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Abstract

Appendix S.A introduces an alternative set of assumptions under which the results of
the paper hold without the constraint ||L||oc < a7 in the definition of the estimator
(2.3). It also discusses the assumptions in this paper and in related literature. Ap-

pendix S.B collects all the proofs.

Appendix S.A On the Lower Bound in Theorem 1

In this appendix, we first introduce an alternative set of assumptions under which a
similar quadratic lower bound as in Theorem 1 can be obtained. Under these assumptions,
we can drop the constraint in the minimization problem (2.3) that defines our estimator.
We then compare the assumptions in this paper with those in Ando and Bai (2020), Belloni
et al. (2023) and Chen et al. (2021).

S.A.1 Dropping the Constraint in Equation (2.3)

In this section, we maintain Assumption 2 on the conditional density and add a new
assumption so that the requirement ||L(u)||s < a7 can be dropped while a similar lower
bound as in Theorem 1 can still be obtained. To illustrate the intuition, let us consider the

case without covariates.
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In the main text, we lower bound the following quantity by ||Az||% multiplied by some
constant for all Ay € D= {A; € RV*T : ||ALll < 2anr} (see equation (4.6)):

2 /0A (P (s) = Frw(0)) ds. (S.A.1)
7,

We only focus on D because we can show that the estimation error Aj(u) lies in D uniformly
in u € Y w.p.a.1 under the constrained parameter space £ and by || Lo(#)]|co < anr.

Now that we are to replace the constrained parameter space £ with RV*7 A (1) may no
longer lie in D w.p.a.1. We need to constrain A in a different set. For any Ay € RVXT | let
PoApL be an N x T matrix whose (i, t)-th element is 1(|Af 4| < 2an7)-Api. Let PorAp =
A —PqAyr. By construction, ||AL||% = [|PoAL||% +||Par AL||%. Let |[PoALll% = Canl|ALl%
where Cj,, is in [0, 1] and may depend on N and T'. Note that D is equivalent to the set of
matrices whose Cy,, equals 1. Quantity (S.A.1) is equal to

Ar it
Z/O (Fria(s) = Frryw(0)) ds
it

Ar it

- Z /0 (FVit(u)(S) - FVit(u) (0)) ds
{i,t5|AL,it|§2aNT}
ALt

+ > / " (Fruw(s) = Frrw(0)) ds.

{i7t5|AL,it‘>20¢NT}

For the first sum on the right side, we can lower bound it by Ciuin||PoAL||%/a% for some
Cinin > 0 (the proof is similar to that of Theorem 1 and is thus omitted). For the second
term, now that Az ; can be unbounded, the conditional density fy;, (., may be arbitrarily
close or equal to zero. Hence, it can only be lower bounded by 0. Yet as long as ||PoApl|/% is
of a nonnegligible proportion of || Ay ||%, we can still lower bound (S.A.1) be ||A]|% multiplied
by some constant.

Formally, assume there exists a constant Cy, > 0 such that for all v € U, we have

Ap(u) € D® w.p.a.l where D is the following cone'

D® = {A; € RV [[PoALl3 2 Conll ALl (S.A.2)

10ne can alternatively impose the restriction on the space where Ay, (u) lies w.p.a.1, instead of on AL (u)
directly. For instance, assume that any A;, € R, with [|[AL||r < vV NT7 satisfies A, € D). The proof of

A~

uniform consistency still goes through because Ay (u) € R, w.p.a.l and in the proof we only focus on the
sphere ||ALllr = VNT7.



We can then restrict our analysis within D® and lower bound (S.A.1) for all Ay € D@ by
Coninl|PaALl|F/afr +0 > ConCrninl| Arllf/aer-

Then we can obtain an error bound on the estimator which has the same order as that in
Theorem 2 since the quadratic lower bound has the same order.

Both D (adopted in the main text) and D here limit the spikiness of the matrices Ars
in them. Set D restricts the magnitude of the large entries in A, € D. In contrast, by
definition (S.A.2), set D® restricts both the magnitude and the number of large entries in
Ar € D@, In particular, on the sphere |AL||% = NT~? where 7 is the same as in Section 3
with p = 0, D® restricts the number of large entries in the sense that entries in A, € D?
on this sphere can be as large as /(1 — Cy,,)NT, but for any dy7 > 2anr, the number of
entries whose magnitude are equal to dy7 is at most (1 — Cyp ) NTY? /0%

When there are covariates, complications arise and C,, not only needs to be bounded
away from zero but also needs to be sufficiently large. A sufficient condition is that Cy,, — 1

as N and T grow to infinity. Specifically, we have the following theorem.

Theorem S.A.1. Let \ be the same as in Lemma 1. Under Assumptions 1 to 5, if w.p.a.1,
Ap(u) € D@ defined in equation (S.A.2) with Cyn — 1 as N and T grow to infinity, then

for some constant Cerroro > 0, the following estimator

1 p
pu(Y =Y X;8; — L)+ L]

min —
BeRp, LeRN*T N'T =

(B(u), L(w)) = arg
satisfies the inequality below w.p.a.1.

(u) = Lo(uw)||%

plog((p+1)NT)v 7 )
NT NAT)"

A 1 a3
2
ieug ” (u) O(U)HF .NTH

<C2 et [(1+ € v log(NT)]

Proof. See Appendix S.B.4. |

Remark S.A.1. The difference between the estimator defined in Theorem S.A.1 and the
one defined by equation (2.3) lies in the parameter space of L.

S.A.2 Comparison of Different Approaches

In this section, we compare our assumptions to obtain a quadratic lower bound in The-
orem 1 with those in Ando and Bai (2020), Belloni et al. (2023) and Chen et al. (2021).

To highlight the differences, we still consider the case where there are no covariates. Also,
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since these mentioned papers all focus on consistency pointwise in u € U, in the following
discussion we also drop the requirements on uniformity in « in our assumptions.
First, let us summarize the assumptions needed in our two approaches to a quadratic

lower bound. Recall that without the covariates, the set D in the main text is defined as
{Ap € RY*T 1 ||ALlloo < 2ant}-

» Approach 1 (adopted in the main text).

— On the conditional density of V;;(u): Assumption 2.

— On the magnitude of large elements in Ap(u): Assuming ||Lo(u)|os < anr in
equation (3.1) and by the constraint in the estimator’s definition (2.3), we have
Ap(u) € D for all u € U.

« Approach 2 (introduced in Appendix S.A.1).

— On the conditional density of V;;(u): Assumption 2.

— On the number and magnitude of large elements in Ay (u): Assume ||Lo(u)] o <
ayt and AL(U) e DO for all w € U w.p.a.l with Cy,,, — 1.

Ando and Bai (2020) and Chen et al. (2021) impose stronger assumptions on density
fviw)- They both assume that fy, () is continuous and for any compact set S, there
exists an S-dependent constant f such that the density Tva@w(s) > f g > 0foralls €5
and all 7 and ¢. Note that this assumption implies our Assumption 2 by choosing S = [, ¢]
for any 6 > 0. This stronger assumption can help obtain a quadratic lower bound for our
purpose by a simpler argument if || Lo(u)|| < an7 and || L]« < anr are still imposed?. To see
this, by |Ar | < 2an, their assumption implies that there exists a constant / anp 0 such
that (S.A.1) is lower bounded by iaNT > A7 ;1/2 by directly applying first-order Taylor
expansion. Similar to our Approach 1, the lower bound also depends on ayr via iaNT.

Now let us turn to Belloni et al. (2023). Their approach is more similar to our Approach
2 because they also restrict the magnitude and the number of large entries in A r(u). Again,
since they only focus on pointwise consistency, we compare our related assumptions with
theirs by dropping the required uniformity in w. Like our approaches, their assumptions also
consist of two parts:

First, on the conditional density of Vj;(u), their Assumption 3 requires that for all i
and ¢, the density fy, (v) is bounded away from 0 at v = 0 by f and bounded from

above uniformly in v. Meanwhile, fy; () is assumed to be differentiable and its derivative

2Indeed, these two papers assume elements in Lo(u) lie in a fixed compact space, i.e. ayr is fixed, not
(N, T)-dependent.



0 fv,,w)(v)/0v is continuous and bounded in absolute value by f" uniformly in v, i, and t.
These two requirements are stronger than our Assumption 2 since uniform boundedness of
both a set of functions and of their derivatives implies equicontinuity.
Second, on the magnitude and the number of large entries in A r(u), their Assumption 4
and equation (19) essentially say that A, (u) € D® w.p.a.1 where?
DB ¢ {AL e RVXT . ];HALH% — J;Z |AL ] > o} (S.A.3)

it

and the constants f and f" are introduced in the previous paragraph. By the inequality in
(S.A.3) and by their assumption on the conditional density, they lower bound (S.A.1) for
A € D® by second-order Taylor expansion:

Brie f f I f
S [ (P () = P ) ds = ZIAJE + <4HAH% -+ |Am13) > <lAl-
it

it

The set D@ serves a similar purpose as D in our Approach 2. Both sets restrict the
magnitude and the number of large entries in the matrices in these sets. Yet the condition
on DG can be more restrictive in the sense that large elements allowed in D® can be fewer
than D@, To see this, suppose ||Ap||r has order vy and let ayr — oo and ayr = o(vnt).
For large element Ay ;; of order dy7 > 2an7, in any matrix in D®) | there can be as many
as o(v¥,/037) of such elements while Cy,, — 1 still holds. But in any matrix in D®), there
can be only O(v%5/6%1) of them.

Comparing D, D@ and D®), note that Ay (u) € D for all u € U w.p.a.1 can be guaranteed
under primitive conditions: ||Lg(u)|lcc < anr and the constraint in the definition of the
estimator (2.3). However, A (u) € D® in our Approach 2 and Ay (u) € D® in Belloni
et al. (2023) are higher level conditions.

To sum up, to obtain a quadratic lower bound in Theorem 1, we need to i) make assump-
tions on the conditional density fy,, ) and ii) to restrict the magnitude of large elements in
Ap(u) (Approach 1) or both the number and the magnitude of them (Approach 2). Our as-
sumption on the conditional density seems to be the weakest in the discussed literature. For
large elements in A (u), our Approach 1 is under more primitive conditions while the restric-
tion D in our Approach 2 can be milder than the restriction D® in Belloni et al. (2023).

On the other hand, in both of our two approaches, we need to assume ||Lo(u)|| < anr,

3More specifically, in a similar way to footnote 1, the assumption is imposed on all A € R,; it ba-
sically requires v/4 < 3f||AL||%/(8VNTf'Y2, ,|ALit|*) (supposing there are no covariates). Under this

assumption, Ay € D®) as long as Ay € R, with |Ap||r < VNTy.



while the approach in Belloni et al. (2023) is free of it. Finally, since they focus on high-
dimensional regressors, some discussed relaxations in our approaches may not apply there.

We view all three approaches as complementary.

Appendix S.B Proofs

S.B.1 Proofs of the Results in Section 3

Proof of Lemma 1

Recall that we suppress conditioning on Wy, for simplicity and V(u) =Y — gy, (u).
Let Vp,(V(u)) be an N x T subgradient matrix of p,(-) evaluated at V' (u). Note that for
check function p,(+), Vp,(0) is not unique due to nonsmoothness of p, at 0 and can be any
number that lies in [u—1,u]. We set Vp,(0) = u for convenience. With probability one, the
(1,t)-th element of Vp,(V (u)) is

(Vou (V(u))); = ul(Vi(u) = 0) + (u — 1)1(Vie(u) <0).

These elements are bounded and independent with mean 0 conditional on Wy (and implicitly
conditional on the fixed effects) by Assumption 1 and by the definition of V(u) *. We
introduce the following lemma for Vp,(V (u)). The proof is in Appendix S.B.4.

Lemma S.B.1. Under Assumption 1, there exists a constant C,, > 6 such that the following

inequalities hold w.p.a.1:

sup max |(Vpu(V (1)), X;)| < 5y2Cx NT log(p+ NT), (S.B.1)
sup [Vpu(V(u)| < CopVN VT, (SB.2)
ueld

where C'x is defined in Assumption 1.

In what follows, the derivation is under the event that inequalities (S.B.1) and (S.B.2)
hold. Since ||Lo(u)||co < ant for all u € U, Lo(u) is a feasible solution to the minimization

problem (2.3). Then by the definition of (5(u), L(u)), the following inequality holds with
probability one:

Pu (V(U) = XjAgi(u) - AL(U)> = pu(V(u))
j=1

+Ammwm—umwmo)§m

(S.B.3)

1
su ~
%B(NT

4Conditional mean zero is obtained by noting that Pr(V;;(u) < 0|Wx) = u almost surely by definition.
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where Agﬁj(u) = B](u) — [o,j(u) and AL( )= f/(u) — Lo(u).
Let us first consider |y, (V (u) — X0_y X;A;(u) = AL () — pu(V(u))| /NT. With prob-
ability one,

LoV - Z X;Aa5) — Ap(w)) = pu(V(w)
S <Vpu<v<u>>7j2:XJAm<u> +A,0w)]
> — L Bsfulh ax [(Vou(V0). X)| = 1=l VoVl - 1A, )]
5 20O ONT) gy, Cad VT,
) 5\/20Xp oalle + ONT) 15, W”AL(“)”*' (S.B.4)

The first inequality is by the definition of subgradient. The first term in the second inequality
is elementary. The second term is from Lemma 3.2 in Candes and Recht (2009) which says
for any two matrices A and B of the same size, [(A, B)| < ||A]| - ||B||«. The penultimate
inequality is by inequalities (S.B.1) and (S.B.2) in Lemma S.B.1.

Next, consider A(Hﬁ(u)“,k — HLo(u)H*) Recall that Pg (). is the orthogonal projection
onto the orthogonal complement of ®(u). By construction, Pg )+ Lo(u) = 0. Moreover, for
any N x T matrix M, ||PowyM + Powyr M|« = [[Pow) M ||s + | Pow)L M||. since PeyM and
Po(uyr M have orthogonal singular vectors to each other. Hence, by i(u) = Lo(u) + A r(u),
with probability one,

L)l = I Lo(w) |+ =Pau Lo(w) + PopwAL(w) |« + [ Pa Az (@)l — [1Pow Lo(w)].
2| Poguyr Ar(w)ll« = [PaqAL(w)]l (S.B.5)

Combining equations (S.B.3), (S.B.4) and (S.B.5), we have shown that

2Cxplog((1 + p)NT)

||7’q>(u)LAL(U)H*—5\/

CopVN VT "
ilelg ( <)\ - NT) NT HAB(U)HF
Cop,VNVT A
- <)\ + pNT) ||77<I>(U)AL(U)||*> <0

So, we have

- HP A (u) NT)\—f—Oop\/N\/ H
Sup \ [P At = CoVNV T



~ 5y/2CxpNT log((p + 1)NT)
NTA—Cop/NVT

s, ) <o

holding with probability one under the event that equations (S.B.1) and (S.B.2) hold, which
in turn hold w.p.a.1 by Lemma S.B.1. We obtain the desired results by substituting A =
(1+Cy)CopV N VT/NT into it. |

S.B.2 Proof of the Results in Section 4

Proof of Equivalence between Assumption 4 and Equation (4.4)

Noting that both My, (u) and Mg, (u) are idempotent, we have

2 —

=ETr | Mj,(u (ZX TJ> Mg, (u MFO (ZX Tg) My, (u )]

F L

=ETr _MAO (zp:XJT]) Mp,(u (ZX Q)]

E

MAO <ZX TJ) MFO( )

7=1

Jj=1

=7'E (' (Mp, (u) @ My, (u)) x) T,

where Tr is the trace of a matrix. The first equality is by definition of the Frobenius norm.

The last equality follows equation (S.2) in Moon and Weidner (2015). Then we have

)]

2 2

7=1

MAO (ZX TJ) MFO( )

F F
=7'E (z' (Mp,(u) @ My, (u)) x) T, (S.B.6)
where the first equality is by Remark 6. Similarly,
2 2 2
p p P
Paw) (Z Xﬂj) =E > X7 - ' (Z Xﬂj)
Jj=1 F j=1 F Jj=1 F
=7'E(2'z)T — 7'E (' (Mp,(u) @ My, (u)) x) 7. (S.B.7)

Substituting equations (S.B.6) and (S.B.7) into the left side of equation (4.2) in Assumption
4, equation (4.2) then holds if and only if equation (4.4) holds.



Proof Sketch of Theorem 1

The proof of Theorem 1 (presented in the next section) is long and involves quite a bit
of algebraic detail. For the convenience of the reader, we first sketch the proof to highlight
the key steps.

We first prove a lemma which lower bounds the expectation in the theorem by a linear
function of E HZ§=1 X;Apgj+ ALHi (see Lemma S.B.2 for details). Then it is sufficient to

show that E |[S-0_, XA, +ALHi > Crse (NT||Agl|% + [|AL|Z) for all (Ag,AL) € R,
for some Cgrse > 0 and Theorem 1 follows. We distinguish two cases. The first case is
r(u) = 0. In this case, for any N x T matrix M, Pgu)yM = 0. Therefore, if (Ag,Ar) €
Ry, it is necessary that [[ALl|7 = [[PewrALllz < k2(X)?[|Agl|% by the definition of R.,,.
Assumption 3 implies that the number of regressors p = o((N A T)/log(NT)a%,) and
thus k2(\) = o(N AT) by the definition of ky()) in equation (3.7). So, ||Az]|% is o(N? A
T7%)||Agl|%. On the other hand, Assumption 4 ii) implies that E[| 37_; X;Ag ;||% is no smaller
than o7, NT||Ag||%. Therefore, E| >5_, X;Ag ;|| is greater than ||Ap[|% in order. So,
the quantity E[ >7_; X;Az; + Ap||% must be bounded from below by a large fraction of
E|| >5_1 X;A4,%, and consequently by (still a large fraction of) K[| >-F_; X;Ag ;|15 + (| ALllF
because adding ||AL||% does not change the order.

Then we move to the more interesting case of r(u) > 1. Recall that the definition of
R, implies that ||[Peu)rALllr < /3r(w)r1(N)|PawALllr + k2(A)[[Agllr. Similar to the
r(u) = 0 case, a simple case is when /37 (u)r1(N)[|PowALllr < k2(N)||Ag|lp. In this case,
the order of ||AL|| is bounded by r2(A)||Ag||F because both the order of ||Pg,) AL||F and
of || PouyALl|r are bounded by it. Again, this is dominated by the order of E|| >f_; X;Ag ;||
following the argument as the r(u) = 0 case.

The nontrivial case is when 7(u) > 1 and /37 (w)k1(A) || Pow ALllr > £2(A)||Ag||#. In this
case, it is possible that E[| 37_; X;Ag ;||% and || AL[|% are of the same order, and consequently,
without further restriction, the quantity of interest E|| 3%_; X;Ag ; 4+ AL||% can reach 0 even
when Ay and Ag are not. We then invoke Assumption 4 i), the key identification condition
not used yet, to separate the two matrices out. We show that this assumption guarantees

the existence of two positive constants ¢1(u), co(u) with ¢1(u)co(u) < 1/Cox < 1 such that

E| 35 X;Ag; + AL||% is bounded from below by

i), |E - (m2<A>”A5”F)+H%<u>ALHF)

3r(u)ry (A

V4
Py (Z XjAﬁ,j)

Jj=1




2

1Al

[y -l (gl o,

Observing this quantity, we notice that by ¢;(u)ea(u) being bounded away from 1, the two

p
Pa(u)+ (Z XjAﬁ,j)

Jj=1

quadratic terms cannot be simultaneously equal to 0 unless every term in them is 0. This
is the source of identification. We then prove that it is further bounded from below by a
positive fraction of E[| 30_; X;Ag (1% + [|AL%-

Proof of Theorem 1

Recall that D :=RP x {A; € RV : |Ar]|eo < 2an7}. We have the following lemma.

Lemma S.B.2. Letenr =2 (maxi B (1 (/X[ X0 > anr/v) - X[ Xi) Vmax, P (/X[ Xa > anr/7)).
Under Assumption 2, if anyr > 1, then the following inequality holds for any fited N and T':

inf (IE (pu (V(u) - XA Ap) — pu(V(u)))

(Ag,AL)eD J=1

2
(A0S (B[S X0+ Bl —evr (NTIAIE + 18I))\ .
2(2ant + (anr||AgllF/y V 1))? a o

Sequence eyt is equal to 0 for sufficiently large N and T under Assumption 3 i), and con-

verges to zero as N, T — oo under Assumption 3 ii).
Proof. See Appendix S.B.4. [ |

Remark S.B.1. When deriving the uniform rate of convergence later, we only need to focus
on the sphere NT||Ag||7 + |ALll3 = NT~?. Then equation (S.B.8) can be simplified as:

inf (E (pu (V(u) - S XA, Ay) - pu(V(u>))

ueU :
1AsllF<y 3=1
(Ag,AL)ED
Cmin P i 2 2
— 5 B XjAsy + Arll —enr (NTIAs )5+ 1ALl) | | 20, (3B.9)
NT j=1 P

where Crnin = (LAG)2f /18, f and § are defined in Assumption 2, and vy is defined in equation
(3.4).

2
Now we derive a lower bound on E ||[>%_, X:Ag ., + Ar|| . For the ease of notation, in
j=1<Yj2B,5 P

the proof we denote x1(A) and ky(\), defined by equation (3.7) in Lemma 1, by x; and
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Ka. We have k; = O(1) and k; > 1. Under Assumption 3, ko = o(N A T') uniformly in

u € U. When r(u) > 1, let kg = 3:(2u)m. So k3 has the same order as ko uniformly in
u € {uel:r(u) >1}. We discuss the case of r(u) = 0 and the case of r(u) > 1 separately.

Case 1. v(u) = 0. When r(u) = 0, for any N x T" matrix M, PgyM = 0 and Py, L M =
M. Hence, for (Ag,AL) € Ry, ||ALllF < K2||Ag|lr. Meanwhile, by Assumption 4 ii), we

have the following,

2

p
> XA,

=1

E = A} (ZE (Xitxgt)) Ag > NToZ, 11285 (S.B.10)
it

F

Therefore, by ko = o( N AT), for an arbitrarily small £ > 0, there exist N; and T such that
forall N > Ny and T > Tj:

g g
IAllF < kKol Agllr < 51\/ NTao2,, 1 8s]F < ;\lE

Since the order of ks is the same for all u, N7 and T} are the same for all u as well. Therefore,
the following holds for all (Ag, AL) € R, and all w € {u € U : r(u) = 0},

(S.B.11)

p
> XiApy
Jj=1 F

2 2 2
p p p
E|>° X85, +Ar| 2E|Y XA +AL§2JE > X Asl 1Ale
=1 F i=1 P =1 .
P 2
>(1—e)E|Y X0 +11ALlE
Jj=1 '
> (1= )02 A L] (NTI D[ + 1ALIIE)

where the first inequality is by the following fact: For any two (random) matrices D; and
Dy of the same dimensions, the following holds (with probability 1) by the Cauchy-Schwarz

inequality:

E|| Dy + Dy||% = E| Dy||% +E||Dy|[%+2E(Dy, Do) > E|| Dy||%+E|| Dyl —2y/E|| Dy[[3E Dz 3
(S.B.12)
Hence, for all N > Ny and T' > T7,

2
p
inf E|Y X;A8,+ A — (1 =)o, AL| (NT||Ag|% + |AL|Z) | > 0.
el | B |25 X680+ A (1= ) AL (NT 2115+ [1AL]F) | =

(S.B.13)
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Case 2.1. r(u) > 1 and ||Pow)ALl|r < k3]|Ag| r. By the definition of R, [Py ALllr <
3r(u)k1|Pow) ALl r + Kel|Agl|p if (Ag, AL) € Ry. By the definition of x5, we then have

[P AL], < VBrim (|PewAs, + rsll Aslle) < 2/8r(u)mimsl| Asr.

Therefore, |AL||3 < (1 + 12r(u)rk?) k3| A% So, the order of ||AL||3 is o ((N A T))2> 1A%
uniformly in u, dominated by NT'||Ag||%. Therefore, similar to equation (S.B.13), for some
N5 and T; that do not change across u, we have the following for all N > Ny and T" > Ns:

2

p
> XAz + AL
j=1

= [ = e)oma A (NT 185115 + ALPF)) >0,
F

inf (E
ue{uell:r(u)>1}
(AB AL)ERY

1PayALllF<rs||AgllF

(S.B.14)

2
Case 2.2. r(u) > 1 and || Pow ALl r > ksl Agllr. Let M(u) = \/1[-«: |Pa (X0 X885) |,

2
and M (u)t = \/IE HP@(U)L (Z?zl XjAﬁ,j)HF. We need the following lemma whose proof is
in Appendix S.B.4:

Lemma S.B.3. Under Assumptions 3 and /, if r(u) > 1 for all w € U, then there exist N3
and Ts such that the following holds for all N > N3 and T' > Tj:

ueU

inf {M(u)L — Coxy/3r(u)rr (M(u) + s y\AﬁHF)] >0,

Remark S.B.2. Recall that for any (Ag,Ar) € Ry, by the definition of the cone, we can
verify that the following holds:

[Pacs 2], < (Varthm ) [Pawel|, + x2(2) 12411,

Comparing the above inequality and Lemma S.B.3, by Cex > 1, we can see that our assump-
tions guarantee that on average, (Ag,>0_y X;Ag;) lies away from the cone where (Ag, Ar)

lies in, and the distance is controlled by Cax .

We now only consider N > N3 and T > T3 so that the result in Lemma S.B.3 holds.
For a fixed v € U such that r(u) > 1, Lemma S.B.3 implies that there exists a ¢;(u) €

[0, 1/ (\/3r(u)mC¢,X)] such that (c;(u) may depend on Ay, and Ag)

cr(u)M(u)t =M (u) + k3] Asllr = M(u) = cr(u)M(u)* — k3 [ As] ., (S.B.15)
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where ¢;(u) = 0 if and only if Ag = 0. Since k1 = (2+ C))/Cy > 1,1 < r(u) < 7, and

Csx > 1, we have
1 1
0<c(u) < < <1, (S.B.16)
3r(u)r1Cox 3r(u)ky

forall wu e {u e U : r(u) > 1} and all (Ag, Ap).

Similarly, for (Ag, AL) € R, since HP(D(U)LALHF < MM (HP‘I)(“)ALHF + ﬁ3||A5||p)
by the definition of R, there exists a co(u) € [O, 37“(u)/11} that may depend on Ay and
Ag as well such that

|PaAc, = ca(w) (|Pow AL, + 55 125l ) - (S.B.17)
Then we have
0 <co(u) < \/%/ﬁ = \/W, (S.B.18)
0 <cr(w)es(u) < — < 1. (S.B.19)
ax

forall w € {u € U : r(u) > 1} and all (Ag, Ap).
By equations (5.B.15) and (S.B.17), the following inequalities hold for all (Ag, AL) € R,
and for all u € {fu e U : r(u) > 1}:

2

P
E Z XjAﬂ,j + AL

j=1

F

2 2

+E

P
P () (Z XJABJ) + Powr Ar

Jj=1

P
=E | Paw) (Z XjAﬁ,j) + PawAL

Jj=1 F

(M00) = [Porwda]) + () = [Parey- ], )

(ex( M)t — (ra 18l + |PocAc] )"+ (M) = ea(w) (w5 1511 + [PocoAc] )
(S.B.20)

F

v

2

The inequality is by equation (S.B.12). The last equality is by equations (S.B.15) and
(S.B.17). Since ¢ (u)ca(u) is bounded away from 1 from above (equation (S.B.19)), the two
squared terms on the right hand side of equation (S.B.20) cannot be simultaneously 0 for
any u € {u € U : r(u) > 1} unless that all the norms in them are zero. We now derive a
lower bound on the right hand side of equation (S.B.20).

By equation (S.B.15) and by the uniform boundedness of ¢;(u), there exists a constant

13



C1 > 1 not depending on u or (Ag, Ay) such that

2
2 2

Cr (M) > (1+a@?) (M) = (M) + (M)’

p
=E||>_ XA,
J=1 F

(S.B.21)

Similarly, by equation (S.B.17), by || Paw)ALllr > ks||Ag|/r, and by the uniform bound-

edness of ¢o(u) (by equation (S.B.18)), we have some Cy > 1 (Cy decreases in C)) that does
not depend on u or (Ag, Ar) such that

18] = [Pacodel, + [PacysAs], < (14 4e2(w)?) [Pacde], < O [Pacyda]
(S.B.22)

Hence, we have the following holding for all u € {u € U : r(u) > 1} and (Ag, AL) € R, such
that [PawAr|  — rallAsllr >0,

[ex( M @) — (k3 [ 8sl1p + [Pogc]| )] + [M () = ea(w) (ks 185115 + [PoAc]|,)]

= (1 +a(w?) (M) + (1 a@?) (sldsle + [Pawacl,)
=2 (e1(u) + ea(u)) M(w)* (ks | Asllp + [PowAe] )
c1(u) + ca(u) ) 2 )
> 1= M(u)™) + (ks 1 Asllp + || PawAL] ,
V() + () + (1 — ex(wea(w)) ()" ¢ (et + [Paoel, )]
. 3r(u)ky + 1/(\/3r2(u)/f1) [(M<U>L)2 N (53 1Al + HP<1>(U)ALHF)2]
ﬂ 3r(w)ry + 1/(y/3r(w)r1))” + (1= 1/Cax)’
i o 2 L) ()" [Pacae] ]
\/( 3r(u)ry + 1/(1/37"(111)/{1)) + (1 - 1/C¢X)2
|, Br(wm -+ 1/(,/3(wm) @UEfXAm +51M%)

\/( 3r(u)ky + 1/(@@)2 £ (1-1/Cox)?
U?n'm 1 \/m’il + 1/(\/%/&

> ( 25 A C) 1— 2
L V (3rtwr +1/(/3r(wm) + (

1)
(NT | Agll + 1AL
1—1/Cox)

. < 'r2n'n, > L \/ﬁlil + 1/(\/§’i1)
O G (VB 1/(/m0) 4 (1 1/Can)

)(NTAM%+|AL%)
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where the equality is elementary. The first inequality is due to the fact that for any nonneg-

ative real numbers k; and ks, and real numbers z and y, the following holds:”

ky + ko
V(4 ko) + (1 — kiky)?

(I4+kD) 2+ (1+E2)y? —2(ky + ko )2y > (1 - ) (®+1%), (S.B.23)

where the coefficient on (z2+%?) on the right hand side is strictly positive as long as kiko # 1.
The second inequality is by equations (5.B.16), (S5.B.18) and (S.B.19). The third inequality is
elementary. The fourth inequality is by equations (S.B.21) and (S.B.22). The fifth inequality
is by equation (S.B.10). The last inequality holds because of the following reason: Since
k1 = (24 C))/Cy, /3r(u)k; > 1 by construction. Therefore, (/3r(u)r; + 1/(1/3r(u)k1)

increases as /37 (u)r; increases. So \/3r(u)ky + 1/(1/3r(u)ky) < V37Fky + 1/(V/37k1). Let

Crsc = (Uén,m A é) 1— V3T + 1/(\2/§R1> (S.B.24)
! 2 \/(\/§/€1+1/(\/3_77K)1)) +<1_1/C¢’X)2

Again, since v/3rk1 > 1, Crsc gets bigger when k, and Cy get smaller, which is a consequence
of a bigger C'y. Meanwhile, Crgc is also increasing in Cpx. The above derivation has shown
that for N > N3 and T' > T3 so that Lemma S.B.3 holds,

2
p
inf EIS" XAz + ALl — NT || Ag]% + |AL%) | > o.
wetuchi=1) D2 X805+ Auf| = Crse (NT I8l + |As][2) | = 0
(AﬂvAL)eRu J= F

| PeAL|| ,—rallAgllr>0
(S.B.25)
Comparing equations (S.B.13), (S.B.14) and (S.B.25), since ¢; can be arbitrarily small and
C1,Cy > 1, we have Crso < [(1 —&1)02,,, A1]. Therefore, for all N > max{Ny, N, N3} and
T > max{Ty, Ty, T3}, we have

2
P
516111; E(> X;Ap;+AL| —Crsc (NTHABva"‘ HALH%)
(Ag,AL)ER, J=1 F
» 2
_ mm{ ot B[S AL Cse (VTIAE + 1801 |
(Ag,AL)ERY =1 F
5 : o k1+ko 2.2 2Y,2
To see this, let 1) == N RS ErTErreh We can see ¢ € [0,1]. Then ¢(1+k7)z® + (14 k5)y” —2(k1 +

ko)zy > 0 because (k1 + k2)? = ?(1 + k2)(1 + k2). Therefore, (1 + k3)z? + (1 + k2)y? — 2(ky + ko)ay >
(=) (1 + k)2 + 1+ k)y*) > (1 - ¥)(@* +y?).
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2
p
inf E > X85+ AL — Crse (NT | 2s)% + 1AL]3) | |

uwe{uell:r(u)>1} 1
(Ag,AL)ERY 7= F

|Poq AL ,—#sllAslr<0
2

p
i ; ) _ 2 2
uE{ueZl/{r:lrf(u)Zl} E ;X]AIBJ +AL CRSC (NTHAgHF—i- ”ALHF) }

|PoAL| —rsllAglr>0

> 0.

Finally, since Lemma S.B.2 shows exyr — 0, for N > Ny and T" > T, for some Ny
and Ty, we have eyyr < Cgrsc/2. The desired result in Theorem 1 obtains for all N >
max{ Ny, No, N3, Ny} and T > max{T, T, T5, T} by substituting the above inequality and
ent < Cprse/2 into equation (S.B.8) in Lemma S.B.2. The rank of Ly(u) is identified

immediately once Lg(u) is identified. |

S.B.3 Proofs of the Results in Section 5
Proof of Theorem 2

For arbitrary random variables Zs and a function f, let G, (f(Zi)) = i f(Zit) —
E(f(Zi))]/VNT. The proof of the following lemma is in Appendix S.B.4.

Lemma S.B.4. Under Assumptions 1, 3 and 5, there exists a constant Cg,, > 0 such that

for v defined in equation (3.4),

ueU
Aﬁ ’AL)GRu

1
1813+ 77 ALIE <y

SCsup\/log(NT) <\/p log((p+ 1)NT) Vv \/f(N Y T)) fy) — 1.

]P>( sup ‘Gu (Pu(Vz‘t(U) — X Ap — ALﬂ't) — pu(Vi (u)))‘
(

The positive constant Cs,, decreases in Cy and is lower bounded by a positive constant. Its

formula is in the proof.

Let Qo be the event that i) (Ag(u), AL(u)) € R, N'D and ii) the uniform bound on the
error process G, in Lemma S.B.4 holds. By Lemmas 1 and S.B.4 and by equation (3.1)

under €2, the event {2y occurs w.p.a.1. It is then sufficient to show that the following event
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has zero probability under 2:

A 1 A
Ju el Ap()r + 7l s > (S.B.26)

where 7 = CepporQ@ir ((1 +Cy\) Vv \/log(NT)> <\/p10g((p +1)NT)/NT v \/F/(N A T)) for
some Cly,.or > 0 about which we will be precise later.

Since R, is a cone and zero is contained in D which is a convex set, for any (Ag, AL) €
R.ND and any 7 € (0,1), (A, 7AL) € R, ND. By this observation, by the definition of
the estimator (2.3) and Ly(u) € £ for all uw € U, and by convexity of the objective function,
equation (S.B.26) implies that there exists a u € U such that

) 1
inf e
(Ag,AL)ERD  NT
1Asl12+ 7 I ALIIZ =2

0= pu(V () — Zp: X;Ap5 = Ar) = pu (V(w)

j=1

+ A1 Lo(u) + Aplls = | Lo(u)]]:] (S.B.27)

1
inf —FK
(Ag,AL)ER,ND  NT
1As11%+ 77 IALIIE=>2

pu(V(w) = 3 X80, — Ar) = pu(V(w)

j=1

1 /
+ WGU (Pu (Vz‘t(u> — Xyl — AL,it) - p"(vit(u)))

+ Al[Lo(u) + ALl — ([ Lo(w)ls] - (S.B.28)

For the expectation, Theorem 1 implies that

: 1 2
inf NTE pu(V(w) = X X385, = Ar) = pul(V(w)
(Aﬁ,AL)ERuﬂ'D J=1
18I+ xrIALIZ=7
CrninCrsc 2 1ALl
> A —_
:TRSC 2 (S.B.29)
NT
where Crnin = (1A 0)2f/18.
For the error process G, /v NT, by ii) in o,
1
INT 51615 ‘Gu (Pu (Vit(u) - X Ap — AL,it) — Pu(Vit(u))> ’

(Ag,AL)GRu
1Asl2+F7IALIE=7?
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<Clyupy/log(NT) (\/ b log((i\;;lw D)y \/ - 7/”\ T) ”. (S.B.30)

Finally, for the penalty difference, same as the proof of Lemma S.B.4, we define Ceope =
5v2Cx /(C\Cop). By A= (1+ C))CopvV N VT /NT, and by the definition of R,,

sup A Lo(w) + Arl = [[Lo(w)]|.
(A,BVZEL)ERu
12615+ 77 1A LIE=7?
< s AL
U

ue
(AﬁvAL)eRu
126115+ wrlALIZ=?

20+ C
<A sup (CCone\/p(N AT)log((p+1)NT)y + (CA)HP@(u)ALH*)
IALIZ<NT~? A
2 +C
A sup (Comey/n(N AT) og((p+ DNT)y + 2L yn 1)
IALIZ<NT~? Cx
2V3(1 + Cy) \/p log((p + 1)NT) \/ P
1
<(14 C\)Cop (CCone A NT vV N7
plog((p+ 1)NT) \/ r
< B.
_(1 + C)\)Cpel (\/ NT \ N AT Y5 (S B 31)

where Cpe; == Cyp (Ccme + 2\/§(1 +Cy)/ C,\). We can see that C); decreases as C increases,
and is bounded away from zero.

Let Cyp = Cpet + Coup, s0 Oy, is bounded away from zero and decreases as C) increases
as well. Let Cerror = 3Cyp/(CrinCrsc). By equations (S.B.29), (S.B.30) and (S.B.31), the
right side of equation (S.B.28) is lower bounded by

.. (W%% ((1+CA)\/ 1og(NT)> (\/plog((zjvgl)NT) V\/NiT)) > 0,

with probability one. Hence, under €, inequality (S.B.27) and thus inequality (S.B.26) hold

with zero probability. Since €2 holds w.p.a.1 (implicitly conditional on (W7, €2;)), we obtain
the desired result. [ |

Remark S.B.3. As noted in Section 5.1, all the arguments are implicitly conditional on
(Wr,Qp). So here our result, driven by P(Q|Wr,Qr) — 1, is also conditional on them.
However, under the assumption that P(Qr) — 1, the results also hold unconditionally as
P(Q0) > E(P(Q0[Q2r, W1)[Q2)P(2) — 1.
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Proof of Corollary 1

By Weyl’s inequality for singular values,
max  {|64(w) — ox(u)|} < [Ap(w)]] < [Ap(w)]|r,

with probability one. Hence, sup, o, maxy {|64(u) — o4 (u)|} < sup,ey [|AL(w)||r. Equation
(5.3) thus follows by plugging in the uniform rate of | Ap(u)|| obtained in Theorem 2 and
by 0rwy+1(u) = -+ = onar(u) = 0. [ |

Proof of Corollary 2

By the definition of #(u), the event {#(u) = 7(u)} is equivalent to {6,y > Cr }N{Gr@w)+1 <
C,}. The latter event, under the event Qg9 = {0,(y) is of the order of VNT }, can be implied
by Qv = {|6r@w) — o] < VNT, |G (uy+1 — 0] < V' NT~} for sufficiently large N and T by
the choice of C,.. The desired result is thus obtained since w.p.a.1, €1, is true by Corollary

1 and €5 is true by assumption.

S.B.4 Proofs of the Results in Appendices S.A and S.B
Proof of Lemma S.B.1

Let ©; be the event that maxi<;<, || X;||% < CxNT. Under Assumption 1, P(Q;) — 1.
Recall that the (i,t)-th element in subgradient Vp,(V (u)) is

(Vou (V(u))); = ul(Vir(u) = 0) + (u = 1)T(Vie(u) <0),

with probability one. By Assumption 1 and by V(u) = Y — gyyw,(u), the elements in
Vp. (V(u)) are independent with mean 0 conditional on Wy, and are uniformly bounded
within [—1, 1]. We start by proving equation (S.B.1).

Proof of Equation (S.B.1). Let M = 5,/2CxNTlog((p + 1)NT). Note that

ueU ueU
1<5<p 1<5<p

P ( sup [(Vpu(V(w), X,)] > M) <P ( sup [(Vpu(V(w), X,)] > Mszl) B(0) + P(S).

(S.B.32)
Since P(£2) — 0, it is sufficient to show the conditional probability in equation (S.B.32)
converges to zero.

Let U = (uq,ug, ...,ux) be an e-net of U. Let ¢ = ﬁ and Ke < 1. By the triangle
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inequality,

sup ‘<VPU(V(U>)7 XJ>’

ueU
1<j<p

< max [(Vou (V@) X[+ sup [(Vpu(V(w) = Vpu, (V (). X; )|

urEUK w—unl<

X k| <e,up€UK
1<j<p | 1|§j§p
:Zgl + 82.

Then by the union bound,

ueU

1
P ( sup (Vp,(V(w)), X;)| > M Ql> < 2max {IP’ (81 > gM
1<j<p

4
Ql) ,]P) (52 > gM

(S.B.33)
Bound on &;. By K < 1/¢, we have

1
P(El > SM

1<5<p

p
== max E
£ upEUK
1<5<p

M2
<2pV NT exp (—)

P (!<Vpuk<v<uk>>,xj>1 >

50Cx NT

2%
_(p - 1)\/W =0 (S.B.34)

where the first inequality is by the union bound and the following equality is due to the law
of iterative expectation. The penultimate inequality is by Hoeffding’s inequality and by €2,

under € = 1/ NT.
Bound on &;. By definition, the (7, t)-th element in Vp, (V (1)) =V py, (V (uy)) is almost

surely

ul(Vig(u) > 0) + (u — DT (Vi (u) < 0) — [ur 1 (Vig(ug) > 0) + (up — 1)T(Vig(ug) < 0)]
=(u — ug) + 1(Vi(ug) < 0) — 1(Vi(u) < 0). (S.B.35)

Let Z; and Z; be two N x T matrices whose (i, t)-th elements are

El,it =U— U (SB36)
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Then by equation (S.B.35), Vp,(V(u)) — Vpu, (V(ug)) = E1 + Z. Therefore,

4 2 2
P (52 > M’Ql) <P| sup |ELX)|> MO | 4P| swp [(Es X)) | > ZM|Q
5 |lu—ug|<e 5 |lu—ug|<e 5
ur EUK up EUK
1<<p 1<j<p
=P, + P,. (S.B.38)
We first show P; = 0. By the Cauchy-Schwarz inequality;,
— 2 _ 2
P sup ‘ <51,XJ> ‘ > -M Ql SP sup ||:‘1HFHXJ||F > -M Ql
[u—ug|<eup €Uk 5 [u—ug|<eup UK i)
1<5<p 1<5<p

2
<P (6 CxNT > 5M)

=P (x/OXNT > 2,/2Cx NT log((p + 1)NT)>
=0 (S.B.39)

for large enough N and T. The second inequality is by the definition of =; and ;. The
penultimate equality is by e = 1/v/ NT.
Now we show that Py converges to zero. Let Egl) and Eéz) be two N x T matrices whose

(i,t)-th elements are

1(Vie(ug) < 0) — 1(Vie(ug —€) < 0). (S.B.40)
=8 (ug) = 1(Vi(ug) < 0) — 1(Viy (g + €) < 0). (S.B.41)

Consider an arbitrary element in Zy: =g = 1(Vit(ux) < 0) — 1(Vie(u) < 0). By Assumption
1, Vit(u) is strictly decreasing in w almost surely. Hence, 1(Vi;(u) < 0) is weakly increasing in
u almost surely. Consequently, if uy —e < u < ug, then 0 < =y, < Egll)t(uk) < 1. Similarly,
if up, +¢ > u > uy, then 0 > 2y > Engt(uk) > —1. The following inequalities thus hold
with probability one.

sup ‘(EQ,X]->‘ < sup ’(EQ,Xj>‘ + sup ‘(EQ,X]-)’
lu—ug|<eup UK up—e<uLug,up UK up <ulug+e,up €Uy
1<j<p 1<j<p 1<j<p
< s |G XD+ swp (S X))
up—e<ulug,ur EUK up <ulug+e,u €U
1<5<p 1<j<p
< max (25", 1X;))] + max [(25,1X;])].
_ukGUK 20 J up EUK 2 J
1<j<p 1<j<p
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The first inequality is elementary. To see why the second inequality holds, note that the
elements in =, are all nonnegative when u € [uy — &,u;] and are all nonpositive when
u € [ug, u + €]. So, for a given = and a given X, the two absolute inner products on the
right side of the first inequality increase if we flip the signs of the Xj ;;s so that they also have
the same sign. The third inequality then follows because now that elements in both |Xj]
and in =y have the same signs, the two absolute inner products in the second line increase

as the magnitude of any of the elements in =, increases. Therefore,

- 1 _ 1
P, <P | max (=57, 1) > MOy | +P | max (=57, 1%5)| > SMQ | (8B42)
1<j<p 1<i<p

Let us first bound max,, ez, 1<j<p <E§1), \XJD‘ The expectation of an arbitrary element
=(1) (1)

E5i in 257 satisfies
E (25, (w)|[Wx) =P (Vie(ur) < 0 < Vig(ug — )| W)
ZJP(QmAWk(Uk-—€)553?t<1QmAWk(Uk”LVX)

=&

where the second equality is by the definition of Vj;(u). Let =V =E (Egl)(uk)’WX) be an
N x T matrix whose elements are all equal to e. Under €2y, by the Cauchy-Schwarz inequality
and by ¢ = 1/v/NT, we have maXukeuk,lgjgp‘<é(21)7 |X]|)’ < e/CxNT = /CxNT with
probability one. Therefore,

=(1) , 1
P | max [, 13])] > £ M0
1<j<p

—(1 =(1 =(1 1
<P | max (25" — 25", 1)) + max [(E, |X;])| > - M|
up EU, 5

1<j<p 1<j<p

_ 1
<P | max (25" — 25", 1) > M = \JCxNT

ug EUy,
— = 1
P (\(;&1) — S]] > M = \JoxNT WX)

1<j<p

 JONT)2

<2pV NT exp _ (M5 CNT) — 0. (S.B.43)
2C0xNT

A

p
== max E
E up €Uy,
1<j<p

)

The penultimate equality is by the law of iterated expectation since maxi<;<, || X;||% in Q; is

22



a function of Wx. The last inequality is by Hoeffding’s inequality since conditional on W,
elements in (Eél) - ES)) are independent with zero mean and are bounded within [—1,1].
Convergence is by the choice of M.

Finally, we can show that P (maxukeuk,lgjgp |(Eg2), | X;[)] > M/5|Ql) — 0 as well follow-
ing exactly the same argument. Combining it with equations (S.B.32), (S.B.33), (S.B.34),
(5.B.38), (5.B.39), (S.B.42) and (5.B.43), we obtain the desired result.

Proof of Equation (S.B.2). We invoke the following lemma to prove equation (S.B.2).
Lemma S.B.5 (Theorem 4.4.5 in Vershynin (2018), p.85). Let A be an N x T random

matriz whose entries A;; are independent mean zero sub-Gaussian random variables. Then,
for any t > 0 we have ||A]| < CQ (\/NvL VT + t) with probability at least 1 — 2 exp(—t?).

Here C' is an absolute constant and Q = max; j || Aij¢,°-

For any u, entries in matrix Vp,(V (u)) are independent mean zero random variables con-
ditional on Wy. Since each of them is Bernoulli, they are sub-Gaussian with ||(Vp,(V ()))itlly, =
inf{c > 0: (1—-u) exp(u®/c*)+uexp ((1 — u)*/c*) < 2}. Take Q@ = sup,e(o.1) [(Vou(V (w)))itlly, <
00. Let C,, = 120Q + 6. Let M = C,,)s/ NV T,

Let Uk = (uq,us, ..., ux) be an e-net of U with e K < 1. This time let ¢ = 1/\/W
By the triangle inequality, we have

sup IVeu(V(u)l < max [Vou, (V) + = sup [[Vpu(V(1)) = Vou, (V ()l

lu—up|<e,up€UK

By equation (S.B.44),
P (sup IVpu(V(w)| > M) <2max {P(F, > M/2),P(Fy > M/2)}. (S.B.45)
uelU
Bound on F;. By eK < 1, we have

P(F1 > M/2) < L mnax P(IV pu, (V(wi))|| > M/2)

€ up€UK
= 2 max E[P (V0 (V)] > M/2[Wy)
<2V NV Texp(—(N VT)) = 0 (S.B.46)

where the first inequality is by the union bound. The equality is by the law of iterated expec-
tation. The last inequality follows from ¢ = 1/v/N V T and from Lemma S.B.5. Specifically,

6The sub-Gaussian norm of a sub-Gaussian random variable X is defined as || X||y, = inf{c > 0 :
Eexp(X?/c?) < 2}
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by Cop = 120Q 46, M/2 = Copp/ NV T/2 > 3CQVNVT > CQ(VN + VT + VN VT),
and the result in Lemma S.B.5 applies by letting t = /N V T'. Note that we choose a larger
C,p than what is needed now for later use.

Bound on F,. Similar to the proof of equation (S.B.1),

sup  [[Vpu(V(w) = Vpu(V(w))[| < sup  [Eif[+  sup  [|E|
|lu—ug|<eur UK |lu—ug|<e,ur UK |lu—ug|<e,upEUK
<eVNT+  sup |5l

|lu—ug|<eup UK

=VNAT + sup |Z2]|

lu—ug|<e,urEUK

where =; and Z, are defined in equations (S.B.36) and (S.B.37) in the proof of equation
(S.B.1). The second inequality holds because all the elements in =, are equal to u — uy,

whose magnitude is bounded by € and the spectral norm of a matrix of all ones is equal to

VNT. The last equality is by ¢ = 1/v/N V T. Hence,

P(F, > M/2) < 1@( sup  ||B]| > M/2 — W) : (S.B.47)
lu—up|<e,up €l

Now we bound supy,_,, <cu.eu, |Z2]|- By definition, for an arbitrary matrix N x T

matrix A, [|A[| = sup =1 [|Az||r where z is a T x 1 vector. Suppose all the elements

in A have the same sign. Then, the supremum is achieved only if all the elements in x

also have the same sign and thus sup, -1 [[Az|r = sup,,=1 |4 - |2[|| - Meanwhile, for a

matrix B whose elements also have the same sign with |B;| > |A;| for all ¢ and ¢, we have
|A-|z[llp < 1B - |2|]| . Therefore,

[All = sup [[A-|zf||p < sup [|B-|z||z = sup |Bz|r=]|B] (S.B.48)
lzll p=1 lzll p=1 lzll =1
Hence,
=.| < = =l < =) =(2)
sup [|E2fl < sup [[Bof[+  sup  [Sf < max 557 + max [|IZ57,
lu—up|<e,ur €Uk up—e<u<uy u <uLug+e up €U ug €EUE
up EU, ug €Uy

(S.B.49)

where Egl) and Eg) are defined in equations (S.B.40) and (S.B.41) in the proof of equation

(S.B.1) and do not depend on u. To see why the second inequality holds, recall that the
elements in =y are all nonnegative when u < wu; and all nonpositive when u > uy, and in

either case, we have |Zg ;| < ]ESM, v = 1,2 for all 4,¢. Inequality (S.B.49) is thus implied by
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inequality (S.B.48).
Again, let us only derive the bound on max,,, ¢y, ||:21) || because the bound on max,, e, ||E§2) I

follows the same argument. Recall that matrix = ( ) — (€)i+ is the conditional mean of Egl)

given Wx. Note that max,, ey, ||u2 | =eVNT =+vVNATbye=1/VNVT. We have

P (mgx IED| > M/4 — VN A T/2>
<p (max 128 = 2] + max 28] > Cop/NV T/ = VN A T/2>
U k
<P (max 12 — 20| > C, VN VT /4 —3VN A T/2)

ug €U,

<K max P (|25 - 25| > (Cop/4 = 3/2VN VT)

ur EUK

<VNVT max E[P (|25 ~ =" > (Cop/d ~ 3/2)VN V T|Wx)]

uR €U

< 2VNVT

B S B.
<oV % (S.B.50)

where the last inequality follows the same argument for equation (S.B.46) since the entries
in (Egl)(uk) - égl)(uk)) are independent Bernoulli with zero mean conditional on Wy. In
particular, each equals 1 — e with probability ¢ and equal to —e with probability (1 —¢). So
their sub-Gaussian norms are still bounded by Q. By C,, = 12CQ+6, (C,,/4—1.5)vV/N VT =
3CQVNVT > CQ(WN + VT ++/NVT) and thus Lemma S.B.5 applies by letting ¢t =
VNVT.

Similarly, we have PP (maxukeuk ||H(2)H > M/4—+NAT/ 2) — 0 as well. Combining
it with equations (S.B.45), (S.B.46), (5.B.47), (S.B.49) and (S.B.50), we have the desired
result. |

Proof of Lemma S.B.2

To prove the lemma, we need the following result which helps to handle the high-

dimensional Aj. Its proof is in this section.

Lemma S.B.6. For all wy,wy; € R and all k € (0, 1],
w2 Rw2
/ (Il(wl <z)—1L(w < 0))dz > / (]L(wl <z)—L(w < O))dz > 0.
0 0
By Knight’s identity (Knight, 1998), for any two scalars w; and ws,

pu(wy — ws) — pu(wy) = —we(u — 1wy <0)) + /Ow(ﬂ(wl < s) — L(wy <0))ds.
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Let wy = Vit (u) and wy = X[, Ag + A, where Ag and Ay, are arbitrary fixed p x 1 vector
and N x T matrix, then by the definition of Vj;(u) and by the law of iterated expectation,

E (—wq(u — L(wy; <0))) = E[E(—ws(u — 1L(w; <0))|Wx)] =0. (S.B.51)

Now we lower bound the integral. By the Cauchy-Schwarz inequality, | X/, Ag| < +/ X[, Xul|As F-

Define ry = 1/ (20wr + (XXl Asllr V1)), By anr > 1, £ € (0,1). By [|Af]l <
2anr, we have |k - (XL,As+ Api)| < 1 for all ¢ and t. Therefore, for all ¢ and ¢,
kit - (X[ Ag 4+ Api) (LAJ) € [=0,6] where 6 > 0 is defined in Assumption 2. Then the
following holds for all ¢,%, and v € U:

E ( /0 bt B (L(Vi(w) < ) = 1(Vi(w) < 0))ds

wit (X[, Ag+AL,it) (1A)
>E (/ (L(Vir(w) < ) = 1(Vir(u) < 0))ds>
0

i ’iit(XZ{tAB"'AL,'Lt)(l/\(S)
=E |E ( | (L(Vie(w) < 8) = L(Vie(w) < 0))ds
0

")

/{it(X;tAﬂ-ﬁ-AL,it)(l/\(s)
/0 (Frrauiwy (5) = iy (0))ds
[ prie(XL,A8+AL i) (1AS) R

/0 vait<u>|wx(8(8))d8]
_“?t(l A 5)2(Xz{tAB + AL,it)Qf]

- 2
(1n0)*f (X5 A + Apir)®
;B 2|
<2aNT + ( Xz,tXZtHAﬁHF V 1))

(S.B.52)

where f is defined in Assumption 2. The first inequality is by Lemma S.B.6. The equality
immediately after it is by the law of iterated expectation. The third equality is by the mean
value theorem where 3(s) is a mean value. The inequality following is by Assumption 2 and
by kit - (XL, + Api) (LAJ) € [6,0]. The last equality is by the definition of k. Now we
lower bound the expectation on the right hand side of the last equality. We have

. _ (X405 + Apy)?
| (207 + (XiXa Asllr v 1))
. 1 (/X0 X0 < ane/y) (XG5 + Apa)?
| (2owr (\/M”ABHF v 1))2
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E [1 (\/m < OéNT/V) (XiDp + ALvit)Q}

>

- (2ant + (ant[|AgllF/v V 1))

 E[(X,As+ ALy E (1 (/X)X > anr/7) - (X525 + Apy)?]
(204NT + (O‘NTHAﬁHF/’Y v 1)2 (2CYNT + (OCNTHABHF/’Y V 1))2

E[(X;: A8 + Ari)?]
~ (2ant + (ant||Agllr/v V 1))?
o 1A6I3E (1 (XX > ane/v) - X Xa| + A3 P (VX[ Xa > avr/7)
(2ant + (antl|Agllr/v V 1))?
E [(X}A5 + Aran)?] — enr (185113 + A% )
(2ant + (ant|Agllr/v vV 1))?

(S.B.53)

where the third inequality is by Cauchy-Schwarz. The last inequality is by substituting
enT =2 (maxu]E (]l (w/X{th‘t > ozNT/7> . X{tXZ-t) V max; ¢ P (\/X{tXit > aNT/’y)) into the
right hand side. We obtain the desired results by combining equations (S.B.51), (S.B.52)
and (S.B.53) and summing them over ¢ and t.
Now we show that ey = 0 for large enough N and T under Assumption 3 i) and ey7 — 0
under Assumption 3 ii). Since p = o((N A T)/(log(NT)a%+) under both Assumption 3 i)
and ii), v = O(a%y/log(NT)/v/'N AT) because Cy = O( 10g(NT)>. Therefore, \/p =
o(ant/v).
Assumption 31). When max;—1__ ¢ | Xji| < VCx, / X4Xiu < /Cxp. Sol (W/X{tXit > OzNT/’}/> <
1 <\/C_Xp > aNT/’y> = 0 for all ¢ and ¢ for large enough N and T because \/p = o(an7/7).

Therefore, max; ; E (]1 (,/X{tXit > aNT/fy) 'X{th't) and max; ; P (,/X{tXit > aNT/”y) are both
equal to 0 for large enough N and T'.

Assumption 3 ii). We first show that max; ;[P (w/X{th't > ozNT/7> — 0:

anT

P (/X Xy > )< P [ Xl > ————
e (VXK > awe) <, P (100> 20
cpmaxj—y, s E(p(1X])

0
T e(2m) -

where the first inequality is by the union bound. The second inequality is by the Markov’s
inequality. Since the order of ayr/(y/p + 17) is at least (m/(\/(p + 1) log(NT)anT)),
convergence is by p/¢ (m/(\/(p +1) log(NT)aNT)) — 0and max;—1 . E(o(| X)) <
C,, by Assumption 3 ii).

Now we show that max;;E (IL (w/XftXit > ozNT/y) -X{tX,-t) converges to zero as well.

27



We have
HiatX]E (]1 (\/Xi,tXit > 06NT/”Y> 'Xz{tXit)
2/(24n) n/(2+n)
SII%%X [(E[(X’ X; )H"/Q]) : (IP) <\/X£tXit > 04NT/'Y>>
. 2/(24n) ; n/(2+n)
<p Ilna%”( <|Xj72-t| )) rr%%x [P (\/Xith‘t > ozNT/7>

/(2+n)

2/(2+n) - i E(o(| X a)) K

2+7 pmax;=1,. pyit L\PA G

Sp( _mmax ]E(|ijt| )) ( ¢<\;ﬂ )
p+1ly

n/(2+n)
p
< FE i _ —0
— (j:rlr,l.%};;i,t ( <| tD)) ((,0( aNT ))

Vit

where the first inequality is by Holder’s. The second is by Minkowski. The third inequality
follows the same derivation of the convergence of max;, P (,/X{tXit > anT /fy) The last
inequality is by (z) > 22T for all z > 0. Convergence is by Assumption 3 ii) and by the
order of ~. [ |

Proof of Lemma S.B.3

Let A(u) == Coxrs||Asl|l, — eoM(u) where €¢ is the same as in Assumption 4 i). We
have
inf

inf [M()* = CoxBriam (M) + s [185])|
= min { ue{ueg{r}/{(uko} [M(U)L — Coxy/3r(u)k; (M(U) + K3 “Aﬁ”pﬂ )

ue{ueg{rzlj(u)zﬂ} {MW)L N C‘I’X\/Wﬁ1 (M(U) + K3 HAﬁ”F):| }

(S.B.54)
First consider the case when A(u) < 0. The following inequalities hold:
[0~ Cos T (310 1)
Zue{ueg{I}j(u)<0} (]\4(11)L — (Cox + <o) 3r(u)m1M(u)>
Zirelg (]\/_/(u)L — (Cox + <o) 3r(u)ﬁ1M(u))
>0, (S.B.55)
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where the last inequality is by Assumption 4 i).

Now let us consider the case when A(u) > 0. We have

2

> NToy, )| sl 5 (S.B.56)
F

p
> X;Ag,

J=1

(M(u)? + (M(u)*) =E

where the inequality is by equation (S.B.10). Meanwhile, recall that the order of k3 is the
same as ko which is o(N A T') uniformly in u. So M(u) = o(N AT)||Ag||lr by A > 0.
So, by equation (S.B.56), the order of M(u)* must be at least v NT||Ag||s uniformly in
u € {uel:Alu) > 0}, dominating k3||Ag| p. Therefore, there must exist N3 and 75 which
do not depend on u such that for all N > T3 and T > T3,

it (M) = CaxBrus: (M) + s 8]

ue{uel:A(u)>0}
CCIJX

> inf M)t — ki /3r(w)C ( 1) A ]
_uE{UGZ}{r:lA(u)>O}[ (W)™ = rry/3r(u)Cox e +1) k3 [[As

>0. (S.B.57)
Combining equations (S.B.54), (S.B.55) and (S.B.57), we have the desired result. |

Proof of Lemma S.B.4

The main argument of the proof follows the proof of Lemma 5 in Belloni and Cher-
nozhukov (2011). The major difference is that we need to handle the matrix component
Ap.

Let

A(y) = sup Gupu(View) = X}iAp = Apie) = pu(Va(w)))
(Aﬁffgenu

IAs1%+wrlIALIF<AY?

For arbitrary random variables Z;;s and a function f, denote the symmetrized version of
G(f(Zu)) by G*(f(Zu)) = (Zis f(Zi)ew)/VNT where (g4);; is a Rademacher sequence
independent of ({V (u)}ue(,1), W).

Similar to Belloni and Chernozhukov (2011) and Chao et al. (2021), for any fixed Ag
and Ap, with [[As]|F + 57 /|ALllF < +? and any u € U, we have the following bound on the

conditional variance of the process by noting that the check function is a contraction:

Var (G, (pu (Vie(u) — XA — Ap i) — pu(Vie(w))))
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2

)

2
_NTZ max B(X2,)[85l3 + = 1Al

.....

p
Y XiAg+ AL
=1

1
< E
=NT ( =

2
<op (, max E(XZ,)) 18415 + 575l

.....

1
<2(p, max EOX2) VL) (12605 + Al

it,7=1,...,
1
<2(p, max E((XaD) v 1) (1805 + 57140 )
<2(pC, V1), (S.B.58)

where ¢(-) and C,, are defined in Assumption 3. Let

5= Csup\/log(NT) <\/p log((p+ 1)NT) Vv \/f(N % T)) 7.

Since E(Gy, (pu (Vit(u) — XA — Ap i) — pu(Vie(w)))) = 0 by construction, with inequality
(S.B.58) we can apply the symmetrization lemma for probability, for instance Lemma 2.3.7
in van der Vaart and Wellner (1996):

2P (A°(y) > ¢ s
P(A(y) > s) < 8 ((pC'¢(,7\/) 0 42)/32 < 4P (AU( ) > 4> (S.B.59)

where A%(y) is the symmetrized version of A(v) by replacing G, with its symmetrized
version G°. The first inequality is by Lemma 2.3.7 in van der Vaart and Wellner (1996) and
Chebyshev’s inequality, and by the bound on the conditional variance (S.B.58). The second
inequality holds because v4/(pC, V 1)/s — 0 by the definition of s for any fixed Cj,,.
Let © be the event that max;<;<, || X;[|% < CxNT where Cx is as in Assumption 1.
We have
P (A%) 4) <P (AO ’Q ) +P(QS). (S.B.60)

Since P(Q¢) — 0 under Assumption 1, we only need to show that P(A%(y) > s/4/Q;) — 0
under our choice of s for some C,,,.
Consider the random variable p, (Vie(u) — X, Ap — Ap i) — pu(Vie(w)):

pu (Vir(u) = X5 8 = Apit) = pu(Vir(u)) = —u - (X386 + Apie) + 6ie (XjpAp + Apir, u)
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where 0; (X[, Ag + Ap g, u) = (Vie(u) — X[,Ap — Ap i) — (Vie(u)) . Let

Bl(y) = suwp [|G°(X}As)].
Ag0%<~?
Bg(y) = sup ‘GO (AL,it)’,
ueU
(AB,AL)ERH,
1As]1 24+ F7lIIALIIZ <y
and
Co(y) = sup ‘GO (5,~t (X{tAg + Ap i, u)) ,
ueU
(Aﬁ’AL)ERu

1As11%+ w7l ALIE<Y?

then A°(y) < BY(y) + BY(v) + CY(y) with probability one. Hence,

(002 )

<P (BY() + BY() +C°() = 5o

§3max{]P’(B?('y)212‘Ql> <B°() 132\91) (cO() 1‘92]91)} (S.B.61)

We now derive upper bounds on BY(v), BY(y) and C°(v) respectively.
Bound on B}(y). The derivation of the bound on BY(y) follows Belloni and Cher-
nozhukov (2011) closely. We present the proof here for completeness. For some K; > 0, by

Markov’s inequality,

P(B)(y) > Ki[Wx, )
<mine TME {exp (TB ) ‘WX, Ql}

>0

<mine "M E
>0

exp ( sup | As: - max |G m>|> |WX791

1<j<p
[As]1%<y?

<2p Ip>161 e ™81 max E {exp <7'\/_’Y G( Xt ) ‘WX, Ql}

1<j<p
T p’YQCX>

< ] _TKl
<2p rTnZlgl e exp ( 2

where the third inequality follows from the fact that E[max;<;<, exp(|2;])] < 2pmax;<;<, Elexp(z;)]
for a symmetric random variable z; (Belloni and Chernozhukov, 2011). The last inequal-
ity is by an intermediate step in the proof of Hoeffding’s inequality (e.g. van der Vaart
and Wellner (1996) p.100) and by €. Hence, by setting 7 = K;/(p7*Cx) and K; =

\/QpCX log((p+ 1)NT) -~ (if p = 0, then let 7 be any constant and the bound is equal to
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0), we have

P (B?(v) > K1’WX,91) < 2pexp (—2];;120)() = v —i—QSNT — 0.
Therefore,
P(B) > Ki|) =E [P (B) > Ki[Wx, ) [] <E <N2T) — 0. (S.B.62)

Bound on B)(v). Recall that {&;}; is the Rademacher sequence in the symmetrized

process. Let € be the N x T matrix (¢;); ;. Then with probability one, by defining Ceope =
5v2Cx /(C\Cy,), we have

B(v)
1
= su €Z'A 3
VNT wett |; a
(AB,AL)ERu ’
[N RN
1
= su e, A
Nt S e s
(AB,AL)ERU
185124 <oe AL 2542
1
< ell - su Al
—\/WH I sup AL
(AB,AL)ERu
18512+ 5pll AL [2.<72
1 2(1+C))
< lell - sup Cone\VP(N AT)log((p + 1)NT)||Apllr + = |PawALll+
VNT Ag]24 = A L]I2. <2 ( \/ C )
1 237 (1 4 Cy)
<——=llell - sup Cone\/P(N NT)log((p + 1)NT)[|Agllr + ————IALllF
VNT 12512+ 2 llAL |2 <2 ( \/ Ci )
2 214+ C,) —
< el - (CW N AT)lo +1NT>\/ TN BENT ) | Y,
< lell ((Comno¥ AT ox((p+ DNT)) v (21 IE

where the second inequality is by the definition of cone R, and the third inequality is by
equation (3.9). Since € has i.i.d. mean 0 Bernoulli entries, there exists a constant Cg, > 1
such that for P (HeH > CspVN V T/Q) — 0 by Lemma S.B.5. Let

Kz = Csy ((Coumer/plog((p+ DNT)) v (21 + COVNVTVET/Ch) ) 3,
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we have
P(BY(7) > K| ) <P (Jle]| > CspVN VT/2) — 0. (S.B.63)

Bound on C°(y). By v = o(1), it is smaller than one for sufficiently large N and T.
Then let U; = {uq, ...,u;} be an e-net of U where e = v/y/p+1 and el < 1. For any u € U,
we have the identity

it (XiAp + Apir, u) =0i[ X, (Ap + Bo(uw) — Bo(w)) + At + Lot (u) — Lo (u), u]
— 04t [ X3, (Bo(u) — Bo(w)) + Lot (u) — Lo (), ul.

Then by the triangle inequality, with probability one we have

C’(7) < sup |G (d:e[ Xy (A + Bo(u) — Bo(@)) + Arie + Loie(u) — Lojie(), u])
weU,|lu—1u|<e,u€l]
(A, AL)ER,
18slE+xrlALIF<Y?
+ sup |G0 ((5“5[let(ﬁ0(u) - ,30(71)) + L07it(u) - L()J‘t(ﬂ), Z_L])| (SB64)
weU,|lu—1u|<e,u€l]
(AﬁaAL)ERu
18slE+xrlALIF<Y?
We will proceed by treating Ag + So(u) — Bo(u) and Fy(u) — So(u) as new Ags, and Aj +
Lo(u) — Lo(u) and Lo(u) — Lo(u) as new Aps. However, they may no longer lie in the ball
18s]1F + 571 ALl[F < 7? and in cone R,. So, we need to first expand these two sets.

We first expand the ball. For Ag, by Assumption 5, by € = v/y/p + 1 and by || Ag||r < 7,
we have [ Ag + o(u) — Bo(@I3 < 201+ 3/ (p+ 1)7? and [ fo(u) — o(@IF < G2/ (p+1)
for all |u — u| < e. Similarly, for |AL|lr < VNT7, under equation (3.2), |Ar + Lo(u) —
Lo(u)[[3/NT < 2(1 + 3 /(p + 1))y* while [[Lo(u) — Lo(u)|[5/NT < ¢f~*/(p + 1) for all
|u —u| < e. Therefore, we need to expand the ball to be ||Ag|[% + |AL||5/NT < 2(1+4 (¢% +
(2)/(p+1))y*. For simplicity, let C¢ .= 1+ ((%+¢7)/(1+p). Since (x = O(\/p), Cc = O(1).

Next, let us expand R,,. Since rank(Lo(u) — Lo(u)) < r(u)+r(u) < 27, we have || Lo(u) —
Lo(@) ||« < V2F||Lo(u) — Lo(u) || < V2rCV/NTy//D+ 1by e =v/y/p + 1forall [u—u| <e.
Similarly, for (Ag, Ar) € R, and [|[Ag||% + [|AL||%/NT < 2C~?, the following holds for all
u € U and all |u — u| < e with probability one,

1AL + Lo(u) = Lo(@)[]«
<[ALlls + [[Lo(w) = Lo(w)]«

2 Py ) Au(@l. + Comey/pog((p+ DNTIN ATV A5 + VEG N T2V T T

<

33



) (2(1 + gi)\/@ ) ﬁ@) VNT?y + Comer/plog((p + DNT)(N A T)/2Cc

where the second inequality follows from the definition of R,. The last inequality is by

v/v/p+1<7. Let

7_32 {AL ERNXTI

1A < (2“ O ﬂg) VT + Ceone /20108 ((p + DNTIN A T)v}-

Therefore, in the intersection of the ball ||Ag||% +[|ALl|%/NT < 2C:~* and R, for all u € U,
the matrices Ay, (Ar + Lo(u) — Lo(u)) and (Lo(u) — Lo(u)) are all in R for all u € U and
|u — u| < e. Hence, inequality (S.B.64) implies that,

Cm <2 s O+ M) = 2000). (8B
TEU,ALER
1As1 2+ 77 1ALI2<2Ccy?

Define the following event:

Q, ::{ sup. ’GO (ApLit) ’
ALER

< CSp

(Ccone\/ZCgplog((p + 1)NT)> Vv ( NVT ( 60&((}1 +Cy) + \/§CL) ﬁ)] 7}.

Now we can derive the upper bound on C%(v). For some K3 > 0, by equation (S.B.65),
P (C() > 2K3|Wx, 1) <P (C'(7) > Ka|Wx, ) < e TSR [7C 0|y, 2], (3.B.66)

where the last equality is by Markov’s inequality for some 77 > 0. For E {67'61(7)‘WX, Ql},
by | <1/e = +/p+1/v, we have

E {er’cl(v)‘WX, Ql}

V 1
<VP + maxE [exp | 7/ sup IGY (6:t( X}, A5 + Api,w) | | [Wx,
y ueEU; ALeR

1817+ 7 IALIF<2CH?
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+1
< PT R exp (27 sup. IG® (X, A5 + ALir)|) ‘WX, 0
v ALER
1As11%+ 77 ALIIE<2C 2
< D+ 1E ’ 0/ ’ 0 )
< exp | 27 sup |G”(X;,Ap)| + 27 sup. IGY(ALa)| | [Wx,
v 18512202 ApeR
i Al 2477 1A LIZ<2Ccy?
1 1
1 ’ >
< L E |exp | 47 sup |G°(X],A8)] 'WX;QI X (E [exp (47'/ sup. ‘GO(AL,it)D])
Y HABH%SQCC’\R ALeER
1
2(p+ 1 2
S\f(i—i_) exp (ST’ZpCC’yZCX) <IE lexp (47" sup. G <AL”)‘>]> , (S.B.67)
ALER

where the second inequality is by Theorem 4.12 of Ledoux and Talagrand (1991) and by
contractivity of d;(-) with 6;:(0) = 0. The fourth inequality is by Cauchy-Schwarz. The last
inequality follows the same steps as the derivation of the bound on BY(7).

By G°(Arx) < |lell - |ALll«/vV/NT and by the definition of R, €y does not hold only
if |le|] > Csp(N v T)/2. Hence, by Lemma S.B.5, P(25) < 2exp(—(N V T')). Note that
GY(ALy) < ||ALlls almost surely since |le]| < |le||r = V' NT. Therefore,

E [exp <4’7’l sup |G0 (AL,it)O]

ALER

<P(Q2) exp <4T/CSp [(Ccone\/QCCp]og((p—i— l)NT)) \Y, (\/m <m2é1 + Ch) + \/ECL> ﬁ)] 7)

+2exp(~(N v T)) exp (47' [ccochgp log((p+ DNT)(N A T) + (m WL, \/§<L> W] fy> |

Let

o log (NT)

1v2 | \2Ccplog((p + DNT)(Cx V €3y Cune) + Cop/ NV T (V22 4 /30, ) Vi 4

A

Then E [exp (47' SUPA, e ‘GO(ALM)M < 2exp( log(NT)) < 2y/exp(log(NT)) = 2/ NT
for large enough N and 7. Substituting it into (S.B.67), we have E {eT/CI(W)IWX,Ql] <
2(p+ 1)V NT/~. Let

K5 =8v2|\/2Ccplog((p + 1)NT)(Cx V C2,C20n.)
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+CspVN VT ( 60§2§\ o) + \/§<L) \/;] vy/log (NT).

In view of (5.B.66), we thus obtain

2(p+1)

PC°0) 2 2Ks|) = E[P(C0) > 265 W ) |0] < s

— 0, (S.B.68)

where the equality is by the law of iterated expectation. Convergence follows the definition

of yand p=o((N AT)/(log(NT)a37)), where the latter is implied by Assumption 3.
Now, recall s = Csup\/log(NT) (\/p log((p+ 1)NT) Vv \/f(N v T)) v and let

60:2(1 +C
Clup =1921/2 (\/2(CX Vv C2,C2, )Cc + Cs, ( ¢ (g ) 5 Q))
A

5002 6C:2(14 C))
=192v/2 (2J <1 Y, (Cgcip» C:.Cx + Cs, ( z. +V2¢ | |,
op

where the second equality is by Coone = 5v/2Cx /CLC,p. We can see that Cy,, decreases as Cy
increases, but is bounded away from zero. Note that s > 12 max{ K, K3,2K3}. Combining
equations (S.B.61), (S.B.62), (S.B.63) and (S.B.68), we have

P(A0) 2 {j)

<3 max {P (B?(y) > T3 i

Ql) P (53(7) 2 5

Ql) P <Bg(7) > Ko

%))

Ql)} 0. (S.B.69)

Ql> P (c%) >

<3max {IP’ (B?(’y) > K

By equations (S.B.59), (S.B.60) and (S.B.69), we obtain P(A(y) > s) — 0. |

Proof of Lemma S.B.6

We have

w2

/sz (Il(wl <z)—L(w < O))dz — /Om2 (]l(wl <z)—1L(w < 0))dz = /n (Il(wl <z)—1L(w < O))dz.

w2

For any fixed wy € R, 1(w; < z) is weakly increasing in z. So, if we > 0, we have
I(w; < 2)—1(wy; <0) >0 for all z € [kKwsy, ws] as k € (0, 1]; the integral on the right side is
(ﬂ(wl <z) = L(w < 0))d3 = Jug - (ﬂ(wl <0) = L(wr < Z))dz

nonnegative. If wy < 0, [%2

KRW?2 w2

which is again nonnegative as 1(w; < 0) — 1(w; < z) > 0 for all z € [wy, Kws). |
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Proof of Theorem S.A.1 in Appendix S.A.1

Since D@ is a cone, the main argument in the proof of Theorem 2 still holds. Meanwhile,
Lemmas 1 and S.B.4 and the upper bound on the penalty difference in equation (5.B.31)
do not depend on D nor on the lower bound obtained in Lemma S.B.2 and Theorem 1.
Meanwhile, identification is achieved similar to Theorem 1 once we obtain a lower bound
similar to equation (S.B.9) implied by Lemma S.B.2. Therefore, we only need to show that
an inequality similar to equation (S.B.9) holds over (Ag, Ap) € D).

With the covariates, recall D) = R? x {AL € RVXT | PoALl% > Csm||AL||F} Let
v = Cerror2037 ((1 +Cy) Vv \/log NT) ) (\/plog p+ 1)NT)/NT) Vv r/(N/\T)) for some
new constant Cepporo. For all (Ag, Ar) € DP | all ||Agl|2 <42, and all u € U, we have

pu(V () ZXABJ—AL) pu(V ()

Ar, 7,t+X
/ Fuyuiw (5) = iy (0)) dS]

[e=]

Apat+X[,Ap
Z [1 thth < OéNT/V) / (FVzt(U)|WX (3) — FVzt(U)|WX (O)) dS]
it
AL,it“l‘Xz{tAﬂ
> > E lﬂ (W < aNT/v> /0 (Fraonma (9) = Fraonwy (0)) ds]

{Zt|AL2 | aNT}

sign (AL,it+Xiz/A) ‘Xz{f,AB‘
+ Z E []1 (\/m < aNT/’Y) /0 (FVzt(u)\Wx (S) - FVzt( W (0)) d8‘|

{it |AL 1t‘>201NT}

17 0)?
>0 8o [ye 1 (VXIXe < anr /) (X0da + (Padp)a|
T gt
(1 A 6)?

= 18« 2 (O 5ZE [ <\/ Xz(tXit < aNT/fY> (Xz/tA,B + AL,it)Q] - ||,PQLAL||?T>

1A9)
—(18%, (0 SB[ (yX0Xa < /1) (X + Ana] = (1= O ||AL||§)
2
o2, 2 Xils;+ AL ent(NT|[Agll7 + [[ALIF) +2(1 = Can) [ ALl
Jj=1 o

where the equality follows the proof of Lemma S.B.2. The first inequality holds because
every integral in the summation is nonnegative by Lemma S.B.6. For the second inequality,
note that when 1 (wX{tXit < ozNT/y) is true and when Ay ;s > 27, we have

(A + X[ Al > |Apa| — | X508 > |ALu| — /X5 Xal|Allp > ane > | X[, A,
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and thus the inequality holds by Lemma S.B.6. By the definition of Pq, the third inequality
holds because now all the upper limits in the two integrals are bounded in magnitude by
3ant given ||Agllp < 7. Constants f and 0 are as in Assumption 2. The fourth and the
fifth inequalities are by Ap i = (PaApL)it + (PorAp)y and by the definition of D@, The
last inequality follows the derivation of equation (S.B.53) in the proof of Lemma S.B.2. We
have thus established a result similar to equation (S.B.9), and all the remaining analysis in

the paper follows as C,, — 1. [ |

S.B.5 Proof of Convergence of Algorithm 1

We start with showing that the inner-loop (equations (A.3) and (A.4)) converges to its
global minimum for any fixed (L*+1, H®), Specifically, defining (5*+1), V*+1)) a5

(ﬁ(kﬂrl)7 V(kJrl)) = arg ml‘piﬂ( k+1 6 V H(k )

where & is as in equation (A.1) and (L**), H®) is given, we show that the accumulation

point of the inner loop iterations achieves .2 (L*+1, gth+1) 1/ (k+1) " pr(k))

Lemma S.B.7. For any fived L*+Y) and H®
lim 2 (L% O vO gRY = Lk gl 1/ k1) k)
=0 ’ ’ ’ ) ) ) .

Proof. For any (U, V®) for all I > 0, since Z(L*+Y 30 . H*)) is convex, by definition

of the subgradient, we have

K% <L(k+1 6 ) V (1+1) H(k)>
<& (L (k+1) ”3 l)’ V ,H ) B <V(l) . V(l+1)’vvg(L(k+1)’ﬁ(l)7 V(l+1)7 H(k))>

where Vi Z(L*+D g0 v D k)Y is any subgradient of Z(L*+Y g0 . H®) evaluated
at VU, By equation (A.7), 0 € V. Z(L*+D g0 v+ k) therefore,

g(L(k+1),B(l)’ 174G) H )<$< I,(k+1) 51) 1740) H(k)>’VZ.

Similarly, since Z(L*+D . VD HF) is convex and differentiable, and 3¢+ is ob-

tained by the first order condition (equation (A.8)),

K% (L(k+1),ﬁ(l+l), V(l—i—l) H k)) g( k:-‘,—l /6 1) V (I+1) H(k)) Vi,
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Combining the above two inequalities, we have the following for any initial value (3®, V()
X(L(k+1 ﬂ V(O ) g( k+1 6 V(l) H k)) > g( k+1 5 V(l) H k))

Therefore, sequence (£ (L*+Y 30 VO [ #)), is decreasing. By the monotone convergence
theorem, lim;_,,, £ (LE) g0 VO &)y — @(LE+HD e+l 1=+ (k) where the limit
is the global minimum of .Z(L*+Y . . H k), [

Lemma S.B.7 shows that (8%, V®) converges to (3%*+D V*+1) "4 global minimizer of
L(LFED .. H®). From now on, we can treat (3% V(k+1)) a5 obtained for each k. Now
we prove the outer loop also converges. We adapt the proof by Lin et al. (2010) where they
prove convergence of an ALM algorithm without covariates and with an increasing p. Here
our y is fixed to simplify computation. Having a fixed p requires a new argument especially
in the proof of Theorem S.B.1. Define

A+ = g (v“f + ZX B 4 LE+D — Y) : (S.B.70)

Combining (A.5) and (S.B.70) and defining V =Y — L — >y Xij where (3, 1) are our

estimator (u is suppressed for the ease of notation), we have

J

P
HE&+Y) k) =L (Y _ kD ZXgﬁ(kH) (k+1))
7=1

=4 ((f/ 1 (k+1) ) I ZX ( B(k+1 ) (j; _ L(k+1)>) (S.B.71)

7j=1

and

N p
A _ gl ((V(’““) _ V(k)) +Y X (5](’““) - 5}’“))) _ (S.B.72)

Jj=1

Meanwhile, consider the Lagrangian without the penalty:
. 1 p
L(L,B,V,H) = W—Tpu(V) + || L]« + <H, Y=Y X8 —L— v> . (S.B.73)
j=1

Note that this is the Lagrangian of the minimization problem that defines our estimator
(B, E) Let H be the Lagrangian multiplier when (L, B, V) = (f}, B, V) Then we have the

following lemma.
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Lemma S.B.8. Forall j=1,...,p and for all k > 1, we have
(H,X;) = (H* X;) =0. (S.B.74)

Proof. The first order condition of equation (S.B.73) with respect to §; is <f[ , Xj> =0 for
all j =1,...,p. Similarly, equation (A.4) at (g*+1) V*+1) g

p
0=(H® X;)+p <Y NP, €7t Jla R G Xj> Vi=1,...p. (S.B.75)
=1

Together with (A.5), we have <H(k+1),Xj> =0forall j=1,..,p. [

Lemma S.B.9. For k > 2, the following holds:

2
O
F

2

(V(k+1 >+ZX ( k+1) ﬁ](-k))

(v 7)+ ixj (34" 5)
j=1

2
y
o (e — = e — )

— oy <<V(k+1) _ oy, g H(k)> I <L(k+1) _ L, kD f]> 4 <V k) oy, ey ﬁ]>) .

F

Proof. By Lemma S.B.8, and by equations (S.B.71) and (S.B.72), we have
M—l <H(k+1) _ H(k)’ kD ﬁ[>
P
— <V(k+1) —V+ ZX](BJ(kJrl) . 6])7H(k+1) o H> . <L(/€+1) o L7H(k+1) o H>
j=1
_ <V(k+1) _ V) H(k+1) . F[> o <L(k+1) H(k+1 >

+ 1 <L(k+1) _ [:7 (V(k+1) ) + ZX (ﬁ(k—H 5(’“ )> ' (S.B.76)

Therefore,

2
+ 2 Y — A%

Jj=1 F

‘ (V(k+1 ) . ZX (B(kH B])

2 2

(V(kz—H V(k>+ZX( (k+1) B(k))

J
7j=1

F F
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49 <(V(k+l) k)) + ZX ( (k+1) @Uc)) : (V(k+1 ) + ZX (B(kJrl B])>

w2 (HH(k) — HHF - HH(k+1 — H®|2 + 2<H(k+1) _ H(k)’H(kJrl) _ H>)

(V- 7)+ > X, (8- 5)

2

<V(k+1) _ V(k)) + ZP:XJ‘ (ﬁj(k+1) B ﬁj(k))

F J=1 F
2 (Y = A = | HE = HO)
. 2,u_1 <<V(k+1) . V(k)) + zp:Xj (Bj(k+1) . Bj(k)) 7H(kzﬂ) _ H(k:)>
j=1
ot (V) 7, e A+ (L4 — [ 0 )
2 2
_ (V(k) _ V) + ZP:X]- (ﬁj(k) _ By) (V(k—H ) + ZX ( k-i—l) B](k))
Jj=1 F F
(a0 — dr] = et - a9 )

—op ! (VO — v B gl — g0 4 (L) f D ) 4 (VD —§ q D 7))

where the first equality is due to the fact that [|[A — B||% = ||C — B||% — ||A — C||% + 2(A —
C,A— B) for all N x T matrices A, B and C. The second equality is by equations (5.B.71)
and (S.B.76). The last equality is by Lemma S.B.8. |

Next we are to show that the three inner products on the right hand side of the last
equality above are all nonnegative. That proves the left hand side of the first equality above

is a decreasing sequence in k. We need the following lemmas.

Lemma S.B.10 (Lemma 3 in Lin et al. (2010)). If f is a convex function, then (xq1—x2, g1 —
g2) >0, Vg, € Vf(x;),i=1,2, where V[ is a subgradient of f.

Lemma S.B.11.

lim [0 — g

k—o0
lim (VED -7 HED — f) =0,
k—o0
lim <L(k+1) — L, H*D H> =0.
k—o0

Proof. By the optimality of (ﬁ, BV, H ) to the unpenalized Lagrangian (S.B.73), we have

~ ~ ~ 1 ~
bi) ., He—vp, ). B.
€ VL] € v Ve (V) (S.B.77)
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By equations (A.2), (A.3), (A.5) and (S.B.70) where in equation (A.3), 3 and V{+V are

replaced with A1) and V*+1) | we have

- 1
H(k+1) L(kJrl) . H(k+1) - 3 (k+1) ) B.
e V| ||+, € ANTVP (V) (S.B.78)

Therefore, by Lemma S.B.10 we have the following inequalities:

<V(k+1) —y® gl H(k)> >0,
<V(k+1) _ f/’ kD) ﬁ> >0,
(L) L O _ ) > 0

Now by the nonnegativeness of the three inner products and by Lemma S.B.9, we have
that W) = H(V(k“) — V) +30 X (5(k+1 53) H +u 2| H* D) — H||% is decreasing in k.

J
Since U is lower bounded by zero, it is convergent by the monotone convergence theorem.

Therefore, by Lemma S.B.9 and by the nonnegativeness of the three inner products, we have

0 < HH(k:-i-l) _ H(kz)Hjm ! <V(k+1) P, gk g> ! <L(k+1) (. ﬁ>
<w® _ gkt 5,

A

Hence, the desired results obtain since HH(’““) — H(k)Hi, (V0D 7 {HED _ f) and
(LD — [, A¢+D — ) are all nonnegative. |

Theorem S.B.1. Algorithm 1 converges to the global minimum of the objective function
(2.3):

2

=0, (S.B.79)

F

lim — Y — ZXBk) L® ) | L® LT E—ij-BA + 1L

koo ANTP «  ANT™ R -
(S.B.80)

lim
k—o00

Proof. Since |H® — H® 1|2, — 0 as k — oo by Lemma S.B.11, under equation (S.B.71),

2
— L™ ZXB(’“ VO =t [HS - 1>H — 0. (S.B.81)

F

Therefore, constraint Y = L) 4 Z§:1 X j/Bj(‘k) + V) holds in the limit and equation (S.B.79)
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is proved.
Recall that H® € V||L®|, and that H® € 1-Vp,(V®) by equation (S.B.78). By
the definition of subgradient,

e (V) + 29
_WlTpu (V) + | 2], = (£ = 28, 8D — (V= v®, g®)
= (V) 4[], + (B = L0, B — AW 4 (0~ v~ B
—(L+V—L®—v® f)
= (V) 4 B, + (B = L9, B — B®) 1 (0 =V g7 — 5O
- <Y — zp;Xij — LWy H>
:)\NlTpu (]V)+ L| +(L-L® F—A®)+(V-v® - a®)

p
- <Y —S X80 — LW &) H>
j=1

< u (V) + 2]+ (B = 100, — A6 4 (7 v, 1)
N
- F
::wlTpu (V) +||Z tay. (S.B.82)

The first equality is elementary. The second equality is by Y = >%_; X Bj +L+V. The third
equality is by (Xj, H) = 0 by Lemma S.B.8. The last inequality is by the Cauchy-Schwarz
inequality. By Lemma S.B.11 and by equation (S.B.81), a; — 0 as k — oo since ||H||p stays
constant across k.

On the other hand, let V) =Y — L) — . Xj6]<k). By construction, (L*), 3®) 7/ (+))

satisfy the constraint. So,

p
Y —1® -y X600 —y®

=1

- v, - -

F

where convergence is by equation (S.B.81). So V® — V®#) — 0 componentwise as k — oc.
Therefore, by, = ||[V® — V®)||,/(ANT) converges to 0 as k — co. By contractivity of the
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check function, we have

1
ANT

_4Lwdww—www*§@%0 (S.B.83)

Pu (V(k)) t HL(k) « AMNT

Therefore,

4¥pru(V“U—+HL%>

- > L, (70 + [ £

« — ANT

pu (V) +[[2], = b
(S.B.84)

b > L
« F=ANT

where the first inequality is by equation (S.B.83) and the second inequality is by the definition
of the estimator which says for all (L, V') such that there exists a [ satisfying the constraint
L+V 432, X;8; =Y, pu(V)/(ANT) + | L||. is minimized at (V, L). Combining equations
(5.B.82) and (S.B.84), we have

0 g (V) + 1], < e ()

(V) +t WT

|
ANT P Lo

Therefore, by V=Y-— i Xj@ — L, the following holds by ag, by — 0:

) 1 1 P A A
Jim —py (V&) + HL(k)H* oy (Y —;Xjﬁ - L) + HL

(S.B.85)

*

In view of equation (S.B.83) and V¥ =y — L) — i Xjﬁj(»k), equation (S.B.85) thus
implies equation (5.B.80). |

References

Ando, T. and J. Bai (2020). Quantile co-movement in financial markets: A panel quan-
tile model with unobserved heterogeneity. Journal of the American Statistical Associa-
tion 115(529), 266-279.

Belloni, A., M. Chen, O. H. M. Padilla, and Z. K. Wang (2023). High-dimensional latent
panel quantile regression with an application to asset pricing. The Annals of Statis-
tics 51(1), 96 — 121.

Belloni, A. and V. Chernozhukov (2011). ¢/1-penalized quantile regression in high-dimensional
sparse models. The Annals of Statistics 39(1), 82—-130.

44



Candes, E. J. and B. Recht (2009). Exact matrix completion via convex optimization.
Foundations of Computational Mathematics 9(6), 7T17-772.

Chao, S.-K., W. K. Héardle, and M. Yuan (2021). Factorisable multitask quantile regression.
Econometric Theory 37(4), 794-816.

Chen, L., J. J. Dolado, and J. Gonzalo (2021). Quantile factor models. Econometrica 89(2),
875-910.

Knight, K. (1998). Limiting distributions for [; regression estimators under general condi-
tions. The Annals of Statistics 26(2), 755-770.

Ledoux, M. and M. Talagrand (1991). Probability in Banach Spaces: Isoperimetry and

Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag.

Lin, Z., M. Chen, and Y. Ma (2010). The augmented lagrange multiplier method for exact

recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055.

Moon, H. R. and M. Weidner (2015). Linear regression for panel with unknown number of
factors as interactive fixed effects. Econometrica 83(4), 1543-1579.

van der Vaart, A. W. and J. A. Wellner (1996). Weak Convergence and Empirical Processes.
Springer.

Vershynin, R. (2018). High-Dimensional Probability: An Introduction With Applications in
Data Science, Volume 47. Cambridge University Press.

45



	On the Lower Bound in Theorem 1
	Dropping the Constraint in Equation (2.3) 
	Comparison of Different Approaches

	Proofs
	Proofs of the Results in Section 3 
	Proof of the Results in Section 4
	Proofs of the Results in Section 5
	Proofs of the Results in Appendices S.A and S.B
	Proof of Convergence of Algorithm 1


