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Abstract

Appendix S.A introduces an alternative set of assumptions under which the results of
the paper hold without the constraint ‖L‖∞ ≤ αNT in the definition of the estimator
(2.3). It also discusses the assumptions in this paper and in related literature. Ap-
pendix S.B collects all the proofs.

Appendix S.A On the Lower Bound in Theorem 1

In this appendix, we first introduce an alternative set of assumptions under which a
similar quadratic lower bound as in Theorem 1 can be obtained. Under these assumptions,
we can drop the constraint in the minimization problem (2.3) that defines our estimator.
We then compare the assumptions in this paper with those in Ando and Bai (2020), Belloni
et al. (2023) and Chen et al. (2021).

S.A.1 Dropping the Constraint in Equation (2.3)

In this section, we maintain Assumption 2 on the conditional density and add a new
assumption so that the requirement ‖L̂(u)‖∞ ≤ αNT can be dropped while a similar lower
bound as in Theorem 1 can still be obtained. To illustrate the intuition, let us consider the
case without covariates.
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In the main text, we lower bound the following quantity by ‖∆L‖2
F multiplied by some

constant for all ∆L ∈ D := {∆L ∈ RN×T : ‖∆L‖∞ ≤ 2αNT} (see equation (4.6)):

∑
i,t

∫ ∆L,it

0

(
FVit(u)(s)− FVit(u)(0)

)
ds. (S.A.1)

We only focus on D because we can show that the estimation error ∆̂L(u) lies in D uniformly
in u ∈ U w.p.a.1 under the constrained parameter space L and by ‖L0(u)‖∞ ≤ αNT .

Now that we are to replace the constrained parameter space L with RN×T , ∆̂L(u) may no
longer lie in D w.p.a.1. We need to constrain ∆̂L in a different set. For any ∆L ∈ RN×T , let
PΩ∆L be an N×T matrix whose (i, t)-th element is 1(|∆L,it| ≤ 2αNT ) ·∆L,it. Let PΩ⊥∆L :=
∆−PΩ∆L. By construction, ‖∆L‖2

F = ‖PΩ∆L‖2
F +‖PΩ⊥∆L‖2

F . Let ‖PΩ∆L‖2
F = Csm‖∆L‖2

F

where Csm is in [0, 1] and may depend on N and T . Note that D is equivalent to the set of
matrices whose Csm equals 1. Quantity (S.A.1) is equal to

∑
i,t

∫ ∆L,it

0

(
FVit(u)(s)− FVit(u)(0)

)
ds

=
∑

{i,t:|∆L,it|≤2αNT }

∫ ∆L,it

0

(
FVit(u)(s)− FVit(u)(0)

)
ds

+
∑

{i,t:|∆L,it|>2αNT }

∫ ∆L,it

0

(
FVit(u)(s)− FVit(u)(0)

)
ds.

For the first sum on the right side, we can lower bound it by Cmin‖PΩ∆L‖2
F/α

2
NT for some

Cmin > 0 (the proof is similar to that of Theorem 1 and is thus omitted). For the second
term, now that ∆L,it can be unbounded, the conditional density fVit(u) may be arbitrarily
close or equal to zero. Hence, it can only be lower bounded by 0. Yet as long as ‖PΩ∆L‖2

F is
of a nonnegligible proportion of ‖∆L‖2

F , we can still lower bound (S.A.1) be ‖∆‖2
F multiplied

by some constant.
Formally, assume there exists a constant Csm > 0 such that for all u ∈ U , we have

∆̂L(u) ∈ D(2) w.p.a.1 where D(2) is the following cone1

D(2) :=
{

∆L ∈ RN×T : ‖PΩ∆L‖2
F ≥ Csm‖∆L‖2

F

}
. (S.A.2)

1One can alternatively impose the restriction on the space where ∆̂L(u) lies w.p.a.1, instead of on ∆̂L(u)
directly. For instance, assume that any ∆L ∈ Ru with ‖∆L‖F ≤

√
NTγ satisfies ∆L ∈ D(2). The proof of

uniform consistency still goes through because ∆̂L(u) ∈ Ru w.p.a.1 and in the proof we only focus on the
sphere ‖∆L‖F =

√
NTγ.
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We can then restrict our analysis within D(2) and lower bound (S.A.1) for all ∆L ∈ D(2) by

Cmin‖PΩ∆L‖2
F/α

2
NT + 0 ≥ CsmCmin‖∆L‖2

F/α
2
NT .

Then we can obtain an error bound on the estimator which has the same order as that in
Theorem 2 since the quadratic lower bound has the same order.

Both D (adopted in the main text) and D(2) here limit the spikiness of the matrices ∆Ls
in them. Set D restricts the magnitude of the large entries in ∆L ∈ D. In contrast, by
definition (S.A.2), set D(2) restricts both the magnitude and the number of large entries in
∆L ∈ D(2). In particular, on the sphere ‖∆L‖2

F = NTγ2 where γ is the same as in Section 3
with p = 0, D(2) restricts the number of large entries in the sense that entries in ∆L ∈ D(2)

on this sphere can be as large as
√

(1− Csm)NTγ, but for any δNT > 2αNT , the number of
entries whose magnitude are equal to δNT is at most (1− Csm)NTγ2/δ2

NT .
When there are covariates, complications arise and Csm not only needs to be bounded

away from zero but also needs to be sufficiently large. A sufficient condition is that Csm → 1
as N and T grow to infinity. Specifically, we have the following theorem.

Theorem S.A.1. Let λ be the same as in Lemma 1. Under Assumptions 1 to 5, if w.p.a.1,
∆̂L(u) ∈ D(2) defined in equation (S.A.2) with Csm → 1 as N and T grow to infinity, then
for some constant Cerror,2 > 0, the following estimator

(β̂(u), L̂(u)) = arg min
β∈Rp,L∈RN×T

1
NT

ρu(Y −
p∑
j=1

Xjβj − L) + λ‖L‖∗

satisfies the inequality below w.p.a.1.

sup
u∈U

‖β̂(u)− β0(u)‖2F + 1
NT
‖L̂(u)− L0(u)‖2F

≤C2
error,2α

4
NT

[
(1 + Cλ)2 ∨ log(NT )

] (p log((p+ 1)NT )
NT

∨ r̄

N ∧ T

)
.

Proof. See Appendix S.B.4. �

Remark S.A.1. The difference between the estimator defined in Theorem S.A.1 and the
one defined by equation (2.3) lies in the parameter space of L.

S.A.2 Comparison of Different Approaches

In this section, we compare our assumptions to obtain a quadratic lower bound in The-
orem 1 with those in Ando and Bai (2020), Belloni et al. (2023) and Chen et al. (2021).
To highlight the differences, we still consider the case where there are no covariates. Also,
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since these mentioned papers all focus on consistency pointwise in u ∈ U , in the following
discussion we also drop the requirements on uniformity in u in our assumptions.

First, let us summarize the assumptions needed in our two approaches to a quadratic
lower bound. Recall that without the covariates, the set D in the main text is defined as
{∆L ∈ RN×T : ‖∆L‖∞ ≤ 2αNT}.

• Approach 1 (adopted in the main text).

– On the conditional density of Vit(u): Assumption 2.

– On the magnitude of large elements in ∆̂L(u): Assuming ‖L0(u)‖∞ ≤ αNT in
equation (3.1) and by the constraint in the estimator’s definition (2.3), we have
∆̂L(u) ∈ D for all u ∈ U .

• Approach 2 (introduced in Appendix S.A.1).

– On the conditional density of Vit(u): Assumption 2.

– On the number and magnitude of large elements in ∆̂L(u): Assume ‖L0(u)‖∞ ≤
αNT and ∆̂L(u) ∈ D(2) for all u ∈ U w.p.a.1 with Csm → 1.

Ando and Bai (2020) and Chen et al. (2021) impose stronger assumptions on density
fVit(u). They both assume that fVit(u)(·) is continuous and for any compact set S, there
exists an S-dependent constant f

S
such that the density fVit(u)(s) ≥ f

S
> 0 for all s ∈ S

and all i and t. Note that this assumption implies our Assumption 2 by choosing S = [−δ, δ]
for any δ > 0. This stronger assumption can help obtain a quadratic lower bound for our
purpose by a simpler argument if ‖L0(u)‖ ≤ αNT and ‖L‖∞ ≤ αNT are still imposed2. To see
this, by |∆L,it| ≤ 2αNT , their assumption implies that there exists a constant f

αNT
> 0 such

that (S.A.1) is lower bounded by f
αNT

∑
i,t ∆2

L,it/2 by directly applying first-order Taylor
expansion. Similar to our Approach 1, the lower bound also depends on αNT via f

αNT
.

Now let us turn to Belloni et al. (2023). Their approach is more similar to our Approach
2 because they also restrict the magnitude and the number of large entries in ∆̂L(u). Again,
since they only focus on pointwise consistency, we compare our related assumptions with
theirs by dropping the required uniformity in u. Like our approaches, their assumptions also
consist of two parts:

First, on the conditional density of Vit(u), their Assumption 3 requires that for all i
and t, the density fVit(u)(v) is bounded away from 0 at v = 0 by f and bounded from
above uniformly in v. Meanwhile, fVit(u) is assumed to be differentiable and its derivative

2Indeed, these two papers assume elements in L0(u) lie in a fixed compact space, i.e. αNT is fixed, not
(N,T )-dependent.
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∂fVit(u)(v)/∂v is continuous and bounded in absolute value by f̄ ′ uniformly in v, i, and t.
These two requirements are stronger than our Assumption 2 since uniform boundedness of
both a set of functions and of their derivatives implies equicontinuity.

Second, on the magnitude and the number of large entries in ∆̂L(u), their Assumption 4
and equation (19) essentially say that ∆̂L(u) ∈ D(3) w.p.a.1 where3

D(3) ∈

∆L ∈ RN×T :
f

2‖∆L‖2
F −

f̄ ′

3
∑
i,t

|∆L,it|3 ≥ 0
 (S.A.3)

and the constants f and f̄ ′ are introduced in the previous paragraph. By the inequality in
(S.A.3) and by their assumption on the conditional density, they lower bound (S.A.1) for
∆L ∈ D(3) by second-order Taylor expansion:

∑
i,t

∫ ∆L,it

0

(
FVit(u)(s)− FVit(u)(0)

)
ds ≥

f

4‖∆‖
2
F +

f
4‖∆‖

2
F −

f̄ ′

6
∑
i,t

|∆L,it|3
 ≥ f

4‖∆‖
2
F .

The set D(3) serves a similar purpose as D(2) in our Approach 2. Both sets restrict the
magnitude and the number of large entries in the matrices in these sets. Yet the condition
on D(3) can be more restrictive in the sense that large elements allowed in D(3) can be fewer
than D(2). To see this, suppose ‖∆L‖F has order νNT and let αNT →∞ and αNT = o(νNT ).
For large element ∆L,it of order δNT > 2αNT , in any matrix in D(2), there can be as many
as o(ν2

NT/δ
2
NT ) of such elements while Csm → 1 still holds. But in any matrix in D(3), there

can be only O(ν2
NT/δ

3
NT ) of them.

ComparingD, D(2) andD(3), note that ∆̂L(u) ∈ D for all u ∈ U w.p.a.1 can be guaranteed
under primitive conditions: ‖L0(u)‖∞ ≤ αNT and the constraint in the definition of the
estimator (2.3). However, ∆̂L(u) ∈ D(2) in our Approach 2 and ∆̂L(u) ∈ D(3) in Belloni
et al. (2023) are higher level conditions.

To sum up, to obtain a quadratic lower bound in Theorem 1, we need to i) make assump-
tions on the conditional density fVit(u) and ii) to restrict the magnitude of large elements in
∆̂L(u) (Approach 1) or both the number and the magnitude of them (Approach 2). Our as-
sumption on the conditional density seems to be the weakest in the discussed literature. For
large elements in ∆̂L(u), our Approach 1 is under more primitive conditions while the restric-
tion D(2) in our Approach 2 can be milder than the restriction D(3) in Belloni et al. (2023).
On the other hand, in both of our two approaches, we need to assume ‖L0(u)‖∞ ≤ αNT ,

3More specifically, in a similar way to footnote 1, the assumption is imposed on all ∆L ∈ Ru; it ba-
sically requires γ/4 ≤ 3f‖∆L‖3

F /(8
√
NTf̄ ′

∑
i,t |∆L,it|3) (supposing there are no covariates). Under this

assumption, ∆L ∈ D(3) as long as ∆L ∈ Ru with ‖∆L‖F ≤
√
NTγ.
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while the approach in Belloni et al. (2023) is free of it. Finally, since they focus on high-
dimensional regressors, some discussed relaxations in our approaches may not apply there.
We view all three approaches as complementary.

Appendix S.B Proofs

S.B.1 Proofs of the Results in Section 3

Proof of Lemma 1

Recall that we suppress conditioning on WL for simplicity and V (u) := Y − qY |WX
(u).

Let ∇ρu(V (u)) be an N × T subgradient matrix of ρu(·) evaluated at V (u). Note that for
check function ρu(·), ∇ρu(0) is not unique due to nonsmoothness of ρu at 0 and can be any
number that lies in [u− 1, u]. We set ∇ρu(0) = u for convenience. With probability one, the
(i, t)-th element of ∇ρu(V (u)) is

(∇ρu (V (u)))it = u1(Vit(u) ≥ 0) + (u− 1)1(Vit(u) < 0).

These elements are bounded and independent with mean 0 conditional onWX (and implicitly
conditional on the fixed effects) by Assumption 1 and by the definition of V (u) 4. We
introduce the following lemma for ∇ρu(V (u)). The proof is in Appendix S.B.4.

Lemma S.B.1. Under Assumption 1, there exists a constant Cop > 6 such that the following
inequalities hold w.p.a.1:

sup
u∈U

max
1≤j≤p

∣∣∣〈∇ρu(V (u)), Xj

〉∣∣∣ ≤ 5
√

2CXNT log((p+ 1)NT ), (S.B.1)

sup
u∈U
‖∇ρu(V (u))‖ ≤ Cop

√
N ∨ T , (S.B.2)

where CX is defined in Assumption 1.

In what follows, the derivation is under the event that inequalities (S.B.1) and (S.B.2)
hold. Since ‖L0(u)‖∞ ≤ αNT for all u ∈ U , L0(u) is a feasible solution to the minimization
problem (2.3). Then by the definition of (β̂(u), L̂(u)), the following inequality holds with
probability one:

sup
u∈U

 1
NT

ρu
V (u)−

p∑
j=1

Xj∆̂β,j(u)− ∆̂L(u)

− ρu(V (u))

+ λ
(
‖L̂(u)‖∗ − ‖L0(u)‖∗

) ≤ 0,

(S.B.3)

4Conditional mean zero is obtained by noting that Pr(Vit(u) < 0|WX) = u almost surely by definition.
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where ∆̂β,j(u) := β̂j(u)− β0,j(u) and ∆̂L(u) := L̂(u)− L0(u).
Let us first consider

[
ρu
(
V (u)−∑p

j=1Xj∆̂β,j(u)− ∆̂L(u)
)
− ρu(V (u))

]
/NT . With prob-

ability one,

1
NT

ρu(V (u)−
p∑
j=1

Xj∆̂β,j(u)− ∆̂L(u)
)
− ρu(V (u))


≥− 1

NT

∣∣∣〈∇ρu(V (u)),
p∑
j=1

Xj∆̂β,j(u) + ∆̂L(u)
〉∣∣∣

≥− 1
NT
‖∆̂β(u)‖1 max

1≤j≤p

∣∣∣〈∇ρu(V (u)), Xj

〉∣∣∣− 1
NT
‖∇ρu(V (u))‖ · ‖∆̂L(u)‖∗

≥− 5
√

2CX log((p+ 1)NT )
NT

‖∆̂β(u)‖1 −
Cop
√
N ∨ T
NT

‖∆̂L(u)‖∗

≥− 5
√

2CXp log((p+ 1)NT )
NT

‖∆̂β(u)‖F −
Cop
√
N ∨ T
NT

‖∆̂L(u)‖∗. (S.B.4)

The first inequality is by the definition of subgradient. The first term in the second inequality
is elementary. The second term is from Lemma 3.2 in Candès and Recht (2009) which says
for any two matrices A and B of the same size, |〈A,B〉| ≤ ‖A‖ · ‖B‖∗. The penultimate
inequality is by inequalities (S.B.1) and (S.B.2) in Lemma S.B.1.

Next, consider λ
(
‖L̂(u)‖∗ − ‖L0(u)‖∗

)
. Recall that PΦ(u)⊥ is the orthogonal projection

onto the orthogonal complement of Φ(u). By construction, PΦ(u)⊥L0(u) = 0. Moreover, for
any N ×T matrix M , ‖PΦ(u)M +PΦ(u)⊥M‖∗ = ‖PΦ(u)M‖∗+ ‖PΦ(u)⊥M‖∗ since PΦ(u)M and
PΦ(u)⊥M have orthogonal singular vectors to each other. Hence, by L̂(u) = L0(u) + ∆̂L(u),
with probability one,

‖L̂(u)‖∗ − ‖L0(u)‖∗ =‖PΦ(u)L0(u) + PΦ(u)∆̂L(u)‖∗ + ‖PΦ(u)⊥∆̂L(u)‖∗ − ‖PΦ(u)L0(u)‖∗
≥‖PΦ(u)⊥∆̂L(u)‖∗ − ‖PΦ(u)∆̂L(u)‖∗. (S.B.5)

Combining equations (S.B.3), (S.B.4) and (S.B.5), we have shown that

sup
u∈U

((
λ− Cop

√
N ∨ T
NT

)
‖PΦ(u)⊥∆̂L(u)‖∗−5

√
2CXp log((1 + p)NT )

NT
‖∆̂β(u)‖F

−
(
λ+ Cop

√
N ∨ T
NT

)
‖PΦ(u)∆̂L(u)‖∗

)
≤ 0.

So, we have

sup
u∈U

∥∥∥PΦ(u)⊥∆̂L(u)
∥∥∥
∗
−NTλ+ Cop

√
N ∨ T

NTλ− Cop
√
N ∨ T

∥∥∥PΦ(u)∆̂L(u)
∥∥∥
∗
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−
5
√

2CXpNT log((p+ 1)NT )
NTλ− Cop

√
N ∨ T

∥∥∥∆̂β(u)
∥∥∥
F

 ≤ 0

holding with probability one under the event that equations (S.B.1) and (S.B.2) hold, which
in turn hold w.p.a.1 by Lemma S.B.1. We obtain the desired results by substituting λ =
(1 + Cλ)Cop

√
N ∨ T/NT into it. �

S.B.2 Proof of the Results in Section 4

Proof of Equivalence between Assumption 4 and Equation (4.4)

Noting that both MΛ0(u) and MF0(u) are idempotent, we have

E

∥∥∥∥∥∥MΛ0(u)
 p∑
j=1

Xjτj

MF0(u)
∥∥∥∥∥∥

2

F

=ETr
MΛ0(u)

 p∑
j=1

Xjτj

MF0(u)MF0(u)

 p∑
j=1

Xjτj

′MΛ0(u)


=ETr
MΛ0(u)

 p∑
j=1

Xjτj

MF0(u)
 p∑
j=1

Xjτj

′
=τ ′E (x′ (MF0(u)⊗MΛ0(u))x) τ,

where Tr is the trace of a matrix. The first equality is by definition of the Frobenius norm.
The last equality follows equation (S.2) in Moon and Weidner (2015). Then we have

E

∥∥∥∥∥∥PΦ(u)⊥

 p∑
j=1

Xjτj

∥∥∥∥∥∥
2

F

=E

∥∥∥∥∥∥MΛ0(u)
 p∑
j=1

Xjτj

MF0(u)
∥∥∥∥∥∥

2

F

=τ ′E (x′ (MF0(u)⊗MΛ0(u))x) τ, (S.B.6)

where the first equality is by Remark 6. Similarly,

E

∥∥∥∥∥∥PΦ(u)

 p∑
j=1

Xjτj

∥∥∥∥∥∥
2

F

=E

∥∥∥∥∥∥
p∑
j=1

Xjτj

∥∥∥∥∥∥
2

F

− E

∥∥∥∥∥∥PΦ(u)⊥

 p∑
j=1

Xjτj

∥∥∥∥∥∥
2

F

=τ ′E(x′x)τ − τ ′E (x′ (MF0(u)⊗MΛ0(u))x) τ. (S.B.7)

Substituting equations (S.B.6) and (S.B.7) into the left side of equation (4.2) in Assumption
4, equation (4.2) then holds if and only if equation (4.4) holds.
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Proof Sketch of Theorem 1

The proof of Theorem 1 (presented in the next section) is long and involves quite a bit
of algebraic detail. For the convenience of the reader, we first sketch the proof to highlight
the key steps.

We first prove a lemma which lower bounds the expectation in the theorem by a linear
function of E

∥∥∥∑p
j=1Xj∆β,j + ∆L

∥∥∥2

F
(see Lemma S.B.2 for details). Then it is sufficient to

show that E
∥∥∥∑p

j=1Xj∆β,j + ∆L

∥∥∥2

F
≥ CRSC (NT‖∆β‖2

F + ‖∆L‖2
F ) for all (∆β,∆L) ∈ Ru

for some CRSC > 0 and Theorem 1 follows. We distinguish two cases. The first case is
r(u) = 0. In this case, for any N × T matrix M , PΦ(u)M = 0. Therefore, if (∆β,∆L) ∈
Ru, it is necessary that ‖∆L‖2

F = ‖PΦ(u)⊥∆L‖2
F ≤ κ2(λ)2‖∆β‖2

F by the definition of Ru.
Assumption 3 implies that the number of regressors p = o((N ∧ T )/ log(NT )α2

NT ) and
thus κ2(λ) = o(N ∧ T ) by the definition of κ2(λ) in equation (3.7). So, ‖∆L‖2

F is o(N2 ∧
T 2)‖∆β‖2

F . On the other hand, Assumption 4 ii) implies that E‖∑p
j=1Xj∆β,j‖2

F is no smaller
than σ2

minNT‖∆β‖2
F . Therefore, E‖∑p

j=1Xj∆β,j‖2
F is greater than ‖∆L‖2

F in order. So,
the quantity E‖∑p

j=1Xj∆β,j + ∆L‖2
F must be bounded from below by a large fraction of

E‖∑p
j=1Xj∆β,j‖2

F , and consequently by (still a large fraction of) E‖∑p
j=1Xj∆β,j‖2

F +‖∆L‖2
F

because adding ‖∆L‖2
F does not change the order.

Then we move to the more interesting case of r(u) ≥ 1. Recall that the definition of
Ru implies that ‖PΦ(u)⊥∆L‖F ≤

√
3r(u)κ1(λ)|PΦ(u)∆L‖F + κ2(λ)‖∆β‖F . Similar to the

r(u) = 0 case, a simple case is when
√

3r(u)κ1(λ)‖PΦ(u)∆L‖F ≤ κ2(λ)‖∆β‖F . In this case,
the order of ‖∆L‖F is bounded by κ2(λ)‖∆β‖F because both the order of ‖PΦ(u)⊥∆L‖F and
of ‖PΦ(u)∆L‖F are bounded by it. Again, this is dominated by the order of E‖∑p

j=1Xj∆β,j‖2
F

following the argument as the r(u) = 0 case.
The nontrivial case is when r(u) ≥ 1 and

√
3r(u)κ1(λ)‖PΦ(u)∆L‖F > κ2(λ)‖∆β‖F . In this

case, it is possible that E‖∑p
j=1Xj∆β,j‖2

F and ‖∆L‖2
F are of the same order, and consequently,

without further restriction, the quantity of interest E‖∑p
j=1Xj∆β,j +∆L‖2

F can reach 0 even
when ∆L and ∆β are not. We then invoke Assumption 4 i), the key identification condition
not used yet, to separate the two matrices out. We show that this assumption guarantees
the existence of two positive constants c1(u), c2(u) with c1(u)c2(u) ≤ 1/CΦX < 1 such that
E‖∑p

j=1Xj∆β,j + ∆L‖2
F is bounded from below by

c1(u)

√√√√√E

∥∥∥∥∥∥PΦ(u)⊥

 p∑
j=1

Xj∆β,j

∥∥∥∥∥∥
2

F

−

κ2(λ) ‖∆β‖F√
3r(u)κ1(λ)

+
∥∥∥PΦ(u)∆L

∥∥∥
F




2
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+


√√√√√E

∥∥∥∥∥∥PΦ(u)⊥

 p∑
j=1

Xj∆β,j

∥∥∥∥∥∥
2

F

− c2(u)
κ2(λ) ‖∆β‖F√

3r(u)κ1(λ)
+
∥∥∥PΦ(u)∆L

∥∥∥
F




2

.

Observing this quantity, we notice that by c1(u)c2(u) being bounded away from 1, the two
quadratic terms cannot be simultaneously equal to 0 unless every term in them is 0. This
is the source of identification. We then prove that it is further bounded from below by a
positive fraction of E‖∑p

j=1Xj∆β,j‖2
F + ‖∆L‖2

F .

Proof of Theorem 1

Recall that D := Rp × {∆L ∈ RN×T : ‖∆L‖∞ ≤ 2αNT}. We have the following lemma.

Lemma S.B.2. Let εNT := 2
(
maxi,t E

(
1

(√
X ′itXit > αNT/γ

)
·X ′itXit

)
∨maxi,t P

(√
X ′itXit > αNT/γ

))
.

Under Assumption 2, if αNT ≥ 1, then the following inequality holds for any fixed N and T :

inf
u∈U

(∆β ,∆L)∈D

E
ρu(V (u)−

p∑
j=1

Xj∆β,j −∆L

)
− ρu(V (u))



−
(1 ∧ δ)2f

(
E
∥∥∥∑p

j=1Xj∆β,j + ∆L

∥∥∥2

F
− εNT (NT‖∆β‖2

F + ‖∆‖2
F )
)

2(2αNT + (αNT‖∆β‖F/γ ∨ 1))2

 ≥ 0. (S.B.8)

Sequence εNT is equal to 0 for sufficiently large N and T under Assumption 3 i), and con-
verges to zero as N, T →∞ under Assumption 3 ii).

Proof. See Appendix S.B.4. �

Remark S.B.1. When deriving the uniform rate of convergence later, we only need to focus
on the sphere NT‖∆β‖2

F + ‖∆L‖2
F = NTγ2. Then equation (S.B.8) can be simplified as:

inf
u∈U

‖∆β‖F≤γ
(∆β ,∆L)∈D

E
ρu(V (u)−

p∑
j=1

Xj∆β,j −∆L

)
− ρu(V (u))



− Cmin
α2
NT

E
∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F

− εNT
(
NT‖∆β‖2

F + ‖∆L‖2
F

)
 ≥ 0, (S.B.9)

where Cmin := (1∧δ)2f/18, f and δ are defined in Assumption 2, and γ is defined in equation
(3.4).

Now we derive a lower bound on E
∥∥∥∑p

j=1Xj∆β,j + ∆L

∥∥∥2

F
. For the ease of notation, in

the proof we denote κ1(λ) and κ2(λ), defined by equation (3.7) in Lemma 1, by κ1 and
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κ2. We have κ1 = O(1) and κ1 > 1. Under Assumption 3, κ2 = o(N ∧ T ) uniformly in
u ∈ U . When r(u) ≥ 1, let κ3 := κ2√

3r(u)κ1
. So κ3 has the same order as κ2 uniformly in

u ∈ {u ∈ U : r(u) ≥ 1}. We discuss the case of r(u) = 0 and the case of r(u) ≥ 1 separately.
Case 1. r(u) = 0. When r(u) = 0, for any N×T matrixM , PΦ(u)M = 0 and PΦ(u)⊥M =

M . Hence, for (∆β,∆L) ∈ Ru, ‖∆L‖F ≤ κ2‖∆β‖F . Meanwhile, by Assumption 4 ii), we
have the following,

E

∥∥∥∥∥∥
p∑
j=1

Xj∆β,j

∥∥∥∥∥∥
2

F

= ∆′β

∑
i,t

E (XitX
′
it)
∆β ≥ NTσ2

min‖∆β‖2
F . (S.B.10)

Therefore, by κ2 = o(N ∧T ), for an arbitrarily small ε1 > 0, there exist N1 and T1 such that
for all N > N1 and T > T1:

‖∆‖F ≤ κ2‖∆β‖F ≤
ε1

2

√
NTσ2

min‖∆β‖F ≤
ε1

2

√√√√√E

∥∥∥∥∥∥
p∑
j=1

Xj∆β,j

∥∥∥∥∥∥
2

F

. (S.B.11)

Since the order of κ2 is the same for all u, N1 and T1 are the same for all u as well. Therefore,
the following holds for all (∆β,∆L) ∈ Ru and all u ∈ {u ∈ U : r(u) = 0},

E

∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F

≥E

∥∥∥∥∥∥
p∑
j=1

Xj∆β,j

∥∥∥∥∥∥
2

F

+ ‖∆L‖2
F − 2

√√√√√E

∥∥∥∥∥∥
p∑
j=1

Xj∆β,j

∥∥∥∥∥∥
2

F

‖∆‖F

≥(1− ε1)E
∥∥∥∥∥∥
p∑
j=1

Xj∆β,j

∥∥∥∥∥∥
2

F

+ ‖∆L‖2
F

≥
[
(1− ε1)σ2

min ∧ 1
] (
NT‖∆β‖2

F + ‖∆L‖2
F

)
,

where the first inequality is by the following fact: For any two (random) matrices D1 and
D2 of the same dimensions, the following holds (with probability 1) by the Cauchy-Schwarz
inequality:

E‖D1 +D2‖2
F = E‖D1‖2

F +E‖D2‖2
F +2E〈D1, D2〉 ≥ E‖D1‖2

F +E‖D2‖2
F−2

√
E‖D1‖2

FE‖D2‖2
F .

(S.B.12)
Hence, for all N > N1 and T > T1,

inf
u∈{u∈U :r(u)=0}

(∆β ,∆L)∈Ru

E
∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F

−
[
(1− ε1)σ2

min ∧ 1
] (
NT ‖∆β‖2

F + ‖∆L‖2
F

) ≥ 0.

(S.B.13)
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Case 2.1. r(u) ≥ 1 and ‖PΦ(u)∆L‖F ≤ κ3‖∆β‖F . By the definition ofRu, ‖PΦ(u)⊥∆L‖F ≤√
3r(u)κ1|PΦ(u)∆L‖F + κ2‖∆β‖F if (∆β,∆L) ∈ Ru. By the definition of κ3, we then have

∥∥∥PΦ(u)⊥∆L

∥∥∥
F
≤
√

3r(u)κ1
(∥∥∥PΦ(u)∆L

∥∥∥
F

+ κ3‖∆β‖F
)
≤ 2

√
3r(u)κ1κ3‖∆β‖F .

Therefore, ‖∆L‖2
F ≤ (1 + 12r(u)κ2

1)κ2
3‖∆β‖2

F . So, the order of ‖∆L‖2
F is o

(
(N ∧ T ))2

)
‖∆β‖2

F

uniformly in u, dominated by NT‖∆β‖2
F . Therefore, similar to equation (S.B.13), for some

N2 and T2 that do not change across u, we have the following for all N > N2 and T > N2:

inf
u∈{u∈U :r(u)≥1}

(∆β ,∆L)∈Ru
‖PΦ(u)∆L‖F≤κ3‖∆β‖F

E
∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F

−
[
(1− ε1)σ2

min ∧ 1
] (
NT ‖∆β‖2

F + ‖∆L‖2
F

) ≥ 0.

(S.B.14)

Case 2.2. r(u) ≥ 1 and ‖PΦ(u)∆L‖F > κ3‖∆β‖F . LetM(u) :=
√
E
∥∥∥PΦ(u)

(∑p
j=1Xj∆β,j

)∥∥∥2

F

and M(u)⊥ :=
√
E
∥∥∥PΦ(u)⊥

(∑p
j=1Xj∆β,j

)∥∥∥2

F
. We need the following lemma whose proof is

in Appendix S.B.4:

Lemma S.B.3. Under Assumptions 3 and 4, if r(u) ≥ 1 for all u ∈ U , then there exist N3

and T3 such that the following holds for all N > N3 and T > T3:

inf
u∈U

[
M(u)⊥ − CΦX

√
3r(u)κ1

(
M(u) + κ3 ‖∆β‖F

)]
≥ 0.

Remark S.B.2. Recall that for any (∆β,∆L) ∈ Ru, by the definition of the cone, we can
verify that the following holds:

∥∥∥PΦ(u)⊥∆L

∥∥∥
F
≤
(√

3r(u)κ1(λ)
∥∥∥PΦ(u)∆L

∥∥∥
F

+ κ2(λ) ‖∆β‖F
)
.

Comparing the above inequality and Lemma S.B.3, by CΦX > 1, we can see that our assump-
tions guarantee that on average, (∆β,

∑p
j=1Xj∆β,j) lies away from the cone where (∆β,∆L)

lies in, and the distance is controlled by CΦX .

We now only consider N > N3 and T > T3 so that the result in Lemma S.B.3 holds.
For a fixed u ∈ U such that r(u) ≥ 1, Lemma S.B.3 implies that there exists a c1(u) ∈[
0, 1/

(√
3r(u)κ1CΦX

)]
such that (c1(u) may depend on ∆L and ∆β)

c1(u)M(u)⊥ =M(u) + κ3‖∆β‖F =⇒ M(u) = c1(u)M(u)⊥ − κ3 ‖∆β‖F , (S.B.15)
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where c1(u) = 0 if and only if ∆β = 0. Since κ1 = (2 + Cλ)/Cλ > 1, 1 ≤ r(u) ≤ r̄, and
CΦX > 1, we have

0 ≤ c1(u) ≤ 1√
3r(u)κ1CΦX

<
1√

3r(u)κ1
< 1, (S.B.16)

for all u ∈ {u ∈ U : r(u) ≥ 1} and all (∆β,∆L).
Similarly, for (∆β,∆L) ∈ Ru, since

∥∥∥PΦ(u)⊥∆L

∥∥∥
F
≤
√

3r(u)κ1
(∥∥∥PΦ(u)∆L

∥∥∥
F

+ κ3‖∆β‖F
)

by the definition of Ru, there exists a c2(u) ∈
[
0,
√

3r(u)κ1
]
that may depend on ∆L and

∆β as well such that
∥∥∥PΦ(u)⊥∆L

∥∥∥
F

= c2(u)
(∥∥∥PΦ(u)∆L

∥∥∥
F

+ κ3 ‖∆β‖F
)
. (S.B.17)

Then we have

0 ≤c2(u) ≤
√

3r(u)κ1 =
√

3r̄(2 + Cλ)
Cλ

, (S.B.18)

0 ≤c1(u)c2(u) ≤ 1
CΦX

< 1. (S.B.19)

for all u ∈ {u ∈ U : r(u) ≥ 1} and all (∆β,∆L).
By equations (S.B.15) and (S.B.17), the following inequalities hold for all (∆β,∆L) ∈ Ru

and for all u ∈ {u ∈ U : r(u) ≥ 1}:

E

∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F

=E

∥∥∥∥∥∥PΦ(u)

 p∑
j=1

Xj∆β,j

+ PΦ(u)∆L

∥∥∥∥∥∥
2

F

+ E

∥∥∥∥∥∥PΦ(u)⊥

 p∑
j=1

Xj∆β,j

+ PΦ(u)⊥∆L

∥∥∥∥∥∥
2

F

≥
(
M(u)−

∥∥∥PΦ(u)∆L

∥∥∥
F

)2
+
(
M(u)⊥ −

∥∥∥PΦ(u)⊥∆L

∥∥∥
F

)2

=
(
c1(u)M(u)⊥ −

(
κ3 ‖∆β‖F +

∥∥∥PΦ(u)∆L

∥∥∥
F

))2
+
(
M(u)⊥ − c2(u)

(
κ3 ‖∆β‖F +

∥∥∥PΦ(u)∆L

∥∥∥
F

))2
.

(S.B.20)

The inequality is by equation (S.B.12). The last equality is by equations (S.B.15) and
(S.B.17). Since c1(u)c2(u) is bounded away from 1 from above (equation (S.B.19)), the two
squared terms on the right hand side of equation (S.B.20) cannot be simultaneously 0 for
any u ∈ {u ∈ U : r(u) ≥ 1} unless that all the norms in them are zero. We now derive a
lower bound on the right hand side of equation (S.B.20).

By equation (S.B.15) and by the uniform boundedness of c1(u), there exists a constant
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C1 > 1 not depending on u or (∆β,∆L) such that

C1
(
M(u)⊥

)2
≥
(
1 + c1(u)2

) (
M(u)⊥

)2
≥
(
M(u)⊥

)2
+ (M(u))2 = E

∥∥∥∥∥∥
p∑
j=1

Xj∆β,j

∥∥∥∥∥∥
2

F

.

(S.B.21)
Similarly, by equation (S.B.17), by ‖PΦ(u)∆L‖F > κ3‖∆β‖F , and by the uniform bound-

edness of c2(u) (by equation (S.B.18)), we have some C2 > 1 (C2 decreases in Cλ) that does
not depend on u or (∆β,∆L) such that

‖∆L‖2
F =

∥∥∥PΦ(u)∆L

∥∥∥2

F
+
∥∥∥PΦ(u)⊥∆L

∥∥∥2

F
<
(
1 + 4c2(u)2

) ∥∥∥PΦ(u)∆L

∥∥∥2

F
≤ C2

∥∥∥PΦ(u)∆L

∥∥∥2

F
.

(S.B.22)

Hence, we have the following holding for all u ∈ {u ∈ U : r(u) ≥ 1} and (∆β,∆L) ∈ Ru such
that

∥∥∥PΦ(u)∆L

∥∥∥
F
− κ3‖∆β‖F > 0,

[
c1(u)M(u)⊥ −

(
κ3 ‖∆β‖F +

∥∥∥PΦ(u)∆L

∥∥∥
F

)]2
+
[
M(u)⊥ − c2(u)

(
κ3 ‖∆β‖F +

∥∥∥PΦ(u)∆L

∥∥∥
F

)]2
=
(
1 + c1(u)2

) (
M(u)⊥

)2
+
(
1 + c2(u)2

) (
κ3‖∆β‖F +

∥∥∥PΦ(u)∆L

∥∥∥
F

)2

− 2 (c1(u) + c2(u))M(u)⊥
(
κ3 ‖∆β‖F +

∥∥∥PΦ(u)∆L

∥∥∥
F

)
≥

1− c1(u) + c2(u)√
(c1(u) + c2(u))2 + (1− c1(u)c2(u))2

[(M(u)⊥
)2

+
(
κ3 ‖∆β‖F +

∥∥∥PΦ(u)∆L

∥∥∥
F

)2
]

≥

1−

√
3r(u)κ1 + 1/(

√
3r(u)κ1)√(√

3r(u)κ1 + 1/(
√

3r(u)κ1)
)2

+ (1− 1/CΦX)2

[(M(u)⊥
)2

+
(
κ3 ‖∆β‖F +

∥∥∥PΦ(u)∆L

∥∥∥
F

)2
]

≥

1−

√
3r(u)κ1 + 1/(

√
3r(u)κ1)√(√

3r(u)κ1 + 1/(
√

3r(u)κ1)
)2

+ (1− 1/CΦX)2

[(M(u)⊥
)2

+
∥∥∥PΦ(u)∆L

∥∥∥2

F

]

≥

1−

√
3r(u)κ1 + 1/(

√
3r(u)κ1)√(√

3r(u)κ1 + 1/(
√

3r(u)κ1)
)2

+ (1− 1/CΦX)2


 1
C1

E

∥∥∥∥∥∥
p∑
j=1

Xj∆β,j

∥∥∥∥∥∥
2

F

+ 1
C2
‖∆L‖2

F



≥
(
σ2
min

C1
∧ 1
C2

)1−

√
3r(u)κ1 + 1/(

√
3r(u)κ1)√(√

3r(u)κ1 + 1/(
√

3r(u)κ1)
)2

+ (1− 1/CΦX)2

(NT ‖∆β‖2
F + ‖∆L‖2

F

)

≥
(
σ2
min

C1
∧ 1
C2

)1−
√

3r̄κ1 + 1/(
√

3r̄κ1)√(√
3r̄κ1 + 1/(

√
3r̄κ1)

)2
+ (1− 1/CΦX)2

(NT ‖∆β‖2
F + ‖∆L‖2

F

)
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where the equality is elementary. The first inequality is due to the fact that for any nonneg-
ative real numbers k1 and k2, and real numbers x and y, the following holds:5

(1+k2
1)x2 +(1+k2

2)y2−2(k1 +k2)xy ≥
1− k1 + k2√

(k1 + k2)2 + (1− k1k2)2

 (x2 +y2), (S.B.23)

where the coefficient on (x2+y2) on the right hand side is strictly positive as long as k1k2 6= 1.
The second inequality is by equations (S.B.16), (S.B.18) and (S.B.19). The third inequality is
elementary. The fourth inequality is by equations (S.B.21) and (S.B.22). The fifth inequality
is by equation (S.B.10). The last inequality holds because of the following reason: Since
κ1 = (2 + Cλ)/Cλ,

√
3r(u)κ1 > 1 by construction. Therefore,

√
3r(u)κ1 + 1/(

√
3r(u)κ1)

increases as
√

3r(u)κ1 increases. So
√

3r(u)κ1 + 1/(
√

3r(u)κ1) ≤
√

3r̄κ1 + 1/(
√

3r̄κ1). Let

CRSC :=
(
σ2
min

C1
∧ 1
C2

)1−
√

3r̄κ1 + 1/(
√

3r̄κ1)√(√
3r̄κ1 + 1/(

√
3r̄κ1)

)2
+ (1− 1/CΦX)2

 . (S.B.24)

Again, since
√

3r̄κ1 > 1, CRSC gets bigger when κ1 and C2 get smaller, which is a consequence
of a bigger Cλ. Meanwhile, CRSC is also increasing in CΦX . The above derivation has shown
that for N > N3 and T > T3 so that Lemma S.B.3 holds,

inf
u∈{u∈U :r(u)≥1}

(∆β ,∆L)∈Ru
‖PΦ(u)∆L‖

F
−κ3‖∆β‖F>0

E
∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F

− CRSC
(
NT ‖∆β‖2

F + ‖∆L‖2
F

) ≥ 0.

(S.B.25)
Comparing equations (S.B.13), (S.B.14) and (S.B.25), since ε1 can be arbitrarily small and
C1, C2 > 1, we have CRSC < [(1− ε1)σ2

min ∧ 1]. Therefore, for all N > max{N1, N2, N3} and
T > max{T1, T2, T3}, we have

inf
u∈U

(∆β ,∆L)∈Ru

E
∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F

− CRSC
(
NT ‖∆β‖2

F + ‖∆L‖2
F

)
= min

 inf
u∈{u∈U :r(u)=0}

(∆β ,∆L)∈Ru

E
∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F

− CRSC
(
NT ‖∆β‖2

F + ‖∆L‖2
F

) ,
5To see this, let ψ := k1+k2√

(k1+k2)2+(1−k1k2)2 . We can see ψ ∈ [0, 1]. Then ψ(1+k2
1)x2 +ψ(1+k2

2)y2−2(k1 +

k2)xy ≥ 0 because (k1 + k2)2 = ψ2(1 + k2
1)(1 + k2

2). Therefore, (1 + k2
1)x2 + (1 + k2

2)y2 − 2(k1 + k2)xy ≥
(1− ψ)((1 + k2

1)x2 + (1 + k2
2)y2) ≥ (1− ψ)(x2 + y2).
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inf
u∈{u∈U :r(u)≥1}

(∆β ,∆L)∈Ru
‖PΦ(u)∆L‖

F
−κ3‖∆β‖F≤0

E
∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F

− CRSC
(
NT ‖∆β‖2

F + ‖∆L‖2
F

) ,

inf
u∈{u∈U :r(u)≥1}

(∆β ,∆L)∈Ru
‖PΦ(u)∆L‖

F
−κ3‖∆β‖F>0

E
∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F

− CRSC
(
NT ‖∆β‖2

F + ‖∆L‖2
F

)


≥ 0.

Finally, since Lemma S.B.2 shows εNT → 0, for N > N4 and T > T4 for some N4

and T4, we have εNT < CRSC/2. The desired result in Theorem 1 obtains for all N >

max{N1, N2, N3, N4} and T > max{T1, T2, T3, T4} by substituting the above inequality and
εNT < CRSC/2 into equation (S.B.8) in Lemma S.B.2. The rank of L0(u) is identified
immediately once L0(u) is identified. �

S.B.3 Proofs of the Results in Section 5

Proof of Theorem 2

For arbitrary random variables Zits and a function f , let Gu(f(Zit)) := ∑
i,t[f(Zit) −

E(f(Zit))]/
√
NT . The proof of the following lemma is in Appendix S.B.4.

Lemma S.B.4. Under Assumptions 1, 3 and 5, there exists a constant Csup > 0 such that
for γ defined in equation (3.4),

P

 sup
u∈U

(∆β ,∆L)∈Ru
‖∆β‖2F+ 1

NT
‖∆L‖2F≤γ

2

∣∣∣Gu

(
ρu
(
Vit(u)−X ′it∆β −∆L,it

)
− ρu(Vit(u))

)∣∣∣

≤Csup
√

log(NT )
(√

p log((p+ 1)NT ) ∨
√
r̄(N ∨ T )

)
γ

→ 1.

The positive constant Csup decreases in Cλ and is lower bounded by a positive constant. Its
formula is in the proof.

Let Ω0 be the event that i) (∆̂β(u), ∆̂L(u)) ∈ Ru ∩ D and ii) the uniform bound on the
error process Gu in Lemma S.B.4 holds. By Lemmas 1 and S.B.4 and by equation (3.1)
under ΩL, the event Ω0 occurs w.p.a.1. It is then sufficient to show that the following event

16



has zero probability under Ω0:

∃u ∈ U : ‖∆̂β(u)‖2
F + 1

NT
‖∆̂L(u)‖2

F > γ2 (S.B.26)

where γ = Cerrorα
2
NT

(
(1 + Cλ) ∨

√
log(NT )

) (√
p log((p+ 1)NT )/NT ∨

√
r̄/(N ∧ T )

)
for

some Cerror > 0 about which we will be precise later.
Since Ru is a cone and zero is contained in D which is a convex set, for any (∆β,∆L) ∈

Ru ∩ D and any τ ∈ (0, 1), (τ∆β, τ∆L) ∈ Ru ∩ D. By this observation, by the definition of
the estimator (2.3) and L0(u) ∈ L for all u ∈ U , and by convexity of the objective function,
equation (S.B.26) implies that there exists a u ∈ U such that

0 ≥ inf
(∆β ,∆L)∈Ru∩D

‖∆β‖2F+ 1
NT
‖∆L‖2F=γ2

1
NT

ρu(V (u)−
p∑
j=1

Xj∆β,j −∆L

)
− ρu (V (u))


+ λ [‖L0(u) + ∆L‖∗ − ‖L0(u)‖∗] (S.B.27)

= inf
(∆β ,∆L)∈Ru∩D

‖∆β‖2F+ 1
NT
‖∆L‖2F=γ2

1
NT

E

ρu(V (u)−
p∑
j=1

Xj∆β,j −∆L

)
− ρu(V (u))


+ 1√

NT
Gu

(
ρu
(
Vit(u)−X ′it∆β −∆L,it

)
− ρu(Vit(u))

)
+ λ [‖L0(u) + ∆L‖∗ − ‖L0(u)‖∗] . (S.B.28)

For the expectation, Theorem 1 implies that

inf
u∈U

(∆β ,∆L)∈Ru∩D
‖∆β‖2F+ 1

NT
‖∆L‖2F=γ2

1
NT

E

ρu(V (u)−
p∑
j=1

Xj∆β,j −∆L

)
− ρu(V (u))



≥CminCRSC2α2
NT

(
‖∆β‖2

F + ‖∆L‖2
F

NT

)

=CminCRSC2α2
NT

γ2, (S.B.29)

where Cmin = (1 ∧ δ)2f/18.
For the error process Gu/

√
NT , by ii) in Ω0,

1√
NT

sup
u∈U

(∆β ,∆L)∈Ru
‖∆β‖2F+ 1

NT
‖∆L‖2F=γ2

∣∣∣Gu

(
ρu
(
Vit(u)−X ′it∆β −∆L,it

)
− ρu(Vit(u))

) ∣∣∣
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≤Csup
√

log(NT )
√p log((p+ 1)NT )

NT
∨
√

r̄

N ∧ T

 γ. (S.B.30)

Finally, for the penalty difference, same as the proof of Lemma S.B.4, we define CCone =
5
√

2CX/(CλCop). By λ = (1 + Cλ)Cop
√
N ∨ T/NT , and by the definition of Ru,

sup
u∈U

(∆β ,∆L)∈Ru
‖∆β‖2F+ 1

NT
‖∆L‖2F=γ2

λ
∣∣∣‖L0(u) + ∆L‖∗ − ‖L0(u)‖∗

∣∣∣

≤ sup
u∈U

(∆β ,∆L)∈Ru
‖∆β‖2F+ 1

NT
‖∆L‖2F=γ2

λ‖∆L‖∗

≤λ sup
‖∆L‖2F≤NTγ2

(
CCone

√
p(N ∧ T ) log((p+ 1)NT )γ + 2(1 + Cλ)

Cλ
‖PΦ(u)∆L‖∗

)

≤λ sup
‖∆L‖2F≤NTγ2

(
CCone

√
p(N ∧ T ) log((p+ 1)NT )γ + 2

√
3r̄(1 + Cλ)
Cλ

‖∆L‖F
)

≤(1 + Cλ)Cop
(
CCone + 2

√
3(1 + Cλ)
Cλ

)√p log((p+ 1)NT )
NT

∨
√

r̄

N ∧ T

 γ
≤(1 + Cλ)Cpel

√p log((p+ 1)NT )
NT

∨
√

r̄

N ∧ T

 γ, (S.B.31)

where Cpel := Cop
(
CCone + 2

√
3(1 + Cλ)/Cλ

)
. We can see that Cpel decreases as Cλ increases,

and is bounded away from zero.
Let Cup = Cpel + Csup, so Cup is bounded away from zero and decreases as Cλ increases

as well. Let Cerror = 3Cup/(CminCRSC). By equations (S.B.29), (S.B.30) and (S.B.31), the
right side of equation (S.B.28) is lower bounded by

γ ·

CminCRSC
2α2

NT

γ − Cup
(

(1 + Cλ) ∨
√

log(NT )
)√p log((p+ 1)NT )

NT
∨
√

r̄

N ∧ T

 > 0,

with probability one. Hence, under Ω0, inequality (S.B.27) and thus inequality (S.B.26) hold
with zero probability. Since Ω0 holds w.p.a.1 (implicitly conditional on (WL,ΩL)), we obtain
the desired result. �

Remark S.B.3. As noted in Section 3.1, all the arguments are implicitly conditional on
(WL,ΩL). So here our result, driven by P(Ω0|WL,ΩL) → 1, is also conditional on them.
However, under the assumption that P(ΩL) → 1, the results also hold unconditionally as
P(Ω0) ≥ E(P(Ω0|ΩL,WL)|ΩL)P(ΩL)→ 1.
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Proof of Corollary 1

By Weyl’s inequality for singular values,

max
k∈{1,...,N∧T}

{|σ̂k(u)− σk(u)|} ≤ ‖∆̂L(u)‖ ≤ ‖∆̂L(u)‖F ,

with probability one. Hence, supu∈U maxk {|σ̂k(u)− σk(u)|} ≤ supu∈U ‖∆̂L(u)‖F . Equation
(5.3) thus follows by plugging in the uniform rate of ‖∆̂L(u)‖F obtained in Theorem 2 and
by σr(u)+1(u) = · · · = σN∧T (u) = 0. �

Proof of Corollary 2

By the definition of r̂(u), the event {r̂(u) = r(u)} is equivalent to {σ̂r(u) ≥ Cr}∩{σ̂r(u)+1 <

Cr}. The latter event, under the event Ωsv2 = {σr(u) is of the order of
√
NT}, can be implied

by Ωsv1 := {|σ̂r(u)−σr(u)| ≤
√
NTγ, |σ̂r(u)+1− 0| ≤

√
NTγ} for sufficiently large N and T by

the choice of Cr. The desired result is thus obtained since w.p.a.1, Ωsv1 is true by Corollary
1 and Ωsv2 is true by assumption.

S.B.4 Proofs of the Results in Appendices S.A and S.B

Proof of Lemma S.B.1

Let Ω1 be the event that max1≤j≤p ‖Xj‖2
F ≤ CXNT . Under Assumption 1, P(Ω1) → 1.

Recall that the (i, t)-th element in subgradient ∇ρu(V (u)) is

(∇ρu (V (u)))it = u1(Vit(u) ≥ 0) + (u− 1)1(Vit(u) < 0),

with probability one. By Assumption 1 and by V (u) = Y − qY |WX
(u), the elements in

∇ρu (V (u)) are independent with mean 0 conditional on WX , and are uniformly bounded
within [−1, 1]. We start by proving equation (S.B.1).
Proof of Equation (S.B.1). Let M = 5

√
2CXNT log((p+ 1)NT ). Note that

P

 sup
u∈U

1≤j≤p

|〈∇ρu(V (u)), Xj〉| > M

 ≤ P

 sup
u∈U

1≤j≤p

|〈∇ρu(V (u)), Xj〉| > M

∣∣∣∣∣Ω1

P(Ω1) + P(Ωc
1).

(S.B.32)
Since P(Ωc

1) → 0, it is sufficient to show the conditional probability in equation (S.B.32)
converges to zero.

Let UK = (u1, u2, ..., uK) be an ε-net of U . Let ε = 1√
NT

and Kε ≤ 1. By the triangle
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inequality,

sup
u∈U

1≤j≤p

∣∣∣〈∇ρu(V (u)), Xj

〉∣∣∣
≤ max

uk∈UK
1≤j≤p

∣∣∣〈∇ρuk(V (uk)), Xj

〉∣∣∣+ sup
|u−uk|≤ε,uk∈UK

1≤j≤p

∣∣∣〈∇ρu(V (u))−∇ρuk(V (uk)), Xj

〉∣∣∣
=:E1 + E2.

Then by the union bound,

P

 sup
u∈U

1≤j≤p

|〈∇ρu(V (u)), Xj〉| > M

∣∣∣∣∣Ω1

 ≤ 2 max
P

E1 >
1
5M

∣∣∣∣∣∣Ω1

 ,P
E2 >

4
5M

∣∣∣∣∣∣Ω1

 .
(S.B.33)

Bound on E1. By K ≤ 1/ε, we have

P

E1 >
1
5M

∣∣∣∣∣∣Ω1

 ≤p
ε

max
uk∈UK
1≤j≤p

P

∣∣∣〈∇ρuk(V (uk)), Xj

〉∣∣∣ ≥ 1
5M

∣∣∣∣∣∣Ω1


=p
ε

max
uk∈UK
1≤j≤p

E

P
∣∣∣〈∇ρuk(V (uk)), Xj

〉∣∣∣ ≥ 1
5M

∣∣∣∣∣∣Ω1,WX

 ∣∣∣∣∣∣Ω1


≤2p
√
NT exp

(
− M2

50CXNT

)

= 2p
(p+ 1)

√
NT
→ 0 (S.B.34)

where the first inequality is by the union bound and the following equality is due to the law
of iterative expectation. The penultimate inequality is by Hoeffding’s inequality and by Ω1

under ε = 1/
√
NT .

Bound on E2. By definition, the (i, t)-th element in ∇ρu(V (u))−∇ρuk(V (uk)) is almost
surely

u1(Vit(u) ≥ 0) + (u− 1)1(Vit(u) < 0)− [uk1(Vit(uk) ≥ 0) + (uk − 1)1(Vit(uk) < 0)]
=(u− uk) + 1(Vit(uk) < 0)− 1(Vit(u) < 0). (S.B.35)

Let Ξ1 and Ξ2 be two N × T matrices whose (i, t)-th elements are

Ξ1,it := u− uk (S.B.36)
Ξ2,it := 1(Vit(uk) < 0)− 1(Vit(u) < 0). (S.B.37)
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Then by equation (S.B.35), ∇ρu(V (u))−∇ρuk(V (uk)) = Ξ1 + Ξ2. Therefore,

P
(
E2 >

4
5M

∣∣∣∣Ω1

)
≤P

 sup
|u−uk|≤ε
uk∈UK
1≤j≤p

| 〈Ξ1, Xj〉 | >
2
5M

∣∣∣∣∣∣Ω1

 +P

 sup
|u−uk|≤ε
uk∈UK
1≤j≤p

| 〈Ξ2, Xj〉 | >
2
5M

∣∣∣∣∣∣Ω1


=:P1 + P2. (S.B.38)

We first show P1 = 0. By the Cauchy-Schwarz inequality,

P

 sup
|u−uk|≤ε,uk∈UK

1≤j≤p

| 〈Ξ1, Xj〉 | >
2
5M

∣∣∣∣∣∣Ω1

 ≤P
 sup
|u−uk|≤ε,uk∈UK

1≤j≤p

‖Ξ1‖F‖Xj‖F >
2
5M

∣∣∣∣∣∣Ω1


≤P

(
ε
√
CXNT >

2
5M

)
=P

(√
CXNT > 2

√
2CXNT log((p+ 1)NT )

)
=0 (S.B.39)

for large enough N and T . The second inequality is by the definition of Ξ1 and Ω1. The
penultimate equality is by ε = 1/

√
NT .

Now we show that P2 converges to zero. Let Ξ(1)
2 and Ξ(2)

2 be two N × T matrices whose
(i, t)-th elements are

Ξ(1)
2,it(uk) := 1(Vit(uk) < 0)− 1(Vit(uk − ε) < 0). (S.B.40)

Ξ(2)
2,it(uk) := 1(Vit(uk) < 0)− 1(Vit(uk + ε) < 0). (S.B.41)

Consider an arbitrary element in Ξ2: Ξ2,it := 1(Vit(uk) < 0)−1(Vit(u) < 0). By Assumption
1, Vit(u) is strictly decreasing in u almost surely. Hence, 1(Vit(u) < 0) is weakly increasing in
u almost surely. Consequently, if uk − ε ≤ u ≤ uk, then 0 ≤ Ξ2,it ≤ Ξ(1)

2,it(uk) ≤ 1. Similarly,
if uk + ε ≥ u ≥ uk, then 0 ≥ Ξ2,it ≥ Ξ(2)

2,it(uk) ≥ −1. The following inequalities thus hold
with probability one.

sup
|u−uk|≤ε,uk∈UK

1≤j≤p

∣∣∣〈Ξ2, Xj〉
∣∣∣ ≤ sup

uk−ε≤u≤uk,uk∈UK
1≤j≤p

∣∣∣〈Ξ2, Xj〉
∣∣∣+ sup

uk≤u≤uk+ε,uk∈Uk
1≤j≤p

∣∣∣〈Ξ2, Xj〉
∣∣∣

≤ sup
uk−ε≤u≤uk,uk∈UK

1≤j≤p

∣∣∣〈Ξ2, |Xj|〉
∣∣∣+ sup

uk≤u≤uk+ε,uk∈Uk
1≤j≤p

∣∣∣〈Ξ2, |Xj|〉
∣∣∣

≤ max
uk∈UK
1≤j≤p

∣∣∣〈Ξ(1)
2 , |Xj|〉

∣∣∣+ max
uk∈UK
1≤j≤p

∣∣∣〈Ξ(2)
2 , |Xj|〉

∣∣∣.
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The first inequality is elementary. To see why the second inequality holds, note that the
elements in Ξ2 are all nonnegative when u ∈ [uk − ε, uk] and are all nonpositive when
u ∈ [uk, uk + ε]. So, for a given Ξ2 and a given Xj, the two absolute inner products on the
right side of the first inequality increase if we flip the signs of the Xj,its so that they also have
the same sign. The third inequality then follows because now that elements in both |Xj|
and in Ξ2 have the same signs, the two absolute inner products in the second line increase
as the magnitude of any of the elements in Ξ2 increases. Therefore,

P2 ≤ P

max
uk∈UK
1≤j≤p

∣∣∣〈Ξ(1)
2 , |Xj|〉

∣∣∣ > 1
5M

∣∣∣∣∣∣Ω1

+ P

max
uk∈UK
1≤j≤p

∣∣∣〈Ξ(2)
2 , |Xj|〉

∣∣∣ > 1
5M

∣∣∣∣∣∣Ω1

 . (S.B.42)

Let us first bound maxuk∈Uk,1≤j≤p
∣∣∣〈Ξ(1)

2 , |Xj|〉
∣∣∣. The expectation of an arbitrary element

Ξ(1)
2,it in Ξ(1)

2 satisfies

E
(
Ξ(1)

2,it(uk)
∣∣∣WX

)
=P

(
Vit(uk) < 0 ≤ Vit(uk − ε)

∣∣∣WX

)
=P

(
qYit|WX

(uk − ε) ≤ Yit < qYit|WX
(uk)

∣∣∣WX

)
=ε

where the second equality is by the definition of Vit(u). Let Ξ̄(1)
2 = E

(
Ξ(1)

2 (uk)
∣∣∣WX

)
be an

N×T matrix whose elements are all equal to ε. Under Ω1, by the Cauchy-Schwarz inequality
and by ε = 1/

√
NT , we have maxuk∈Uk,1≤j≤p

∣∣∣〈Ξ̄(1)
2 , |Xj|〉

∣∣∣ ≤ ε
√
CXNT =

√
CXNT with

probability one. Therefore,

P

max
uk∈Uk
1≤j≤p

∣∣∣〈Ξ(1)
2 , |Xj|〉

∣∣∣ > 1
5M

∣∣∣∣∣∣Ω1


≤P

max
uk∈Uk
1≤j≤p

∣∣∣〈Ξ(1)
2 − Ξ̄(1)

2 , |Xj|〉
∣∣∣+ max

uk∈Uk
1≤j≤p

∣∣∣〈Ξ̄(1)
2 , |Xj|〉

∣∣∣ > 1
5M

∣∣∣∣∣∣Ω1


≤P

max
uk∈Uk
1≤j≤p

∣∣∣〈Ξ(1)
2 − Ξ̄(1)

2 , |Xj|〉
∣∣∣ > 1

5M −
√
CXNT

∣∣∣∣∣∣Ω1


=p
ε

max
uk∈Uk
1≤j≤p

E

P
∣∣∣〈Ξ(1)

2 − Ξ̄(1)
2 , |Xj|〉

∣∣∣ > 1
5M −

√
CXNT

∣∣∣∣∣∣WX

 ∣∣∣∣∣∣Ω1


≤2p
√
NT exp

(
−(M/5−

√
CXNT )2

2CXNT

)
→ 0. (S.B.43)

The penultimate equality is by the law of iterated expectation since max1≤j≤p ‖Xj‖2
F in Ω1 is

22



a function of WX . The last inequality is by Hoeffding’s inequality since conditional on WX ,
elements in (Ξ(1)

2 − Ξ̄(1)
2 ) are independent with zero mean and are bounded within [−1, 1].

Convergence is by the choice of M .
Finally, we can show that P

(
maxuk∈Uk,1≤j≤p |〈Ξ

(2)
2 , |Xj|〉| > M/5|Ω1

)
→ 0 as well follow-

ing exactly the same argument. Combining it with equations (S.B.32), (S.B.33), (S.B.34),
(S.B.38), (S.B.39), (S.B.42) and (S.B.43), we obtain the desired result.
Proof of Equation (S.B.2). We invoke the following lemma to prove equation (S.B.2).

Lemma S.B.5 (Theorem 4.4.5 in Vershynin (2018), p.85). Let A be an N × T random
matrix whose entries Aij are independent mean zero sub-Gaussian random variables. Then,
for any t > 0 we have ‖A‖ ≤ CQ

(√
N +

√
T + t

)
with probability at least 1 − 2 exp(−t2).

Here C is an absolute constant and Q = maxi,j ‖Aij‖ψ2
6.

For any u, entries in matrix ∇ρu(V (u)) are independent mean zero random variables con-
ditional onWX . Since each of them is Bernoulli, they are sub-Gaussian with ‖(∇ρu(V (u)))i,t‖ψ2 =
inf{c > 0 : (1−u) exp(u2/c2)+u exp ((1− u)2/c2) ≤ 2}. TakeQ = supu∈(0,1) ‖(∇ρu(V (u)))i,t‖ψ2 <

∞. Let Cop = 12CQ+ 6. Let M = Cop
√
N ∨ T .

Let UK = (u1, u2, ..., uK) be an ε-net of U with εK ≤ 1. This time let ε = 1/
√
N ∨ T .

By the triangle inequality, we have

sup
u∈U
‖∇ρu(V (u))‖ ≤ max

uk∈UK
‖∇ρuk(V (uk))‖+ sup

|u−uk|≤ε,uk∈UK
‖∇ρu(V (u))−∇ρuk(V (uk))‖

=:F1 + F2. (S.B.44)

By equation (S.B.44),

P
(

sup
u∈U
‖∇ρu(V (u))‖ > M

)
≤ 2 max {P (F1 > M/2) ,P (F2 > M/2)} . (S.B.45)

Bound on F1. By εK ≤ 1, we have

P (F1 > M/2) ≤ 1
ε

max
uk∈UK

P (‖∇ρuk(V (uk))‖ > M/2)

= 1
ε

max
uk∈UK

E [P (‖∇ρuk(V (uk))‖ > M/2|WX)]

≤ 2
√
N ∨ T exp(−(N ∨ T ))→ 0 (S.B.46)

where the first inequality is by the union bound. The equality is by the law of iterated expec-
tation. The last inequality follows from ε = 1/

√
N ∨ T and from Lemma S.B.5. Specifically,

6The sub-Gaussian norm of a sub-Gaussian random variable X is defined as ‖X‖ψ2 := inf{c > 0 :
E exp(X2/c2) ≤ 2}
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by Cop = 12CQ + 6, M/2 = Cop
√
N ∨ T/2 > 3CQ

√
N ∨ T ≥ CQ(

√
N +

√
T +
√
N ∨ T ),

and the result in Lemma S.B.5 applies by letting t =
√
N ∨ T . Note that we choose a larger

Cop than what is needed now for later use.
Bound on F2. Similar to the proof of equation (S.B.1),

sup
|u−uk|≤ε,uk∈UK

‖∇ρu(V (u))−∇ρuk(V (uk))‖ ≤ sup
|u−uk|≤ε,uk∈UK

‖Ξ1‖+ sup
|u−uk|≤ε,uk∈UK

‖Ξ2‖

≤ε
√
NT + sup

|u−uk|≤ε,uk∈UK
‖Ξ2‖

=
√
N ∧ T + sup

|u−uk|≤ε,uk∈UK
‖Ξ2‖

where Ξ1 and Ξ2 are defined in equations (S.B.36) and (S.B.37) in the proof of equation
(S.B.1). The second inequality holds because all the elements in Ξ1 are equal to u − uk,
whose magnitude is bounded by ε and the spectral norm of a matrix of all ones is equal to√
NT . The last equality is by ε = 1/

√
N ∨ T . Hence,

P(F2 > M/2) ≤ P
(

sup
|u−uk|≤ε,uk∈UK

‖Ξ2‖ > M/2−
√
N ∧ T

)
. (S.B.47)

Now we bound sup|u−uk|≤ε,uk∈UK ‖Ξ2‖. By definition, for an arbitrary matrix N × T

matrix A, ‖A‖ := sup‖x‖F=1 ‖Ax‖F where x is a T × 1 vector. Suppose all the elements
in A have the same sign. Then, the supremum is achieved only if all the elements in x

also have the same sign and thus sup‖x‖F=1 ‖Ax‖F = sup‖x‖F=1 ‖A · |x|‖F . Meanwhile, for a
matrix B whose elements also have the same sign with |Bit| ≥ |Ait| for all i and t, we have
‖A · |x|‖F ≤ ‖B · |x|‖F . Therefore,

‖A‖ = sup
‖x‖F=1

‖A · |x|‖F ≤ sup
‖x‖F=1

‖B · |x|‖F = sup
‖x‖F=1

‖Bx‖F = ‖B‖. (S.B.48)

Hence,

sup
|u−uk|≤ε,uk∈UK

‖Ξ2‖ ≤ sup
uk−ε≤u≤uk

uk∈Uk

‖Ξ2‖+ sup
uk≤u≤uk+ε

uk∈Uk

‖Ξ2‖ ≤ max
uk∈Uk

‖Ξ(1)
2 ‖+ max

uk∈Uk
‖Ξ(2)

2 ‖,

(S.B.49)

where Ξ(1)
2 and Ξ(2)

2 are defined in equations (S.B.40) and (S.B.41) in the proof of equation
(S.B.1) and do not depend on u. To see why the second inequality holds, recall that the
elements in Ξ2 are all nonnegative when u < uk and all nonpositive when u > uk, and in
either case, we have |Ξ2,it| ≤ |Ξ(ι)

2,it|, ι = 1, 2 for all i, t. Inequality (S.B.49) is thus implied by
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inequality (S.B.48).
Again, let us only derive the bound on maxuk∈Uk ‖Ξ

(1)
2 ‖ because the bound on maxuk∈Uk ‖Ξ

(2)
2 ‖

follows the same argument. Recall that matrix Ξ̄(1)
2 := (ε)i,t is the conditional mean of Ξ(1)

2

given WX . Note that maxuk∈UK ‖Ξ̄
(1)
2 ‖ = ε

√
NT =

√
N ∧ T by ε = 1/

√
N ∨ T . We have

P
(

max
uk∈Uk

‖Ξ(1)
2 ‖ > M/4−

√
N ∧ T/2

)
≤P

(
max
uk∈Uk

‖Ξ(1)
2 − Ξ̄(1)

2 ‖+ max
uk∈Uk

‖Ξ̄(1)
2 ‖ > Cop

√
N ∨ T/4−

√
N ∧ T/2

)
≤P

(
max
uk∈Uk

‖Ξ(1)
2 − Ξ̄(1)

2 ‖ > Cop
√
N ∨ T/4− 3

√
N ∧ T/2

)
≤K max

uk∈UK
P
(
‖Ξ(1)

2 − Ξ̄(1)
2 ‖ > (Cop/4− 3/2)

√
N ∨ T

)
≤
√
N ∨ T max

uk∈UK
E
[
P
(
‖Ξ(1)

2 − Ξ̄(1)
2 ‖ > (Cop/4− 3/2)

√
N ∨ T

∣∣∣WX

)]
≤ 2
√
N ∨ T

exp(N ∨ T ) → 0, (S.B.50)

where the last inequality follows the same argument for equation (S.B.46) since the entries
in (Ξ(1)

2 (uk) − Ξ̄(1)
2 (uk)) are independent Bernoulli with zero mean conditional on WX . In

particular, each equals 1− ε with probability ε and equal to −ε with probability (1− ε). So
their sub-Gaussian norms are still bounded byQ. By Cop = 12CQ+6, (Cop/4−1.5)

√
N ∨ T =

3CQ
√
N ∨ T ≥ CQ(

√
N +

√
T +

√
N ∨ T ) and thus Lemma S.B.5 applies by letting t =√

N ∨ T .
Similarly, we have P

(
maxuk∈Uk ‖Ξ

(2)
2 ‖ > M/4−

√
N ∧ T/2

)
→ 0 as well. Combining

it with equations (S.B.45), (S.B.46), (S.B.47), (S.B.49) and (S.B.50), we have the desired
result. �

Proof of Lemma S.B.2

To prove the lemma, we need the following result which helps to handle the high-
dimensional ∆L. Its proof is in this section.

Lemma S.B.6. For all w1, w2 ∈ R and all κ ∈ (0, 1],
∫ w2

0

(
1(w1 ≤ z)− 1(w1 ≤ 0)

)
dz ≥

∫ κw2

0

(
1(w1 ≤ z)− 1(w1 ≤ 0)

)
dz ≥ 0.

By Knight’s identity (Knight, 1998), for any two scalars w1 and w2,

ρu(w1 − w2)− ρu(w1) = −w2(u− 1(w1 ≤ 0)) +
∫ w2

0
(1(w1 ≤ s)− 1(w1 ≤ 0))ds.
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Let w1 = Vit(u) and w2 = X ′it∆β + ∆L,it where ∆β and ∆L are arbitrary fixed p × 1 vector
and N × T matrix, then by the definition of Vit(u) and by the law of iterated expectation,

E (−w2(u− 1(w1 ≤ 0))) = E [E(−w2(u− 1(w1 ≤ 0))|WX)] = 0. (S.B.51)

Now we lower bound the integral. By the Cauchy-Schwarz inequality, |X ′it∆β| ≤
√
X ′itXit‖∆β‖F .

Define κit = 1/
(
2αNT +

(√
X ′itXit‖∆β‖F ∨ 1

))
. By αNT ≥ 1, κit ∈ (0, 1). By ‖∆L‖∞ ≤

2αNT , we have |κit · (X ′it∆β + ∆L,it) | ≤ 1 for all i and t. Therefore, for all i and t,
κit · (X ′it∆β + ∆L,it) (1 ∧ δ) ∈ [−δ, δ] where δ > 0 is defined in Assumption 2. Then the
following holds for all i, t, and u ∈ U :

E
(∫ X′it∆β+∆L,it

0

(
1(Vit(u) ≤ s)− 1(Vit(u) ≤ 0)

)
ds

)

≥E
(∫ κit(X′it∆β+∆L,it)(1∧δ)

0

(
1(Vit(u) ≤ s)− 1(Vit(u) ≤ 0)

)
ds

)

=E
[
E
(∫ κit(X′it∆β+∆L,it)(1∧δ)

0

(
1(Vit(u) ≤ s)− 1(Vit(u) ≤ 0)

)
ds
∣∣∣∣WX

)]

=E
[∫ κit(X′it∆β+∆L,it)(1∧δ)

0

(
FVit(u)|WX

(s)− FVit(u)|WX
(0)
)
ds

]

=E
[∫ κit(X′it∆β+∆L,it)(1∧δ)

0
sfVit(u)|WX

(s̃(s))ds
]

≥E
[
κ2
it(1 ∧ δ)2(X ′it∆β + ∆L,it)2f

2

]

=
(1 ∧ δ)2f

2 · E

 (X ′it∆β + ∆L,it)2(
2αNT +

(√
X ′itXit‖∆β‖F ∨ 1

))2

 , (S.B.52)

where f is defined in Assumption 2. The first inequality is by Lemma S.B.6. The equality
immediately after it is by the law of iterated expectation. The third equality is by the mean
value theorem where s̃(s) is a mean value. The inequality following is by Assumption 2 and
by κit · (X ′it∆β + ∆L,it) (1∧ δ) ∈ [−δ, δ]. The last equality is by the definition of κit. Now we
lower bound the expectation on the right hand side of the last equality. We have

E

 (X ′it∆β + ∆L,it)2(
2αNT +

(√
X ′itXit‖∆β‖F ∨ 1

))2



≥E

1
(√

X ′itXit ≤ αNT/γ
)

(X ′it∆β + ∆L,it)2(
2αNT +

(√
X ′itXit‖∆β‖F ∨ 1

))2


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≥
E
[
1

(√
X ′itXit ≤ αNT/γ

)
(X ′it∆β + ∆L,it)2

]
(2αNT + (αNT‖∆β‖F/γ ∨ 1))2

= E [(X ′it∆β + ∆L,it)2]
(2αNT + (αNT‖∆β‖F/γ ∨ 1)2 −

E
[
1

(√
X ′itXit > αNT/γ

)
· (X ′it∆β + ∆L,it)2

]
(2αNT + (αNT‖∆β‖F/γ ∨ 1))2

≥ E [(X ′it∆β + ∆L,it)2]
(2αNT + (αNT‖∆β‖F/γ ∨ 1))2

− 2×
‖∆β‖2

FE
[
1

(√
X ′itXit > αNT/γ

)
·X ′itXit

]
+ ∆2

L,itP
(√

X ′itXit > αNT/γ
)

(2αNT + (αNT‖∆β‖F/γ ∨ 1))2

≥
E [(X ′it∆β + ∆L,it)2]− εNT

(
‖∆β‖2

F + ∆2
L,it

)
(2αNT + (αNT‖∆β‖F/γ ∨ 1))2 (S.B.53)

where the third inequality is by Cauchy-Schwarz. The last inequality is by substituting
εNT := 2

(
maxi,t E

(
1

(√
X ′itXit > αNT/γ

)
·X ′itXit

)
∨maxi,t P

(√
X ′itXit > αNT/γ

))
into the

right hand side. We obtain the desired results by combining equations (S.B.51), (S.B.52)
and (S.B.53) and summing them over i and t.

Now we show that εNT = 0 for large enough N and T under Assumption 3 i) and εNT → 0
under Assumption 3 ii). Since p = o((N ∧ T )/(log(NT )α2

NT ) under both Assumption 3 i)
and ii), γ = O(α2

NT

√
log(NT )/

√
N ∧ T ) because Cλ = O

(√
log(NT )

)
. Therefore, √p =

o(αNT/γ).
Assumption 3 i). When maxj=1,...,p;i,t |Xj,it| ≤

√
CX ,

√
X ′itXit ≤

√
CXp. So 1

(√
X ′itXit > αNT/γ

)
≤

1

(√
CXp > αNT/γ

)
= 0 for all i and t for large enough N and T because √p = o(αNT/γ).

Therefore, maxi,t E
(
1

(√
X ′itXit > αNT/γ

)
·X ′itXit

)
and maxi,t P

(√
X ′itXit > αNT/γ

)
are both

equal to 0 for large enough N and T .
Assumption 3 ii). We first show that maxi,t P

(√
X ′itXit > αNT/γ

)
→ 0:

max
i,t

P
(√

X ′itXit > αNT/γ
)
≤p max

j=1,...,p;i,t
P
(
|Xj,it| >

αNT√
p+ 1γ

)

≤pmaxj=1,...,p;i,tE(ϕ(|Xj,it|))
ϕ
(

αNT√
p+1γ

) → 0

where the first inequality is by the union bound. The second inequality is by the Markov’s
inequality. Since the order of αNT/(

√
p+ 1γ) is at least (

√
N ∧ T/(

√
(p+ 1) log(NT )αNT )),

convergence is by p/ϕ
(√

N ∧ T/(
√

(p+ 1) log(NT )αNT )
)
→ 0 and maxj=1,...,p;i,tE(ϕ(|Xj,it|)) <

Cϕ by Assumption 3 ii).
Now we show that maxi,t E

(
1

(√
X ′itXit > αNT/γ

)
·X ′itXit

)
converges to zero as well.
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We have

max
i,t

E
(
1

(√
X ′itXit > αNT/γ

)
·X ′itXit

)
≤max

i,t

[(
E[(X ′itXit)1+η/2]

)2/(2+η)
·
(
P
(√

X ′itXit ≥ αNT/γ
))η/(2+η)

]

≤p max
j=1,...,p;i,t

(
E
(
|Xj,it|2+η

))2/(2+η)
max
i,t

[
P
(√

X ′itXit > αNT/γ
)]η/(2+η)

≤p
(

max
j=1,...,p;i,t

E
(
|Xj,it|2+η

))2/(2+η)
pmaxj=1,...,p;i,tE(ϕ(|Xj,it|))

ϕ
(

αNT√
p+1γ

)
η/(2+η)

≤
(

max
j=1,...,p;i,t

E(ϕ(|Xj,it|))
)
p ·

 p

ϕ
(

αNT√
p+1γ

)
η/(2+η)

→ 0

where the first inequality is by Hölder’s. The second is by Minkowski. The third inequality
follows the same derivation of the convergence of maxi,t P

(√
X ′itXit > αNT/γ

)
. The last

inequality is by ϕ(x) ≥ x2+η for all x ≥ 0. Convergence is by Assumption 3 ii) and by the
order of γ. �

Proof of Lemma S.B.3

Let A(u) := CΦXκ3 ‖∆β‖F − ε0M(u) where ε0 is the same as in Assumption 4 i). We
have

inf
u∈U

[
M(u)⊥ − CΦX

√
3r(u)κ1

(
M(u) + κ3 ‖∆β‖F

)]

= min
 inf
u∈{u∈U :A(u)<0}

[
M(u)⊥ − CΦX

√
3r(u)κ1

(
M(u) + κ3 ‖∆β‖F

)]
,

inf
u∈{u∈U :A(u)≥0}

[
M(u)⊥ − CΦX

√
3r(u)κ1

(
M(u) + κ3 ‖∆β‖F

)].
(S.B.54)

First consider the case when A(u) < 0. The following inequalities hold:

inf
u∈{u∈U :A(u)<0}

[
M(u)⊥ − CΦX

√
3r(u)κ1

(
M(u) + κ3 ‖∆β‖F

)]
≥ inf

u∈{u∈U :A(u)<0}

(
M(u)⊥ − (CΦX + ε0)

√
3r(u)κ1M(u)

)
≥ inf

u∈U

(
M(u)⊥ − (CΦX + ε0)

√
3r(u)κ1M(u)

)
≥0, (S.B.55)
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where the last inequality is by Assumption 4 i).
Now let us consider the case when A(u) ≥ 0. We have

(M(u))2 +
(
M(u)⊥

)2
= E

∥∥∥∥∥∥
p∑
j=1

Xj∆β,j

∥∥∥∥∥∥
2

F

≥ NTσ2
min‖∆β‖2

F (S.B.56)

where the inequality is by equation (S.B.10). Meanwhile, recall that the order of κ3 is the
same as κ2 which is o(N ∧ T ) uniformly in u. So M(u) = o(N ∧ T )‖∆β‖F by A ≥ 0.
So, by equation (S.B.56), the order of M(u)⊥ must be at least

√
NT‖∆β‖F uniformly in

u ∈ {u ∈ U : A(u) ≥ 0}, dominating κ3‖∆β‖F . Therefore, there must exist N3 and T3 which
do not depend on u such that for all N > T3 and T > T3,

inf
u∈{u∈U :A(u)≥0}

[
M(u)⊥ − CΦX

√
3r(u)κ1

(
M(u) + κ3 ‖∆β‖F

)]
≥ inf

u∈{u∈U :A(u)≥0}

[
M(u)⊥ − κ1

√
3r(u)CΦX

(
CΦX

ε0
+ 1

)
κ3 ‖∆β‖F

]
≥0. (S.B.57)

Combining equations (S.B.54), (S.B.55) and (S.B.57), we have the desired result. �

Proof of Lemma S.B.4

The main argument of the proof follows the proof of Lemma 5 in Belloni and Cher-
nozhukov (2011). The major difference is that we need to handle the matrix component
∆L.

Let

A(γ) := sup
u∈U

(∆β ,∆L)∈Ru
‖∆β‖2F+ 1

NT
‖∆L‖2F≤γ

2

∣∣∣Gu

(
ρu
(
Vit(u)−X ′it∆β −∆L,it

)
− ρu(Vit(u))

)∣∣∣.

For arbitrary random variables Zits and a function f , denote the symmetrized version of
G(f(Zit)) by G0(f(Zit)) := (∑i,t f(Zit)εit)/

√
NT where (εit)i,t is a Rademacher sequence

independent of ({V (u)}u∈(0,1),W ).
Similar to Belloni and Chernozhukov (2011) and Chao et al. (2021), for any fixed ∆β

and ∆L with ‖∆β‖2
F + 1

NT
‖∆L‖2

F ≤ γ2 and any u ∈ U , we have the following bound on the
conditional variance of the process by noting that the check function is a contraction:

Var (Gu (ρu (Vit(u)−X ′it∆β −∆L,it)− ρu(Vit(u))))
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≤ 1
NT

E


∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F


≤ 2p
NT

∑
i,t

max
j=1,...,p

E(X2
j,it)‖∆β‖2

F + 2
NT
‖∆L‖2

F

≤2p
(

max
i,t,j=1,...,p

E(X2
j,it)

)
‖∆β‖2

F + 2
NT
‖∆L‖2

F

≤2
(
p max
i,t,j=1,...,p

E(X2
j,it) ∨ 1

)(
‖∆β‖2

F + 1
NT
‖∆L‖2

F

)
≤2

(
p max
i,t,j=1,...,p

E(ϕ(|Xj,it|)) ∨ 1
)(
‖∆β‖2

F + 1
NT
‖∆L‖2

F

)
≤2 (pCϕ ∨ 1) γ2, (S.B.58)

where ϕ(·) and Cϕ are defined in Assumption 3. Let

s = Csup
√

log(NT )
(√

p log((p+ 1)NT ) ∨
√
r̄(N ∨ T )

)
γ.

Since E(Gu (ρu (Vit(u)−X ′it∆β −∆L,it)− ρu(Vit(u)))) = 0 by construction, with inequality
(S.B.58) we can apply the symmetrization lemma for probability, for instance Lemma 2.3.7
in van der Vaart and Wellner (1996):

P (A(γ) > s) ≤
2P
(
A0(γ) > s

4

)
1− 8 (pCϕ ∨ 1) γ2/s2 ≤ 4P

(
A0(γ) > s

4

)
(S.B.59)

where A0(γ) is the symmetrized version of A(γ) by replacing Gu with its symmetrized
version G0. The first inequality is by Lemma 2.3.7 in van der Vaart and Wellner (1996) and
Chebyshev’s inequality, and by the bound on the conditional variance (S.B.58). The second
inequality holds because γ

√
(pCϕ ∨ 1)/s→ 0 by the definition of s for any fixed Csup.

Let Ω1 be the event that max1≤j≤p ‖Xj‖2
F ≤ CXNT where CX is as in Assumption 1.

We have
P
(
A0(γ) > s

4

)
≤ P

(
A0(γ) > s

4

∣∣∣∣Ω1

)
+ P(Ωc

1). (S.B.60)

Since P(Ωc
1) → 0 under Assumption 1, we only need to show that P(A0(γ) > s/4|Ω1) → 0

under our choice of s for some Csup.
Consider the random variable ρu (Vit(u)−X ′it∆β −∆L,it)− ρu(Vit(u)):

ρu (Vit(u)−X ′it∆β −∆L,it)− ρu(Vit(u)) = −u · (X ′it∆β + ∆L,it) + δit (X ′it∆β + ∆L,it, u)
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where δit (X ′it∆β + ∆L,it, u) = (Vit(u)−X ′it∆β −∆L,it)− − (Vit(u))−. Let

B0
1(γ) := sup

‖∆β‖2F≤γ
2

∣∣∣G0
(
X ′it∆β

)∣∣∣,
B0

2(γ) := sup
u∈U

(∆β ,∆L)∈Ru
‖∆β‖2F+ 1

NT
‖∆L‖2F≤γ

2

∣∣∣G0
(
∆L,it

)∣∣∣,

and
C0(γ) := sup

u∈U
(∆β ,∆L)∈Ru

‖∆β‖2F+ 1
NT
‖∆L‖2F≤γ

2

∣∣∣G0
(
δit
(
X ′it∆β + ∆L,it, u

))∣∣∣,

then A0(γ) ≤ B0
1(γ) + B0

2(γ) + C0(γ) with probability one. Hence,

P
(
A0(γ) ≥ s

4
∣∣∣Ω1

)
≤P

(
B0

1(γ) + B0
2(γ) + C0(γ) ≥ s

4
∣∣∣Ω1

)
≤3 max

{
P
(
B0

1(γ) ≥ s

12
∣∣∣Ω1

)
,P
(
B0

2(γ) ≥ s

12
∣∣∣Ω1

)
,P
(
C0(γ) ≥ s

12
∣∣∣Ω1

)}
. (S.B.61)

We now derive upper bounds on B0
1(γ), B0

2(γ) and C0(γ) respectively.
Bound on B0

1(γ). The derivation of the bound on B0
1(γ) follows Belloni and Cher-

nozhukov (2011) closely. We present the proof here for completeness. For some K1 > 0, by
Markov’s inequality,

P
(
B0

1(γ) > K1

∣∣∣WX ,Ω1
)

≤min
τ≥0

e−τK1E
[
exp

(
τB0

1(γ)
) ∣∣∣WX ,Ω1

]
≤min

τ≥0
e−τK1E

exp
τ sup

‖∆β‖2F≤γ2
‖∆β‖1 · max

1≤j≤p
|G0(Xj,it)|

 ∣∣∣∣∣∣WX ,Ω1


≤2pmin

τ≥0
e−τK1 max

1≤j≤p
E
[
exp

(
τ
√
pγ ·G0(Xj,it)

) ∣∣∣WX ,Ω1
]

≤2pmin
τ≥0

e−τK1 exp
(
τ 2pγ2CX

2

)

where the third inequality follows from the fact that E[max1≤j≤p exp(|zj|)] ≤ 2pmax1≤j≤p E[exp(zj)]
for a symmetric random variable zj (Belloni and Chernozhukov, 2011). The last inequal-
ity is by an intermediate step in the proof of Hoeffding’s inequality (e.g. van der Vaart
and Wellner (1996) p.100) and by Ω1. Hence, by setting τ = K1/(pγ2CX) and K1 =√

2pCX log((p+ 1)NT ) · γ (if p = 0, then let τ be any constant and the bound is equal to
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0), we have

P
(
B0

1(γ) > K1

∣∣∣WX ,Ω1
)
≤ 2p exp

(
− K2

1
2pγ2CX

)
= 2p

(p+ 1)NT → 0.

Therefore,

P
(
B0

1 > K1

∣∣∣Ω1
)

= E
[
P
(
B0

1 > K1|WX ,Ω1
) ∣∣∣Ω1

]
≤ E

( 2
NT

)
→ 0. (S.B.62)

Bound on B0
2(γ). Recall that {εit}i,t is the Rademacher sequence in the symmetrized

process. Let ε be the N × T matrix (εit)i,t. Then with probability one, by defining CCone :=
5
√

2CX/(CλCop), we have

B0
2(γ)

= 1√
NT

sup
u∈U

(∆β ,∆L)∈Ru
‖∆β‖2F+ 1

NT
‖∆L‖2F≤γ

2

|
∑
i,t

εit∆L,it|

= 1√
NT

sup
u∈U

(∆β ,∆L)∈Ru
‖∆β‖2F+ 1

NT
‖∆L‖2F≤γ

2

|〈ε,∆L〉|

≤ 1√
NT
‖ε‖ · sup

u∈U
(∆β ,∆L)∈Ru

‖∆β‖2F+ 1
NT
‖∆L‖2F≤γ

2

‖∆L‖∗

≤ 1√
NT
‖ε‖ · sup

‖∆β‖2F+ 1
NT
‖∆L‖2F≤γ2

(
CCone

√
p(N ∧ T ) log((p+ 1)NT )‖∆β‖F + 2(1 + Cλ)

Cλ
‖PΦ(u)∆L‖∗

)

≤ 1√
NT
‖ε‖ · sup

‖∆β‖2F+ 1
NT
‖∆L‖2F≤γ2

(
CCone

√
p(N ∧ T ) log((p+ 1)NT )‖∆β‖F + 2

√
3r̄(1 + Cλ)
Cλ

‖∆L‖F
)

≤ 2√
NT
‖ε‖ ·

((
CCone

√
p(N ∧ T ) log((p+ 1)NT )

)
∨
(

2(1 + Cλ)
Cλ

√
3r̄NT

))
γ,

where the second inequality is by the definition of cone Ru and the third inequality is by
equation (3.9). Since ε has i.i.d. mean 0 Bernoulli entries, there exists a constant CSp > 1
such that for P

(
‖ε‖ > CSp

√
N ∨ T/2

)
→ 0 by Lemma S.B.5. Let

K2 := CSp

((
CCone

√
p log((p+ 1)NT )

)
∨
(
2(1 + Cλ)

√
N ∨ T

√
3r̄/Cλ

))
γ,
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we have

P
(
B0

2(γ) > K2

∣∣∣Ω1
)
≤ P

(
‖ε‖ > CSp

√
N ∨ T/2

)
→ 0. (S.B.63)

Bound on C0(γ). By γ = o(1), it is smaller than one for sufficiently large N and T .
Then let Ul = {u1, ..., ul} be an ε-net of U where ε = γ/

√
p+ 1 and εl ≤ 1. For any ū ∈ U ,

we have the identity

δit(X ′it∆β + ∆L,it, u) =δit[X ′it(∆β + β0(u)− β0(ū)) + ∆L,it + L0,it(u)− L0,it(ū), ū]
− δit[X ′it(β0(u)− β0(ū)) + L0,it(u)− L0,it(ū), ū].

Then by the triangle inequality, with probability one we have

C0(γ) ≤ sup
u∈U ,|u−ū|<ε,ū∈Ul

(∆β ,∆L)∈Ru
‖∆β‖2F+ 1

NT
‖∆L‖2F≤γ

2

∣∣G0(δit[X ′it(∆β + β0(u)− β0(ū)) + ∆L,it + L0,it(u)− L0,it(ū), ū]
)∣∣

+ sup
u∈U ,|u−ū|<ε,ū∈Ul

(∆β ,∆L)∈Ru
‖∆β‖2F+ 1

NT
‖∆L‖2F≤γ

2

∣∣G0(δit[X ′it(β0(u)− β0(ū)) + L0,it(u)− L0,it(ū), ū]
)∣∣. (S.B.64)

We will proceed by treating ∆β + β0(u) − β0(ū) and β0(u) − β0(ū) as new ∆βs, and ∆L +
L0(u) − L0(ū) and L0(u) − L0(ū) as new ∆Ls. However, they may no longer lie in the ball
‖∆β‖2

F + 1
NT
‖∆L‖2

F ≤ γ2 and in cone Ru. So, we need to first expand these two sets.
We first expand the ball. For ∆β, by Assumption 5, by ε = γ/

√
p+ 1 and by ‖∆β‖F ≤ γ,

we have ‖∆β + β0(u)− β0(ū)‖2
F ≤ 2(1 + ζ2

X/(p+ 1))γ2 and ‖β0(u)− β0(ū)‖2
F ≤ ζ2

Xγ
2/(p+ 1)

for all |u − ū| ≤ ε. Similarly, for ‖∆L‖F ≤
√
NTγ, under equation (3.2), ‖∆L + L0(u) −

L0(ū)‖2
F/NT ≤ 2(1 + ζ2

L/(p + 1))γ2 while ‖L0(u) − L0(ū)‖2
F/NT ≤ ζ2

Lγ
2/(p + 1) for all

|u− ū| ≤ ε. Therefore, we need to expand the ball to be ‖∆β‖2
F + ‖∆L‖2

F/NT ≤ 2(1 + (ζ2
X +

ζ2
L)/(p+1))γ2. For simplicity, let Cζ := 1+(ζ2

X +ζ2
L)/(1+p). Since ζX = O(√p), Cζ = O(1).

Next, let us expand Ru. Since rank(L0(u)−L0(ū)) ≤ r(u)+r(ū) ≤ 2r̄, we have ‖L0(u)−
L0(ū)‖∗ ≤

√
2r̄‖L0(u)−L0(ū)‖F ≤

√
2r̄ζL
√
NTγ/

√
p+ 1 by ε = γ/

√
p+ 1 for all |u−ū| ≤ ε.

Similarly, for (∆β,∆L) ∈ Ru and ‖∆β‖2
F + ‖∆L‖2

F/NT ≤ 2Cζγ2, the following holds for all
u ∈ U and all |u− ū| ≤ ε with probability one,

‖∆L + L0(u)− L0(ū)‖∗
≤‖∆L‖∗ + ‖L0(u)− L0(ū)‖∗

≤2(1 + Cλ)
Cλ

‖PΦ(u)∆L(u)‖∗ + CCone
√
p log((p+ 1)NT )(N ∧ T )‖∆β‖F +

√
2r̄ζL
√
NTγ/

√
p+ 1
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≤

2(1 + Cλ)
√

6Cζ
Cλ

+
√

2ζL

√NT r̄γ + CCone
√
p log((p+ 1)NT )(N ∧ T )

√
2Cζγ

where the second inequality follows from the definition of Ru. The last inequality is by
γ/
√
p+ 1 ≤ γ. Let

R̄ =
∆L ∈ RN×T :

‖∆L‖∗ ≤

2(1 + Cλ)
√

6Cζ
Cλ

+
√

2ζL

√NT r̄γ + CCone
√

2Cζp log((p+ 1)NT )(N ∧ T )γ
.

Therefore, in the intersection of the ball ‖∆β‖2
F +‖∆L‖2

F/NT ≤ 2Cζγ2 and Ru for all u ∈ U ,
the matrices ∆L, (∆L + L0(u) − L0(ū)) and (L0(u) − L0(ū)) are all in R̄ for all u ∈ U and
|u− ū| ≤ ε. Hence, inequality (S.B.64) implies that,

C0(γ) ≤ 2 · sup
ū∈Ul,∆L∈R̄

‖∆β‖2F+ 1
NT
‖∆L‖2F≤2Cζγ2

∣∣∣G0
(
δit(X ′it∆β + ∆L,it, ū)

)∣∣∣ := 2C1(γ). (S.B.65)

Define the following event:

Ω2 :=
 sup

∆L∈R̄

∣∣∣G0 (∆L,it)
∣∣∣

≤ CSp

(CCone√2Cζp log((p+ 1)NT )
)
∨

√N ∨ T

√

6Cζ2(1 + Cλ)
Cλ

+
√

2ζL

√r̄
 γ

.
Now we can derive the upper bound on C0(γ). For some K3 > 0, by equation (S.B.65),

P
(
C0(γ) ≥ 2K3

∣∣∣WX ,Ω1
)
≤P

(
C1(γ) ≥ K3

∣∣∣WX ,Ω1
)
≤ e−τ

′K3E
[
eτ
′C1(γ)

∣∣∣WX ,Ω1
]
, (S.B.66)

where the last equality is by Markov’s inequality for some τ ′ > 0. For E
[
eτ
′C1(γ)

∣∣∣WX ,Ω1
]
,

by l ≤ 1/ε =
√
p+ 1/γ, we have

E
[
eτ
′C1(γ)|WX ,Ω1

]

≤
√
p+ 1
γ

max
ū∈Ul

E

exp

τ ′ sup
∆L∈R̄

‖∆β‖2F+ 1
NT
‖∆L‖2F≤2Cζγ2

∣∣G0 (δit(X ′it∆β + ∆L,it, ū)
) ∣∣

∣∣∣∣∣WX ,Ω1


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≤
√
p+ 1
γ

E

exp
(
2τ ′ sup

∆L∈R̄
‖∆β‖2F+ 1

NT
‖∆L‖2F≤2Cζγ2

∣∣G0 (X ′it∆β + ∆L,it

)∣∣) ∣∣∣∣∣WX ,Ω1



≤
√
p+ 1
γ

E

exp

2τ ′ sup
‖∆β‖2F≤2Cζγ2

∣∣G0(X ′it∆β

)∣∣+ 2τ ′ sup
∆L∈R̄

‖∆‖2F+ 1
NT
‖∆L‖2F≤2Cζγ2

∣∣G0(∆L,it

)∣∣

∣∣∣∣∣WX ,Ω1


≤
√
p+ 1
γ

E
exp

4τ ′ sup
‖∆β‖2F≤2Cζγ2

∣∣G0(X ′it∆β

)∣∣ ∣∣∣∣∣WX ,Ω1

 1
2

×
(
E
[
exp

(
4τ ′ sup

∆L∈R̄

∣∣G0(∆L,it

)∣∣)]) 1
2

≤
√

2(p+ 1)
γ

exp
(
8τ ′2pCζγ2CX

)(
E
[
exp

(
4τ ′ sup

∆L∈R̄

∣∣G0(∆L,it

)∣∣)]) 1
2

, (S.B.67)

where the second inequality is by Theorem 4.12 of Ledoux and Talagrand (1991) and by
contractivity of δit(·) with δit(0) = 0. The fourth inequality is by Cauchy-Schwarz. The last
inequality follows the same steps as the derivation of the bound on B0

1(γ).
By G0(∆L,it) ≤ ‖ε‖ · ‖∆L‖∗/

√
NT and by the definition of R̄, Ω2 does not hold only

if ‖ε‖ > Csp(N ∨ T )/2. Hence, by Lemma S.B.5, P(Ωc
2) ≤ 2 exp(−(N ∨ T )). Note that

G0(∆L,it) ≤ ‖∆L‖∗ almost surely since ‖ε‖ ≤ ‖ε‖F =
√
NT . Therefore,

E
[
exp

(
4τ ′ sup

∆L∈R̄

∣∣G0(∆L,it

)∣∣)]

≤P(Ω2) exp
(

4τ ′CSp

[(
CCone

√
2Cζp log((p+ 1)NT )

)
∨
(
√
N ∨ T

(√
6Cζ2(1 + Cλ)

Cλ
+
√

2ζL

)
√
r̄

)]
γ

)

+2 exp(−(N ∨ T )) exp
(

4τ ′
[
CCone

√
2Cζp log((p+ 1)NT )(N ∧ T ) +

(√
6Cζ2(1 + Cλ)

Cλ
+
√

2ζL

)
√
NT r̄

]
γ

)
.

Let

τ ′ =

√
log (NT )

4
√

2
[√

2Cζp log((p+ 1)NT )(CX ∨ C2
SpC

2
Cone) + CSp

√
N ∨ T

(√
6Cζ2(1+Cλ)

Cλ
+
√

2ζL
)√

r̄
]
γ
.

Then E
[
exp

(
4τ ′ sup∆L∈R̄

∣∣∣G0
(
∆L,it

)∣∣∣)] ≤ 2 exp
(√

log(NT )
)
≤ 2

√
exp(log(NT )) = 2

√
NT

for large enough N and T . Substituting it into (S.B.67), we have E
[
eτ
′C1(γ)|WX ,Ω1

]
≤

2(p+ 1)
√
NT/γ. Let

K3 =8
√

2
√2Cζp log((p+ 1)NT )(CX ∨ C2

SpC
2
Cone)
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+ CSp
√
N ∨ T


√

6Cζ2(1 + Cλ)
Cλ

+
√

2ζL

√r̄
γ√log (NT ).

In view of (S.B.66), we thus obtain

P
(
C0(γ) ≥ 2K3

∣∣∣Ω1
)

= E
[
P
(
C0(γ) ≥ 2K3

∣∣∣WX ,Ω1
) ∣∣∣Ω1

]
≤ 2(p+ 1)
γ(NT )3/2 → 0, (S.B.68)

where the equality is by the law of iterated expectation. Convergence follows the definition
of γ and p = o((N ∧ T )/(log(NT )α2

NT )), where the latter is implied by Assumption 3.
Now, recall s = Csup

√
log(NT )

(√
p log((p+ 1)NT ) ∨

√
r̄(N ∨ T )

)
γ and let

Csup =192
√

2
√2(CX ∨ C2

SpC
2
Cone)Cζ + CSp


√

6Cζ2(1 + Cλ)
Cλ

+
√

2ζL


=192

√
2
2

√√√√(1 ∨
(

50C2
Sp

C2
λC

2
op

))
CζCX + CSp


√

6Cζ2(1 + Cλ)
Cλ

+
√

2ζL

 ,
where the second equality is by CCone = 5

√
2CX/CλCop. We can see that Csup decreases as Cλ

increases, but is bounded away from zero. Note that s ≥ 12 max{K1, K2, 2K3}. Combining
equations (S.B.61), (S.B.62), (S.B.63) and (S.B.68), we have

P
(
A0(γ) ≥ s

4
∣∣∣Ω1

)
≤3 max

{
P
(
B0

1(γ) ≥ s

12

∣∣∣∣Ω1

)
,P
(
B0

2(γ) ≥ s

12

∣∣∣∣Ω1

)
,P
(
C0(γ) ≥ s

12

∣∣∣∣Ω1

)}
≤3 max

{
P
(
B0

1(γ) ≥ K1

∣∣∣∣Ω1

)
,P
(
B0

2(γ) ≥ K2

∣∣∣∣Ω1

)
,P
(
C0(γ) ≥ 2K3

∣∣∣∣Ω1

)}
→ 0. (S.B.69)

By equations (S.B.59), (S.B.60) and (S.B.69), we obtain P(A(γ) ≥ s)→ 0. �

Proof of Lemma S.B.6

We have
∫ w2

0

(
1(w1 ≤ z)− 1(w1 ≤ 0)

)
dz −

∫ κw2

0

(
1(w1 ≤ z)− 1(w1 ≤ 0)

)
dz =

∫ w2

κw2

(
1(w1 ≤ z)− 1(w1 ≤ 0)

)
dz.

For any fixed w1 ∈ R, 1(w1 ≤ z) is weakly increasing in z. So, if w2 ≥ 0, we have
1(w1 ≤ z)− 1(w1 ≤ 0) ≥ 0 for all z ∈ [κw2, w2] as κ ∈ (0, 1]; the integral on the right side is
nonnegative. If w2 < 0,

∫ w2
κw2

(
1(w1 ≤ z)− 1(w1 ≤ 0)

)
dz =

∫ κw2
w2

(
1(w1 ≤ 0)− 1(w1 ≤ z)

)
dz

which is again nonnegative as 1(w1 ≤ 0)− 1(w1 ≤ z) ≥ 0 for all z ∈ [w2, κw2]. �
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Proof of Theorem S.A.1 in Appendix S.A.1

Since D(2) is a cone, the main argument in the proof of Theorem 2 still holds. Meanwhile,
Lemmas 1 and S.B.4 and the upper bound on the penalty difference in equation (S.B.31)
do not depend on D nor on the lower bound obtained in Lemma S.B.2 and Theorem 1.
Meanwhile, identification is achieved similar to Theorem 1 once we obtain a lower bound
similar to equation (S.B.9) implied by Lemma S.B.2. Therefore, we only need to show that
an inequality similar to equation (S.B.9) holds over (∆β,∆L) ∈ D(2).

With the covariates, recall D(2) = Rp ×
{

∆L ∈ RN×T : ‖PΩ∆L‖2
F ≥ Csm‖∆L‖2

F

}
. Let

γ = Cerror,2α
2
NT

(
(1 + Cλ) ∨

√
log(NT )

) (√
p log((p+ 1)NT )/NT ) ∨

√
r̄/(N ∧ T )

)
for some

new constant Cerror,2. For all (∆β,∆L) ∈ D(2), all ‖∆β‖2
F ≤ γ2, and all u ∈ U , we have

E

ρu(V (u)−
p∑
j=1

Xj∆β,j −∆L

)
− ρu(V (u))


=
∑
i,t

E
[∫ ∆L,it+X′it∆β

0

(
FVit(u)|WX

(s)− FVit(u)|WX
(0)
)
ds

]

≥
∑
i,t

E
[
1

(√
X ′itXit ≤ αNT/γ

) ∫ ∆L,it+X′it∆β

0

(
FVit(u)|WX

(s)− FVit(u)|WX
(0)
)
ds

]

≥
∑

{i,t:|∆L,it|≤2αNT }
E
[
1

(√
X ′itXit ≤ αNT/γ

) ∫ ∆L,it+X′it∆β

0

(
FVit(u)|WX

(s)− FVit(u)|WX
(0)
)
ds

]

+
∑

{i,t:|∆L,it|>2αNT }
E
[
1

(√
X ′itXit ≤ αNT/γ

) ∫ sign (∆L,it+Xit′∆)|X′it∆β |

0

(
FVit(u)|WX

(s)− FVit(u)|WX
(0)
)
ds

]

≥
(1 ∧ δ)2f

18α2
NT

∑
i,t

E
[
1

(√
X ′itXit ≤ αNT/γ

)
(X ′it∆β + (PΩ∆L)it)2

]

≥
(1 ∧ δ)2f

18α2
NT

0.5
∑
i,t

E
[
1

(√
X ′itXit ≤ αNT/γ

)
(X ′it∆β + ∆L,it)2

]
− ‖PΩ⊥∆L‖2

F


≥

(1 ∧ δ)2f

18α2
NT

0.5
∑
i,t

E
[
1

(√
X ′itXit ≤ αNT/γ

)
(X ′it∆β + ∆L,it)2

]
− (1− Csm) ‖∆L‖2

F


≥0.5Cmin

α2
NT

E

∥∥∥∥∥∥
p∑
j=1

Xj∆β,j + ∆L

∥∥∥∥∥∥
2

F

− (εNT (NT‖∆β‖2
F + ‖∆L‖2

F ) + 2(1− Csm)‖∆L‖2
F

)
where the equality follows the proof of Lemma S.B.2. The first inequality holds because
every integral in the summation is nonnegative by Lemma S.B.6. For the second inequality,
note that when 1

(√
X ′itXit ≤ αNT/γ

)
is true and when ∆L,it > 2αNT , we have

|∆L,it +X ′it∆β| ≥ |∆L,it| − |X ′it∆β| ≥ |∆L,it| −
√
X ′itXit‖∆‖F ≥ αNT ≥ |X ′it∆β|,
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and thus the inequality holds by Lemma S.B.6. By the definition of PΩ, the third inequality
holds because now all the upper limits in the two integrals are bounded in magnitude by
3αNT given ‖∆β‖F ≤ γ. Constants f and δ are as in Assumption 2. The fourth and the
fifth inequalities are by ∆L,it = (PΩ∆L)it + (PΩ⊥∆L)it and by the definition of D(2). The
last inequality follows the derivation of equation (S.B.53) in the proof of Lemma S.B.2. We
have thus established a result similar to equation (S.B.9), and all the remaining analysis in
the paper follows as Csm → 1. �

S.B.5 Proof of Convergence of Algorithm 1

We start with showing that the inner-loop (equations (A.3) and (A.4)) converges to its
global minimum for any fixed (L(k+1), H(k)). Specifically, defining (β(k+1), V (k+1)) as

(β(k+1), V (k+1)) = arg min
β,V

L (L(k+1), β, V,H(k))

where L is as in equation (A.1) and (L(k+1), H(k)) is given, we show that the accumulation
point of the inner loop iterations achieves L (L(k+1), β(k+1), V (k+1), H(k)).

Lemma S.B.7. For any fixed L(k+1) and H(k),

lim
l→∞

L (L(k+1), β(l), V (l), H(k)) = L (L(k+1), β(k+1), V (k+1), H(k)).

Proof. For any (β(l), V (l)) for all l ≥ 0, since L (L(k+1), β(l), ·, H(k)) is convex, by definition
of the subgradient, we have

L
(
L(k+1), β(l), V (l+1), H(k)

)
≤L

(
L(k+1), β(l), V (l), H(k)

)
−
〈
V (l) − V (l+1),∇V L (L(k+1), β(l), V (l+1), H(k))

〉
where ∇V L (L(k+1), β(l), V (l+1), H(k)) is any subgradient of L (L(k+1), β(l), ·, H(k)) evaluated
at V (l+1). By equation (A.7), 0 ∈ ∇V L (L(k+1), β(l), V (l+1), H(k)), therefore,

L
(
L(k+1), β(l), V (l+1), H(k)

)
≤ L

(
L(k+1), β(l), V (l), H(k)

)
,∀l.

Similarly, since L (L(k+1), ·, V (l+1), H(k)) is convex and differentiable, and β(l+1) is ob-
tained by the first order condition (equation (A.8)),

L
(
L(k+1), β(l+1), V (l+1), H(k)

)
≤ L

(
L(k+1), β(l), V (l+1), H(k)

)
,∀l.
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Combining the above two inequalities, we have the following for any initial value (β(0), V (0)),

L (L(k+1), β(0), V (0), H(k)) ≥ L (L(k+1), β(0), V (1), H(k)) ≥ L (L(k+1), β(1), V (1), H(k)) · · ·

Therefore, sequence (L (L(k+1), β(l), V (l), H(k)))l is decreasing. By the monotone convergence
theorem, liml→∞L (L(k+1), β(l), V (l), H(k)) → L (L(k+1), β(k+1), V (k+1), H(k)) where the limit
is the global minimum of L (L(k+1), ·, ·, H(k)). �

Lemma S.B.7 shows that (β(l), V (l)) converges to (β(k+1), V (k+1)), a global minimizer of
L (L(k+1), ·, ·, H(k)). From now on, we can treat (β(k+1), V (k+1)) as obtained for each k. Now
we prove the outer loop also converges. We adapt the proof by Lin et al. (2010) where they
prove convergence of an ALM algorithm without covariates and with an increasing µ. Here
our µ is fixed to simplify computation. Having a fixed µ requires a new argument especially
in the proof of Theorem S.B.1. Define

H̃(k+1) ≡ H(k) − µ

V (k) +
p∑
j=1

Xjβ
(k)
j + L(k+1) − Y

 . (S.B.70)

Combining (A.5) and (S.B.70) and defining V̂ := Y − L̂ −∑p
j=1Xjβ̂j where (β̂, L̂) are our

estimator (u is suppressed for the ease of notation), we have

H(k+1) −H(k) =µ
Y − V (k+1) −

p∑
j=1

Xjβ
(k+1)
j − L(k+1)


=µ

(V̂ − V (k+1)
)

+
p∑
j=1

Xj

(
β̂j − β(k+1)

j

)
+
(
L̂− L(k+1)

) (S.B.71)

and

H̃(k+1) −H(k+1) = µ

(V (k+1) − V (k)
)

+
p∑
j=1

Xj

(
β

(k+1)
j − β(k)

j

) . (S.B.72)

Meanwhile, consider the Lagrangian without the penalty:

L̃ (L, β, V,H) = 1
λNT

ρu(V ) + ‖L‖∗ +
〈
H,Y −

p∑
j=1

Xjβj − L− V
〉
. (S.B.73)

Note that this is the Lagrangian of the minimization problem that defines our estimator
(β̂, L̂). Let Ĥ be the Lagrangian multiplier when (L, β, V ) = (L̂, β̂, V̂ ). Then we have the
following lemma.
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Lemma S.B.8. For all j = 1, . . . , p and for all k ≥ 1, we have

〈
Ĥ,Xj

〉
=
〈
H(k+1), Xj

〉
= 0. (S.B.74)

Proof. The first order condition of equation (S.B.73) with respect to βj is
〈
Ĥ,Xj

〉
= 0 for

all j = 1, . . . , p. Similarly, equation (A.4) at (β(k+1), V (k+1)) is

0 =
〈
H(k), Xj

〉
+ µ

〈
Y −

p∑
j=1

Xjβ
(k+1)
j − L(k+1) − V (k+1), Xj

〉
,∀j = 1, ..., p. (S.B.75)

Together with (A.5), we have
〈
H(k+1), Xj

〉
= 0 for all j = 1, ..., p. �

Lemma S.B.9. For k ≥ 2, the following holds:
∥∥∥∥∥∥
(
V (k+1) − V̂

)
+

p∑
j=1

Xj

(
β

(k+1)
j − β̂j

)∥∥∥∥∥∥
2

F

+ µ−2‖H(k+1) − Ĥ‖2
F

=


∥∥∥∥∥∥
(
V (k) − V̂

)
+

p∑
j=1

Xj

(
β

(k)
j − β̂j

)∥∥∥∥∥∥
2

F

−

∥∥∥∥∥∥
(
V (k+1) − V (k)

)
+

p∑
j=1

Xj

(
β

(k+1)
j − β(k)

j

)∥∥∥∥∥∥
2

F


+ µ−2

(∥∥∥H(k) − Ĥ
∥∥∥2

F
−
∥∥∥H(k+1) −H(k)

∥∥∥2

F

)
− 2µ−1

(〈
V (k+1) − V (k), H(k+1) −H(k)

〉
+
〈
L(k+1) − L̂, H̃(k+1) − Ĥ

〉
+
〈
V (k+1) − V̂ , H(k+1) − Ĥ

〉)
.

Proof. By Lemma S.B.8, and by equations (S.B.71) and (S.B.72), we have

µ−1
〈
H(k+1) −H(k), H(k+1) − Ĥ

〉
=−

〈
V (k+1) − V̂ +

p∑
j=1

Xj(β(k+1)
j − β̂j), H(k+1) − Ĥ

〉
−
〈
L(k+1) − L̂,H(k+1) − Ĥ

〉
=−

〈
V (k+1) − V̂ , H(k+1) − Ĥ

〉
−
〈
L(k+1) − L̂, H̃(k+1) − Ĥ

〉
+ µ

〈
L(k+1) − L̂,

(
V (k+1) − V (k)

)
+

p∑
j=1

Xj

(
β

(k+1)
j − β(k)

j

)〉
. (S.B.76)

Therefore,
∥∥∥∥∥∥
(
V (k+1) − V̂

)
+

p∑
j=1

Xj

(
β

(k+1)
j − β̂j

)∥∥∥∥∥∥
2

F

+ µ−2‖H(k+1) − Ĥ‖2
F

=


∥∥∥∥∥∥
(
V (k) − V̂

)
+

p∑
j=1

Xj

(
β

(k)
j − β̂j

)∥∥∥∥∥∥
2

F

−

∥∥∥∥∥∥
(
V (k+1) − V (k)

)
+

p∑
j=1

Xj

(
β

(k+1)
j − β(k)

j

)∥∥∥∥∥∥
2

F


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+ 2
〈(
V (k+1) − V (k)

)
+

p∑
j=1

Xj

(
β

(k+1)
j − β(k)

j

)
,
(
V (k+1) − V̂

)
+

p∑
j=1

Xj

(
β

(k+1)
j − β̂j

)〉

+ µ−2
(
‖H(k) − Ĥ‖2

F − ‖H(k+1) −H(k)‖2
F + 2

〈
H(k+1) −H(k), H(k+1) − Ĥ

〉)
=


∥∥∥∥∥∥
(
V (k) − V̂

)
+

p∑
j=1

Xj

(
β

(k)
j − β̂j

)∥∥∥∥∥∥
2

F

−

∥∥∥∥∥∥
(
V (k+1) − V (k)

)
+

p∑
j=1

Xj

(
β

(k+1)
j − β(k)

j

)∥∥∥∥∥∥
2

F


+ µ−2

(
‖H(k) − Ĥ‖2

F − ‖H(k+1) −H(k)‖2
F

)
− 2µ−1

〈(
V (k+1) − V (k)

)
+

p∑
j=1

Xj

(
β

(k+1)
j − β(k)

j

)
, H(k+1) −H(k)

〉

− 2µ−1
(〈
V (k+1) − V̂ , H(k+1) − Ĥ

〉
+
〈
L(k+1) − L̂, H̃(k+1) − Ĥ

〉)
=


∥∥∥∥∥∥
(
V (k) − V̂

)
+

p∑
j=1

Xj

(
β

(k)
j − β̂j

)∥∥∥∥∥∥
2

F

−

∥∥∥∥∥∥
(
V (k+1) − V (k)

)
+

p∑
j=1

Xj

(
β

(k+1)
j − β(k)

j

)∥∥∥∥∥∥
2

F


+ µ−2

(∥∥∥H(k) − Ĥ
∥∥∥2

F
−
∥∥∥H(k+1) −H(k)

∥∥∥2

F

)
− 2µ−1

(〈
V (k+1) − V (k), H(k+1) −H(k)

〉
+
〈
L(k+1) − L̂, H̃(k+1) − Ĥ

〉
+
〈
V (k+1) − V̂ , H(k+1) − Ĥ

〉)
,

where the first equality is due to the fact that ‖A−B‖2
F = ‖C −B‖2

F − ‖A−C‖2
F + 2〈A−

C,A−B〉 for all N × T matrices A,B and C. The second equality is by equations (S.B.71)
and (S.B.76). The last equality is by Lemma S.B.8. �

Next we are to show that the three inner products on the right hand side of the last
equality above are all nonnegative. That proves the left hand side of the first equality above
is a decreasing sequence in k. We need the following lemmas.

Lemma S.B.10 (Lemma 3 in Lin et al. (2010)). If f is a convex function, then 〈x1−x2, g1−
g2〉 ≥ 0, ∀gi ∈ ∇f(xi), i = 1, 2, where ∇f is a subgradient of f .

Lemma S.B.11.

lim
k→∞

∥∥∥H(k+1) −H(k)
∥∥∥2

F
= 0,

lim
k→∞

〈
V (k+1) − V̂ , H(k+1) − Ĥ

〉
= 0,

lim
k→∞

〈
L(k+1) − L̂, H̃(k+1) − Ĥ

〉
= 0.

Proof. By the optimality of (L̂, β̂, V̂ , Ĥ) to the unpenalized Lagrangian (S.B.73), we have

Ĥ ∈ ∇‖L̂‖∗, Ĥ ∈ 1
λNT

∇ρu(V̂ ). (S.B.77)
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By equations (A.2), (A.3), (A.5) and (S.B.70) where in equation (A.3), β(l) and V (l+1) are
replaced with β(k+1) and V (k+1), we have

H̃(k+1) ∈ ∇‖L(k+1)‖∗, H(k+1) ∈ 1
λNT

∇ρu(V (k+1)). (S.B.78)

Therefore, by Lemma S.B.10 we have the following inequalities:

〈
V (k+1) − V (k), H(k+1) −H(k)

〉
≥ 0,〈

V (k+1) − V̂ , H(k+1) − Ĥ
〉
≥ 0,〈

L(k+1) − L̂, H̃(k+1) − Ĥ
〉
≥ 0.

Now by the nonnegativeness of the three inner products and by Lemma S.B.9, we have
that Ψ(k) :=

∥∥∥(V (k+1) − V̂
)

+∑p
j=1Xj

(
β

(k+1)
j − β̂j

)∥∥∥2

F
+µ−2‖H(k+1)−Ĥ‖2

F is decreasing in k.
Since Ψ(k) is lower bounded by zero, it is convergent by the monotone convergence theorem.
Therefore, by Lemma S.B.9 and by the nonnegativeness of the three inner products, we have

0 ≤µ−2
∥∥∥H(k+1) −H(k)

∥∥∥2

F
+ µ−1

〈
V (k+1) − V̂ , H(k+1) − Ĥ

〉
+ µ−1

〈
L(k+1) − L̂, H̃(k+1) − Ĥ

〉
≤Ψ(k) −Ψ(k+1) → 0.

Hence, the desired results obtain since
∥∥∥H(k+1) −H(k)

∥∥∥2

F
, 〈V (k+1) − V̂ , H(k+1) − Ĥ〉 and

〈L(k+1) − L̂, H̃(k+1) − Ĥ〉 are all nonnegative. �

Theorem S.B.1. Algorithm 1 converges to the global minimum of the objective function
(2.3):

lim
k→∞

∥∥∥∥∥∥Y − L(k) −
p∑
j=1

Xjβ
(k)
j − V (k)

∥∥∥∥∥∥
2

F

= 0, (S.B.79)

lim
k→∞

1
λNT

ρu

Y − p∑
j=1

Xjβ
(k)
j − L(k)

+
∥∥∥L(k)

∥∥∥
∗

= 1
λNT

ρu

Y − L̂− p∑
j=1

Xjβ̂j

+ ‖L̂‖∗.

(S.B.80)

Proof. Since ‖H(k) −H(k−1)‖2
F → 0 as k →∞ by Lemma S.B.11, under equation (S.B.71),

∥∥∥∥∥∥Y − L(k) −
p∑
j=1

Xjβ
(k)
j − V (k)

∥∥∥∥∥∥
2

F

= µ−1
∥∥∥H(k) −H(k−1)

∥∥∥2

F
→ 0. (S.B.81)

Therefore, constraint Y = L(k) +∑p
j=1Xjβ

(k)
j +V (k) holds in the limit and equation (S.B.79)
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is proved.
Recall that H̃(k) ∈ ∇‖L(k)‖∗ and that H(k) ∈ 1

λNT
∇ρu(V (k)) by equation (S.B.78). By

the definition of subgradient,

1
λNT

ρu
(
V (k)

)
+
∥∥∥L(k)

∥∥∥
∗

≤ 1
λNT

ρu
(
V̂
)

+
∥∥∥L̂∥∥∥

∗
−
〈
L̂− L(k), H̃(k)

〉
−
〈
V̂ − V (k), H(k)

〉
= 1
λNT

ρu
(
V̂
)

+
∥∥∥L̂∥∥∥

∗
+
〈
L̂− L(k), Ĥ − H̃(k)

〉
+
〈
V̂ − V (k), Ĥ −H(k)

〉
−
〈
L̂+ V̂ − L(k) − V (k), Ĥ

〉
= 1
λNT

ρu
(
V̂
)

+
∥∥∥L̂∥∥∥

∗
+
〈
L̂− L(k), Ĥ − H̃(k)

〉
+
〈
V̂ − V (k), Ĥ −H(k)

〉
−
〈
Y −

p∑
j=1

Xjβ̂j − L(k) − V (k), Ĥ

〉

= 1
λNT

ρu
(
V̂
)

+
∥∥∥L̂∥∥∥

∗
+
〈
L̂− L(k), Ĥ − H̃(k)

〉
+
〈
V̂ − V (k), Ĥ −H(k)

〉
−
〈
Y −

p∑
j=1

Xjβ
(k)
j − L(k) − V (k), Ĥ

〉

≤ 1
λNT

ρu
(
V̂
)

+
∥∥∥L̂∥∥∥

∗
+
〈
L̂− L(k), Ĥ − H̃(k)

〉
+
〈
V̂ − V (k), Ĥ −H(k)

〉
+
∥∥∥Ĥ∥∥∥

F
·

∥∥∥∥∥∥Y −
p∑
j=1

Xjβ
(k)
j − L(k) − V (k)

∥∥∥∥∥∥
F

=: 1
λNT

ρu
(
V̂
)

+
∥∥∥L̂∥∥∥

∗
+ ak. (S.B.82)

The first equality is elementary. The second equality is by Y = ∑p
j=1Xjβ̂j+L̂+V̂ . The third

equality is by 〈Xj, Ĥ〉 = 0 by Lemma S.B.8. The last inequality is by the Cauchy-Schwarz
inequality. By Lemma S.B.11 and by equation (S.B.81), ak → 0 as k →∞ since ‖Ĥ‖F stays
constant across k.

On the other hand, let Ṽ (k) = Y − L(k) −∑p
j=1Xjβ

(k)
j . By construction, (L(k), β(k), Ṽ (k))

satisfy the constraint. So,

∥∥∥Ṽ (k) − V (k)
∥∥∥
F

=
∥∥∥∥∥∥Y − L(k) −

p∑
j=1

Xjβ
(k)
j − V (k)

∥∥∥∥∥∥
F

→ 0

where convergence is by equation (S.B.81). So Ṽ (k) − V (k) → 0 componentwise as k → ∞.
Therefore, bk := ‖Ṽ (k) − V (k)‖1/(λNT ) converges to 0 as k → ∞. By contractivity of the
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check function, we have∣∣∣∣∣∣ 1
λNT

ρu
(
V (k)

)
+
∥∥∥L(k)

∥∥∥
∗
− 1
λNT

ρu
(
Ṽ (k)

)
−
∥∥∥L(k)

∥∥∥
∗

∣∣∣∣∣∣ ≤ bk → 0 (S.B.83)

Therefore,

1
λNT

ρu
(
V (k)

)
+
∥∥∥L(k)

∥∥∥
∗
≥ 1
λNT

ρu
(
Ṽ (k)

)
+
∥∥∥L(k)

∥∥∥
∗
− bk ≥

1
λNT

ρu
(
V̂
)

+
∥∥∥L̂∥∥∥

∗
− bk
(S.B.84)

where the first inequality is by equation (S.B.83) and the second inequality is by the definition
of the estimator which says for all (L, V ) such that there exists a β satisfying the constraint
L+V +∑p

j=1Xjβj = Y , ρu(V )/(λNT )+‖L‖∗ is minimized at (V̂ , L̂). Combining equations
(S.B.82) and (S.B.84), we have

1
λNT

ρu
(
V̂
)

+
∥∥∥L̂∥∥∥

∗
− bk ≤

1
λNT

ρu
(
V (k)

)
+
∥∥∥L(k)

∥∥∥
∗
≤ 1
λNT

ρu
(
V̂
)

+
∥∥∥L̂∥∥∥

∗
+ ak.

Therefore, by V̂ = Y −∑p
j=1Xjβ̂ − L̂, the following holds by ak, bk → 0:

lim
k→∞

1
λNT

ρu
(
V (k)

)
+
∥∥∥L(k)

∥∥∥
∗

= 1
λNT

ρu

Y − p∑
j=1

Xjβ̂ − L̂

+
∥∥∥L̂∥∥∥

∗
. (S.B.85)

In view of equation (S.B.83) and Ṽ (k) = Y − L(k) − ∑p
j=1Xjβ

(k)
j , equation (S.B.85) thus

implies equation (S.B.80). �
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