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This Supplement contains �ve sections. SD.1 provides detailed calculations relating to the inconsistency

of KST�s STR estimator. SD.2 develops asymptotics for CF-I b
 and GMM-I2 b�. SD.3 contains detailed
analysis and discussion concerning CF and GMM-1 estimation of �: SD.4 provides some simpli�ed asymptotic

results for estimation of �. SD.5 reports further simulation results relating to the performance of the IDKE

estimator of 
 and some comparisons of the two CF approaches when q is exogenous.

SD.1 Inconsistency of KST�s STR Estimator

In this section, we �rst discuss the inconsistency of b
 when �0 and �0 are known in the simple example of
Section 2.2, and then collect details of calculation omitted in the main text of Section 2.2 and point out the

key problems in their proof using the framework of our simple example, and �nally compare M -estimators

and Z-estimators in the general sense to sharpen the discussion given in Section 2.3 of the main paper.

Inconsistency When �0 and �0 are Known

When �0 and �0 are known, Qn and Q depend only on 
. Since Qn (
) and Q (
) are apparently asymmetric
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 2
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which is a quadratic function of (�0; �0). KST assume �0 = c�n
�� and �0 = c�n

��, so Qn (
) is scaled by n2�

to avoid asymptotic degeneration. Actually, in the �xed-threshold-e¤ect framework of Chan (1993), Q (
)

takes exactly the same form as in KST�s framework as long as we understand �0 and �0 as �xed numbers; in

other words, our arguments also show that the KST estimator is inconsistent in Chan (1993)�s framework.

To avoid further notation, we use �0 to represent n��0 and and �0 for n��0.

13We thank the Co-Editor, Simon Lee, and three referees for helpful comments on earlier versions of this paper. Thanks go
also to Chirok Han, Bruce Hansen, Shengjie Hong, Zhongxiao Jia, Hiroyuki Kasahara, Seojeong Lee, Hongyi Li, Jaimie Lien,
Sangsoo Park, Wenwu Wang, Jason Wu, Zhiguo Xiao, Chuancun Yin and seminar participants at CUHK, ESWC2020, QNU,
UWAC2018, Korea University and Tsinghua University for helpful suggestions. Phillips and Yu acknowledge support from the
GRF of Hong Kong Government under Grant No. 17520716, and Phillips acknowledges research support under NSF Grant No.
SES 18-50860 and the Kelly Fund at the University of Auckland.
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Figure 3: Q (
) When �0 = 0:5; 1; 2 and �0 = 0;�2

We plot Q (
) in Figure 3 for both the exogenous case and the endogenous case when z � N (0; 1). In the

exogenous case, �0 = 0, and in the endogenous case, �0 = �2; with corresponding correlations Corr(q; u) = 0
and Corr(q; u) � �0:63, respectively. In the �gure, we set �0 = 0:5; 1; 2, representing small, medium and

large threshold e¤ects, respectively. Figure 3 con�rms that b
 is indeed consistent when q is exogenous, as
shown in CH. On the contrary, b
 need not be consistent when q is endogenous. In fact, Q (
) is locally
maximized rather than minimized at 
0 when �0 = 2, and the argmin function argmin
 Q (
) is not even

unique in this case �as the three �gures with �0 = 2, especially the inset magni�ed portions reveal in detail.14

Interestingly, when �0 = �2, b
 is consistent. The intuition is as follows: when �0 < 0, the threshold e¤ect
based on (7) is �0 + �0

�
�01i � �02i

�
, where �0`i = �


0
`i ; and since �

0
1i � �02i = �� (
0 + zi) � � (�zi � 
0) =

�� (zi) � � (�zi) = � �(zi)
�(zi)(1��(zi)) < 0 when 
0 = 0, the original threshold e¤ect �0(> 0) is strengthened

when �0 < 0.

Whether the limiting outcome argmin
 Q (
) = 
0 is realized depends on the relative magnitude of �0
and �0. If �0=�0 is close to zero, then the endogeneity is neglectable, and Q (
) should be minimized at 
0.

In Section 2.2, we discussed the relationship between argmin
 Q (
) and �0=�0 when �0 and �0 are unknown

and need to be estimated.

Details of Calculation in the Simple Example of Section 2.2

In the case where parameters �0 and �0 are unknown it is possible that the misspeci�cation of Qn (�)
may be completely absorbed through the parameters (�; �) ; so that although (�; �) are not consistently

estimated by using Qn, the threshold parameter 
 may be. In other words, although the minimized functional

argmin
 Q (
; �0; �0) 6= 
0, it may be that in some special case argmin
 Q (
; �
 ; �
) = 
0. We proceed to

explore this possibility in what follows and the main text.

14Nonuniqueness of argmin
 Q (
) is the consequence of the special symmetric setup where z � N (0; 1) and 
0 = 0. If

0 � �0z is not symmetric, then Q (
) would not be symmetric and argmin
 Q (
) is unique.
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When �0 and �0 are unknown, based on KST, we �rst �nd (�
 ; �
) = argmin(�;�)Q (
; �; �) by minimizing
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:

Solving the �rst order conditions (FOCs) with respect to (�; �), we have
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 � �0) ; (32)

and

�
 � �0 =
�0E

��
�0i � �



i

�
�
2i
�

E [�
i �


2i]� E [�



i �



1i]� E [�



i ]
2
.
E [�
i ]

: (33)

We then plug (�
 ; �
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(34)

Notice from (32) and (33) that (�
 ; �
) = (�0; �0) when 
 = 
0: So taking the derivative of (34) with

respect to 
 and evaluating at 
0 gives

dQ (
; �
 ; �
) =d
j
=
0 = ��0E
�
�0i�

0
i

�
+ �0E

�
�0i�

0
i
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�01i + �

0
2i � 2 (
0 + zi)

��
; (35)

where �0i = �0 + �0
�
�01i � �02i

�
is the threshold e¤ect at 
0 implied by the KST objective function. By

de�nition, Q (
0; �0; �0) = 0. Hence, inspired by the Q (
) in Figure 3, if dQ (
; �
 ; �
) =d
j
=
0 > 0, then

we can �nd a 
� 2
�

; 
0

�
such that Q (
�; �
� ; �
�) < Q

�

0; �
0 ; �
0

�
. From (35), given z � N (0; 1) and


0 = 0, dQ (
; �
 ; �
) =d
j
=
0 depends only on �0 and �0. De�ne f (x) = � (x)� (x) (�1 (x) + �2 (x)� 2x)
with �(x) = �0 + �0 (�1 (x)� �2 (x)); then, it follows that �(x) = � (�x) and it is not hard to see15 that
f (x) = �f (�x). Since 
0+zi � N (0; 1) is symmetric around 0, the term involving E

�
�0i�

0
i (
0 + zi)

�
in (35)

disappears. In consequence, as long as �0 2
�
�0

E[�0]
E[�0(�02��01)]

;1
�
if �0 > 0, or �0 2

�
�1; �0

E[�0]
E[�0(�02��01)]

�
if �0 < 0, dQ (
; �
 ; �
) =d
j
=
0 > 0. Notice that if z � N (0; 1) and 
0 = 0,

E[�0]
E[�0(�02��01)]

t 0:587. So we

have 
� < 0 if �0=�0 > 0:587 regardless of whether �0 is positive or negative.16

Problems in the Consistency Proof of KST

KST mimic the proof idea of CH to prove the consistency of b
. However, there is a fundamental di¤erence
between the KST and CH frameworks. Unlike CH, the regressors in (8) depend also on 
 through inverse

15Note that
�1 (x)� �2 (x) = �� (x)� � (�x) = �1 (�x)� �2 (�x)

so that �(x) = � (�x), and
�1 (x) + �2 (x) = �� (x) + � (�x) = �f�2 (�x) + �1 (�x) :

16The break point, such as 0.587 in the above calculation, critically depends on the data generating process. For example, if
�20 is unknown, the break point is smaller.
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Mills ratios. In KST�s proof of their Proposition 1, the objective function is

Sn (
) = Y 0 (I � P �(
))Y;

where Y is the vector stacking yi, I is the n� n identity matrix,

P � (
) = X
 (
)
�
X
 (
)

0
X
 (
)

��1
X
 (
)

0
+X? (
)

�
X? (
)

0
X? (
)

��1
X? (
)

0

is the projection matrix on X (
) := (X
 (
) ; X? (
)), X
 (
) is the matrix stacking (x0i; �


1i; �



2i) 1 (qi � 
),

and X? (
) is the matrix stacking (x0i; �


1i; �



2i) 1 (qi > 
), so we are assuming x is exogenous and � is known

to simplify the discussion. KST write Y as

Y = G (
0)� +G0 (
0) � + ee;
where G (
0) is the matrix stacking

�
x0i; �

0
1i; �

0
2i

�
, denoted as

�
X;�01;�

0
2

�
, G0 (
0) is the matrix stacking�

x0i; �
0
1i; �

0
2i

�
1 (qi � 
0), ee is the vector stacking eei = ui � �0�

0
1i1 (qi � 
0)� �0�

0
2i1 (qi > 
0) which is e

�
i in

(9), � =
�
�020; 0; �0

�0
and � =

�
�00; �0;��0

�0
. They claim

Sn (
) =
�
G0 (
0) � + ee�0 (I � P �(
)) �G0 (
0) � + ee� ;

in other words, it is implicitly assumed that G (
0) falls in the space spanned by X (
). But this assumption

is not satis�ed. Although X falls in the span of X (
), �01 and �
0
2 do not. This is because �



`i is a nonlinear

function of 
 and so the spaces spanned by �0` and �


` are di¤erent.

Even if the expression for Sn were correct, its probability limit given in KST is not correct. Speci�cally,

since
�
G0 (
0) � + ee�0 I �G0 (
0) � + ee� does not depend on 
, minimizing Sn is equivalent to maximizing�

G0 (
0) � + ee�0 P �(
) �G0 (
0) � + ee�. Normalizing this new objective function by n�1+2� gives their func-
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)G0 (
0) c
=: T1n (
) + T2n (
) + T3n (
) ;

(36)

where c = n�� := (c0�; c�;�c�)
0. KST claim in Lemma I.A.3 that T1n (
)

p�! 0 and T2n (
)
p�! 0 uniformly

in 
, so only T3n counts. But this is incorrect: both T1n and T2n contribute to the probability limit of S�n (
)

unless c� = 0. Essentially, they neglect the fact that eei is a function of 
0.
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),

�
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) + �
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)), then the objective function S�n (
) is now valid. So the key di¤erence between

KST�s S�n (
) and our correctly de�ned S
�
n (
) is that the element of their G0 (
0) c is

x0ic�1(qi � 
0) + c�
�
�01i � �02i

�
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whereas ours is
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0
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�
:

In other words, our element of G0 (
0) c minus theirs is c��
0
2i. Also, our P

� (
) projects onto a smaller space

than theirs.

To calculate the probability limit of our S�n (
), denoted as S
� (
), we return to our simple example where

x = 1 and �20 is known, so X (
) stacks (1 (qi � 
) ; �
1i1 (qi � 
)+�
2i1 (qi > 
)) and the element of G0 (
0) c
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is c�1(qi � 
0) + c�
�
�01i1(qi � 
0) + �

0
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0)

�
. As in KST, we restrict 
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].

Lemma 5
T1n (
)

p�! T1 (
) = c2�A (
)M (
)
�1
A (
) ;

T2n (
)
p�! T2 (
) = 2c�A (
)

0
M (
)

�1
B(
);

T3n (
)
p�! T3 (
) = B(
)0M (
)

�1
B(
);

(37)

where

A (
) =

 
E
�
�0 � �
 � �02

�
�
 � �0

��
E
�
�0�
1 � �


�
1 + �


1�

0
2

�
�
 � �0

��
+ E

�
�
2
�
�
2 � �

0
2

�
(1� �
)

� ! ;
B(
) =

 
E
�
c��

0 + c��
0�01 + c��

0
2

�
�
 � �0

��
E
�
c��

0�
1 + c��
0�01�



1 + c��

0
2�


1

�
�
 � �0

��
+ E

�
c��

0
2�


2 (1� �
)

� ! ;
M(
) =

 
E [1 (q � 
)] E [�
11 (q � 
)]

E [�
11 (q � 
)] E
h
�
21 1 (q � 
) + �
22 1 (q > 
)

i ! :
Proof. In this simple example, X (
) stacks (1 (qi � 
) ; �
11 (qi � 
) + �
21 (qi > 
)), so

1

n
X (
)

0
X (
)

p�!
 

E [1 (q � 
)] E [�
11 (q � 
)]

E [�
11 (q � 
)] E
h
�
21 1 (q � 
) + �
22 1 (q > 
)

i ! =M(
):

Since G0 (
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Next,
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In summary, by the CMT we have

T1n (
) =
�
n�1+�ee0X (
)� �n�1X (
)0X (
)��1 �n�1+�X (
)0 ee� p�! c2�A(
)M (
)
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A(
);

T2n (
) = 2
�
n�1c0G00 (
0)X (
)

� �
n�1X (
)

0
X (
)

��1 �
n�1+�X (
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� �
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)0M (
)
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):

Figure 4 shows S� (
) and its three components when c� = 1 and c� = 0; 0:5; 1; 2. Since KST consider

only T3 and argmax
 T3 (
) = 
0 = 0, they claim b
 is consistent.17 This claim is correct only if c� = 0

(i.e., q is exogenous) where T1 (
) = T2 (
) = 0, so S� (
) = T3 (
). Since argmax
 T3 (
) = 
0 as shown in

CH, argmax
 S� (
) = 
0 in that case. When c� = 0:5, neither T1 nor T2 is zero, but since T3 dominates,

argmax
 S
� (
) is still 
0. But when c� = 1 or 2, i.e., there is strong endogeneity, T1 and T2 are not

17Although their T3 is di¤erent from our T3, it is still correct that argmax
 T3 (
) = 
0 for their T3.
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Figure 4: Components of plimS�n (
) When c� = 1 and c� = 0; 0:5; 1; 2

neglectable. As a result, argmax
 S� (
) 6= 
0. These results are consistent with the information in the

middle graph of the �rst row in Figure 1.

Given the negative result above, a natural question is whether we can modify KST�s objective function

(pursuing their approach) to obtain a consistent estimator of 
. The answer is �No. First, we strengthen

the key assumption in KST.

Assumption K0: x = x, and vx ? 1(q � 
)jz for any 
 2 �.

Assumption K only requires vx ? 1(q � 
0)jz, so Assumption K0 strengthens Assumption K. Since q =
�0z + vq, if 
 can take any value in R (rather than only in �), then vx ? 1(q � 
)jz is the same as
vx ? 1(vq � a)jz for any a 2 R, which is equivalent to vx ? vqjz. For any 
,

E [yjz; q � 
] = E
�
�01
�
�0xz+ vx

�
1(q � 
0) + �02

�
�0xz+ vx

�
1(q > 
0) + ujz; q � 


�
= �01

�
�0xz

�
E [1(q � 
0)jz; q � 
] + E

�
�01vx1(q � 
0)jz; q � 


�
+�02

�
�0xz

�
E [1(q > 
0)jz; q � 
] + E

�
�02vx1(q > 
0)jz; q � 


�
+ E [ujz; q � 
]

= � � �1 (
 � �0z) +

8>><>>:
�01 (�

0
xz) + E

�
�01vxjz; q � 


�
1(q � 
), if 
 � 
0;

�02 (�
0
xz)

�(
��0z)��(
0��0z)
�(
��0z) + E

�
�02vxjz; 
0 < q � 


� �(
��0z)��(
0��0z)
�(
��0z)

+�01 (�
0
xz)

�(
0��0z)
�(
��0z) + E

�
�01vxjz; q � 
0

� �(
0��0z)
�(
��0z) , if 
 > 
0;

= � � �1 (
 � �0z) +
(

�01 (�
0
xz) ;

�01 (�
0
xz)

�(
0��0z)
�(
��0z) + �

0
2 (�

0
xz)

�(
��0z)��(
0��0z)
�(
��0z) ;

if 
 � 
0;

if 
 > 
0;

6= �01 (�
0
xz) + � � �1 (
 � �0z) ;

as claimed in KST unless 
 � 
0, where the conditional mean when 
 > 
0 is a weighted average of

6



�01 (�
0
xz) + � � �1 (
 � �0z) and �02 (�0xz) + � � �1 (
 � �0z). Similarly, for any 
,

E [yjz; q > 
] = � � �2 (
 � �0z) +
(

�01 (�
0
xz)

�(
0��0z)��(
��0z)
1��(
��0z) + �02 (�

0
xz)

1��(
0��0z)
1��(
��0z) ;

�02 (�
0
xz) ;

if 
 < 
0;

if 
 � 
0;

6= �02 (�
0
xz) + � � �2 (
 � �0z)

as claimed in KST unless 
 � 
0. Based on such an analysis, it seems that the correct objective function

should be

Sn (�; �) =

8>>>>>>>>>><>>>>>>>>>>:

nP
i=1

�
yi � �01

�b�0xzi� �(
0�b�0zi)��(
�b�0zi)
1��(
�b�0zi) � �02

�b�0xzi� 1��(
0�b�0zi)
1��(
�b�0zi) � � � �2 (
 � z0ib�)�2 1(qi > 
)

+
nP
i=1

h
yi � �01

�b�0xzi�� � � �1 (
 � z0ib�)i2 1(qi � 
); if 
 � 
0;

nP
i=1

�
yi � �01

�b�0xzi� �(
0�b�0zi)
�(
�b�0zi) � �02

�b�0xzi� �(
�b�0zi)��(
0�b�0zi)
�(
�b�0zi) � � � �1 (
 � z0ib�)�2 1(qi � 
)

+
nP
i=1

h
yi � �02

�b�0xzi�� � � �2 (
 � z0ib�)i2 1(qi > 
), if 
 > 
0;

where b�x and b� are from the �rst-stage regression. However, the objective function depends on the true

value 
0, so this approach is infeasible.

Comparison of M-Estimators and Z-Estimators

Di¤erent from estimation based on a sum of squares, in estimation based on GMM (or a square of sums),

we can introduce unknown parameters to the implied moments from the conditional moments. From YLP,

we know the following identi�cation results for 
 using moment conditions. First, if q is exogenous (in the

sense of E [ujz; q] = 0) and independent of (z0;x0)0, then the identifying set based on E [zu1(q � 
)] = 0 and

E [zu1(q > 
)] = 0 is �, i.e., the moment conditions do not have identi�cation power at all. Second, if q is

exogenous and not independent of (z0;x0)0, then the identifying set using E [zu1(q � 
)] = 0 is
�

; 
0

�
, using

E [zu1(q > 
)] = 0 is [
0; 
], and using both is 
0. What is the lesson here? Even if the unknown parameter


 is introduced to the unconditional moment conditions which are implied by the conditional moment

conditions, the identifying set contains 
0, i.e., the unconditional moment conditions will not contradict the

truth. These identi�cation results contrast dramatically with those when using sum of squares to identify


, e.g., the formulae of E[yjz; q � 
] and E[yjz; q > 
] are implied by E[yjz; q], but the resulting estimator is
inconsistent (contradicting the truth).

To further understand why the KST estimator is not consistent whereas our CF estimators are, we go

back to the simple example above. It is not hard to show that the identifying set by the implied moment

conditions from (14),

E

" �
y � 1�2e�1

1�e�1 �
�
1 (y � �)

(y � 2�) 1 (y > �)

#
= 0; (38)

is (0;1) which at least contains the true value �0, and the moment conditions originated from (15)

E

" �
y � � + e�1=�

1�e�1=�

�
1 (y � 1)

(y � 1� �) 1 (y > 1)

#
= 0: (39)

can point identify �0. Why is it that the identi�cation result based on (14) is not consistent with that based

on the resulting moments (38), whereas using (15) and the resulting moment (39) generates the same iden-
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ti�cation result? The key point is still that the conditioning set in (14) depends on the unknown parameter.

Due to this fact, the �rst order condition (FOC) in minimizing S1 (�) is not E
h�
y � 1�2e�1

1�e�1 �
�
1 (y � �)

i
+

E [(y � 2�) 1 (y > �)] = 0 because we need to take a derivative with respect to the � in 1 (y � �) and 1 (y > �);

if this were the case, min� S1 (�) should be (0;1) rather than 1:24. On the other hand, the FOCs in minimiz-
ing S21 (�) and S22 (�) are equivalent to (39); this is why using (15) and (39) generates the same identi�cation

result. Although 
 is a nonregular parameter so that the limit objective function of KST is not di¤erentiable

at 
0 (see the limit objective functions in Figure 1), the calculation in this simple example with a regular

parameter � provides some intuition regarding why identi�cation results based on sum of squares and square

of sums may not be the same when the conditioning set depends on the unknown parameter and would be

the same otherwise. Since the identifying set using square of sums or GMM will not contradict the truth,

this explains why KST fails but our two CF approaches work �their identi�cation result may di¤er from

that based on GMM whereas ours will be consistent with GMM.

It seems that estimation based on square of sums is more robust because unknown parameters can

be introduced to the implied moment conditions. But robustness does not come without a cost. Given

identi�cation, sum of squares may have higher e¢ ciency than square of sums. For example, the CH estimator

when q is exogenous and our CF-I and CF-II estimators when q is endogenous are all n consistent. However,

as is well known, the estimator based on GMM is at most
p
n consistent. In summary, using square of

sums (i.e., the Z-estimator) and sum of squares (i.e., the M -estimator) to identify 
 illustrates the classical

wisdom of trade-o¤ between e¢ ciency and robustness. Using square of sums is more robust but less e¢ cient

(the moment conditions may not provide enough information to identify the truth and under identi�cation,

can only provide a
p
n-consistent estimator), whereas using sum of squares is less robust but more e¢ cient

(under identi�cation, it can, although not always, provide an n-consistent estimator).

SD.2 Asymptotics for CF-I b
 and GMM-I2 b�
In this Section, we will discuss asymptotics for CF-I b
 and GMM-I2 b�. Because these two estimators are
parallel to our recommended estimators CF-II b
 and GMM-II2 b�, we collect them together in this section.

Consistency of CF-I b
 When Endogeneity Takes Nonlinear Forms

First, the following assumptions are imposed.

Assumption C-I:

1. fwigni=1 are strictly stationary and ergodic; � 2 � with � being compact;
�
�010; �10

�0 6= ��020; �20�0.
2. E [vijFi�1] = 0, E [vijFi�1; qi] = E [vijvqi] = g1 (vqi;'0) and E [uijFi�1; qi] = E [uijvqi] = g2 (vqi;�0).

3. E [ziz0i] > 0, E
h
kzik2

i
<1 and E

h
kvik2

i
<1.

4. E
h
kg1 (vqi;'0)k

2
i
<1, E

h
g2 (vqi;�0)

2
i
<1 and E

h�
e0i
�2i

<1.
5. For all 
 2 �, f(
) � f < 1, f(
) is continuous at 
0 and f := f(
0) > 0, P

�
q < 


�
> 0 and

P (q > 
) > 0, where f (�) is the density function of q.
6. g1 (vq;') and g2 (vq;�) are Lipschitz functions in each of their arguments, i.e., there is a positive

constant C <1 such that

kg1 (vq1;')� g1 (vq2;')k � C jvq1 � vq2j ;
kg1 (vq;'1)� g1 (vq;'2)k � C1 (vq) k'1 � '2k ;
kg2 (vq1;�)� g2 (vq2;�)k � C jvq1 � vq2j ;
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kg2 (vq;�1)� g2 (vq;�2)k � C2 (vq) k�1 � �2k

with E
h
C1 (vq)

2
i
< C and E

h
C2 (vq)

2
i
< C.

7. P
�
�01gi + �

0
1g1 (vqi;') + �1g2 (vqi;�) 6= �010gi + �

0
10g1 (vqi;'0) + �10g2 (vqi;�0) jq

�
> 0 for any �` 6=

�`0 and any q value in its support, where �` =
�
�0`; �`; '

0; �0
�0
.

Obviously, C-I.1,3,5 are the same as C-II.1,3,5, and other assumptions are the counterparts of those in C-II.

Especially, C-I.4 is implied by E
h
kvik2

i
< 1 and E

�
u2i
�
< 1, so it has some overlap with C-I.3; C-II.6

guarantees that replacing vqi by bvqi will not a¤ect the consistency of b
. C-II.7 is the key assumption for
identi�cation of 
 when bvqi is replaced by vqi, e.g., it excludes the case where g1 (vqi;') takes a linear form
in  and g2 (vqi;�) takes a linear form in �, and implicitly assumes �0�E [gig0ijq] �� > 0.

Lemma 6 Under Assumption C-I, b� p�! �0.

Proof. The proof follows the same lines of those of Lemma 1. First, we show that Sn (�) and eSn (�) have
the same probability limit, where eSn (�) is the same as Sn (�) except replacing bgi by gi and bvqi by vqi. Since

n�1
�
Sn (�)� eSn (�)�

= �2n�1
nX
i=1

�
yi �

�
�01gi + �

0
1g1;i;' + �1g2;i;� + �

0
1�bgi=2 + �01�bg1;i;'=2 + �1�bg2;i;�=2� 1 (qi � 
)

�
�
�02gi + �

0
2g1;i;' + �2g2;i;� + �

0
2�bgi=2 + �02�bg1;i;'=2 + �2�bg2;i;�=2� 1 (qi > 
)

�
�
��
�01�bgi + �01�bg1;i;' + �1�bg2;i;�� 1 (qi � 
) +

�
�02�bgi + �02�bg1;i;' + �2�bg2;i;�� 1 (qi > 
)

�
= �2n�1

nX
i=1

�
yi �

�
�01gi + �

0
1g1;i;' + �1g2;i;�

�
1 (qi � 
)�

�
�02gi + �

0
2g1;i;' + �2g2;i;�

�
1 (qi > 
)

�
�
��
�01�bgi + �01�bg1;i;' + �1�bg2;i;�� 1 (qi � 
) +

�
�02�bgi + �02�bg1;i;' + �2�bg2;i;�� 1 (qi > 
)

�
+n�1

nX
i=1

��
�01�bgi + �01�bg1;i;' + �1�bg2;i;�� 1 (qi � 
) +

�
�02�bgi + �02�bg1;i;' + �2�bg2;i;�� 1 (qi > 
)

�2
;

where g1;i;' = g1 (vqi;'), g2;i;� = g2 (vqi;�), and

�bgi = bgi � gi = �b����0 zi � 


b���


 kzik = op (1) kzik ;
k�bg1;i;'k = kg1 (bvqi;')� g1 (vqi;')k � C jbvqi � vqij � C kb� � �k kzik = op (1) kzik ;
�bg2;i;� = g2 (bvqi;�)� g2 (vqi;�) � C jbvqi � vqij � C kb� � �k kzik = op (1) kzik ;

with the �rst inequalities for �bg1;i;' and �bg2;i;� from C-I.6, the second inequalities for �bg1;i;' and �bg2;i;�
from bvqi � vqi = (� � b�)0 zi, and the last equalities for all three terms from C-I.2-3, we need only show that

n�1
nX
i=1

��yi � ��01gi + �01g1;i;' + �1g2;i;�� 1 (qi � 
)�
�
�02gi + �

0
2g1;i;' + �2g2;i;�

�
1 (qi > 
)

�� kzik = Op (1)

(40)

uniformly in � and

n�1
nX
i=1

kzik2 = Op (1) : (41)

(41) is straightforward by the ergodic theorem and C-I.3. As for (40), we apply Lemma 2.4 of Newey and

McFadden (1994). Its almost sure continuity condition is implied by the continuity of g1;i;' in ' and g2;i;�
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in � (C-I.6) and the distribution of q (C-I.5). To check the summand is dominated by a function of wi with

�nite �rst moment, we need only show E
�
y2i
�
<1, E

h
kgik2

i
<1, E

h

g1;i;'0

2i <1 and E
�
g22;i;�0

�
<1

by the Cauchy-Schwarz inequality and

E
h
kg1;i;'k2

i
� C

�
E
h

g1;i;'0

2i+ k'� '0k2� ;

E
�
g22;i;�

�
� C

�
E
�
g22;i;�0

�
+ k�� �0k2

�
for any ' and � (which is implied by C-I.6). E

h
kgik2

i
< 1 is implied by C-I.3, E

h

g1;i;'0

2i < 1 and

E
�
g22;i;�0

�
< 1 are assumed in C-I.4, and E

�
y2i
�
< 1 is implied by these two results and E

h�
e0i
�2i

< 1
(C-I.4).

Second, we prove the consistency of b� by applying Theorem 2.1 of Newey and McFadden (1994). For this
purpose, we need only show that eSn (�) converges uniformly in probability to S (�) which is continuous and
minimized uniquely at �0. By Lemma 2.4 of Newey and McFadden (1994) and the analysis above, eSn (�)
converges uniformly in probability to

S (�) = E
h�
yi �

�
�01gi + �

0
1g1;i;' + �1g2;i;�

�
1 (qi � 
)�

�
�02gi + �

0
2g1;i;' + �2g2;i;�

�
1 (qi > 
)

	2i
;

which is continuous in �. From Section 2.2.2 of Newey and McFadden (1994), S (�) is minimized uniquely at

�0 if g (wi;�) = g (wi;�0) implies � = �0, where g (wi;�) :=
�
�01gi + �

0
1g1 (vqi;') + �1g2 (vqi;�)

�
1 (qi � 
)��

�02gi + �
0
2g1 (vqi;') + �2g2 (vqi;�)

�
1 (qi > 
). The remaining analysis is exactly the same as in the proof

of Lemma 1 so omitted.

Asymptotics for CF-I b

The notations such as D0; V

�
0 and c in Section 3.3 still apply with �xi, �` and e`i adapted to CF-I, where

e0i = e1i1(qi � 
0) + e2i1(qi > 
0) with e`i = �0`vi + �`ui � �`vqi. We impose the following assumptions

which strengthen Assumption C-I.

Assumption I:

1. Conditions 1, 3-8, and 10 hold as in Assumption II.

2. E [vijFi�1] = 0, E [vijFi�1; qi] = E [vijvqi] = 'vqi and E [uijFi�1; qi] = E [uijvqi] = �vqi.

9. c0D0c > 0; c
0V �0 c > 0 and f > 0, where c =

 
Id 0

'0 �

!
c.

Because Assumption I is parallel to Assumption II, the comments on the latter can be applied to the former.

We only provide more explanations on I.9 here. As in II.9, the assumption c0D0c > 0 in I.9 excludes the

CTR in the augmented regression. When c� = 0, the CTR in the original regression implies the CTR in

the augmented regression. Suppose x = (1; q)0, and then c� = (�
0; 1) implies a CTR. Now, it is not hard
to see that c = (�
0; 1; 1) if c� = 0, so c0D0c = (�
0; 1; 1)E

�
(1; �0z; vq)

0
(1; �0z; vq)

�� q = 
0
�
(�
0; 1; 1)

0
=

E
h
(q � 
0)

2 jq = 
0

i
= 0. When c� 6= 0, however, even if the original regression is a CTR, the augmented

regression need not be. If x = (1; q)
0 and c� = (�
0; 1), then c = (�
0; 1; 1 + �c�). As a result, c0D0c =

E
h
(q � 
0 + �c�vq)

2 jq = 
0

i
= �2c2�E

�
v2q jq = 
0

�
is positive in general. Also,D0 > 0 implies that dim (zi) �

dim (xi) = d since E [gig0ijqi = 
0] = �
0E [ziz0ijqi = 
0] � > 0 implies dim(zi) � d.

Theorem 3 Under Assumption I, an (b
 � 
0) has the same form asymptotic distribution as in Theorem 1

with new de�nitions of D0; V
�
0 and c.
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Proof. The proof is exactly the same as that of Theorem 1 except that bei = �br0i�2 + brqi�2+ e0i , andbe = �br�2 + brq�2 + e0 stacks bei, where br0i = v0i � bv0i = z0i

�b���� = (br0xi; brqi), and br = V � bV = (brx;brq)
stacks br0i.
As in CF-II, extra randomness in the generated regressors would not a¤ect the asymptotic distribution

of b
. If �� = 0, then c =  Id

'0

!
c� is simpli�ed. It seems hard to determine the relative magnitude of its

particular coe¢ cients � and ! compared to those of LS even under the simpli�cations in Section 3.3. First,

consider c0D0c vs. c0�E [xix0ijqi = 
0] c� . Since

c0D0c =
�
c0� ; c

0
�'+ c��

� E [gig0ijqi = 
0] E [givqijqi = 
0]

E [vqig0ijqi = 
0] E
�
v2qijqi = 
0

� ! 
c�

c0�'+ c��

!
= c0�E [gig0ijqi = 
0] c� + 2c

0
�E [givqijqi = 
0]

�
c0�'+ c��

�
+
�
c0�'+ c��

�2 E �v2qijqi = 
0
�

where E
�
v2qijqi = 
0

�
= E

h
(
0 � �0zi)

2 jvqi = 
0 � �0zi
i
> 0, the threshold e¤ect information in the con-

ditional mean �� (or c� = n���) is re-explored in �� in the sense that n��� = c0�' + c�� involves

c� . On the other hand, the variation of gi is smaller than that of xi, i.e., c0�E [gig0ijqi = 
0] c� tends to

be smaller than c0�E [xix0ijqi = 
0] c� . So we lose some information in the �rst term c0�E [gig0ijqi = 
0] c�

and gain some information from the third term
�
c0�'+ c��

�2
E
�
v2qijqi = 
0

�
compared with least squares,

and the overall e¤ect is not clear. Here, note that although E [givqi] = E [E [givqijzi]] = 0, the second

term 2c0�E [givqijqi = 
0]
�
c0�'+ c��

�
= 2c0��

0E [E [zivqijvqi = 
0 � �0zi; zi] jvqi = 
0 � �0zi]
�
c0�'+ c��

�
=

2c0��
0E [zi (
0 � �0zi) jvqi = 
0 � �0zi]

�
c0�'+ c��

�
is generally nonzero unless q is exogenous; actually, when

q is exogenous, ' = 0 and � = 0, so both the second and third terms disappear. Second, consider

e`i = �0`vi + �`ui � �`vqi vs. �`u. Although the variance of �`u � �`�vq is smaller than that of �`u,

it is hard to compare the variances of e1i and �1ui and the ratios
E[e22i]
E[e21i]

and �22
�21
.

Likelihood Ratio Tests

The LR statistic still takes the form

LRn (
) =
Sn (
)� Sn (b
)

2b�2 ;

where b�2 is a consistent estimator of �2 = c0V �0 c=c
0D0c.

Corollary 2 Under the assumptions in Theorem 3, LRn (
0) has the same form asymptotic distribution as

in Theorem 1 with the new de�nition of � = c0V +0 c=c
0V �0 c.

Proof. The proof is exactly the same as that of Corollary 1.
If the model is homoskedastic, then � = 1 and b�2 in LRn (
) can be replaced by an estimate of E �e02i �, such
as Sn (b
) =n as in CH. However, the model is generally heteroskedastic. For example,

V �0 = E
h
�xi�x

0
i

�
�01 (vi�'vqi) + �1 (ui � �vqi)

�2 jqi = 
0�
i
;

V +0 = E
h
�xi�x

0
i

�
�02 (vi�'vqi) + �2 (ui � �vqi)

�2 jqi = 
0+
i
:

Even if E
h
�xi�x

0
i kvi�'vqik

2 jqi = 

i
and E

h
�xi�x

0
i (ui � �vqi)

2 jqi = 

i
are continuous at 
0, we have V

�
0 6= V +0

if �1 6= �2 and/or �1 6= �2.
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For inference based on LRn (
), we need to estimate �2 and �. The estimation method is exactly the same

as in CF-II except with new de�nitions of r1i; r2i and r3i. The nuisance parameter � is not easy to simplify un-
less E

�
�xi�x

0
ie
2
1ijqi = 
0�

�
= E [�xi�x0ijqi = 
0]E

�
e21i
�
and E

�
�xi�x

0
ie
2
2ijqi = 
0+

�
= E [�xi�x0ijqi = 
0]E

�
e22i
�
, which

would hold under the homoskedasticity assumption V ar
�
(v0; u)

0�� z; q� = V ar
�
(v0; u)

0 jvq
�
= E

�
V ar

�
(v0; u)

0 jvq
��

because

E
�
�xi�x

0
ie
2
`ijqi

�
= E

�
E
�
�xi�x

0
ie
2
`ijzi; qi

�
jqi
�
= E

h
�xi�x

0
i

�
�0`; �`

�
V ar

�
(v0i; ui)

0 jvqi
� �
�0`; �`

�0 jqii
= E [�xi�x0ijqi]

�
�0`; �`

�
E
h
V ar

�
(v0i; ui)

0 jvqi
�i �

�0`; �`
�0
= E [�xi�x0ijqi]E

�
e2`i
�
:

In this case, � = E
�
e22i
�
=E
�
e21i
�
can be estimated by b� = b�22=b�21 if the homoskedasticity assumptions

E
�
e21ijqi

�
= E

�
e21i
�
when qi � 
0 and E

�
e22ijqi

�
= E

�
e22i
�
when qi > 
0 hold, where b�2` = jI`j�1Pi2I` be2`i is

a consistent estimator of E
h�
�0` (vi�'vqi) + �` (ui � �vqi)

�2i
, be1i = yi � b�x0ib�1 is de�ned only for i 2 I1 :=

fijqi � b
g, and be2i = yi � b�x0ib�2 is de�ned only for i 2 I2 := fijqi > b
g with some consistent estimators of
�` in Section 4. If E

�
�xi�x

0
ie
2
1ijqi = 
0�

�
= E [�xi�x0ijqi = 
0]E

�
e21i
�
, then �2 = E

�
e21i
�
can be estimated by b�21

under the homoskedasticity assumption E
�
e21ijqi

�
= E

�
e21i
�
when qi � 
0. Given the estimates of �

2 and �,

the LR-CI of 
 takes the same form as in Section 3.4.

Asymptotics for GMM-I2 b�
The following theorem states the asymptotic distribution of GMM-I2 b�.
Theorem 4 Under Assumption I,

n1=2
�b�` � �`� d�! N (0;�`) ;

where

�` = (G
0
`W`G`)

�1
(G0`W`
`W`G`) (G

0
`W`G`)

�1
:

In �`, G1 = E
h
�zi�x

0
i;�
0

i
, G2 = E

h
�zi�x

0
i;>
0

i
and G0`W`G` > 0,


` = 

`
1 +


`
12 +


`
21 +


`
2;

with


11 = E
h
�zi�z

0
i;�
0e

2
1i

i
> 0;
21 = E

h
�zi�z

0
i;>
0

e22i

i
> 0;


12 = E
h
�ziz

0
i;�
0

i
E [ziz0i]

�1 E [ziz0i (�01viv0i�1)]E [ziz0i]
�1 E

h
zi�z

0
i;�
0

i
;


22 = E
h
�ziz

0
i;>
0

i
E [ziz0i]

�1 E [ziz0i (�02viv0i�2)]E [ziz0i]
�1 E

h
zi�z

0
i;>
0

i
;


121 = E
h
�ziz

0
i;�
0

i
E [ziz0i]

�1 E
h
zi�z

0
i;�
0�

0
1vie1i

i
;
112 = 


10
21;


221 = E
h
�ziz

0
i;>
0

i
E [ziz0i]

�1 E
h
zi�z

0
i;>
0

�02vie2i

i
;
212 = 


20
21;

and �` :=
�
��0`x; �` � �`q

�0
. When W` = 
�1` , �` reduces to

�
G0`


�1
` G`

��1
. The asymptotic covariance

matrix between n1=2
�b�1 � �1� and n1=2 �b�2 � �2� is

CGMM = (G01W1G1)
�1
G01W1
12W2G2 (G

0
2W2G2)

�1
;
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with 
12 = E
h
�ziz

0
i;�
0

i
E [ziz0i]

�1 E [ziz0i (�01viv0i�2)]E [ziz0i]
�1 E

h
zi�z

0
i;>
0

i
. The N (0;�`) limit distribution

is independent of �(�) in Theorem 3.

Proof. In the proof of Theorem 2, we need only replace br�1 by �br�1 + brq�1 = br
 

��1x
�1 � �1q

!
=: br�1,

so we just replace �1 in GMM-II2 by �1 in GMM-I2. The two in�uence functions ziv0i�1 and �zi;�
0e1i are

correlated, so we also have two cross terms in the asymptotic variance matrix. Speci�cally, the cross terms

are

E
h
�ziz

0
i;�
0

i
E [ziz0i]

�1 E
h
ziv

0
i�1e1i�z

0
i;�
0

i
and its transpose.

The covariance matrix in GMM-I2 just replaces �` in GMM-II2 by �`.

The asymptotic independence between N (0;�`) and �(�) follows from Proposition 3.

Compared with GMM-II2, GMM-I2 has some extra terms in �`, i.e., 
`12 and 

`
21. Take b�1 as an

example, where the extra terms arise because the two random components in the in�uence functions ziv0i�1
and �zi;�
0e1i are correlated in CF-I. To see why, note that in general

E [vie1ijzi; qi] = E
�
vi
�
�01 (vi�'vqi) + �1 (ui � �vqi)

�
jzi; qi

�
= E

�
(vi�'vqi) (vi�'vqi)0 jvq

�
�1 + �1E [(vi�'vqi) (ui � �vqi) jvq]

= V ar (vjvq)�1 + �1Cov (v; ujvq) 6= 0;

so that

E
h
zi�z

0
i;�
0v

0
i�1e1i

i
= E

h
E
h
zi�z

0
i;�
0v

0
i�1e1i

��� zi; qiii = E hzi�z0i;�
0�1 [V ar (vjvq)�1 + �1Cov (v; ujvq)]i 6= 0:
Even in CH�s framework, 
112 6= 0 and 
121 6= 0. Speci�cally, �zi = zi, �1 = 0, vqi = 0, and e1i = �01v+�1u =

v0xi�1x + �1u, so that


121 = E
�
zi;�
0z

0
i

�
E [ziz0i]

�1 E
h
ziz

0
i;�
0 (�v

0
xi�1x) e1i

i
= �E

�
zi;�
0z

0
i

�
E [ziz0i]

�1 E
h
ziz

0
i;�
0

�
�1uv

0
xi�1x + �

0
1xvxiv

0
xi�1x

�i
6= 0;

and similarly 
112 6= 0.
The comments in the main text on the estimation of �` and CI construction of � in GMM-II2 can also

be applied to GMM-I2.

SD.3 CF and GMM-1 Estimators for �

In this section, we provide detailed discussions on the CF and GMM-1 estimators of �. Before discussing the

GMM-1 estimators we �rst show that the moment conditions in CH and KST will not generate consistent

estimates of � in general when q is endogenous.

CF Estimators

The following theorem gives the asymptotic properties of
�b�01; b�02�0. Di¤erent from b
, the extra randomness

in the generated regressors now a¤ects the asymptotic e¢ ciency of
�
�
0
1; �

0
2

�0
.
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Theorem 5 Under Assumption I for CF-I and Assumption II for CF-II,

n1=2
�b�` � �`� d�! N (0;�`) ;

where �` =M�1
` 
`M

�1
` with M1 =M0 and M2 =M �M0. In CF-I,


` = V` +

`
12 +


`
21 +


`
2;

with

V1 = E
�
�xi�x

0
ie
2
1i1(qi � 
0)

�
> 0; V2 = E

�
�xi�x

0
ie
2
2i1(qi > 
0)

�
> 0;


12 = E
h
�xiz

0
i;�
0

i
E [ziz0i]

�1 E [ziz0i (�01viv0i�1)]E [ziz0i]
�1 E

h
zi�x

0
i;�
0

i
;


22 = E
h
�xiz

0
i;>
0

i
E [ziz0i]

�1 E [ziz0i (�02viv0i�2)]E [ziz0i]
�1 E

h
zi�x

0
i;>
0

i
;


121 = E
h
�xiz

0
i;�
0

i
E [ziz0i]

�1 E
h
zi�x

0
i;�
0�1vie1i

i
;
112 = 


10
21;


221 = E
h
�xiz

0
i;>
0

i
E [ziz0i]

�1 E
h
zi�x

0
i;>
0

�2vie2i

i
;
212 = 


20
21;

and �` :=
�
��0`x; �` � �`q

�0
, and in CF-II,


` = V` +

`
2;

with 
`2 taking the same form as in CF-I but replacing �` by �`.

In CF-I, the asymptotic covariance matrix between n1=2
�b�1 � �1� and n1=2 �b�2 � �2� is

CCF =M�1
1 
12M

�1
2

with 
12 = E
h
�xiz

0
i;�
0

i
E [ziz0i]

�1 E [ziz0i (�01viv0i�2)]E [ziz0i]
�1 E

h
zi�x

0
i;>
0

i
, and in CF-II, again simply re-

place �` by �` in the above formula.

Proof of Theorem 5. Take b�1 as an example since b�2 can be similarly analyzed. Note that in CF-II,
n1=2

�b�1 � �1� = n1=2
� bX 0

1
bX1

��1 bX 0
1

�
�X�2 + �X0cn

�� � bX1�1 + e
0
�

=

�
1

n
bX 0
1
bX1

��1
1p
n
bX 0
1

��
�X1 � bX1

�
�1 � �Xbcn

�� + e0
�

=

�
1

n
bX 0
1
bX1

��1
1p
n
bX 0
1

�br�1 � �Xbcn
�� + e0

�
where �X1 and �Xb are matrices stacking �x0i1(qi � b
) and �x0i (1 (qi � b
)� 1 (qi � 
0)), respectively. By Lemma

2, the continuity of M
 and consistency of b
, 1n bX 0
1
bX1

p�!M0. We now study the asymptotic distribution of
1p
n
bX 0
1br�1, n��p

n

Pn
i=1
b�xi�x0ic1 (
0 < qi � b
) and 1p

n
bX 0
1e
0.

First,

1p
n
bX 0
1br�1 = 1p

n
bX 0
1Z
�b�����1 = 1p

n
bX 0
1Z (Z

0Z)
�1
Z 0V �1 =

�
1

n
bX 0
1Z

��
1

n
Z 0Z

��1
1p
n
Z 0V �1;
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where 1
n
bX 0
1Z

p�! E
�
�xi;�
0z

0
i

�
; 1nZ

0Z
p�! E [ziz0i], and 1p

n
Z 0V �1

d�! N
�
0;E

h
ziz

0
i (v

0
i�1)

2
i�

with the

in�uence function ziv0i�1. Second, by Lemma A.10 of Hansen (2000), uniformly on v 2 [�v; v],

n�2�
nX
i=1

�xi�x
0
i1 (qi � 
0 + v=an)� 1 (qi � 
0) = Op(1);

and

n�2�
nX
i=1

bri�x0i1 (qi � 
0 + v=an)� 1 (qi � 
0) =
�b����0 n�2� nX

i=1

zi�x
0
i1 (qi � 
0 + v=an)� 1 (qi � 
0)

= Op

�
n�1=2

�
Op(1) = Op

�
n�1=2

�
:

Since an (b
 � 
0) = Op(1), we have

1p
n

nX
i=1

b�xi�x0icn�� (1 (qi � b
)� 1 (qi � 
0)) = n�1=2Op

�
n2� + n2�n�1=2

�
n��

= Op(a
�1=2
n ) = op(1):

Third, by Lemma 2,
1p
n
bX 0
1e
0 � 1p

n
�X1e

0 = op(1):

By Lemma A.4 of Hansen (2000),

1p
n
�X1e

0 d�! N
�
0;E

h
�xi�x

0
i;�
0e

2
1i

i�
;

with the in�uence function �xi;�
0e1i. Because the two in�uence functions ziv
0
i�1 and �xi;�
0e1i are not

correlated, the asymptotic variance of n1=2
�b�1 � �1� is �1.

In CF-I, we need only replace br�1 by �br�1 + brq�1 = br
 

��1x
�1 � �1q

!
=: br�1, so we just replace �1 in

CF-II by �1 in CF-I. The two in�uence functions ziv0i�1 and �xi;�
0e
0
1i are correlated, so we also have two

cross terms in the asymptotic variance matrix. Speci�cally, the cross terms are

E
�
�xi;�
0z

0
i

�
E [ziz0i]

�1 E
h
ziv

0
i�1e1i�x

0
i;�
0

i
;

and its transpose.

To study the asymptotic covariance matrix between b�1 and b�2 in CF-II, note that the in�uence function
for b�1 is

M�1
1

�
E
�
�xi;�
0z

0
i

�
E [ziz0i]

�1
ziv

0
i�1 + �xi;�
0e1i

�
;

and for b�2 is
M�1
2

�
E
�
�xi;>
0z

0
i

�
E [ziz0i]

�1
ziv

0
i�2 + �xi;>
0e2i

�
:

Note that the second parts of the two in�uence functions are not correlated, so we need only consider the

correlation between the �rst parts. Speci�cally, the covariance matrix is

M�1
1 E

�
�xi;�
0z

0
i

�
E [ziz0i]

�1 E [ziz0i (v0i�1) (v0i�2)]E [ziz0i]
�1 E

h
zi�x

0
i;>
0

i
M�1
2 :
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The covariance matrix in CF-I just replaces �` by �`.

Because GMM-2 is an extension of CF, most of the comments on the GMM-2 estimators remain relevant

here. For example, the randomness of the generated regressors will not disappear in the asymptotic distri-

butions of b�`, the matrices 
`2 and CCF can be simpli�ed when the �rst-stage regression is homoskedastic,
the GMM-I1 estimator has two more cross terms than the GMM-II1 estimator in the asymptotic variance

matrices, the estimates b�1 and b�2 are not asymptotically independent, the estimator b� is asymptotically
independent of our CF estimators b
, and so b
 does not a¤ect the asymptotic distribution of b�. Estimation
of �` is needed for inference and a plug in procedure may be used for this purpose but for brevity is not

pursued here.

Overviewing the asymptotic properties of b� in the two CF approaches, it seems that CF-II is the more
convenient and appealing from many perspectives. In particular, it is more robust to discreteness in x, it has

a �rmer theoretical foundation, the 
 estimator should be more e¢ cient than the LS estimator, the nuisance

parameters � and �2 in the LR statistic can be simpli�ed under weaker homoskedasticity assumptions, and

the asymptotic variance matrix of b� is easier to estimate.
Finally, we detail the asymptotic variances of CF-I and CF-II under DGP2 in our simulations of Section

5.3. Because � plays the role of �1, we only report 
1 here. In both CF-I and CF-II, the matrix V1 can be

simpli�ed as

V1 = E [�xi�x0i1(qi � 
0)]E
�
e21i
�

where �xi = (�0xzi; vqi)
0 and e1i = (� +  x) exi+ eui in CF-I and �xi = (xi; vxi; vqi)

0 and e1i = eui in CF-II. In

CF-I, 
12 can be simpli�ed as


12 = (��; �1)E [viv0i] (��; �1)
0 E
�
�xi;�
0z

0
i

�
E [ziz0i]

�1 E
h
zi�x

0
i;�
0

i
;

and in CF-II, 
12 can be simpli�ed as


12 = E
h�
 0vi

�2iE ��xi;�
0z0i�E [ziz0i]�1 E hzi�x0i;�
0i :
Also, in CF-I, the cross term


121 = E
�
�xi;�
0z

0
i

�
E [ziz0i]

�1 E
h
zi�x

0
i;�
0 (��; �1)vie1i

i
= E

�
�xi;�
0z

0
i

�
E [ziz0i]

�1 E
�
zi;�
0 (�

0
xzi; vqi) ((�1 � '�) vqi � �exi) ((� +  x) exi + eui)

�
= �� (� +  x)E

�
e2xi
�
E
�
�xi;�
0z

0
i

�
E [ziz0i]

�1 E
h
zi�x

0
i;�
0

i
6= 0:

In GMM-2, G1 = E
h
�zi�x

0
i;�
0

i
, where �zi = (z0i; qi)

0 in GMM-I2 and �zi = (z0i; xi; qi)
0 in GMM-II2. For 
11;


1
2

and 
121 in GMM-I2 and 

1
1 and 


1
2 in GMM-II2, just replace the �xi in V1;


1
2 and 


1
21 of CF-I and V1 and


12 of CF-II by the corresponding �zi. Due to extra e¤ects from the generated regressors, the 2SLS estimator

is not e¢ cient �it is actually the same as the CF estimator. The optimal W is 
�11 and the resulting �1 is�
G01


�1
1 G1

��1
. In simulations, we use the optimal W .

Inconsistency of CH and KST Estimators of � when q is Endogenous

To discuss these two methods, we �rst assume that there is no threshold e¤ect in the conditional variance.

Assumption H: �� = 0.

As mentioned in the Introduction, this simpli�cation produces the setup in CH and KST, and we absorb �2
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in u under Assumption H. Section 3.3 of CH estimates � based on the moment conditions

E [ziui1(qi � 
0)] = 0 and E [ziui1(qi > 
0)] = 0;

this method is labeled CH�s GMM. When q is exogenous, E [uijzi] = 0 implies these moment conditions.

However, when q is endogenous, say in the setup of CF-I,

E [ziui1(qi � 
0)] = E [zi (�vqi) 1(�0zi + vqi � 
0)] 6= 0;

similarly in the setup of CF-II and for the moments E [ziui1(qi > 
0)]. So the estimator of � based on these

moment conditions is not consistent even if the estimator of 
 were consistent.

In the KST setup where x = x and vx ? 1(q � 
0)jFi�1, if their b
 estimator were consistent, then their
estimator of � would be consistent. This is because their estimator uses the moment conditions

E [�zie�1i1(qi � 
0)] = 0 and E [�zie�2i1(qi > 
0)] = 0;

where

�zi = (z
0
i; �1 (
0 � �0z) ; �2 (
0 � �0z))

0
;

and

e�1i = yi � �01gxi � � � �1 (
0 � �0zi) ;
e�2i = yi � �02gxi � � � �2 (
0 � �0zi) :

This works because E [e�1ijzi; qi � 
0] = 0 and E [e�2ijzi; qi > 
0] = 0 as shown in KST, so any function of zi,

say, h (zi), in each regime can serve as instruments. Using �1 (
0 � �0zi) and �2 (
0 � �0zi) as instruments is
natural because they appear as the control functions in the STR estimator. Of course, if b
 is not consistent
as shown in Section 2, then these moment conditions need not hold when 
0 is replaced by plimn!1b
 and
the resulting estimator of � need not be consistent. If we use our CF estimators b
, and estimate � based on
E [h (zi) e�1i1(qi � 
0)] = 0 and E [h (zi) e�2i1(qi > 
0)] = 0, then we require some critical assumptions. First,

dim(h (zi)) � d + 1. Second, q =2 x. This assumption can be relaxed; see the discussion around equation
(7). Third, vq � N (0; 1). This assumption is quite strong; see footnote 1. Fourth, vx ? 1(q � 
0)jFi�1.
This assumption is too strong to hold in practice unless x is exogenous and such that vx = 0. In summary,

estimation of � based on these moment conditions seems unattractive.

GMM-1 Estimators

We �rst state and prove the asymptotic properties of the GMM-1 estimators of �.

Theorem 6 Under Assumption I (for CF-I b
) or Assumption II (for CF-II b
), and Assumption H,
n1=2

�b� � �� d�! N (0;�) ;

where � = (G0WG)
�1
(G0W
WG) (G0WG)

�1 with G =
�
E
h
zix

0
i;�
0

i
;E
h
zix

0
i;>
0

i�
, 
 = E

�
ziz

0
iu
2
i

�
, and

G0WG > 0. When W = 
�1, � reduces to
�
G0
�1G

��1
.
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Proof of Theorem 6. Note that

n1=2
�b� � �� = �� 1

n
X�0Z

�
Wn

�
1

n
Z 0X�

���1 ��
1

n
X�0Z

�
Wn

1p
n
Z 0 (u+ (X0 �Xb
) �n)

�
;

where X
 stacks x0i;�
 , and X0 = X
0 . By Lemma 1 of Hansen (1996), the consistency of b
 and the
continuity of G
 =

�
E
�
zix

0
i;�


�
;E
�
zix

0
i;>


��
in 
, we can show 1

nZ
0X� p�! G. Next, by Lemma A.10 of

Hansen (2000), uniformly on v 2 [�v; v],

n�2�
nX
i=1

zix
0
i1 (qi � 
0 + v=an)� 1 (qi � 
0) = Op(1):

Since an (b
 � 
0) = Op(1), we have

1p
n
Z 0 (X0 �Xb
) �n =

1p
n

nX
i=1

zix
0
i (1 (qi � 
0)� 1 (qi � b
)) cn�� = n�1=2Op

�
n2�
�
n��

= Op(a
�1=2
n ) = op(1):

Since 1p
n
Z 0u

d�! N (0;
), by Slutsky�s theorem the result in the theorem follows.

This result follows from standard GMM asymptotics. It is easy to obtain the asymptotic variance of b�1,b�2 and b�n as (Id;0)�(Id;0)0, (0; Id)�(0; Id)0 and (Id;�Id)�(Id;�Id)0 for these three estimates, respectively.
Di¤erent from CH�s GMM where b�1(b�2) uses only information in the data with qi � b
 (qi > b
), the GMM-1
estimates b�1 and b�2 use information in all data points. As a result, b�1 and b�2 are not asymptotically
independent; this is similar to the CF estimators of �. Estimation of the asymptotic variance matrix by its

sample analog is a standard econometric exercise and is omitted here.

We next discuss why the GMM-1 estimates are hard to extend to the �� 6= 0 case. In this case, E [ziui] = 0
can be written as

E
�
zi

�
yi � x0i�1

�1
1(qi � 
0) +

yi � x0i�2
�2

1(qi > 
0)

��
= 0:

Obviously, �1 and �2 cannot be identi�ed separately. Instead, de�ne %� = �1=�2 and then

E
�
zi

�
yi � x0i�1

%�
1(qi � 
0) + (yi � x0i�2) 1(qi > 
0)

��
= 0:

The moment conditions are nonlinear in %�. We can �rst estimate %� and then estimate �, or estimate %� and

� jointly. In CF-I, it seems hard to estimate %�. The square root of 1=b� = b�21=b�22 in Section 3.4 estimates
the ratio E

�
e21
�
=E
�
e22
�
= E

h�
�01v + �1u� �1vq

�2i
=E
h�
�02v + �2u� �2vq

�2i
which is generally di¤erent

from �21=�
2
2.
18 In CF-II, %� can be estimated by the ratio of any component of b�1 and the corresponding

component of b�2 given that �1 = �1 and �2 = �2 .19 Given b%�, the moment conditions are linear in �
so b� can be easily solved out. However, the randomness in b%� will a¤ect the asymptotic variance of b� in a
complicated way. In joint estimation of %� and �, we can concentrate on %� and then grid search over %�,

but estimation requires 2d + 1 instruments. In sum, GMM estimation of � when �� 6= 0 involves several

complications and seems messy for practical work.

18 If ' = 0 and � 6= 0, then �1=�2 = �1=�2, but this case is very special.
19%� can also be estimated by the square root of b�21=b�22 in Section 3.4 because b�21=b�22 estimates the ratio E �e21� =E �e22� =

E
h
�21 (u�  0v)2

i
=E

h
�22 (u�  0v)2

i
= �21=�

2
2 under the homoskedasticity assumption E

�
e21jq

�
= E

�
e21
�
when q � 
0 and

E
�
e22jq

�
= E

�
e22
�
when q > 
0.

18



Finally, we detail the asymptotic variances of GMM-1 under DGP2 in our simulations of Section 5.3.

Now, the 2SLS estimator is e¢ cient, and the asymptotic variance can be simpli�ed as

E
�
u2
�
(G0WG)

�1

with E
�
u2
�
=
�
 x'+  q

�2
+  2x + 1, G = E

�
zixi;�
0

�
and W = E [ziz0i]

�1.

SD.4 Simpli�ed Asymptotic Theory

We �rst decompose �xi into (�x01i; �x
0
2i)

0, where the coe¢ cients of �x2i remain the same across the two regimes

while the coe¢ cients of �x1i change. Correspondingly, write b�xi, �` and c as �b�x01i; b�x02i�0, ��0`1; �0c� and (c01;00)0,
and denote D10 = E [�x1i�x01ijqi = 
0], V

�
10 = E

�
�x1i�x

0
1ie

2
1ijqi = 
�

�
, V +10 = E

�
�x1i�x

0
1ie

2
2ijqi = 
0+

�
. Then in

Theorem 1 and Corollary 1, we need only replace ! and � by !1 =
c01V

�
10c1

(c01D10c1)
2
f
and �1 = c01V

+
10c1=c

0
1V

�
10c1,

respectively.

For �` estimators, because part of �1 and �2 are the same, we can employ such information to improve

the e¢ ciency of �` estimators. Consider GMM-2 estimators �rst because the GMM-II2 estimator is the most

e¢ cient and will be used in practice. Now, the moment conditions are

E

"
�zi
�
yi � �x01i�11 � �x02i�c

�
1(qi � 
0)

�zi
�
yi � �x01i�21 � �x02i�c

�
1(qi > 
0)

#
= 0 (42)

and we estimate � :=
�
�
0
11; �

0
21; �c

�
jointly by minimizing

nmn

�
�
�0
Wnmn

�
�
�
;

to have b� = � bG0Wn
bG��1 bG0Wn

1

n

nX
i=1

 
�ziyi1(qi � b
)
�ziyi1(qi > b
)

!
;

whereWn
p�!W > 0, bG = 1

n

Pn
i=1

 
�zib�x01i1(qi � b
) 0 �zib�x02i1(qi � b
)

0 �zib�x01i1(qi > b
) �zib�x02i1(qi > b
)
!
=

0@ bZ 01 � bX1;0; bX2

�
bZ 02 �0; bX1; bX2

� 1A
with bX` stacking b�x0`i, and

mn

�
�
�
=
1

n

nX
i=1

0@ �zi

�
yi � b�x01i�11 � b�x02i�c� 1(qi � b
)

�zi

�
yi � b�x01i�21 � b�x02i�c� 1(qi > b
)

1A :

For identi�cation, we need only 2 dim (�zi) � 2 dim (�x1i) + dim (�x2i) rather than dim (�zi) � dim (�xi) (or

equivalently, dim (zi) � dim (xi)).
First consider GMM-II2. Note that �� is either zero or not, so �x1i will either include the whole vi or not
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at all. First suppose �x1i include vi. Then by the analysis in the proof of Theorem 2,

n1=2
�b� � ��

=
� bG0Wn

bG��1 bG0Wn
1p
n

0@ bZ 01 � �X2�c + �X1�21 + �X10c1n
�� � bX1�11 � bX2�c + e

0
�

bZ 02 � �X2�c + �X1�11 � �X10c1n
�� � bX1�21 � bX2�c + e

0
� 1A

=
� bG0Wn

bG��1
24 bG0Wn

1p
n

0@ bZ 01 h� �X2 � bX2

�
�c +

�
�X1 � bX1

�
�11 + e

0
i

bZ 02 h� �X2 � bX2

�
�c +

�
�X1 � bX1

�
�21 + e

0
i 1A35+ op(1)

= (G0WG)
�1
G0W 1p

n

 bZ 01 �br�1 + e0�bZ 02 �br�2 + e0�
!
+ op(1) + op(1)

d�! [G0WG]
�1
G0W �N

 
0;


1 
12


21 
2

!
=: (G0WG)

�1
G0W �N (0;
) ;

where �X` stacks �x0`i, �X10 stacks �x01i1(qi � 
0), G =

0@ E
h
�zi�x

0
1i;�
0

i
0 E

h
�zi�x

0
2i;�
0

i
0 E

h
�zi�x

0
1i;>
0

i
E
h
�zi�x

0
2i;>
0

i 1A,
�X2 � bX2 = 0, 
1, 
2 and 
12 are de�ned in GMM-II2 of Theorem 2, and 
21 = 
012. Second, suppose �x1i
does not include vi (i.e., �1 = �2 = �). Now,

n1=2
�b� � ��

=
h bG0Wn

bGi�1
24 bG0Wn

1p
n

0@ bZ 01 h� �X2 � bX2

�
�c +

�
�X1 � bX1

�
�11 + e

0
i

bZ 02 h� �X2 � bX2

�
�c +

�
�X1 � bX1

�
�21 + e

0
i 1A35+ op(1)

= [G0WG]
�1
G0W 1p

n

 bZ 01 �br�+ e0�bZ 02 �br�+ e0�
!
+ op(1)

d�! [G0WG]
�1
G0W �N

 
0;


1 
12


21 
2

!
=: (G0WG)

�1
G0W �N (0;
) ;

where �X1� bX1 = 0, and � = � is the common �1 and �2, so in 
1;
2 and 
12, replace both �1 and �2 by

� and note that e1i = e2i. In practice, we can set Wn =diag
� bZ 01 bZ1; bZ 02 bZ2� to get an initial estimator of �,

and then set Wn as a consistent estimator of 
�1 to obtain the optimal estimator.

In GMM-I2, the analysis is similar. �x1i will either include vq or not. In the former case, suppose �x01i =

(z0i�1; vq) and �x
0
2i = z

0
i�2, the error terms corresponding to z

0
i�1 and z

0
i�2 in the �rst stage are v1i and v2i,

and correspondingly, br is decomposed as (br01;br02)0. We need only replace br�` by �br2�c�br1�`1+brq�` =: br�`.
With this new de�nition of �`, the asymptotic distribution takes the same form as in GMM-II2 with 
1, 
2
and 
12 de�ned in GMM-I2 of Theorem 2. In the latter case, suppose �x01i = z

0
i�1 and �x

0
2i = (z

0
i�2; vq). Then

we need only replace br�` by (�br2;brq)�c � br1�`1 =: br�`, where the last component of �c is � - the common
�1 and �2. With this new de�nition of �`, the remaining speci�cation of the asymptotic distribution is the

same as in the former case.

The analyses for CF-I and CF-II estimators are parallel to those for GMM-I2 and GMM-II2 estimators.

Since b� = � bX 0 bX��1 bX 0Y;

where bX =
� bX1;�b
 ; bX1;>b
 ; bX2

�
with bX1;�b
 stacking b�x01i1(qi � b
) and bX1;>b
 stacking b�x01i1(qi > b
), the
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moment conditions corresponding to (42) are

E

264
0B@ �x1i;�
0
�x1i;>
0
�x2i

1CA�yi � �x01i;�
0�11 � �x01i;>
0�21 � �x02i�c�
375 = 0;

or equivalently,

E

2664
0BB@

�x1i
�
yi � �x01i�11 � �x02i�c

�
1(qi � 
0)

�x1i
�
yi � �x01i�21 � �x02i�c

�
1(qi > 
0)

�x2i

�
yi � �x01i;�
0�11 � �x

0
1i;>
0

�21 � �x02i�c
�
1CCA
3775 = 0;

which is weaker than

E

" 
�xi
�
yi � �x01i�11 � �x02i�c

�
1(qi � 
0)

�xi
�
yi � �x01i�21 � �x02i�c

�
1(qi > 
0)

!#
= 0:

Now,

n1=2
�b� � ��

=
�
1
n
bX 0 bX��1 1p

n

0BBB@
bX 0
1;�b


�
�X2�c + �X1�21 + �X10c1n

�� � bX1;�b
�11 � bX1;>b
�21 � bX2�c + e
0
�

bX 0
1;>b


�
�X2�c + �X1�11 � �X10c1n

�� � bX1;�b
�11 � bX1;>b
�21 � bX2�c + e
0
�

bX 0
2

�
�X2�c + �X1�21 + �X10c1n

�� � bX1�21 � bX1;�b
c1n�� � bX2�c + e
0
�

1CCCA

=M
�1 1p

n

0BBB@
bX 0
1;�b


��
�X2 � bX2

�
�c +

�
�X1 � bX1

�
�11 + e

0
�

bX 0
1;>b


��
�X2 � bX2

�
�c +

�
�X1 � bX1

�
�21 + e

0
�

bX 0
2

��
�X2 � bX2

�
�c +

�
�X1 � bX1

�
�21 + e

0
�

1CCCA+ op(1);

where M = E
��
�x01i;�
0 ; �x

0
1i;>
0

; �x02i

�0 �
�x01i;�
0 ; �x

0
1i;>
0

; �x02i

��
, and in the third term,

1p
n
bX 0
2

�
�X10 � bX1;�b
� c1n��

=
1p
n
bX 0
2

�
�X10 � �X1;�b
� c1n�� + 1p

n
bX 0
2

�
�X1;�b
 � bX1;�b
� c1n��

= op(1) +
1p
n

nX
i=1

b�x2i ��x01i � b�x01i� 1 (qi � b
) c1n��
= op(1) +Op

�
n��

�
= op(1);

which will not disappear in the �xed-threshold-e¤ect framework of Chan (1993). Note also that by re-

expressing �X2�c+ �X1�21+ �X10c1n
��� bX1�21� bX1;�b
c1n��� bX2�c as �X2�c+ �X1�11� �X10c1n

��� bX1�11+bX1;�b
c1n�� � bX2�c, the components
�
�X1 � bX1

�
�21 in the third term can be replaced by

�
�X1 � bX1

�
�11;

this will not a¤ect the asymptotic distribution because �11 � �21 = c1n
�� = o (1). In other words, in the

statements of all theorems in Section 4, �1 and �2 (or �1 and �2) can be exchanged with each other.

First consider CF-II. If �x1i include vi, then

n1=2
�b� � �� =M

�1 1p
n

0B@ bX 0
1;�b
 �br�1 + e0�bX 0
1;>b
 �br�2 + e0�bX 0
2

�br�2 + e0�
1CA+ op(1)
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d�!M
�1 � N

0B@0; 
1;�
0 0 
12;�
0
0 
1;>
0 
12;>
0


21;�
0 
21;>
0 
2

1CA =:M
�1 � N (0;
) ;

where 
1;�
0 and 
1;>
0 are the same as 
1 and 
2 in CF-II of Theorem 5 but replacing �xi by �x1i,


2 = E
h
�x2i�x

0
2i

�
e0i
�2i

+ E [�x2iz0i]E [ziz0i]
�1 E [ziz0i (�02viv0i�2)]E [ziz0i]

�1 E [zi�x02i] ;


12;�
0 = E
�
�x1i;�
0�x

0
2ie

2
1i

�
+ E

�
�x1i;�
0z

0
i

�
E [ziz0i]

�1 E [ziz0i (�01viv0i�2)]E [ziz0i]
�1 E [zi�x02i] ;


12;>
0 = E
�
�x1i;>
0�x

0
2ie

2
2i

�
+ E

�
�x1i;>
0z

0
i

�
E [ziz0i]

�1 E [ziz0i (�02viv0i�2)]E [ziz0i]
�1 E [zi�x02i]

and 
21;�
0 = 

0
12;�
0 , 
21;>
0 = 


0
12;>
0

. If �x1i does not include vi, then

n1=2
�b� � �� =M

�1 1p
n

0B@ bX 0
1;�b
 �br�+ e0�bX 0
1;>b
 �br�+ e0�bX 0
2

�br�+ e0�
1CA+ op(1);

so we need only replace �1 and �2 everywhere in 
 by � and note that e0i = e1i = e2i.

In CF-I, the analysis can combine those of GMM-I2 and CF-II. Speci�cally, the asymptotic distribution

takes the same form as in CF-II with only 
 rede�ned: 
1;�
0 and 
1;>
0 take the same form as 
1 and 
2
in CF-I of Theorem 5 but replacing �xi by �x1i,


2 = E
��
E [�x2iz0i]E [ziz0i]

�1
z0ivi�2 + �x2ie

0
i

��
E [�x2iz0i]E [ziz0i]

�1
z0ivi�2 + �x2ie

0
i

�0�
;


12;�
0 = E
��
E
h
�x1iz

0
i;�
0

i
E [ziz0i]

�1
z0ivi�1 + �x1i;�
0e1i

��
E [�x2iz0i]E [ziz0i]

�1
z0ivi�2 + �x2ie

0
i

�0�
;


12;>
0 = E
��
E
h
�x1iz

0
i;>
0

i
E [ziz0i]

�1
z0ivi�2 + �x1i;>
0e2i

��
E [�x2iz0i]E [ziz0i]

�1
z0ivi�2 + �x2ie

0
i

�0�
;


21;�
0 = 
012;�
0 , 
21;>
0 = 
012;>
0 , where �` is understood as the �` in GMM-I2. Note that the cross

terms in 
1;�
0 , 
1;>
0 , 
2, 
12;�
0 and 
12;>
0 will not disappear.

We next check GMM-1. Now, we decompose xi (rather than �xi) as (x01i;x
0
2i)

0, and the moment conditions

are

E
h
zi

�
yi � x01i;�
0�11 � x

0
1i;>
0

�21 � x02i�c
�i
= 0;

so b� = [(X�0Z)Wn (Z
0X�)]

�1
[(X�0Z)Wn (Z

0Y )] ;

where X� stacks
�
x01i;�b
 ;x01i;>b
 ;x02i

�
, and Z stacks z0i. In the statement of the asymptotic distribution of b�

in Theorem 6, we need only rede�ne G =
�
E
h
zix

0
1i;�
0

i
;E
h
zix

0
1i;>
0

i
;E [zix02i]

�
.

Finally, we specify the formulae above to the simulations in Section 5.3; only CF-II and GMM-II2 can

be simpli�ed where �1 = �2 =  . In CF-II,

n1=2

 b� � �b �  
!

d�! N (0;�) ;

where

� =M
�1

M

�1
= E

�
e2ui
�
M

�1
+M

�1

2M

�1
;
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with

M = E
h�
xi;�
0 ;v

0
i

�0 �
xi;�
0 ;v

0
i

�i
;


 = E

" 
xi;�
0eui + E

�
xi;�
0z

0
i

�
E [ziz0i]

�1
ziv

0
i 

vieui + E [viz0i]E [ziz0i]
�1
ziv

0
i 

! 
xi;�
0eui + E

�
xi;�
0z

0
i

�
E [ziz0i]

�1
ziv

0
i 

vieui + E [viz0i]E [ziz0i]
�1
ziv

0
i 

!0#

= E
�
e2ui
�
E

" 
xi;�
0
vi

!�
xi;�
0 ;v

0
i

�#
+ E

h�
 0vi

�2iE" xi;�
0z
0
i

viz
0
i

!#
E [ziz0i]

�1 E
��
zixi;�
0 ; ziv

0
i

��
= : 
1 +
2:

In GMM-II2,

n1=2

 b� � �b �  
!

d�! N (0;�) ;

where � = (G0WG)
�1
(G0W
WG) (G0WG)

�1 with G = E

"
�zixi;�
0 �ziv

0
i;�
0

0 �ziv
0
i;>
0

#
, and


 = E

" 
�zi;�
0eui + E

�
�zi;�
0z

0
i

�
E [ziz0i]

�1
ziv

0
i 

�zi;>
0eui + E
�
�zi;>
0z

0
i

�
E [ziz0i]

�1
ziv

0
i 

! 
�zi;�
0eui + E

�
�zi;�
0z

0
i

�
E [ziz0i]

�1
ziv

0
i 

�zi;>
0eui + E
�
�zi;>
0z

0
i

�
E [ziz0i]

�1
ziv

0
i 

!0#

= E
�
e2ui
�
E

"
�zi�z

0
i;�
0 0

0 �zi�z
0
i;>
0

#
+ E

h�
 0vi

�2iE" �zi;�
0z
0
i

�zi;>
0z
0
i

!#
E [ziz0i]

�1 E
h�
zi�z

0
i;�
0 ; zi�z

0
i;>
0

�i
= : 
1 +
2:

Note that, di¤erent from CF-II, 
1 6= G, where G is not even square. In GMM-II2, the 2SLS estimator is

still the same as the CF-II estimator, and we instead use the optimal W = 
�1.

SD.5 Further Simulation Results

Performance of the IDKE

In this subsection, we report the risk of the IDKE of 
 in YP under DGP1 and DGP2 where no instruments

are used. We do not report these simulation results in the main text because it is not fair to compare the

IDKE and the two CF estimators given that more data (i.e., zi�s) are used in the latter. The main theme

of this paper is how to estimate 
 and � when z is available and q is endogenous; deviating from this theme

too far seems undesirable. Also, the performance of the IDKE has already been studied in YP and YLP.

First, recall that the IDKE of YP is de�ned as

b
 = argmax



1

n

nX
i=1

24 1

n� 1

nX
j=1;j 6=i

yjK

�
h;ij �

1

n� 1

nX
j=1;j 6=i

yjK

+
h;ij

352 ;
where

K
�
h;ij = kh(xj � xi; xi) � k�h (qj � 
) ;

with kh (�; �) and k�h = 1
hk�

� �
h

�
being rescaled boundary kernels. Note that for a given 
, either 1

n�1

Xn

j=1;j 6=i
yjK


�
h;ij

or 1
n�1

Xn

j=1;j 6=i
yjK


+
h;ij has n � 1 summands since xi falls in either the qi � 
 regime or qi > 
 regime
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rather than both. For simplicity, we replace 1
n�1

Xn

j=1;j 6=i
by 1

n

Xn

j=1
. YP use 1

n�1

Xn

j=1;j 6=i
to convert

a V-statistic to a U-statistic, but this conversion is not important in practice. To avoid using the boundary

kernel kh (�; �) (which is needed to judge whether xi is near the boundary of x�s support), we replace kh (�; �)
by the rescaled normal density 1

h�
� �
h

�
; also, we replace the compact-supported boundary kernel k+ (�) by

the half normal density 2� (�) 1(� > 0) and set k� (�) = k+ (��). Under DGP1, the IDKE reduces to the DKE
because q is the only covariate, where the DKE of 
 is de�ned as

b
 = argmax



24 1
n

nX
j=1

yjk
+
h (qj � 
)�

1

n

nX
j=1

yjk
�
h (qj � 
)

352 :
As to the bandwidth selection, we use the Matlab function kde.m of Botev et al. (2010) to choose the

bandwidth h in DKE, and use their Matlab function kde2d.m to choose the bandwidths h = (h1; h2)
0 for

(x; q)
0 in IDKE. To check the robustness of our bandwidth selection, we also tried h=2 and 2h for the DKE

and h=2 and 2h for IDKE.

Table 12 reports the MAD of the DKE of 
 under DGP1. Note that because

 
vqi

qi

!
� N

 
0;

 
1 1

1 2

!!
,

E [uijqi] = �E [vqijqi] =
�

2
qi

is a continuous function of qi, so the DKE can be applied. The new error term is ei := ui� �
2 qi = eui+

�
2 vqi+

�
2 zi whose variance is �

2 = 1+ �2

2 . Based on the approximation of shrinking threshold e¤ects in YLP, � = 1

and ! = �2

fc2�
in DKE, while for our CF estimators, � = 1 and ! = 1

fc2�
which is smaller than that in DKE,

so our CF estimators are expected to be more e¢ cient. Table 13 reports the MAD of the IDKE of 
 under

DGP2. Note that because

0B@ vqi

xi

qi

1CA � N

0B@0;
0B@ 1 1 1

1 3 2

1 2 2

1CA
1CA and

0B@ exi

xi

qi

1CA � N

0B@0;
0B@ 1 1 0

1 3 2

0 2 2

1CA
1CA,

E [uijxi; qi] = E
�
 xvxi +  qvqij'vqi + exi +�0xzi; vqi + �0zi

�
= 2�E [vqijvqi + exi � zi; vqi � zi] + �E [exijxi; qi]
= �qi + � (xi � qi) = �xi

is a continuous function of (xi; qi)
0, so the IDKE can be applied. The new error term is ei := ui �

�xi = eui + (2� �) vqi + (1� �) exi + �zi whose variance is �2 = 3 (�� 1)2 + 3. Now, � = 1 and ! =
�2E[x2i f(xi;0)

2f2(xi)jqi=0]
fc2�(E[x2i f(xi;0)f(xi)jqi=0])

2 t 1:8�2

fc2�
in IDKE, while for our CF-II estimator, � = 1 and ! = 1

fc2�E[x2i jqi=0]
= 1

fc2�

which is much smaller than that in IDKE, so our CF-II estimator is expected to be more e¢ cient. In CF-I,

� 6= 1, so it is hard to compare with CF-II and IDKE.
Porter and Yu (2015) suggest a smaller (than optimal in density estimation) bandwidth in 
 estimation,

but it is not always the case in our simulation. Under DGP1, the bandwidth should be smaller when � is

larger (to induce a smaller bias) because we use the local constant estimator while the endogeneity increases

the slope of q from 0 to �
2 . Under DGP2, the bandwidth for x should be smaller when � and/or � are

larger (to induce a smaller bias) because the endogeneity increases the slope of x from � to � + �, while the

bandwidth for q should be large (to increase e¢ ciency) because its slope is zero even under endogeneity. As

a result, we also tried the bandwidth h = (h1=2; 2h2) in our simulation.

We next compare the risks of DKE and IDKE with our two CF approaches. Our comparison is based on

the best performances of the DKE and IDKE among the few bandwidths (which are blacked in Tables 12 and
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13). Comparing Table 12 and Table 1, we can see that the risk of DKE is between that of the two CFs and

2SLS in all cases. Also, endogeneity is harmful and larger � is bene�cial. When n increases from 200 to 800,

the MAD decreases although need not decrease exactly in an order of 4 (as implied by the n consistency)

because we did not use the optimal bandwidth (which is unknown) in our estimation. Comparing Table 13

and Table 4, we can see that the risk of IDKE is between that of CF-II and CF-I (also 2SLS) in all cases.

When n = 200, weak and strong endogeneities induce similar risks, while when n = 800, strong endogeneity

is indeed harmful. In all cases, larger � and n are bene�cial although the implied convergence rate (by

comparing the risks of n = 200 and n = 800) is smaller than n.

n! 200 800

� ! 0:5 1 2 0:5 1 2

�! 0:2� � 0:2� � 0:2� � 0:2� � 0:2� � 0:2� �

h 0.359 0.714 0.161 0.650 0.037 0.553 0.091 0.390 0.020 0.150 0.009 0.070

h=2 0.424 0.560 0.194 0.417 0.081 0.287 0.149 0.305 0.028 0.086 0.011 0.025
2h 0.420 1.068 0.188 1.182 0.039 1.230 0.093 1.027 0.020 1.076 0.008 1.124

Table 12: MAD for the DKE of 
 Under DGP1

n! 200 800

� ! 0:5 1 2 0:5 1 2

�! 0:2� � 0:2� � 0:2� � 0:2� � 0:2� � 0:2� �

h 0.511 0.611 0.556 0.621 0.571 0.623 0.345 0.486 0.283 0.543 0.245 0.563

h=2 0.562 0.695 0.752 0.794 0.913 0.794 0.451 0.569 0.582 0.734 0.688 0.806

2h 0.437 0.393 0.367 0.355 0.330 0.316 0.317 0.328 0.234 0.314 0.188 0.299�
h1
2
; 2h2

�
0.437 0.542 0.455 0.532 0.424 0.501 0.262 0.374 0.216 0.400 0.153 0.387

Table 13: MAD for the IDKE of 
 Under DGP2

Comparison When q is Exogenous

In this subsection, we compare the performance of the two CF approaches when q is exogenous. We use

DGP2 but set � = 0, ' = 0,  q = 0 and z = q. The formulae for � and �2 are the same as before. In this

DGP, �1 = �2 = 0 in CF-I and �1 = �2 =  x in CF-II; since vq = 0, �xi would exclude vq in both CF-I and

CF-II, i.e.,

�xi = gi = �
0
xzi in CF-I and �xi = (xi; vxi)

0 in CF-II.

In CF-I,

V1 = E
h
g2i;�
0

i
E
�
e21i
�
;


12 = E
�
v2xi
�
�2E

h
giz

0
i;�
0

i
E [ziz0i]

�1 E
�
zigi;�
0

�
;


121 = ��E [vxie1i]E
h
giz

0
i;�
0

i
E [ziz0i]

�1 E
�
zigi;�
0

�
;

and in CF-II,

V1 = E
h
�xi�x

0
i;�
0

i
E
�
e21i
�
;


12 =  2xE
�
v2xi
�
E
�
�xi;�
0z

0
i

�
E [ziz0i]

�1 E
h
zi�x

0
i;�
0

i
:
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We can still estimate � and  x jointly in CF-II and the resulting asymptotic variance matrix � takes the

same formula as before except that vi is replaced by vxi and  
0vi is replaced by  xvxi. The asymptotic

variance formula in GMM-1 is the same as before. In GMM-2,

�zi = zi in GMM-I2 and �zi = (z0i; xi)
0 in GMM-II2.

We estimate � and  x jointly in GMM-II2 and adjust the asymptotic variance matrix correspondingly.

Note that when q is exogenous, we can also estimate � by CH�s GMM which is based on the moment

conditions

E [zi (yi � xi�) 1 (qi � 
0)] = 0;

we compare its performance with the GMM-1 estimator which is based on the moment conditions

E [zi (yi � xi�1 (qi � 
0))] = 0;

and the GMM-I2 estimator which is based on the moment conditions

E [zie1i1 (qi � 
0)] = 0;

where e1i = yi � gi� = �exi + ui = (� +  x) exi + eui. The former two asymptotic variances take the form

E
�
u2
�
(G0WG)

�1
;

where E
�
u2
�
=  2x + 1 and G = E

�
zixi;�
0

�
. In CH�s GMM, W = E

h
ziz

0
i;�
0

i�1
(and E

�
u2
�
can be

estimated based on E
�
u2jq � 
0

�
) and in GMM-1, W = E [ziz0i]

�1. So CH�s GMM is more e¢ cient because

only the data points with qi � 
0 are informative for � whereas GMM-1 uses some redundant data. In

GMM-I2, the asymptotic variance takes the form�
E
h
giz

0
i;�
0

i

�1E

�
zi;�
0gi

���1
;

where


 = E
�
e21i
�
E
h
ziz

0
i;�
0

i
+ E

�
v2xi
�
�2E

h
ziz

0
i;�
0

i
E [ziz0i]

�1 E
h
ziz

0
i;�
0

i
� 2�E [vxie1i]E

h
ziz

0
i;�
0

i
E [ziz0i]

�1 E
h
ziz

0
i;�
0

i
= E

h
ziz

0
i;�
0

i�
E
�
e21i
�
E
h
ziz

0
i;�
0

i�1
+ E

�
v2xi
�
�2E [ziz0i]

�1 � 2�E [vxie1i]E [ziz0i]
�1
�
E
h
ziz

0
i;�
0

i
:

It seems that even in this simple case, it is hard to compare the asymptotic variance of GMM-I2 with

those of CH�s GMM and GMM-1. If the randomness of the generated regressors can be neglected, then the

asymptotic variance reduces to

E
�
e21i
��
E
h
giz

0
i;�
0

i
E
h
ziz

0
i;�
0

i�1
E
�
zi;�
0gi

���1
= E

�
e21i
��
E
h
xiz

0
i;�
0

i
E
h
ziz

0
i;�
0

i�1
E
�
zi;�
0xi

���1
= E

�
e21i
�
(G0WG)

�1 with W = E
h
ziz

0
i;�
0

i�1
:

Since it is hard to compare the magnitude of E
�
e21i
�
= E

h
(�exi + ui)

2
i
= (� +  x)

2
+1 and E

�
u2i
�
=  2x+1,

it is still hard to compare the asymptotic variance of GMM-I2 with that of CH�s GMM.
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n! 200 800

� ! 0:5 1 2 0:5 1 2

�! 0:2� � 0:2� � 0:2� � 0:2� � 0:2� � 0:2� �

CF-I 0.695 0.752 0.487 0.620 0.381 0.558 0.431 0.479 0.301 0.396 0.238 0.354

CF-II 0.199 0.201 0.054 0.053 0.021 0.021 0.046 0.049 0.013 0.013 0.005 0.005

Table 14: MAD for Two CF Estimators of 


n! 200 800

� ! 0:5 1 2 0:5 1 2

�! 0:2� � 0:2� � 0:2� � 0:2� � 0:2� � 0:2� �

CF-I 0.973 0.985 0.972 0.971 0.982 0.973 0.977 0.975 0.972 0.973 0.977 0.971

CF-II 0.971 0.974 0.972 0.986 0.988 0.983 0.977 0.976 0.980 0.977 0.987 0.981

Table 15: Coverage of Nominal 95% Con�dence Intervals for 


n! 200 800

� ! 0:5 1 2 0:5 1 2

�! 0:2� � 0:2� � 0:2� � 0:2� � 0:2� � 0:2� �

CF-I 2.486 2.709 1.752 2.330 1.478 2.196 1.451 1.679 1.023 1.338 0.885 1.250

CF-II 1.085 1.080 0.271 0.268 0.091 0.093 0.243 0.250 0.064 0.065 0.023 0.023

Table 16: Length of Nominal 95% Con�dence Intervals for 


n! 200 800

� ! 0:5 1 2 0:5 1 2

�! 0:2� � 0:2� � 0:2� � 0:2� � 0:2� � 0:2� �

CF-I 0.131 0.161 0.151 0.206 0.188 0.363 0.057 0.067 0.060 0.086 0.082 0.147

CH�s GMM 0.117 0.137 0.115 0.156 0.110 0.243 0.053 0.060 0.052 0.069 0.055 0.112

GMM-I1 0.153 0.177 0.154 0.208 0.167 0.347 0.067 0.076 0.061 0.087 0.069 0.144

GMM-I2 0.132 0.162 0.153 0.209 0.190 0.366 0.058 0.067 0.060 0.086 0.082 0.149

CF-II 0.086 0.092 0.086 0.098 0.091 0.148 0.041 0.045 0.040 0.049 0.043 0.069

CH�s GMM 0.106 0.121 0.107 0.142 0.111 0.220 0.051 0.057 0.051 0.068 0.055 0.105

GMM-II1 0.119 0.136 0.118 0.156 0.123 0.257 0.058 0.063 0.056 0.075 0.061 0.120

GMM-II2 0.086 0.091 0.086 0.093 0.090 0.114 0.041 0.045 0.040 0.047 0.043 0.052

Table 17: RMSE for Eight Estimators of �
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n! 200 800

� ! 0:5 1 2 0:5 1 2

�! 0:2� � 0:2� � 0:2� � 0:2� � 0:2� � 0:2� �

CF-I 0.904 0.879 0.905 0.886 0.936 0.896 0.930 0.913 0.942 0.938 0.944 0.929

CH�s GMM 0.919 0.872 0.913 0.875 0.951 0.878 0.935 0.923 0.937 0.953 0.933 0.933

GMM-I1 0.928 0.910 0.938 0.931 0.963 0.934 0.923 0.915 0.954 0.948 0.953 0.937

GMM-I2 0.905 0.875 0.897 0.872 0.919 0.880 0.923 0.914 0.939 0.932 0.923 0.918

CF-II 0.944 0.926 0.941 0.950 0.941 0.946 0.945 0.941 0.952 0.957 0.945 0.955

CH�s GMM 0.949 0.931 0.937 0.937 0.959 0.947 0.951 0.933 0.943 0.964 0.936 0.956

GMM-II1 0.956 0.938 0.942 0.954 0.954 0.954 0.935 0.939 0.951 0.959 0.937 0.954

GMM-II2 0.946 0.929 0.943 0.953 0.942 0.943 0.945 0.946 0.950 0.953 0.948 0.957

Table 18: Coverage of Nominal 95% Con�dence Intervals for �

n! 200 800

� ! 0:5 1 2 0:5 1 2

�! 0:2� � 0:2� � 0:2� � 0:2� � 0:2� � 0:2� �

CF-I 0.427 0.488 0.481 0.668 0.653 1.158 0.207 0.235 0.229 0.318 0.302 0.541

CH�s GMM 0.400 0.423 0.404 0.522 0.429 0.822 0.199 0.216 0.202 0.270 0.214 0.426

GMM-I1 0.508 0.577 0.515 0.732 0.623 1.226 0.232 0.264 0.239 0.335 0.282 0.553

GMM-I2 0.427 0.487 0.477 0.658 0.634 1.133 0.207 0.234 0.226 0.313 0.289 0.527

CF-II 0.323 0.342 0.323 0.396 0.335 0.573 0.161 0.171 0.162 0.199 0.167 0.286

CH�s GMM 0.398 0.445 0.401 0.561 0.427 0.890 0.198 0.221 0.200 0.278 0.211 0.440

GMM-II1 0.448 0.498 0.447 0.622 0.475 1.000 0.219 0.244 0.221 0.307 0.234 0.488

GMM-II2 0.323 0.340 0.323 0.373 0.333 0.428 0.161 0.170 0.162 0.187 0.166 0.214

Table 19: Length of Nominal 95% Con�dence Intervals for �
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