
Online supplementary appendix to

New robust inference for predictive regressions

This supplement includes four appendices, Appendices A, B, C, and D. In Appendix A, we

consider a class of nonlinear IV estimators, and discuss why the Cauchy estimator, which is a

special case of nonlinear IV estimators, is useful in inference problems. Appendix B presents

some useful lemmas, Lemmas S.1-S.8, and their proofs; Appendix C provides the proofs of the

main results in the paper; and Appendix D provides some additional simulation results on finite

sample performance of inference approaches dealt with.

Appendix A: Nonlinear IV Approaches

As mentioned in the main paper, the Cauchy estimator 𝛽 is the special case of a class of

nonlinear IV estimators 𝛽(𝛾) with 𝛾(·) = 𝑠𝑖𝑔𝑛(·), where

𝛽(𝛾) =

(︃
𝑇∑︁
𝑡=1

𝛾(𝑥𝑡−1)𝑥𝑡−1

)︃−1 𝑇∑︁
𝑡=1

𝛾(𝑥𝑡−1)𝑦𝑡

for some function 𝛾 : R → R. Clearly, 𝛽(𝑠𝑖𝑔𝑛) = 𝛽. Moreover, if we let 𝜄 be an identity function:

𝜄(𝑥) = 𝑥, then 𝛽(𝜄) becomes the OLS estimator 𝛽. In this section, we discuss why the choice of

𝛾(·) = 𝑠𝑖𝑔𝑛(·), as in the Cauchy estimator, is important and useful when considering the class

of nonlinear IV estimators in an inference problem. To explain the idea, we focus on the issues

about the predictor 𝑥𝑡, and assume that 𝑣𝑡 = 𝜎 for all 𝑡 ≥ 1.

A.1 Nonstationary Predictor

The asymptotics for (near) unit root processes under various transformations are well known

(see Park and Phillips (2001) and Park (2003)). For instance, let 𝑥𝑡 be a unit root process and
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(𝑥𝑡,
∑︀𝑡

𝑠=1 𝜀𝑠) satisfy the functional CLT with a limiting bivariate Brownian motion (𝑋,𝑊 ). It

then follows from m Park and Phillips (2001) that for regularly integrable functions 𝑓 and 𝑔2

1

𝑇 1/2

𝑇∑︁
𝑡=1

𝑓(𝑥𝑡−1) →𝑑 𝐿𝑋(1, 0)

∫︁ ∞

−∞
𝑓(𝑥)𝑑𝑥,

1

𝑇 1/4

𝑇∑︁
𝑡=1

𝑔(𝑥𝑡−1)𝜀𝑡 →𝑑

(︂
𝐿𝑋(1, 0)

∫︁ ∞

−∞
𝑔2(𝑥)𝑑𝑥

)︂1/2

𝑍(1),

(S.1)

where 𝐿𝑋(1, 0) is the local time at the origin of 𝑋 and 𝑍 is a Brownian motion independent of

𝑋. In particular,
(︁
𝐿𝑋(1, 0)

∫︀∞
−∞ 𝑔2(𝑥)𝑑𝑥

)︁1/2
𝑍(1) =𝑑 MN

(︁
0, 𝐿𝑋(1, 0)

∫︀∞
−∞ 𝑔2(𝑥)𝑑𝑥

)︁
, where MN

is a mixed normal distribution.

On the other hand, if 𝑓 and 𝑔2 are asymptotically homogeneous functions, then

1

𝑇
𝑓𝜈(𝑇 1/2)

𝑇∑︁
𝑡=1

𝑓(𝑥𝑡−1) →𝑑

∫︁ 1

0

𝑓𝐻(𝑋(𝑟))𝑑𝑟,

1

𝑇 1/2𝑔𝜈(𝑇 1/2)

𝑇∑︁
𝑡=1

𝑔(𝑥𝑡−1)𝜀𝑡 →𝑑

∫︁ 1

0

𝑔𝐻(𝑋(𝑟))𝑑𝑊 (𝑟),

(S.2)

where 𝐹𝜈 and 𝐹𝐻 are, respectively, the asymptotic order and the limit homogeneous function of

asymptotically homogeneous function 𝐹 = 𝑓, 𝑔. The reader is referred to Section 3 of Park and

Phillips (2001) for more detailed discussions about the asymptotics (S.1) and (S.2) as well as

the precise definitions of the regularly integrable and asymptotically homogeneous functions.1

Note also that for a near unit root process the asymptotics (S.1) and (S.2) remain valid if 𝑋 is

replaced by the limiting Ornstein-Uhlenbeck process of (𝑥𝑡) (see, e.g., Section 3 of Park (2003)).

Importantly, the limit distribution of
∑︀𝑇

𝑡=1 𝑔(𝑥𝑡−1)𝜀𝑡 in (S.2) is not Gaussian for an asymp-

totically homogeneous 𝑔2 except in some special cases including 𝑔𝐻(𝑥) = 𝑠𝑖𝑔𝑛(𝑥). In particu-

lar, the sign function 𝑠𝑖𝑔𝑛(·) is asymptotically homogeneous with 𝑠𝑖𝑔𝑛𝜈(𝜆) = 1 for all 𝜆 and

𝑠𝑖𝑔𝑛𝐻(𝑥) = 𝑠𝑖𝑔𝑛(𝑥). Since
∫︀ 𝑟

0
𝑠𝑖𝑔𝑛(𝑋(𝑠))𝑑𝑊 (𝑠) is a Brownian motion by Lévy’s characteriza-

tion of Brownian motion, we have

1

𝑇 1/2

𝑇∑︁
𝑡=1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)𝜀𝑡 →𝑑 𝑊 (1).

Using the asymptotics (S.1) and (S.2), one may construct a nonlinear IV estimator 𝛽(𝛾)

being asymptotically Gaussian for a proper choice of 𝛾, i.e., for 𝛾 square integrable or the sign

1Similar asymptotic results for a diffusion process can be found in Kim and Park (2017).
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function. For such 𝛾, one may use the following test statistic

𝜏(𝛾) =

∑︀𝑇
𝑡=1 𝛾(𝑥𝑡−1)𝑥𝑡−1(︁∑︀𝑇
𝑡=1 𝛾

2(𝑥𝑡−1)
)︁1/2 × 𝛽(𝛾)

to test the null hypothesis of 𝛽 = 0.2

Proposition S.1. Let Assumption 2.1 hold with 𝑣𝑡 = 𝜎 for all 𝑡 ≥ 1, and let (𝑥𝑡) be a unit

root process. Further assume that the convergences in (S.1) and (S.2) hold.

(a) Let 𝛾(·) = 𝑠𝑖𝑔𝑛(·) or 𝛾2 be regularly integrable. Under 𝛽 = 0,

𝜏(𝛾) →𝑑 N(0, 𝜎2)

(b) Let 𝛾(·) = 𝑠𝑖𝑔𝑛(·). Under 𝛽 ̸= 0,

1

𝑇
𝜏(𝛾) →𝑑 𝛽

∫︁ 1

0

|𝐵(𝑟)|𝑑𝑟.

(c) Let 𝛾2(𝑥) be regularly integrable, and let 𝑥𝛾(𝑥) be either asymptotically homogeneous

or regularly integrable such that
∫︀∞
−∞ 𝑥𝛾(𝑥)𝑑𝑥 ̸= 0. Under 𝛽 ̸= 0, we have 𝜏(𝛾) →𝑝 ∞ and

𝜏(𝛾) = 𝑜𝑝(𝑇 ).

Proof. Note that

𝜏(𝛾) =

∑︀𝑇
𝑡=1 𝛾(𝑥𝑡−1)𝑦𝑡(︁∑︀𝑇

𝑡=1 𝛾
2(𝑥𝑡−1)

)︁1/2 = 𝛽

∑︀𝑇
𝑡=1 𝛾(𝑥𝑡−1)𝑥𝑡−1(︁∑︀𝑇
𝑡=1 𝛾

2(𝑥𝑡−1)
)︁1/2 +

∑︀𝑇
𝑡=1 𝛾(𝑥𝑡−1)𝑢𝑡(︁∑︀𝑇
𝑡=1 𝛾

2(𝑥𝑡−1)
)︁1/2 .

The stated results in the parts (a) and (b) then follow immediately from the convergences (S.1)

and (S.2) since, in particular for 𝛾(·) = 𝑠𝑖𝑔𝑛(·), we have

𝑇∑︁
𝑡=1

𝑠𝑖𝑔𝑛2(𝑥𝑡−1) = 𝑇 (1 + 𝑜𝑝(1)),
1

𝑇 3/2

𝑇∑︁
𝑡=1

|𝑥𝑡−1| →𝑑

∫︁ 1

0

|𝐵𝑟|𝑑𝑟.

We let 𝜄(𝑥) = 𝑥. As for Part (c), we first let 𝛾2 and 𝜄𝛾 be regularly integrable. Then, under

𝛽 ̸= 0,

𝜏(𝛾) = 𝛽

∑︀𝑇
𝑡=1 𝛾(𝑥𝑡−1)𝑥𝑡−1(︁∑︀𝑇
𝑡=1 𝛾

2(𝑥𝑡−1)
)︁1/2 (1 + 𝑜𝑝(1))

2When 𝛾(·) = 𝑠𝑖𝑔𝑛(·), 𝜏(𝛾) = 𝑇−1/2
∑︀𝑇

𝑡=1 𝑠𝑖𝑔𝑛(𝑥𝑡−1)𝑦𝑡, which is a special case of 𝜏(𝑣) in (3) with 𝑣𝑡 = 1.
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and
1

𝑇 1/4

∑︀𝑇
𝑡=1 𝛾(𝑥𝑡−1)𝑥𝑡−1(︁∑︀𝑇
𝑡=1 𝛾

2(𝑥𝑡−1)
)︁1/2 →𝑑

𝐿𝑋(1, 0)
∫︀∞
−∞ 𝛾(𝑥)𝑥𝑑𝑥(︁

𝐿𝑋(1, 0)
∫︀∞
−∞ 𝛾2(𝑥)𝑑𝑥

)︁1/2
by (S.1), from which 𝜏(𝛾) = 𝑜𝑝(𝑇 ).

On the other hand, if 𝜄𝛾 is asymptotically homogeneous and 𝛾2 is regularly integrable, then

1

𝑇 3/4(𝜄𝛾)𝜈(𝑇 1/2)

∑︀𝑇
𝑡=1 𝛾(𝑥𝑡−1)𝑥𝑡−1(︁∑︀𝑇
𝑡=1 𝛾

2(𝑥𝑡−1)
)︁1/2 →𝑑

∫︀ 1

0
(𝜄𝛾)𝐻(𝑋𝑟)𝑑𝑟(︁

𝐿𝑋(1, 0)
∫︀∞
−∞ 𝛾2(𝑥)𝑑𝑥

)︁1/2
by (S.1) and (S.2). Since 𝛾2 is regularly integrable, 𝛾(𝜆)𝜆1/2 = 𝑜(1), and hence, (𝜄𝛾)(𝜆) =

𝑜(𝜆1/2). It then follows from the construction of the asymptotically homogeneous function that

(𝜄𝛾)𝜈(𝑇 1/2) = 𝑜(𝑇 1/4). Therefore, if 𝛾2 is regularly integrable and 𝜄𝛾 is either regularly integrable

or asymptotically homogeneous, then 𝜏(𝛾) = 𝑜𝑝(𝑇 ) as required.

According to Proposition S.1 (a) and (b), one may easily conduct a Gaussian inference

using the nonlinear IV estimator with 𝛾(·) = 𝑠𝑖𝑔𝑛(·). Moreover, Proposition S.1 (a) and (c)

imply that a similar Gaussian inference can be conducted using a square integrable 𝛾. However,

Proposition S.1 (b) and (c) imply that under 𝛽 ̸= 0 the divergence rate of 𝜏(𝑠𝑖𝑔𝑛) is faster than

that of 𝜏(𝛾) with a square integrable 𝛾, which implies the test with 𝜏(𝑠𝑖𝑔𝑛) tends to have a

better power property than the test with 𝜏(𝛾) in finite samples.

A.2 Stationary Predictor

For a stationary 𝑥𝑡, the asymptotic distribution of the nonlinear IV based test statistic 𝜏(𝛾)

can be obtained easily and is given by a Gaussian distribution under 𝛽 = 0 when E|𝛾2(𝑥𝑡−1)| <
∞. However, if 𝑥𝑡 has a heavy-tailed marginal distribution and E|𝛾2(𝑥𝑡−1)| is unbounded for

a given 𝛾, then the limit distribution of 𝜏(𝛾) is generally non-Gaussian. Therefore, the choice

of 𝛾, as in the unit root type predictor, is important in a Gaussian inference relying on the

nonlinear IV. Importantly, the Cauchy based test statistic is always asymptotically Gaussian

since E|𝛾2(𝑥𝑡−1)| = 1, and hence, the result of Proposition S.1 (a) remains valid. Moreover, it

is shown in Theorem 3.3 that the test statistic based on the Cauchy estimator diverges under

the alternative hypothesis and its divergence rate is no slower than the usual
√
𝑇 rate for any

nontrivial stationary process. As a conclusion of Section 2.3, the Cauchy estimator can be used

to construct a robust inference having a Gaussian limit with no significant loss of testing power

compared with other nonlinear IV based methods.
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Appendix B: Useful Lemmas

Lemma S.1. Let Assumption 3.1 hold, and let 𝑓ℎ(𝑠) = 𝑓(𝑠/ℎ) for 𝑓 = 𝐾,𝐾2. We have

sup
ℎ≤𝑟≤1

⃒⃒⃒⃒
⃒ 1

ℎ𝑇

𝑇∑︁
𝑡=1

𝑓ℎ(𝑟 − 𝑡/𝑇 ) −
∫︁ 1

0

𝑓(𝑠)𝑑𝑠

⃒⃒⃒⃒
⃒ = 𝑂(1/(ℎ2𝑇 )).

Proof. We only prove the result for the case 𝑓 = 𝐾 since the argument in the case 𝑓 = 𝐾2

is similar. For the proof, we define a function 𝐼𝑟,ℎ : [0, 1] → {0, 1} for 𝑟 ∈ [0, 1] and ℎ > 0 as

𝐼𝑟,ℎ(𝑠) = 1{𝑟 − ℎ ≤ 𝑠 ≤ 𝑟}. We then write

sup
ℎ≤𝑟≤1−ℎ

𝑇∑︁
𝑡=1

∫︁ 𝑡

𝑡−1

|𝐾ℎ(𝑟 − 𝑡/𝑇 ) −𝐾ℎ(𝑟 − 𝑠/𝑇 )|𝑑𝑠 = 𝐴𝑇 (𝑟) + 𝐵𝑇 (𝑟) + 𝐶𝑇 (𝑟),

where

𝐴𝑇 (𝑟) =
𝑇∑︁
𝑡=1

(︂∫︁ 𝑡

𝑡−1

|𝐾ℎ(𝑟 − 𝑡/𝑇 ) −𝐾ℎ(𝑟 − 𝑠/𝑇 )|𝑑𝑠
)︂
𝐼𝑟,ℎ−1/𝑇 (𝑡/𝑇 ),

𝐵𝑇 (𝑟) =
𝑇∑︁
𝑡=1

(︂∫︁ 𝑡

𝑡−1

|𝐾ℎ(𝑟 − 𝑡/𝑇 ) −𝐾ℎ(𝑟 − 𝑠/𝑇 )|𝑑𝑠
)︂

(1 − 𝐼𝑟,ℎ+1/𝑇 (𝑡/𝑇 )),

𝐶𝑇 (𝑟) =
𝑇∑︁
𝑡=1

(︂∫︁ 𝑡

𝑡−1

|𝐾ℎ(𝑟 − 𝑡/𝑇 ) −𝐾ℎ(𝑟 − 𝑠/𝑇 )|𝑑𝑠
)︂

(𝐼𝑟,ℎ+1/𝑇 (𝑡/𝑇 ) − 𝐼𝑟,ℎ−1/𝑇 (𝑡/𝑇 )).

By Assumption 3.1 (a) and (c), we have

sup
ℎ≤𝑟≤1

𝐴𝑇 (𝑟) ≤ 𝐶
𝑇∑︁
𝑡=1

∫︁ 𝑡

𝑡−1

|𝑡− 𝑠|
ℎ𝑇

𝑑𝑠 ≤ 𝐶
1

ℎ
.

Moreover,
∫︀ 𝑡

𝑡−1
|𝐾ℎ(𝑟− 𝑡/𝑇 )−𝐾ℎ(𝑟−𝑠/𝑇 ) = 0 for all 𝑡 satisfying 𝐼𝑟,ℎ+1/𝑇 (𝑡/𝑇 ) = 0 by Assump-

tion 3.1 (a), and hence, supℎ≤𝑟≤1𝐵𝑇 (𝑟) = 0. Moreover, it may be deduced from Assumption

3.1 (a) that

sup
ℎ≤𝑟≤1

𝑇∑︁
𝑡=1

|𝐼𝑟,ℎ+1/𝑇 (𝑡/𝑇 ) − 𝐼𝑟,ℎ−1/𝑇 (𝑡/𝑇 )| ≤ 2,

from which, jointly with Assumption 3.1 (b), we have supℎ≤𝑟≤1𝐶𝑇 (𝑟) = 𝑂(1). The stated result

for 𝑓 = 𝐾 then follows immediately since

1

ℎ𝑇

∫︁ 𝑇

0

𝐾ℎ(𝑟 − 𝑠/𝑇 )𝑑𝑠 =
1

ℎ

∫︁ 1

0

𝐾ℎ(𝑟 − 𝑠)𝑑𝑠 =

∫︁ 1

0

𝐾(𝑠)𝑑𝑠 (S.3)
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for 𝑟 ∈ [ℎ, 1], by Assumption 3.1 (a) and the change of variable in integrals.

Lemma S.2. Let Assumption 2.2 hold. As ℎ → 0,

sup
𝑟∈𝒞ℎ,0<ℎ′<ℎ

|𝜎2
𝑇 (𝑟) − 𝜎2

𝑇 (𝑟 − ℎ′)| = 𝑜𝑎.𝑠.(1).

Proof. We have

|𝜎2
𝑇 (𝑟) − 𝜎2

𝑇 (𝑟 − ℎ′)| ≤ |𝜎2
𝑇 (𝑟) − 𝜎2(𝑟)| + |𝜎2

𝑇 (𝑟 − ℎ′) − 𝜎2(𝑟 − ℎ′)| + |𝜎2(𝑟) − 𝜎2(𝑟 − ℎ′)|.

Note that, under our conventions, sup0≤𝑟≤1 |𝜎2
𝑇 (𝑟)−𝜎2(𝑟)| = 𝑜𝑎.𝑠.(1) since 𝜎𝑇 →𝑑 𝜎 in Assump-

tion 2.2 holds almost surely on DR+ [0, 1] endowed with the uniform topology. It follows that

the first two terms are of 𝑜𝑎.𝑠.(1).

As for the last term, we note that a càdlàg function is uniformly right-continuous on finite

closed intervals (see, e.g., Applebaum (2009), pp. 140). It follows that an associated càdlàg

function 𝜎−(𝑟) = 𝜎(𝑟−) is uniformly left continuous, and hence,

sup
𝑟∈[ℎ,1],0<ℎ′<ℎ

|𝜎2(𝑟−) − 𝜎2(𝑟 − ℎ′)| = 𝑜𝑎.𝑠.(1).

However, 𝜎2(𝑟−) = 𝜎2(𝑟) for all 𝑟 ∈ 𝒞ℎ, which completes the proof.

Lemma S.3. Let Assumptions 2.2 and 3.1 hold. If ℎ → 0 and ℎ2𝑇 → ∞, then for any fixed

real number 𝑐 ≥ 0

sup
𝑟∈𝒞ℎ

|�̂�2
1(𝑟 − 𝑐/𝑇 ) − 𝜎2

𝑇 (𝑟)| = 𝑜𝑝(1).

Proof. We have

�̂�2
1(𝑟 − 𝑐/𝑇 ) − 𝜎2

𝑇 (𝑟) =

∑︀𝑇
𝑡=1 (𝜎2

𝑇 (𝑡/𝑇 ) − 𝜎2
𝑇 (𝑟))𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 )∑︀𝑇

𝑡=1𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 )

and supℎ≤𝑟≤1 ℎ𝑇/(
∑︀𝑇

𝑡=1𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 )) = 𝑂𝑝(1) by Lemma S.1 and Assumption 3.1 (a).

To complete the proof, we write

1

ℎ𝑇

𝑇∑︁
𝑡=1

(︀
𝜎2
𝑇 (𝑡/𝑇 ) − 𝜎2

𝑇 (𝑟)
)︀
𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 ) = 𝐴𝑇 (𝑟) + 𝐵𝑇 (𝑟),
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where

𝐴𝑇 (𝑟) =
1

ℎ𝑇

𝑇∑︁
𝑡=1

(︀
𝜎2
𝑇 (𝑡/𝑇 )1{𝑡/𝑇 ∈ (𝑟 − ℎ, 𝑟]} − 𝜎2

𝑇 (𝑟)
)︀
𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 )𝑑𝑠,

𝐵𝑇 (𝑟) =
1

ℎ𝑇

𝑇∑︁
𝑡=1

𝜎2
𝑇 (𝑡/𝑇 ) (1{(𝑡 + 𝑐)/𝑇 ∈ [𝑟 − ℎ, 𝑟]} − 1{𝑡/𝑇 ∈ (𝑟 − ℎ, 𝑟]})𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 )𝑑𝑠.

We can deduce from Lemmas S.1 and S.2 that

sup
𝑟∈𝒞ℎ

|𝐴𝑇 (𝑟)| = sup
𝑟∈𝒞ℎ,0<ℎ′<ℎ

|𝜎2
𝑇 (𝑟) − 𝜎2

𝑇 (𝑟 − ℎ′)|

(︃
1

ℎ𝑇

𝑇∑︁
𝑡=1

𝐾ℎ(𝑟 − 𝑡/𝑇 )

)︃
= 𝑜𝑝(1).

We note that 𝜎𝑇 and 𝐾 are bounded due to Assumptions 2.1 (a) and 3.1 (b). Also, we have

for a fixed 𝑐 ≥ 0 and large 𝑇⃒⃒⃒⃒
1

{︂
𝑡 + 𝑐

𝑇
∈ [𝑟 − ℎ, 𝑟]

}︂
− 1

{︂
𝑡

𝑇
∈ (𝑟 − ℎ, 𝑟]

}︂⃒⃒⃒⃒
≤ 1

{︂
𝑡

𝑇
∈
[︁
𝑟 − 𝑐

𝑇
− ℎ, 𝑟 − ℎ

]︁}︂
+ 1

{︂
𝑡

𝑇
∈
[︁
𝑟 − 𝑐

𝑇
, 𝑟
]︁}︂

,

and hence,

sup
ℎ≤𝑟≤1

𝑇∑︁
𝑡=1

|1{(𝑡 + 𝑐)/𝑇 ∈ [𝑟 − ℎ, 𝑟]} − 1{𝑡/𝑇 ∈ (𝑟 − ℎ, 𝑟]}| ≤ 2𝑐 + 2.

It follows that

sup
ℎ≤𝑟≤1

|𝐵𝑇 (𝑟)| ≤ 1

ℎ𝑇
sup

ℎ≤𝑟≤1
|𝜎2

𝑇 (𝑟)𝐾(𝑟)| sup
ℎ≤𝑟≤1

𝑇∑︁
𝑡=1

|1{(𝑡 + 𝑐)/𝑇 ∈ [𝑟 − ℎ, 𝑟]} − 1{𝑡/𝑇 ∈ (𝑟 − ℎ, 𝑟]}|

= 𝑂𝑝(1/(ℎ𝑇 )).

This completes the proof.

Lemma S.4. Let Assumptions 2.1, 3.1 and 3.3 hold. If ℎ → 0, ℎ2𝑇 → ∞ and ℎ𝜅𝑇 = 𝑂(1) for

some 𝜅 > 2, then

sup
ℎ≤𝑟≤1

|�̂�2
2(𝑟)| = 𝑂𝑝

(︁
(log(ℎ𝑇 )/(ℎ𝑇 ))1/2 𝑇 2𝑞

)︁
.

Proof. Since supℎ≤𝑟≤1 ℎ𝑇/(
∑︀𝑇

𝑡=1𝐾ℎ(𝑟 − 𝑡/𝑇 )) = 𝑂𝑝(1), it suffices to show that

sup
ℎ≤𝑟≤1

⃒⃒⃒⃒
⃒

𝑇∑︁
𝑡=1

𝑣2𝑡 (𝜀2𝑡 − 1)𝐾ℎ(𝑟 − 𝑡/𝑇 )

⃒⃒⃒⃒
⃒ = 𝑂𝑝((ℎ𝑇 log(ℎ𝑇 ))1/2𝑇 2𝑞).
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To complete the proof, we split the interval [ℎ, 1] into 𝑘 intervals of the form 𝐼𝑘 = 1{𝑟|𝑟𝑘 ≤
𝑟 ≤ 𝑟𝑘+1}, where 𝑟𝑘 = ℎ+ 𝑘ℎ�̄� for 𝑘 = 0, · · · , [(1− ℎ)/ℎ�̄�] for some �̄� ≥ (𝜅+ 2)/2. Then we can

write

sup
ℎ≤𝑟≤1

⃒⃒⃒⃒
⃒

𝑇∑︁
𝑡=1

𝑣2𝑡 (𝜀2𝑡 − 1)𝐾ℎ(𝑟 − 𝑡/𝑇 )

⃒⃒⃒⃒
⃒ ≤ max

0≤𝑘≤𝑘
|𝑆𝑇 (𝑟𝑘)| + 𝑅𝑇 ,

where 𝑆𝑡(𝑟𝑘) =
∑︀𝑡

𝑠=1 𝑣
2
𝑠(𝜀2𝑠 − 1)𝐾ℎ(𝑟𝑘 − 𝑠/𝑇 ) for 𝑡 = 1, · · · , 𝑇 , and

𝑅𝑇 = max
0≤𝑘≤𝑘

sup
𝑟∈𝐼𝑘

𝑇∑︁
𝑡=1

|𝑣2𝑡 (𝜀2𝑡 − 1)| |𝐾ℎ(𝑟 − 𝑡/𝑇 ) −𝐾ℎ(𝑟𝑘 − 𝑡/𝑇 )| .

For 𝑅𝑇 , we note that for each 𝑘, 𝑟𝑘+1 = 𝑟𝑘 + ℎ�̄� and

|𝐾ℎ(𝑟 − 𝑡/𝑇 ) −𝐾ℎ(𝑟𝑘 − 𝑡/𝑇 )| = |𝐾ℎ(𝑟 − 𝑡/𝑇 ) −𝐾ℎ(𝑟𝑘 − 𝑡/𝑇 )| 1{𝑟𝑘 − ℎ ≤ 𝑡/𝑇 ≤ 𝑟𝑘 + ℎ�̄�}

for 𝑟 ∈ 𝐼𝑘. It follows that

𝑅𝑇 = max
0≤𝑘≤𝑘

sup
𝑟∈𝐼𝑘

𝑇∑︁
𝑡=1

|𝑣2𝑡 (𝜀2𝑡 − 1)| |𝐾ℎ(𝑟 − 𝑡/𝑇 ) −𝐾ℎ(𝑟𝑘 − 𝑡/𝑇 )| 1{𝑟𝑘 − ℎ ≤ 𝑡/𝑇 ≤ 𝑟𝑘 + ℎ�̄�}

≤ 𝐶ℎ�̄�−1

𝑇∑︁
𝑡=1

|𝑣2𝑡 (𝜀2𝑡 − 1)|1{𝑟𝑘 − ℎ ≤ 𝑡/𝑇 ≤ 𝑟𝑘 + ℎ�̄�}

≤ 𝐶ℎ�̄�−1

(︃
max
0≤𝑘≤𝑘

𝑇∑︁
𝑡=1

𝑣4𝑡 1{𝑟𝑘 − ℎ ≤ 𝑡/𝑇 ≤ 𝑟𝑘 + ℎ�̄�}

)︃1/2(︃ 𝑇∑︁
𝑡=1

(𝜀2𝑡 − 1)2

)︃1/2

≤ 𝑂𝑝(ℎ
�̄�−1𝑇 1/2(ℎ𝑇 )1/2),

where the second line follows from Assumption 3.1, the third line holds due to the Cauchy-

Schwarz inequality, and the last line follows from the fact that for any �̄� ≥ 1

max
0≤𝑘≤𝑘

𝑇∑︁
𝑡=1

𝑣4𝑡 1{𝑟𝑘 − ℎ ≤ 𝑡/𝑇 ≤ 𝑟𝑘 + ℎ�̄�} ≤ 2 sup
ℎ≤𝑟≤1

𝑇∑︁
𝑡=1

𝑣4𝑡 1{𝑟 − ℎ ≤ 𝑡/𝑇 ≤ 𝑟} = 𝑂𝑝(ℎ𝑇 ).

Consequently, we have 𝑅𝑇 = 𝑂𝑝((ℎ𝑇 )1/2) since �̄� ≥ 2 and ℎ2�̄�−2𝑇 ≤ ℎ𝜅𝑇 = 𝑂(1).

As for 𝑆𝑇 (𝑟𝑘), we note that for each 𝑘 = 1, · · · , 𝑘, (𝑆𝑡(𝑟𝑘),ℱ𝑡) is a square integrable mar-

tingale since (𝜀2𝑡 − 1,ℱ𝑡) is an MDS and 𝑣2𝑡 is ℱ𝑡-adapted such that 𝜀2𝑡 − 1 has a finite second

moment and sup𝑟∈[ℎ,1]
∑︀𝑇

𝑡=1 𝑣
2
𝑡 1{𝑟−ℎ ≤ 𝑡/𝑇 ≤ 𝑟} = 𝑂𝑝(ℎ𝑇 ) by Assumptions 2.1. The predictive

quadratic variation ⟨𝑆(𝑟𝑘)⟩ and the total quadratic variation [𝑆(𝑟𝑘)] of 𝑆(𝑟𝑘) are respectively
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given by

⟨𝑆(𝑟𝑘)⟩𝑇 =
𝑇∑︁
𝑡=1

𝑣4𝑡𝐸[(𝜀2𝑡 − 1)2|ℱ𝑡−1]𝐾
2
ℎ(𝑟𝑘 − 𝑡/𝑇 ),

[𝑆(𝑟𝑘)]𝑇 =
𝑇∑︁
𝑡=1

𝑣4𝑡 (𝜀2𝑡 − 1)2𝐾2
ℎ(𝑟𝑘 − 𝑡/𝑇 ).

Clearly, max0≤𝑘≤𝑘⟨𝑆(𝑟𝑘)⟩𝑇 = 𝑂𝑝(ℎ𝑇 ) and max0≤𝑘≤𝑘[𝑆(𝑟𝑘)]𝑇 = 𝑂𝑝(ℎ𝑇𝑇
4𝑞). It follows that

max0≤𝑘≤𝑘 |⟨𝑆(𝑟𝑘)⟩𝑇 + [𝑆(𝑟𝑘)]𝑇 | = 𝑂𝑝(ℎ𝑇𝑇
4𝑞) which implies that for any 𝛿, we can find a con-

stant 𝑀 > 0 such that

𝑃

(︂
max
0≤𝑘≤𝑘

|⟨𝑆(𝑟𝑘)⟩𝑇 + [𝑆(𝑟𝑘)]𝑇 | < 𝑀(ℎ𝑇𝑇 4𝑞)

)︂
≤ 𝛿.

Consequently, we have

𝑃

(︂
max
0≤𝑘≤𝑘

|𝑆𝑇 (𝑟𝑘)| > 𝑀(ℎ𝑇𝑇 4𝑞 log(ℎ𝑇 ))1/2
)︂

≤ 𝑃

(︂
max
0≤𝑘≤𝑘

|𝑆𝑇 (𝑟𝑘)| > 𝑀(ℎ𝑇𝑇 4𝑞 log(ℎ𝑇 ))1/2, max
0≤𝑘≤𝑘

|⟨𝑆(𝑟𝑘)⟩𝑇 + [𝑆(𝑟𝑘)]𝑇 | < 𝑀(ℎ𝑇𝑇 4𝑞)

)︂
+ 𝛿

≤
𝑘∑︁

𝑘=0

𝑃
(︀
|𝑆𝑇 (𝑟𝑘)| > 𝑀(ℎ𝑇𝑇 4𝑞 log(ℎ𝑇 ))1/2, ⟨𝑆(𝑟𝑘)⟩𝑇 + [𝑆(𝑟𝑘)]𝑇 < 𝑀(ℎ𝑇𝑇 4𝑞)

)︀
+ 𝛿

≤ 2

ℎ�̄�
exp (−𝑀 log(ℎ𝑇 )/2) + 𝛿,

where the last line follows from the two-sided martingale exponential inequality (see, e.g., Theo-

rem 2.1 of Bercu and Touati (2008)). Moreover, ℎ−�̄� exp (−𝑀 log(ℎ𝑇 )/2) = (ℎ�̄�(ℎ𝑇 )𝑀/2)−1 → 0

for all 𝑀 ≥ 2�̄� as ℎ2𝑇 → ∞. This completes the proof.

Lemma S.5. Let Assumptions 2.1, 3.1 and 3.2 hold. If ℎ → 0 and ℎ2𝑇 → ∞, then

sup
ℎ≤𝑟≤1

|�̂�2
3(𝑟)| = 𝑂𝑝

(︀
𝑇 2𝑝/(ℎ𝑇 )

)︀
.

Proof. By Lemma 3.1, we have (𝛽−𝛽)2 = 𝑂𝑝

(︂
𝑇 2𝑝

(︁∑︀𝑇
𝑡=1 𝑥

2
𝑡−1

)︁−1
)︂
. Moreover, we may deduce

from Lemma S.1 with Assumptions 3.1 that for some 0 < 𝑀 < ∞

sup
ℎ≤𝑟≤1

⃒⃒⃒⃒
⃒
∑︀𝑇

𝑡=1 𝑥
2
𝑡−1𝐾ℎ(𝑟 − 𝑡/𝑇 )∑︀𝑇

𝑡=1 𝐾ℎ(𝑟 − 𝑡/𝑇 )

⃒⃒⃒⃒
⃒ ≤ 𝑀

ℎ𝑇

(︃
𝑇∑︁
𝑡=1

𝑥2
𝑡−1

)︃
(1 + 𝑜𝑝(1)),

from which we have the stated result.
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Lemma S.6. Let Assumptions 2.1, 3.1 and 3.2 hold. If ℎ → 0 and ℎ2𝑇 → ∞, then

sup
ℎ≤𝑟≤1

|�̂�2
4(𝑟)| = 𝑂𝑝

(︀
𝑇 2𝑝/(ℎ𝑇 )

)︀
.

Proof. As in the proof of Lemma S.5, we have supℎ≤𝑟≤1 |
∑︀𝑇

𝑡=1𝐾ℎ(𝑟 − 𝑡/𝑇 )|−1 = 𝑂𝑝((ℎ𝑇 )−1)

and 𝛽 − 𝛽 = 𝑂𝑝

(︂
𝑇 𝑝
(︁∑︀𝑇

𝑡=1 𝑥
2
𝑡−1

)︁−1/2
)︂
. Moreover, we have

sup
ℎ≤𝑟≤1

⃒⃒⃒⃒
⃒

𝑇∑︁
𝑡=1

𝑥𝑡−1𝑢𝑡𝐾ℎ(𝑟 − 𝑡/𝑇 )

⃒⃒⃒⃒
⃒ = 𝑂𝑝

⎛⎝𝑇 𝑝

(︃
𝑇∑︁
𝑡=1

𝑥2
𝑡−1

)︃1/2
⎞⎠

by Assumption 3.2. This completes the proof.

Lemma S.7. Let Assumptions 2.1, 3.1 and 3.2 hold. If ℎ → 0, ℎ2𝑇 → ∞ and ℎ𝜅𝑇 = 𝑂(1) for

some 𝜅 > 2, then

sup
ℎ≤𝑟≤1

1

�̂�2(𝑟)
, sup

ℎ≤𝑟≤1

1

�̂�2
1(𝑟) + �̂�2

2(𝑟)
= 𝑂𝑝(1).

Proof. It follows from Lemmas S.4-S.6 that

1

�̂�(𝑟)
=

∑︀𝑇
𝑡=1𝐾ℎ(𝑟 − 𝑡/𝑇 )∑︀𝑇

𝑡=1 𝜎
2
𝑇 (𝑡/𝑇 )𝐾ℎ(𝑟 − 𝑡/𝑇 )

+ 𝑜𝑝(1)

uniformly in 𝑟 ∈ [ℎ, 1]. However, 𝜎2
𝑇 (𝑟) ≥ 𝑣 > 0 by Assumption 2.1, and hence, supℎ≤𝑟≤1 1/�̂�2(𝑟) ≥

𝑣 + 𝑜𝑝(1) = 𝑂𝑝(1). Similarly, we can show that supℎ≤𝑟≤1 1/(�̂�2
1(𝑟) + �̂�2

2(𝑟)) = 𝑂𝑝(1).

Lemma S.8. Under Assumptions 2.1 and 2.2,(︂
𝑊𝑇 , 𝜎𝑇 ,

∫︁
𝜎𝑇 (𝑟)𝑑𝑊𝑇 (𝑟)

)︂
→𝑑

(︂
𝑊,𝜎,

∫︁
𝜎(𝑟)𝑑𝑊 (𝑟)

)︂
in DR×R+×R[0, 1].

Proof. The lemma follows from Theorem 4.6 of Kurtz and Protter (1991) (see also Theorem

2.1 of Hansen (1992).

Appendix C: Proofs of the Main Results

Proof of Lemmas 2.1. The stated result follows immediately from Lemma S.8.

Proof of Lemma 3.1. The stated result follows immediately from Assumptions 2.1 and 3.2.
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Proof of Proposition 3.2. Assumption 3.4 implies that ℎ2𝑇 → ∞ and ℎ𝜅𝑇 = 𝑂(1) for some

𝜅 > 2. The stated results then follow immediately from Lemmas S.3-S.6.

Proof of Theorem 3.3. We define �̃� by �̃�(𝑟) = �̂�1(𝑟 − 1/𝑇 ) + �̂�2(𝑟 − 1/𝑇 ) for 𝑟 ∈ [ℎ, 1] and

�̃�(𝑟) = 𝜎𝑇 (𝑟) for 𝑟 ∈ [0, ℎ). We also define �̄� as

�̄�(𝑟) = �̃�(𝑟)1{𝜎(𝑠) = 𝜎(𝑠−), 𝑠 ∈ (𝑟 − ℎ, 𝑟]} + 𝜎𝑇 (𝑟)1{𝜎(𝑠) ̸= 𝜎(𝑠−), 𝑠 ∈ (𝑟 − ℎ, 𝑟]}

for 𝑟 ∈ [ℎ, 1], and �̄�(𝑟) = 𝜎𝑇 (𝑟) for 𝑟 ∈ [0, ℎ).

Clearly, �̄�(𝑟) is a ℱ𝑇𝑟-adapted càdlàg process such that �̄� →𝑑 𝜎 since

sup
0≤𝑟≤1

|�̄�2(𝑟) − 𝜎2
𝑇 (𝑟)| ≤ sup

𝑟∈𝒞ℎ
|�̄�2(𝑟) − 𝜎2

𝑇 (𝑟)| ≤ sup
𝑟∈𝒞ℎ

|�̂�2
1(𝑟 − 1/𝑇 ) − 𝜎2

𝑇 (𝑟)| + sup
ℎ≤𝑟≤1

|�̂�2(𝑟)|

which is of 𝑜𝑝(1) by Lemmas S.3 and S.4. It then follows from Lemma S.8 that under 𝛽 = 0

𝜏(�̄�) =
1√
𝑇

𝑇∑︁
𝑡=1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)𝑦𝑡
�̄�(𝑡/𝑇 )

=
1√
𝑇

𝑇∑︁
𝑡=1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)𝜀𝑡
𝜎𝑇 (𝑡/𝑇 )

�̄�(𝑡/𝑇 )
→𝑑 N(0, 1).

To complete the proof, we show that

𝜏(�̂�) − 𝜏(�̃�), 𝜏(�̃�) − 𝜏(�̄�) = 𝑜𝑝(1).

We write

𝜏(�̂�) − 𝜏(�̃�) = 𝐴𝑇 −𝐵𝑇 + 𝐶𝑇 ,

where

𝐴𝑇 =
1√
𝑇

ℎ𝑇∑︁
𝑡=1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)𝜀𝑡
𝜎𝑇 (𝑡/𝑇 )

�̂�((𝑡− 1)/𝑇 )
, 𝐵𝑇 =

1√
𝑇

ℎ𝑇∑︁
𝑡=1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)𝜀𝑡
𝜎𝑇 (𝑡/𝑇 )

�̃�(𝑡/𝑇 )
,

𝐶𝑇 =
1√
𝑇

𝑇∑︁
𝑡=ℎ𝑇+1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)𝜀𝑡

(︂
𝜎𝑇 (𝑡/𝑇 )

�̂�((𝑡− 1)/𝑇 )
− 𝜎𝑇 (𝑡/𝑇 )

�̃�(𝑡/𝑇 )

)︂
.

To show 𝐴𝑇 , 𝐵𝑇 = 𝑜𝑝(1), we note that

1√
ℎ𝑇

ℎ𝑇∑︁
𝑡=1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)𝜀𝑡𝜎𝑇 (𝑡/𝑇 ),
1√
ℎ𝑇

ℎ𝑇∑︁
𝑡=1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)𝜀𝑡 = 𝑂𝑝(1)
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by Lemma S.8. It follows that

𝐴𝑇 =
√
ℎ

1

�̂�(ℎ)

(︃
1√
ℎ𝑇

ℎ𝑇∑︁
𝑡=1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)𝜀𝑡𝜎𝑇 (𝑡/𝑇 )

)︃
= 𝑂𝑝(

√
ℎ)

since 1/�̂�(ℎ) = 𝑂𝑝(1) by Lemma S.7, and

𝐵𝑇 =
√
ℎ

(︃
1√
ℎ𝑇

ℎ𝑇∑︁
𝑡=1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)𝜀𝑡

)︃
= 𝑂𝑝(

√
ℎ).

For 𝐶𝑇 , we have

|𝐶𝑇 | ≤
1√
𝑇

𝑇∑︁
𝑡=ℎ𝑇+1

|𝜎𝑇 (𝑡/𝑇 )𝜀𝑡|
⃒⃒⃒⃒

�̃�2(𝑡/𝑇 ) − �̂�2((𝑡− 1)/𝑇 )

�̂�((𝑡− 1)/𝑇 )�̃�(𝑡/𝑇 )(�̃�(𝑡/𝑇 ) + 𝜎𝑇 (𝑡/𝑇 ))

⃒⃒⃒⃒
≤ 𝑂𝑝(

√
𝑇 ) × sup

ℎ≤𝑟≤1
|�̃�2(𝑟) − �̂�2(𝑟 − 1/𝑇 )|

since
∑︀𝑇

𝑡=ℎ𝑇+1 |𝜎𝑇 (𝑡/𝑇 )𝜀𝑡| = 𝑂𝑝(𝑇 ) and 1/�̂�(𝑟), 1/�̃�(𝑟) = 𝑂𝑝(1) uniformly in ℎ ≤ 𝑟 ≤ 1 by

Lemma S.7. However, it follows from Lemmas S.5 and S.6 that

sup
ℎ≤𝑟≤1

|�̃�2(𝑟) − �̂�2(𝑟 − 1/𝑇 )| ≤ sup
ℎ≤𝑟≤1

|�̂�2
3(𝑟)| + sup

ℎ≤𝑟≤1
|�̂�2

4(𝑟)| = 𝑂𝑝(𝑇
2𝑝/(ℎ𝑇 )),

from which we have

𝐶𝑇 = 𝑂𝑝(𝑇
2𝑝/(ℎ𝑇 1/2)) = 𝑜𝑝(1)

due to Assumption 3.4 (a). Thus, 𝜏(�̂�) − 𝜏(�̃�) = 𝑜𝑝(1).

We write 𝜏(�̃�) − 𝜏(�̄�) = 𝑇−1/2𝐷𝑇 , where

𝐷𝑠 =
𝑠∑︁

𝑡=1

𝜀𝑡

(︂
𝑠𝑖𝑔𝑛(𝑥𝑡−1)

(︂
𝜎𝑇 (𝑡/𝑇 )

�̃�(𝑡/𝑇 )
− 𝜎𝑇 (𝑡/𝑇 )

�̄�(𝑡/𝑇 )

)︂
1{𝜎(𝑟) ̸= 𝜎(𝑟−), 𝑟 ∈ (𝑡/𝑇 − ℎ, 𝑡/𝑇 ]}

)︂
≡

𝑠∑︁
𝑡=1

𝜀𝑡𝑧𝑡.

We note that (𝐷𝑡,ℱ𝑡) is a square integrable martingale due, in particular, to Assumption 2.1

and our constructions of �̃� and �̄�. Moreover, the predictive quadratic variation ⟨𝐷⟩ and the

total quadratic variation [𝐷] of 𝐷 satisfy

⟨𝐷⟩𝑇 =
𝑇∑︁
𝑡=1

𝑧2𝑡 = 𝑂𝑝(ℎ𝑇 ), [𝐷]𝑇 =
𝑇∑︁
𝑡=1

𝑧2𝑡 𝜀
2
𝑡 = 𝑂𝑝(ℎ𝑇𝑇

2𝑞)

by Lemma S.7 and Assumption 3.3. It then follows from the two-sided martingale exponential

[S.12]



inequality as in the proof of Lemma S.4 that 𝐷𝑇 = 𝑂𝑝(𝑇
𝑞
√
ℎ𝑇 ), and hence, 𝜏(�̃�) − 𝜏(�̄�) =

𝑂𝑝(𝑇
𝑞
√
ℎ) = 𝑜𝑝(1) by Assumption 3.4 (b).

Now we let 𝛽 ̸= 0. We have

|𝜏(�̂�)| =

⃒⃒⃒⃒
⃒ 𝛽√

𝑇

𝑇−1∑︁
𝑡=1

|𝑥𝑡|
�̂�((𝑡− 1)/𝑇 )

+
𝛽√
𝑇

𝑇−1∑︁
𝑡=1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)
𝜎𝑇 (𝑡)

�̂�((𝑡− 1)/𝑇 )

⃒⃒⃒⃒
⃒

≥

⃒⃒⃒⃒
⃒ 𝛽√

𝑇

𝑇−1∑︁
𝑡=1

|𝑥𝑡|
�̂�((𝑡− 1)/𝑇 )

⃒⃒⃒⃒
⃒−
⃒⃒⃒⃒
⃒ 𝛽√

𝑇

𝑇−1∑︁
𝑡=1

𝑠𝑖𝑔𝑛(𝑥𝑡−1)
𝜎𝑇 (𝑡)

�̂�((𝑡− 1)/𝑇 )

⃒⃒⃒⃒
⃒

=
|𝛽|√
𝑇

𝑇−1∑︁
𝑡=1

|𝑥𝑡|
�̂�((𝑡− 1)/𝑇 )

+ 𝑂𝑝(1)

≥ 1√
𝑇

|𝛽|
𝑣

𝑇−1∑︁
𝑡=1

|𝑥𝑡| + 𝑂𝑝(1),

where the second line follows from the reverse triangle inequality, the third line holds due to

Theorem 3.3 (a), and the last line can be deduced from the proof of Lemma S.7. The stated

result then follows immediately from the condition
∑︀𝑇−1

𝑡=1 |𝑥𝑡|/
√
𝑇 → ∞ in the theorem.

Proof of Corollary 4.1. We note that Lemma 3.1 holds under Assumption 4.1 as long as As-

sumption 3.2 holds. Also, we can show the stated results in Proposition 3.2 (b)-(d) under

Assumption 4.1 similar to the proofs of Proposition 3.2 (b)-(d).

To show that Proposition 3.2 (a) holds under Assumption 4.1, we write for any fixed 𝑐 ≥ 0

�̂�2
1(𝑟 − 𝑐/𝑇 ) − 𝜎2

𝑇 (𝑟) =

∑︀𝑇
𝑡=1(𝜎𝑇 (𝑡/𝑇 )𝑤2

𝑡 − 𝜎𝑇 (𝑟))𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 )∑︀𝑇
𝑡=1𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 )

= 𝐴𝑇 (𝑟) + 𝐵𝑇 (𝑟),

where

𝐴𝑇 (𝑟) =

∑︀𝑇
𝑡=1(𝜎𝑇 (𝑡/𝑇 ) − 𝜎𝑇 (𝑟))𝑤2

𝑡𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 )∑︀𝑇
𝑡=1𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 )

,

𝐵𝑇 (𝑟) = 𝜎𝑇 (𝑟)

∑︀𝑇
𝑡=1(𝑤

2
𝑡 − 1)𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 )∑︀𝑇

𝑡=1 𝐾ℎ(𝑟 − 𝑐/𝑇 − 𝑡/𝑇 )
.

Similar to the proof of Lemma S.3, we can show that sup𝑟∈𝒞ℎ |𝐴𝑇 (𝑟)| = 𝑜𝑝(1). Moreover, by

applying an exponential inequality for a strong mixing process (see, e.g., Vogt (2012), Theorem

4.1 with 𝑑 = 0), we may show under Assumption 4.1 that

sup
ℎ≤𝑟≤1

|𝐵𝑇 (𝑟)| = 𝑂𝑝

(︀
(log 𝑇/(ℎ𝑇 ))1/2

)︀
= 𝑜𝑝(1).

This shows that Proposition ?? (a) holds under Assumption ??.

As for the validity of Theorem 3.3 under Assumption 4.1, we consider �̄� as defined in the

[S.13]



proof of Theorem 3.3. It is easy to see that �̄�(𝑟) is a ℱ𝑇𝑟-adapted càdlàg process such that

�̄� →𝑑 𝜎. Therefore, the validity of Theorem 3.3 under Assumption 4.1 can be shown similarly

to the proof of Theorem 3.3.

Appendix D: Additional Figures

In this section, we present the finite sample power properties for Models CNST (continuous

time) and Models CNST and ARCH (discrete time). The simulation settings are the same as

those in Section 5.2 of the main paper.

Figure S.1 presents the results on finite sample power properties of the tests for the constant

volatility case in continuous time. One can see that the power curves of the Cauchy RT test and

our test are very close to each other. The other tests have higher size-adjusted power for the

local-to-unit root regressor cases and comparable size-adjusted power for purely non-stationary

regressors.

Figures S.2-S.4 present the numerical results on power properties under discrete time settings

for all the tests considered except Cauchy RT which is inapplicable in discrete time settings.

Results in the figures are provided for the cases of constant volatility (Figure S.2); the ARCH

cases with 𝛼 = 0.5773 (Figure S.3) and 𝛼 = 0.7325 (Figure S.4).
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