assumption 5) for statements and discussion

of regularity conditions that parallel Assumption 3.1 and Assumption 3.2.

Proof. Lemma 2.1 Let b1, . . . ,bk denote a set of orthonormal basis vectors in Rk. By the

multivariate mean value theorem (Apostol, 1974, Theorem 12.9) for each bi there exists a θ∗i on

the line segment joining θ to θ0 such that

b′i(µ̄n(θ)− µ̄n(θ0)) = b′i∆̄n(θ∗i )(θ − θ0) .

Let θ1,θ2, . . . ,θs, . . . be an infinite sequence in N(θ0; δ), θs 6= θ0, that converges to θ0 such

that µ̄n(θs) = µ̄n(θ0) and set

ds =
θs − θ0

‖θs − θ0‖
.

The sequence d1,d2, . . . ,ds, . . . is an infinite sequence on the unit sphere in Rp and therefore

there exists an accumulation point d and an infinite sequence ds such that lims→∞ ds = d,

which we denote (using a slight abuse of notation as strictly speaking ds may be subsequence)

by ds → d as θs → θ0. By continuity ∆̄n(θ∗si )→ ∆̄n(θ0) as θ∗si = θ0 +λi(θ
s−θ0), 0 ≤ λi ≤ 1,

converges to θ0 as θs → θ0, from which it follows that b′i∆̄n(θ∗si )ds → b′i∆̄n(θ0)d. We therefore

have that b′i∆̄n(θ0)d = 0 for all bi, i = 1, . . . , k. Since b1, . . . ,bk form an orthonormal basis

and ∆̄n(θ0)d is perpendicular to each bi, i = 1, . . . , k we can conclude that ∆̄n(θ0)d = 0. It

follows from this that r{∆̄n(θ0)} = qn < p because ‖d‖ = 1. This establishes necessity in the

first part of the lemma.

To establish sufficiency suppose that r{∆̄n(θ0)} = qn < p. For any given point θ ∈ N(θ0; δ),

θ 6= θ0, let θ∗λ = θ0 + λ(θ − θ0), 0 ≤ λ ≤ 1, and observe that since ∆̄n(θ) is regular

r{∆̄n(θ∗λ)} = qn < p. Let ci(θ
∗
λ), i = 1, . . . , (p − qn), denote the p − qn linearly inde-

pendent nontrivial solutions to the homogeneous equation system ∆̄n(θ∗λ)x = 0 obtained by

expressing the p − qn linearly dependent columns of ∆̄n(θ∗λ) as linear combinations of the

qn linearly independent columns. Without loss of generality each ci(θ
∗
λ) can be expressed

as ci(θ
∗
λ) = (ci1(θ∗λ), . . . , ciqn(θ∗λ), 0, . . . , 0)′ + eqn+i where eqn+i = (0, . . . , 0, 1, 0, . . . , 0)′, the

(qn + i)th unit coordinate vector in Rp. Each ci(θ
∗
λ) is a continuous function of λ.1 Now let

1Consider the difference c(θ∗λ2
) − c(θ∗λ1

) where ∆̄n(θ∗λj
)c(θ∗λj

) = 0, θ∗λj
= θ0 + λj(θ − θ0), 0 ≤ λj ≤ 1,

j = 1, 2, with λ1 ≤ λ ≤ λ2, λ1 6= λ2. By assumption ∆̄n(θ) is a continuous function of θ with constant rank qn
and setting c(θ∗λ) equal to one of ci(θ

∗
λ), i = 1, . . . , (p− qn), we have

∆̄n(θ∗λ2
)[c(θ∗λ2

)− c(θ∗λ1
)] = [∆̄n(θ∗λ1

)− ∆̄n(θ∗λ2
)]c(θ∗λ1

) ,

from which we can conclude that

‖c(θ∗λ2
)− c(θ∗λ1

)‖ ≤ ‖∆̄n(θ∗λ2
)+‖ · ‖∆̄n(θ∗λ2

)− ∆̄n(θ∗λ1
)‖ · ‖c(θ∗λ1

)‖ .

The continuity of c(θ∗λ) as a function of λ follows since ‖θ∗λ2
− θ∗λ1

‖ = |λ2 − λ1| · ‖θ − θ0‖ ≤ |λ2 − λ1|δ and
consequently we have that ‖∆̄n(θ∗λ2

) − ∆̄n(θ∗λ1
)‖ → 0 and therefore ‖c(θ∗λ2

) − c(θ∗λ1
)‖ → 0 as |λ2 − λ1| =

(λ2 − λ1)→ 0.
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θ∗i (λ) denote the curve defined by the function that for 0 ≤ λ ≤ 1 solves the differential equation

∂θ∗λ
∂λ

= ci(θ
∗
λ) , θ∗0 = θ0 , i = 1, . . . , (p− qn) .

By the chain rule
∂µ̄n(θ∗i (λ))

∂λ
= ∆̄n(θ∗i (λ))ci(θ

∗
i (λ)) = 0

for all 0 ≤ λ ≤ 1. This implies that µ̄n(θ) is constant along each curve θ∗i (λ) and hence that

µ̄n(θ∗i (λ)) = µ̄n(θ∗0) = µ̄n(θ0) for all 0 ≤ λ ≤ 1.

To confirm that when ∆̄n(θ0) is rank deficient {θ : µ̄n(θ) = µ̄n(θ0)} is a continuum let

θ∗rs = θ∗r(λ) + t(θ∗r(λ) − θ∗s(λ)), 0 ≤ t ≤ 1, where θ∗r(λ) and θ∗s(λ) are any one of the
(
p−qn

2

)
possible pairs of curves taken from θ∗i (λ), i = 1, . . . , (p − qn), 0 ≤ λ ≤ 1. Repeating the above

argument we can construct a curve θ∗rs(t, λ) such that

∂θ∗rs(t, λ)

∂t
= c(θ∗rs(t, λ)) , θ∗rs(0, λ) = θ∗r(λ) ,

and
∂µ̄n(θ∗rs(t, λ))

∂t
= ∆̄n(θ∗rs(t, λ))ci(θ

∗
rs(t, λ)) = 0

for all 0 ≤ t ≤ 1. The curve θ∗rs(t, λ) determines a path that joins θ∗r(λ) to θ∗s(λ) along

which µ̄n(θ∗rs(t, λ)) = µ̄n(θ0) for all 0 ≤ t ≤ 1. Since Θ is compact we can apply the above

construction to a countable collection of points θ ∈ N(θ0; δ), θ 6= θ0, and generate an ε-net for

{θ : µ̄n(θ) = µ̄n(θ0)} and thereby complete the proof.

3 Identification and Estimation

3.1 Criterion and Estimator Convergence

The following proof is modelled on a standard consistency proof for extremum estimators.

Proof. Theorem 3.2. For any set A ⊆ Θ and ε > 0, denote the ε neighborhood of A by

N(A; ε) = {θ ∈ Θ : d(θ;A) < ε} and set N(A, ε) ≡ {θ : d(θ;A) ≤ ε}.
By definition Qn(θ̂n) ≤ Qn(θ) for any θ̂n ∈ Θ̂n and all θ ∈ Θ0n, and |Qn(θ) − Q̄n(θ)| p→ 0

uniformly in θ by Lemma 3.1. Thus for any δ > 0

Q̄n(θ̂n)− δ/2 < Qn(θ̂n) ≤ Qn(θ) < Q̄n(θ) + δ/2

with probability converging to one as n → ∞. Since by definition of Θ0n we have µ̄n(θ) =

µ̄n(θ0) = 0 and Q̄n(θ) = 0 for all θ ∈ Θ0n, it follows that

lim
n→∞

Pr
{
Q̄n(θ̂n) < δ

}
= 1 . (3.1)

To translate the inequality Q̄n(θ̂n) < δ into a bound on the distance of Θ̂n from N(Θ0n, ε) set

δ(ε) = min
θ∈Θ\N(Θ0n,ε)

Q̄n(θ)

where Θ\N(Θ0n, ε) denotes the relative complement of N(Θ0n, ε) in Θ. By definition of δ(ε)
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we can deduce that Q̄n(θ) < δ(ε) implies that θ ∈ N(Θ0n, ε). Since N(Θ0n, ε) ⊂ N(Θ0n, ε) it

follows that

Pr
{
θ̂n ∈ N(Θ0n, ε)

}
≥ Pr

{
Q̄n(θ̂n) < δ(ε)

}
,

which in the face of (3.1) leads to the conclusion that

lim
n→∞

Pr
{
θ̂n ∈ N(Θ0n, ε)

}
= 1 . (3.2)

It follows directly from (3.2) that sup
θ̂n∈Θ̂n

d(θ̂,Θ0n) < ε with probability converging to one

as n→∞. Moreover, since θ̂n ∈ N(Θ0n, ε) for all θ̂n ∈ Θ̂n implies that Θ̂n ⊂ N(Θ0n, ε), then for

each θ ∈ Θ0n there exists a θ̂n such that ‖θ− θ̂n‖ < ε. It follows therefore that d(θ, Θ̂n) ≤ ε for

all θ ∈ Θ0n and hence that supθ∈Θ0n
d(θ, Θ̂n) < ε with probability approaching one as n→∞.

Theorem 3.2 does not provide a convergence rate. If we add the requirement that the mo-

ment functions satisfy the Donsker property in Assumption 3.2 then the conditions required

for Theorem 3.1 of Chernozhukov, Hong, and Tamer (2007) to apply will be satisfied. (See

Chernozhukov, Hong, and Tamer, 2007, Section 4.1, pages 1261-1264.) Thus, the conditions are

applicable for the moment equality models under consideration here and in the current setting

the convergence rate of dH(Θ̂n; Θ0n) will be n−
1
2 .

3.2 Estimable Functions and Asymptotic Normality

Lemma 2.2 indicates that lack of identification implies that additional p− qn restrictions in the

guise of 
θi(qn+1)

...

θi(p)

−


α1(θi(1), . . . , θi(qn))
...

αp−qn(θi(1), . . . , θi(qn))

 = 0

are required to identify the partially identified parameter β = (θi(1), . . . , θi(qn))
′. A corollary of

Theorem 2.3.1(b)&(c) of Rao and Mitra (1971) is that there are p− qn + 1 linearly independent

solutions to (3.6) and qn linearly independent vectors q0n satisfying q′0n = z′H̄0n since r{H̄0n} =

r{∆̄′0nΩ̄n∆̄0n} = qn. The additional restrictions required to achieve identification are being

indirectly imposed via the g-inverse in order to constrain inference to the qn linearly independent

estimable functions.

This is analogous to the situation that obtains in unidentified and partially identified struc-

tural equation models. Building upon the analysis and requisite central limit theory presented in

Phillips (1989), Choi and Phillips (1992) showed that in such models identified and unidentified

parts of a structural coefficient vector can be distinguished by rotating the coordinate system,

and they provided formulae for the finite sample and asymptotic densities of IV estimators of

the coefficient vector and the limit distributions of Wald test statistics. In similar vein, from

the singular value decomposition of ∆̄0n we have (using a slight abuse of the notation employed

in (2.5)) ∆̄0nθ = U0nϑ, wherein the parameter vector ϑ = (ϑ1, . . . , ϑqn , 0, . . . , 0)′ where

ϑr = s0n,r

p∑
c=1

v0n,rcθc , r = 1, . . . , qn . (3.8)

By the mean value theorem µ̄n(θ) − µ̄n(θ0) = ∆̄0n(θ − θ0) = U0n(ϑ − ϑ0) wherein θ =
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(θ1, . . . , θp)
′ with θi = θ0i + (θ0n,i − θ0i)/λi, 0 < λi ≤ 1, i = 1, . . . , p, where θ0 = (θ01, . . . , θ0p)

′

is the true parameter value of the DGP and θ0n = (θ0n,1, . . . , θ0n,p)
′ is given in (3.1). Since the

columns of U0n are linearly independent this implies that µ̄n(θ) = µ̄n(θ0) if and only if ϑ = ϑ0

and ϑ0 is identified. Thus it follows that H̄0nθ0 = (∆̄
′
0nΩ̄n∆̄0n)+∆̄

′
0nΩ̄nU0nϑ0 and we can

see that the idempotent matrix H̄0n produces an estimable function by inducing a coordinate

transformation from θ0 to the identified parameter ϑ0 in a manner that parallels the Choi and

Phillips coordinate rotation. Note in passing that the focus of Choi and Phillips (1992) was on

the effect of identification and lack of identification on the distribution theory of the IV estimator,

and they did not address issues associated with different levels of identification strength. Here

it is apparent from (3.8) that the identification strength of the moment conditions is passed

on directly to the components of ϑ, but as is demonstrated in the paper, the relationship of

the identification strength of the components of θ to the identification strength of the moment

conditions is not so straightforward.

Turning to the asymptotic distributions of estimable functions of (θ̂n − θ0n) presented in

Theorems 3.3, 3.4 and 3.5, recall that

θ0n = arg min
θ∈Θ0n

‖θ̂n − θ‖ . (3.1)

where Θ0n = {θ : Q̄n(θ) = 0}. To establish that θ0n is the projection of θ̂n on to Θ0n, let 〈Θ0n〉
denote the convex hull of Θ0n. Then for any θ1,θ2 ∈ 〈Θ0n〉 we have by the mean value theorem

(Apostol, 1974, Theorem 12.9, Example 1, pp. 355-356)

Q̄n(θ1) = Q̄n(θ2) +
∂Q̄n(θ∗λ)

∂θ′
(θ1 − θ2)

where θ∗λ = θ2 + λ(θ1 − θ2), 0 ≤ λ ≤ 1, from which it is obvious that Q̄n(θ1) ≤ Q̄n(θ2) implies

that ∂Q̄n(θ∗λ)/∂θ′ · (θ1 − θ2) ≤ 0. Hence

∂Q̄n(θ2)

∂θ′
(θ1 − θ2) =

∂Q̄n(θ∗λ)

∂θ′
(θ1 − θ2) +

{
∂Q̄n(θ2)

∂θ′
− ∂Q̄n(θ∗λ)

∂θ′

}
(θ1 − θ2)

≤
{
∂Q̄n(θ2)

∂θ′
− ∂Q̄n(θ∗λ)

∂θ′

}
(θ1 − θ2) . (3.9)

Passing to the limit in (3.9) as λ→ 0+ it follows from the continuity of ∂Q̄n(θ)/∂θ′ that

∂Q̄n(θ2)

∂θ′
(θ1 − θ2) < ε

for all ε > 0. Thus, Q̄n(θ1) ≤ Q̄n(θ2) implies that ∂Q̄n(θ2)/∂θ′ · (θ1 − θ2) ≤ 0 and therefore

we can conclude that Q̄n(θ) is quasi-convex on 〈Θ0n〉. The latter is equivalent to convexity of

the lower level set {θ : Q̄n(θ) ≤ q} for each q ≥ 0. It follows that Θ0n is itself a convex set and

hence, via a standard Hilbert space result, θ0n is the unique projection of θ̂n on to Θ0n.

With regard to Theorem 3.3 and Theorem 3.4, if the moment conditions are twice continu-
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ously differentiable, as is assumed in Theorem 3.4, then

Q(2)
n (θ) =

∂2Qn(θ)

∂θ∂θ′
= 2

[
∂Dn(θ)′Wnmn(θ)

∂θ′

]
= 2

[
(mn(θ)′Wn ⊗ I)

∂vec(Dn(θ)′)

∂θ′
+ Dn(θ)′WnDn(θ)

]
,

and the triangle inequality gives us

‖Q(2)
0n − 2(∆̄

′
0nΩ̄n∆̄0n)‖ ≤ 2‖Dn(θ0n)′WnDn(θ0n)− (∆̄

′
0nΩ̄n∆̄0n)‖

+ 2ρn(θ0n)

where

ρn(θ0n) = ‖(mn(θ0n)′Wn ⊗ I)
∂vec(Dn(θ0n)′)

∂θ′
‖ .

The first term converges to zero, as shown in (3.5), and ρn(θ0n) = Op(n
− 1

2 ). The latter follows

because for any given p× 1 vector v

v′(
√
nmn(θ0n)′Wn ⊗ I){∂vec(Dn(θ0n)′)/∂θ′}v

(d′(Ω̄nΣ0nΩ̄n ⊗ vv′)d)
1
2

⇒ N (0, 1)

where d = {∂vec(∆̄
′
0n)/∂θ′}. It follows that ‖Q(2)

0n − 2(∆̄
′
0nΩ̄n∆̄0n)‖ p→ 0 and we can therefore

conclude that Theorem 3.3 and Theorem 3.4 are asymptotically equivalent.

4 Illustrations I

4.1 The Linear Equations Model

Figure 2 indicates that when q corresponds to an estimable function q′ = z′H asymptotic nor-

mality of
√
nq′(θ̂n − θ0n) holds, but use of the estimated value q′ = z′Ĥ fails to adequately

adjust for the lack of normality induced by the partial identification. Since for both the the-

oretical and empirical values of
√
nq′(θ̂n − θ0n)/sez(θ̂n) the denominator sez(θ̂n) is common

between the estimable function and non-estimable function cases, the differences in behavior

between the theoretical and empirical values of
√
nq′(θ̂n − θ0n)/sez(θ̂n) seen in Figure 2 must

reflect in large part a difference in the change in their numerators. For the theoretical value

the change in the numerator from the estimable function to the non-estimable function case is

z′(H − I)(θ̂n − θ0), where H 6= I, whereas for the empirical value the change is −z′(Ĥ − I)θ0.

Since ‖n−1(X′PξX)− (ΠΞΠ′)‖ converges to zero Lemma 3 of Puri, Russell, and Mathew (1984)

implies that r{n−1(X′PξX)} ≥ r{ΠΞΠ′} for n sufficiently large, and closer inspection of the

simulation results reveals that n−1(X′PξX) is frequently deemed to be nonsingular. A conse-

quence of the latter is that Ĥ = I and q′ = z′Ĥ = z′, so the empirical estimable function values

collapse to the non-estimable function values.

Let En = n−1(X′PξX)− (ΠΞΠ′). Then r{n−1(X′PξX)} equals the number of non-zero sin-

gular values of ΠΞΠ′+En and the distance to singularity of n−1(X′PξX) is given by the smallest

singular value. See Demmel (1987) and Hingham (1989) for discussions of the numerical issues

associated with condition numbers, the ill-posed nature of rank determination, and approaches

to singularity. The impact of this here is that even if r{ΠΞΠ′} < p the rank of the perturbed
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(a) TSLS estimates q′ = z′H and q′ = z′Ĥ

-4 -3 -2 -1 0 1 2 3 4

Estimable Function Standardised Values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n

TSLS Simulated and Asymptotic Distributions

Simulated CDF(empirical)
Simulated CDF(theoretical)

(z)

-4 -3 -2 -1 0 1 2 3 4

Estimable Function Standardised Values

0.0001
0.0005
0.001 

0.005 
0.01  

0.05  
0.1   

0.25  

0.5   

0.75  

0.9   
0.95  

0.99  
0.995 

0.999 
0.9995
0.9999

S
ta

nd
ar

d 
N

or
m

al
 Q

ua
nt

ile
s

TSLS Normal Probability Plot

Simulated CDF(empirical)
Simulated CDF(theoretical)

(b) TSLS estimates q′ = z′H and bias corrected q′ = z′Ĥ

Figure 9: Distribution of TSLS uncorrected and bias corrected estimable function values: num-
ber of endogenous regressors p = 5, number of instruments k = 9, sample size n = 2500.
Partially identified model: identification rank q = p− 2 = 3.

matrix n−1(X′PξX) = ΠΞΠ′ + En will equal p for almost all En. The consequence can be

seen in Figure 9, which presents results obtained using the same parameterizations as in Figure

2, but with a sample size of n = 2500. Figure 9a reproduces the behavior seen in Figure 2a,

indicating that the poor approximation of the empirical quantity seen in Figure 2a was not due

to an insufficiently larger sample size. In Figure 9b Ĥ has been replaced by the bias corrected

value Ĥ+(Ĥ−H) = 2Ĥ−H, resulting in a correction to the location of the distribution relative

to that seen in Figure 9a. It is apparent from Figure 9 that despite there being a tenfold increase

in sample size the use of the estimated value q′ = z′Ĥ will fail to retrieve the behavior of its

theoretical counterpart unless a bias correction is applied to compensate for the numerical issues

that arise from the distance to singularity of n−1(X′PξX). The thin tails of the empirical quan-

tity seen in Figure 9a carry over into Figure 9b. This is due in part to σ̂2
u being a biased estimate

of σ2
u in the current context, and in part because lim infn→∞ nz′(X′PξX)+z ≥ z′(ΠΞΠ′)+z (see

Lemma A1), and so the range of the empirical standardized values is less than their theoretical

counterparts. In the current simulations the empirical values of
√
nq′(θ̂n − θ0n)/sez(θ̂n) were
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on average just over one third of their theoretical values.

The previous algebraic and numerical features help to explain the somewhat perverse dis-

tributional characteristics of the empirical values of
√
nq′(θ̂n − θ0n)/sez(θ̂n) seen previously in

Figure 2 and here in Figure 9.

4.2 Common Conditional Heteroskedastic Features

Dovonon and Renault (2013) have shown that asymptotic properties of GMM for the common

conditional heteroskedastic (CH) features model can be derived from the theory of stationary

and ergodic martingale difference processes, and provided that (ξt, rt+1) satisfies the necessary

integrability conditions the required laws of large numbers will hold. Namely, that the process

(ξ′t, r
′
t+1)′ is stationary and ergodic with E[‖ξt‖2] < ∞ and E[‖rt+1‖4] < ∞, and (ξ′t, r

′
t+1)′

fulfills the conditions needed for (ξ′t, vec(rt+1r
′
t+1)′)′ to satisfy a central limit theorem (See

Dovonon and Renault, 2013, Corollary 3.1 and the associated discussion.). For the common CH

features model empirical process functional central limit theorems for n
1
2 {mn(θ)− µ̄n(θ)} as in

Assumption 3.2 are not needed.

5 Criterion Based Inference

If we are to conduct inference using nQn(θ) = nmn(θ)′Wnmn(θ) then our first task is to ensure

that the data is in accord with the assumed moment conditions mn(θ). Hansen (1982) proposed

using the statistic nQn(θ̂n) to test if the moment conditions are consistent with the data, and

Hansen’s J-test of over-identification has become the standard diagnostic for testing models

estimated by GMM, the nomenclature arising from the fact that only p moment conditions

are required to estimate θ = (θ1, . . . , θp)
′ when the model is identified, and so there are k − p

over-identifying moment conditions implicit in the construction of θ̂n.

When the model is identified nQn(θ̂n)⇒ χ2(k−p) if Wn has been chosen such that ‖Wn−
Σ̄

+
0n‖

p→ 0, and a significantly large value of the test statistic – namely, nQn(θ̂n) ≥ χ2
(1−α)(k−p)

where χ2
(1−α)(k − p) is the (1− α)100% percentile point of the χ2(k − p) distribution – implies

that the null hypothesis that all the moment restrictions are valid should be rejected. The

test statistic is obviously invariant to which p moment conditions from the k available are

designated as being those that are just-identifying and from a purely statistical perspective any

such designation is artificial. The test is therefore viewed as providing an omnibus diagnostic,

and should the test statistic be statistically significant the questions of (i) whether one or more

of the moment conditions are invalid, and (ii) which moment conditions are not corroborated

by the data, remain open.

If the model is unidentified nQn(θ̂n) will no longer possess a χ2(k− p) distribution, and the

precision of any inference based upon nQn(θ̂n) may be impaired in the presence of identification

deficiency. Nevertheless, the generalized Laguerre series probability laws for the limiting distri-

butions of nQn(θ̂n) presented in Theorem 5.1 and Theorem 5.2 will adapt to the circumstances

and yield correct probability calculations that can be employed to implement the previous testing

strategy, and nQn(θ̂n) can continue to be used as an omnibus diagnostic device.
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6 Illustrations II

6.2 Common Conditional Heteroskedastic Features

As in Dovonon and Renault (2013), appeal can be made to the conditions given in Bollerslev

(1986) and Lindner (2009) to show that the parameter configurations considered in the sim-

ulation experiments are such that the GARCH factors ft+1 in rt+1 = µ + Λft+1 + ut+1, i.e.

the GARCH factors in the CH factor model (4.7), are stationary and ergodic with finite fourth

moments. This ensures that the returns processes and instrument sets employed are also sta-

tionary and ergodic with finite second moments, and thus that the regularity conditions stated

in Section 4.2 are fulfilled.

Appendix: Proofs

Proof. Lemma 3.2. Set V0n = Γ̄0n∆̄
′
0nΩ̄nΣ̄0nΩ̄

′
n∆̄0nΓ̄0n. There exists a p × q matrix L

such that L′(∆̄
′
0nΣ̄

+
0n∆̄0n)+L = I and L′V0nL = Λ = diag{λ1, . . . , λq} (Rao and Mitra, 1971,

Theorem 6.2.1). Using the properties of the Moore-Penrose g-inverse listed in Rao and Mitra

(1971, Chapter 3, Complement 5) it follows that

L′(V0n − (∆̄
′
0nΣ̄

+
0n∆̄0n)+)L = L′(Λ− I)L

is non-negative definite if and only if

L′+(∆̄
′
0nΣ̄

+
0n∆̄0n)− V̄+

0n)L+ = L′+(I−Λ+)L+

is non-negative definite. Thus, if we can show that (∆̄
′
0nΣ̄

+
0n∆̄0n)− V̄+

0n is non-negative definite

then z′V̄0nz ≥ z′(∆̄
′
0nΣ̄

+
0n∆̄0n)+z, as required.

Let A′ = ∆̄
′
0nΣ̄

+
2

0n and B′ = ∆̄
′
0nΩ̄nΣ̄0nΣ̄

+
2

0n where Σ̄
+
2

0n = (Σ̄
1
2

0n)+. Then ∆̄
′
0nΣ̄

+
0n∆̄0n =

A′A and

A′B =
(
∆̄
′
0nΣ̄

+
0nΣ̄

1
2

0n + ∆̄
′
0nΣ̄

+
2

0n(I− Σ̄
+
2

0nΣ̄
1
2

0n)
)

Σ̄
+
2

0nΣ̄0nΩ̄n∆̄0n

= ∆̄
′
0nΣ̄

+
0nΣ̄

1
2

0nΣ̄
+
2

0nΣ̄0nΩ̄n∆̄0n

= ∆̄
′
0nΩ̄n∆̄0n

since J = Σ̄
1
2

0nΣ̄
+
0n∆̄0n is a solution to J′Σ̄

+
2

0nΣ̄0n = ∆̄
′
0n. It therefore follows that

V̄+
0n = (∆̄

′
0nΩ̄n∆̄0n)(∆̄

′
0nΩ̄nΣ̄0nΩ̄n∆̄0n)+(∆̄

′
0nΩ̄n∆̄0n)

= A′B(B′B)+B′A

and the difference (∆̄
′
0nΣ̄

+
0n∆̄0n)− V̄+

0n becomes

A′A−A′B(B′B)+B′A = A′(I−B(B′B)+B′)A .

Because I − B(B′B)+B′ is an idempotent positive semi-definite linear homogeneous operator,

and thus a projection matrix (Rao and Mitra, 1971, Theorem 5.1.1), it follows that A′A −
A′B(B′B)+B′A is non-negative definite, implying that z′(∆̄

′
0nΣ̄

+
0n∆̄0n)+z ≤ z′V̄0nz.
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Now suppose that ‖Ω̄n∆̄0n − Σ̄
+
0n∆̄0n‖ → 0. Then it is obvious that ‖∆̄′0nΩ̄n∆̄0n −

∆̄
′
0nΣ̄

+
0n∆̄0n‖ → 0, and after a little algebra we find that ‖∆̄′0nΩ̄nΣ̄0nΩ̄

′
n∆̄0n−∆̄

′
0nΣ̄

+
0n∆̄0n‖ →

0. Further straightforward, if somewhat tedious algebra, now yields the result that∣∣∣z′(V0n − (∆̄
′
0nΣ̄

+
0n∆̄0n)+)z

∣∣∣→ 0 .

Proof. Lemma A1 The first part of the lemma follows directly from the inequality |xnAnxn−
xAx| ≤ (xn−x)An(xn−x)+2|(xn−x)Anx|+ |x(An−A)x|. For the final part, let {λnj ,υnj},
j = 1, . . . ,m, and {λj ,υj}, j = 1, . . . , k, denote the eigenvalue-eigenvector pairs of An and A

respectively. Then |λnj−λj | → 0 and ‖ςjυnj−υj‖ → 0 where ςj = sign(υ′jυnj), j = 1, . . . , k, and

we can, without loss of generality, suppose that υj and υnj are scaled such that ςj = 1 (Poskitt,

2020, Lemma A1). Lemma 3 of Puri, Russell, and Mathew (1984) states that if ‖An −A‖ → 0

then an = r{An} ≥ r{A} = a for all n sufficiently large, and since An and A are non-defective

we have λnj = 0, j = an + 1, . . . , k and λj = 0, j = a+ 1, . . . , k.

Set

λ+ =

{
λ−1, λ 6= 0 ;

0, λ = 0 .

From the spectral decompositions of An and A

x′nA
+
nxn − x′A+x =

a∑
j=1

(λ+
njb

2
nj − λ+

j b
2
j ) +

k∑
j=a+1

λ+
njb

2
nj (A.1)

where bnj = υ′njxn and bj = υ′jx. For j = 1, . . . , a, λ+
nj → λ+

j and |bnj − bj | ≤ |(υnj −
υj)
′xn| + |υj(xn − x)| → 0. The inferior limit given in the lemma follows since the first term

in (A.1) converges to zero, and the second is non-negative by the positive semi-definiteness of

An. Corollary 8 of Puri, Russell, and Mathew (1984) states that ‖A+
n −A+‖ → 0 if and only

if an = a for all n sufficiently large, and hence the second term in (A.1) will likewise equal zero

if and only if an = a.
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