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Abstract

This online appendix contains supplementary discussion, proof details, and
supporting lemmas. Specifically, Section S.1 contains some discussion of dis-
tance measures other than the Cramér-von Mises-type (CM-type) used in the
paper. A proof of Lemma A.2, key to establishing the asymptotic equivalence
in Lemma 1, is provided in Section S.2. Section S.3 contains the proof of the
bootstrap equivalence claimed in Lemma 3. Supporting lemmas are gathered

in Section S.4.

S.1 Other Distance Measures

The CM-type statistic (2.9) arises from an equi-weighted sum of squares of (em-
pirical) L2-type norms. Other measures of distance are certainly possible. For
example, the maximum of (empirical) L>-type norms leads to a statistic TX5 =
VN Mmaxi<pcr, MaXicicn \]\AQ(X&)] akin to the classical Kolmogorov-Smirnov (KS) statis-
tic. Ome could also, as in Bravo (2012), base a test on the profile empirical (log-
Jlikelihood process Dgy, : xE X, — Ry defined by Dgp(t) = —2 3", In7; (t), where
{m:(t)}, solves

n

max Zlnm s.t. Zm =1 and Zﬂﬁn\i (t) =0,
i=1

<m<l ‘ :
s =1 =1



with 72;(t) := (M (t1), ..., (tn)) and M(te) = pe(Zi, B, he(We))we(te, X;). Let
F 'y denote the empirical distribution of the union of distinct elements of the X,’s.
Then, under regularity conditions, the asymptotic null distribution of the resulting
CM-type statistic DG, = Jxr x Dy, (t) dFy (t) and that of the test statistic T},
studied here only differ in terms of the (implicit) weighting employed. This observa-
tion follows from the internal studentization property of (generalized) empirical like-
lihood (Bravo, 2012, Footnote 5). See also Bravo (2012, Eq. (2.8)), which should be
compared to T;, in (2.9). Moreover, the same conclusion holds for KS-type statistics,
including TX5, and for the test based on generalized empirical likelihood processes
(Bravo, 2012, Remark 2.1). The primary reason for the CM-type of statistic pursued
in this paper is its computational convenience. Moreover, preliminary simulation ex-
periments (not reported) suggest that the CM-based test has somewhat better power
properties than its KS equivalent. Similar experiences are noted in Rothe and Wied
(2013, p. 316).

S.2 Proof of Lemma A.2

PrRooOF oF LEMMA A.2. The proof proceeds in a number of steps. Since the lemma
is stated for a given ¢, for notational convenience we drop the ¢ subscripts throughout,
refer to the (¢th) index set (X;) as T itself, and use d; for its dimension.

Step 0 (Main)

Let ¢ € T be arbitrary. Assumption 1 implies that |5 — ol <p n~ /2 — 0, so
letting A be any open neighborhood of fy (again provided by Assumption 1), BeN
wp — 1. To simplify notation and ensure that objects are globally well defined, in
what follows we will—without loss of generality—assume that B e N with probability
one for all n. Then by Assumption 3, for any z,v, we may conduct a mean value

expansion of 5+ p(z, 5,v) at 3 around f to get

M (t) = VnEalw (£, X) p(Zi, Bos b (Wa)] + L (8)) V/n(B = Bo),
L (t) = En [w (. X,) (9/08) p(Z:, B, h (W)

where 3 lies on the line segment connecting 3 and fy, thus satisfying 18 = Boll <
15 — Bo|| =p 0. Recall the definition of b(¢) in (3.7), which is well defined on 7T since



By is interior to B (Assumption 1). Step 1 below shows that sup,c (|1, (t)—b (¢)|| —p O,
and that b is bounded on 7T, so Assumption 1 and the previous display combine to

yield

VM () = VnEalw (t, X,) p(Zi, Bo, e (Wi)] + b (8) VB [s (Z)] + op (1), (S.1)

uniformly on 7.

The remainder of the proof is about adjusting for estimation of A*. Given that [,
is held fixed throughout this argument, we will suppress the § argument and write
p(z,v) = p(z, Po,v). For the purpose of the adjustment, denote the first term on the
right-hand side of (S.1)

VM (t) = /B[ (8, X,) p(Zi, 1 (W), (52)
and conduct a MVE of v — p(Z;,v) at h (W;) around h* (W;) to arrive at

VAT (1) = VB, o (0.0 {002, 0 (W0) + 120 OV V) 1 ()|

where T (W;) lies on the line segment connecting h (W;) and h* (W;). Such an ex-
pansion is justified by Assumption 3. Further decomposition of the right-hand side
yields

VANl 1

= VB, [w(t, X) p(Zi, b (W;)) + 6 (¢, W3)' {Yi — b* (W;)}]
VB, [l 0.0) { o 2T (Vi) = Jon(an (O (R 5) = 1 (W)
ol 0.0 g (20 ()| 5) = 1 )

+ \/E(Ez[w (t, X) aahlp

~ B, (6, W) {Yi = " (W)}))
= VB [w (1, X)) p(Zi, b (W) + 6 (8 W) {Yi = b (W)}
+ 1L, () + 1L, (£) + 1V, (¢) (S.3)

(Z.0° (W) (b (W) = * ()]



where Eyz[-] denotes integration with respect to the distribution of Z, and 6 (¢, Z)
is defined as in (3.8). The k x k matrix Q, = E[p* (W) p* (W)'] is invertible by
Assumption 5. Let hy and 0(¢,-) denote the mean-square projections of h* and

§(t, ), respectively, onto the span of p*, i.e.,

T (-) = P* () Qi "l (W) by, (W)] = p* () 7 (5.4)
O (t,) =" () Qi "Elp* (W) 0 (8, W)] = p* () 5,4 (2) (5.5)

where 7, 1, and 75, i are defined in (3.9) and (3.10), respectively. Consequently,

El{ b (W) = hy, (W)Y =15k,
E[{0ms (6 W) = 0 (6, W)Y =151 (1),
E{10mx (W) = 6 (W7} = RS 4

for r5 ;. 73 and R} , defined in (3.11), (3.12) and (3.13), respectively. Steps 2-4

below show that the three remainder terms in the decomposition (5.3) satisfy:

Il Se ER(2)] i max [, — i 5.

km,n

1/2
< . 2 —Qm
HIIITLHT ~P 1217?;;(d ( ; Hp]HW> (\/ km,n/n -+ km,n )7 and

1Vallr Se max VA, o, S0 75, (04 /G, i 1 (i) f1
SMs teT

+ R(Snukm,n \/ln (km7n/R57rL7km,7L) + CknL,n Thnhk'm,n }

Plug (S.3) into (S.1), apply T and use the definition of M* in (S.2) to get the claimed
in-probability bound.

Step 1: I,, and b

In this step we show that I,, defined in (S.1) and b defined (3.7) satisfy

(a) supl|L, (t) — b (t)]] %0 and (b) sup||b(t)|| < 0.
teT teT



Decompose I, as

L (1) = B |w (1. X0) (0/05) p(Z:, B, b (W)
+ B, [w (t, X:) {(0/08) p(Zi, B, by (W) = (8/0B) p(Zi, B, h* (Wi)) }]
= T (8) + 1y, (2) .

Since ||3 — Bol| < |8 — Bol| and B € N, we must have 3 € N wp — 1, so using T,
Assumptions 2, 3 and 7 and Lemma S.7.4, we get

sup [l (1) < Ex [a (Z0) [ (W) = 1 (W) ]
< VA, [0 (Z)] ma [ — 15 5y

T P
Sp max [[Am — by [ly = 0,

where we have used M to deduce E,, [a (Z;)] Sp 1.

Given that 8y € A open, there is an r > 0 such that the open ball B,(/3y) in R%
centered at 3, with radius r is contained in N. Let B := B, 5(fy) denote the closed
ball in R% with the same center but half the radius. Given that B is a closed and
bounded subset of a finite-dimensional Euclidean space, by the Heine—Borel theorem
it is compact. Assumptions 2 and 3 imply that (¢, 5) — w (¢, x) (0/08) p (2, 5, h* (w))
is continuous on 7 x N for each z € Z, hence on the subset 7 x B, and this
function is dominated by an integrable function depending on z only. Moreover, via
Tychonoff’s theorem, 7 and B compact imply that is 7 x B compact. Combining
these observations with the fact that the data are i.i.d., Newey and McFadden (1994,
Lemma 2.4) tells us that

(i) (t,8) = Elw(t,X)(8/08) p(Z,,h" (W))] is continuous on T x B,

(i) i (B = E) [w (¢, X:) (9/08) p(Zi, 8, 1" (W))]|| = 0.

Given (i) and T x B compact, we must have (cf. Rudin, 1976, Theorem 4.19) that
(iii) (¢, 8) — Ew(t, X) (0/08) p(Z, B, h* (W))] is uniformly continuous on 7 x B.

Let 3 be an arbitrary consistent estimator of §y. Then 3 e B wp— 1, and, on this



event,

sup [, [w (1, X:) (9/08) p(Zi, B, b (W) = b (1)

teT
< sup (B, — E2) [ () (0/09) p(Z:, 5.1 (W3))] |
+sup [E7 [w (¢, X) (0/08) p(2, 5. b (W)] = b(#)]

< swp ||(B, — E) [w(t, X,) (9/08) p(Z:, B, h* (W)
(t,B)eTxB
+sup Bz [w (t, X) (0/08) p(Z, 5,1 (W) = b ()| > 0,

teT

where the first inequality is due to T, the second uses {B € B}, and we have used
(ii) uniform convergence and (iii) uniform continuity. Invoking the conclusion of the
previous display for the mean value 5 = B we see that sup,cr||lon (t) — b (t)|| —p O,
which combined with sup,c||Ls. (£)|| —p 0 and T establishes Part (a).

Continuity and 7 x B compact also imply (¢, ) +— E[w (¢, X) (0/98) p(Z, 3, h* (W))]
is bounded on T x B (cf. Rudin, 1976, Theorem 4.15). Part (b) then follows from
Bo € B.

Step 2: [|IL,[|7

In this step we show that II,, defined in (S.3) satisfies

Il <p BR(2)] Vi max ||, = by, w7

for R and v given by Assumption 3. Using T and CS, Assumptions 2 and 3 imply
that

Zi,h (W7)) —

MLl < ol vAEs [

S ViEa[R(Z) |
< VnE[R(Z) |
dY2E (R (

it 2ot )| [ 07 = n 7
ROV = e VIR (095) = e (17,

W) — e ()

201 e o = 1 57

Wi
|h (W;

N

N

E[R(2)] Vi max [[hm — B[



where R(W;) is on the line segment connecting h(W;) and h (W;), thus satisfying
[ (W) — h* (Wy)|| < || (W;) = h* (W;)|, and E, [R(Z:)] <p E[R(Z)] follows from
M.

Step 3: ||IIL, ||~

In this step we show that III,, defined in (S.3) satisfies

km,n

1/2
I e s, (3 Hoall) (Vi + )

for a given by Assumption 6. For i : W — R composed by maps {h,,}¢ in L* (W),
define the map D

D (t,z,h) =w(t,x) (0/ON)p (z,h* (w)) h (w) (S.6)

such that h +— D (t, z, h) is a linear functional for given (t,z) € T x Z. Let A denote

the centered version of D, i.e.,

A(t,z,h) =w(t,z) (0/OR )p (z,h" (w)) h (w)
—Ez w(t, X) (9/00)p (Z, 1" (W)) h (W)] (S.7)

which is also linear in h. Letting B = pM 7 be as in Assumption 6, by linearity we

may write

1L, (t) = VAR, [A(t, Zi b — )]
— VRE, [A(t, Zi, b — B)| + VAE, [A(t, Zih— 1)
=, () + 1L, (£) . (S.8)

Given that (x = sup,ew[>X5_; p; (w)?]"/? and vk < ¢ (implied by Assumption 5),
Ck, — oo and thus M, [|p;||3, — co. In particular, >, [|p;||3, is bounded away



from zero as n — oo. By T, the desired conclusion will therefore follow from showing

kmn

Ml Sp ma (an]nw) (Vhfn )

||IIIb n ”T Sp mai(d kmanm .

Step 3a: ||IIL,, |7 In this step we show that III,,, defined in (S.8) satisfies

km,n

Il o s, (S5 10u0) " (i + 4557

for av,, given by Assumption 6. Given that

Mo (1) = VB, [A(t, Zi,h = h)| = Ed:\/_]En[ (ts Zis oy = Tom) |

Aty Zis ) = w (6,2) (8)Ohn)p (2, h* (w)) B ()
— Elw (6. X) (8/0hn)p (Z, 1" (W) b (W)]

by T, we may focus on bounding a single sup,cr|v/nEp[Ap (t, Zi, By — hp)]| in prob-
ability. For the remainder of this section we therefore drop the m subscript and write
(0/0h) p(Z,h* (Z)) for the scalar (0/0h,,) p(Z,h* (Z)). Let

Ak( ) (A (t thl) A<t7 Z’Hpk))/
Then CS implies

ML, .7 = sup VB, [At, Zi, p™' (7 = 7)] | = sup ‘\/_ {Eq[Af (t)]}/ (T —7)

teT
< |7 = 7|l sup | VaEL [k ()]
teT

Lemma S.7 tells us that ||7 — 7| Sp \/kn/n + k,“, so it remains to show that

sup [zt 0] S (nilh)

teT



By M it suffices to show the finite-sample moment bound, for any k£ € N,

B fsup [VaB.(a% 0| il

teT

Given that

k

<) E

Jj=1

supH\/_E [AF( )]H2
teT

sup‘\/_]E (t Zi’pj)ﬂ ,

teT

it suffices to show that

2 .
ngp\fE (t Zi,pj)! ] Slpilsy, Jed{1,... k}.

To this end, fix j € {1,...,k}, and consider the function class F; = F; (T) := {f :
2+ A(t,z,pj);t € T} For fi = f(;t1), fa = f(-;t2) € F; arbitrary, by T, J and
Assumptions 2 and 3,

|f1(2) = fa(2) |

= [ t2) w1, 0)] 55 (2,1 (), (w)

=B | 01,0 = 12, X)) g0 20 ()2, 07|
<o (b, 2) — (1 )| p (2. () o)

+E[|w<t1,> ot XV 2 p (2,1 (W)

s (9]

< ([ o s ()] ) s =

s () + B[ 0 (2,0 (7))

0 . N
< <‘ahp(z h* ( ‘+E Uahp(Z,h (W)) H) i lIwllts — 2|
= L1 (2) |lpsllwlits — t2||,

such that we may write

[f1(2) = f2(2) | S By (2) 1t = ol Py (2) = Cula (2) lIpslly



for some constant Cy € (0,00). Similarly, for f = f(-;t) € F; arbitrary, by T, J and

Assumptions 2 and 3,

£ = ko (1) o (2, () () — B |01, )

220 ), )|
S L (2) lIpsllyy

such that we may write

1f(2)] < Fy(2),  Fyy(2) = CoLa (2) [Ipsllyy

for some constant Cy € (0,00). Let C5 == C; V Cy and

Fj(2) = C3Ly (2) [|pslyy -

Then || Fj|lp2 < [Ipjllyy, so Fj is an square-integrable envelope for F; satisfying

[f1(2) = f2(2) | < F (2) [t — Lol -

Given that 7 is compact (Assumption 2), we must have diam (7)) < co. Pollard (1990,
Lemma 4.1) and the fact that covering numbers are bounded by packing numbers (cf.
van der Vaart and Wellner, 1996, p. 98) therefore combine to yield N (&, 7, ||-||) <
(3diam (7)) /e)* for e € (0,diam (T)]. Hence, by van der Vaart and Wellner (1996,
Theorem 2.7.11) and the previous display,

Nyl Fillpe, F, L2 (P)) < N (/2,7 |]) < (6diam (T) /e)* < (C/2)"*

for ¢ € (0,diam (7)] (and = 1 otherwise). The bracketing integral of F; therefore
satisfies the bound

Jiy (8.7, L2 (P)) < /06\/1 +Cln (1/¢)de.

Note that the right-hand side depends on neither j nor k. In particular, the integral
Ji1 (1, F;, L* (P)) is bounded uniformly in j € {1,...,k},k € N. By construction,
E[f(Z)] = E[A(t, Z,p;)] = 0 for any f € F;, so we may view the stochastic process
{V/nE,[A(t, Zi,pj));t € T} as an empirical process {G,(f); f € F;}. van der Vaart

10



and Wellner (1996, Theorem 2.14.2) therefore implies the finite-sample bound

E(IGull7] < Ji1 (175, L2 (P) IFllp2 S 1Ellp2 S lpillyy -

van der Vaart and Wellner (1996, Theorem 2.14.5) now shows

1/2

(EUGAI%]) " S E[IGulls] + I1Elra < lpsllw

which is the desired bound.

Step 3b: |III,,||7 In this step we show that III,, defined in (S.8) satisfies

Ty |l <p nax k.

m<d man

for a,,, given by Assumption 6. Given that

My, (t) = VB, [A(t Zi, b — hY)] = Zd: VB, [Ap(t, Zis b = 1,)]

as was the case for ||III,,||7, by T we may focus on bounding each right-hand side
term in probability and therefore drop the m subscript. For this purpose, fix £ € N
and consider the function class Fi = Fi (T) = {f: z — A(t,z,h — h*);t € T}. For
f=f(t), f1=f(,t1), f2 = f(:,t2) € F). arbitrary, arguments analogous to the ones
applied to handle ||III,,||7 establish that

1f1(2) = f2(2)

| < CiLy (2) | = bl [ty — ta]l,
1/ (2)] <

CyLy (2) || — B ||w.

Define C5 = Oy V Cy and Fy, (2) = CsLy (2) |h — h*||w. Then ||Fy|lp2 = Cullh —
h*||w < k= by Assumption 6. Hence F}, is an square-integrable envelope for Fj,, and
arguments analogous to the ones used for ||I11, ,||7 show that the resulting bracketing
integral J;; (0, Fi, L* (P)) is bounded by a constant independent of k. van der Vaart
and Wellner (1996, Theorem 2.14.2) therefore implies

E(IGullz) S Jiy (1 Fio L2 (P)) 1Fkllp2 S I Frllpe S B2

11



and the claim follows from M.

Step 4: [[IVy|l7

In this step we show that IV,, defined in (S.3) satisfies

||IV7—L||T SP max {\/ﬁrhM7km,n Sup T(Sm,k'm,n (t> + \/C}%m n kmyn 1n (km7n) /n
lsmsd teT ’

+ Rs,, konon \/1H (km,n/Ram,km,n) + Ckm,nThm,km,n}

where i, 7h,, k, 75, and Rs, i are defined in (3.5), (3.11), (3.12) and (3.13), respec-

tively. Given the decomposition

IV, () = v <EZ

~ BB (6, W) (% - 1 ()]

w (t,X) (2/0)p (Z,h* (W) {h (W) = h* (W)}

= 3 V(B[ 0. 3) OO (2.7 (W) i (W) = 15, ()]
= Bl (1 W) {Yins = 5 (W) ).

by T we may drop the m subscript and focus on bounding a single summand uniformly
over 7 in probability. For this purpose, recall that hj, and &y (¢, -) are the mean-square
projections of h*and § (¢, -), respectively, onto the linear span of p* and r,%k and rik (t)

are the mean-square errors resulting from these projections. Define

Ui (1) =B |3 (£, W) p* (W)] . (S.9)

By Assumption 5, the population least-square coefficients 7, = Q. 'E[p* (W) Y] are
well defined for all £ € N. Applying Lemma S.3, we see that the inverse of an =
E,[p*" (W;) p*» (W;)'] exists wp — 1. As a consequence, the sample least-squares
coefficients take the form 7 = Q,;:En [p*» (W;)Y;] wp — 1. Assuming—without loss

12



of generality—that @,;nl exists with probability one for all n,

VREwA{S (8, W) [h (W) = hy,, (W)} = VaEw {6 (£, W) p (W) (7 — m,)}
=y, ()" V(7 — my,)
= U, () Vi (Qu B [p (W)Yi] = my,)
= i, (t) Q! v/ (B [p" (Wi)Yi] = Ok, )
=, (1) Qi VnE, [P (Wi) {Y; — hy, (W)},

where Ey [-] denotes integration with respect to the distribution of W. By definition
of 6 (t,W) [see (3.8)] and iterated expectations, for a nonrandom function h of W

alone,
Elw(t,X) (0/0h)p(Z,h* (W))h (W) =E[5 (&, W)h (W)].
Using the previous two displays and adding and subtracting

VR, [0k, (t, Wi) {Y; = hy, (Wi)}]
= Vi, [p* (W) QLB (W) 8 (t, W) {Y; — by, (W;)}]
= U, (1) Q) By [P (W) {Y; = hu, (W3)}],

we may decompose IV, (t) as

IV, (t) = VnEw([8 (£, W) {h (W) = " (W)} = /0By [8 (£, W3) {Y; = b (Wi)}]
= VnEw {6 (t, W) [, (W) — b* (W)]} + VnBw[5 (¢, W) {h (W) = hy,, (W)}]
+ VB, [8 (8, W) {Y; — h*(Wi)}]
= VnEw (0 (t, W) {hi,, (W) — h* (W)}]
+ ok, (1) Q) — QEVAE, [P (W) {Y; — h,, (Wi)}]
+ VB, [0k, (8, Wi) {Y; — s, (W)} — 0 (1, Wi) {Y; — b (W)}
= IWVaon (t) + Vi (£) + Ve, (1)

13



By T it therefore suffices to show that

1 TVanllr < \/_Thknsupﬂskn (),

TVnll7 Sp mnkn In (k,) /n, and
1TVenllr Sp Rspn /10 (kn/Rs k) + CroThik, -

Step 4a: ||IV,,|l7 In order to establish the inequality
Vol < \/_rh kn sup Tokn (1)

recall that hy defined in (S.4) is the mean-square projection of h* onto the span of
p¥, so by orthogonality of projections we have E [6y, (¢, W) {hy, (W) — h* (W)}] = 0 for
each t € T. Now J followed by CS yield

[WVanllr = Visup [E[5 (1, 1V) e, (W) = b* (W)}
sup B [{, (1) = 8 (W)} {hw, (W) = ° (W)}]

<ﬁ|!hkn—h*\lp,2§ggll5kn () =0t )py = \/_mnsup'f’akn (t).

Step 4b: |IV,,||7 In this step we show that

ITVallr Sp /G K In (k) /.

Using the fact that mean-square projections and conditional expectations are L? (P)-

contractions followed by Assumptions 2 and 3, we see that

i (1) Qi M (1) = {Qi Bl (W) 8 (£, W)Y Qu{ Qi "Elp" (W) 4 (¢, W)]}
= E[0; (t, W)’] <E[ (t,W)*] < Elw(t, X)* (8/0h) p (Z,h* (W))?]
S E[(0/0h) p(Z, 1" (W))] < oo,

14



with an upper bound that depends on neither ¢ nor k. By the Min-Max Theorem,
Assumption 5, and the previous display, it follows that

e (8) QM1 = [ (1) Qi P11 1Q5 P (1) < Nl () Q1,21
< sup o (1) Qi ()] < oo,

keN,teT

thus implying supgen se7 ||V (1) Q' < co. By Lemma S.6 we have ||@kn —Qk, llop Sp
[¢2 In (k) /n]"/? — 0 under Assumption 7. Moreover, Lemma S.3 shows that [|Q;|op Sp

1. Using these observations and the previous display,
supl|tor,, (1) Qpt — vk, (1) Qi 'l = suplln, (1) Qi (Qk, — Qi ) Q%
teT teT
< 1@k, = Qrallop 1@, Tlop Sup [, (t) Q.

<p y/ ,?n In (k,) /n — 0.

From the previous display and supyen ser ||t (t) Q|| < oo it follows that

supl|¢k,, () Q!
teT

Observe also that, by the Assumption 5, the Min-Max theorem, and the fact that
E[p*(W){Y — hi(W)}] = 0 (which follows from h; being the mean-square projection
of h*),

B[ @it vk, [p (W) (¥ - e (W}

< EB[|Qp 2 VaE, [pF (W) {Y — b W)} []

=B [p* (W) Qi'p" W) {Y — hx (W)}?]

= E[U?pF (W) Q'pF ()] + E [p" (W) Q'p" (W) {hx (W) — ™ (W)}?],

where we have used U =Y — h*(W). By Assumption 4, E [U?|W] is bounded, so

B0 (W) Q" (W)] = EIE [U2W] p* (W) Qi 'p* (W)
SERE (W) Q" (W) = k.

15



Moreover, by Assumption 5,

E [p* (W) Qc'p" (W) {h (W) = h* (W)}?]
SE[[IpF (W) (W) = h* (W)F] < Gri e

Given Assumption 7, (277, = (Grnx)® — 0 as k — 00, 50

B[ @it vak, [ (W:) (% — b W] ] S k.
M now implies

|Qi /AR, [ (W) {Yi = b, W)} Sp b

Using CS we therefore arrive at

IWVonll7 = sup [, (8) Q! @k, — Q) Qi !V [ (W) {Y; = h, (W)}
<[l @ ViR [ (W) 1%; = b, (W) [ suplin, (' Q2 (Qn, — @)l
< @iV [ (W) 15 = ha, W[ 1Qx, — Qb llop suplin, (6) Q3
<o ko[ (ko) /.
Step 4c: |[IV,,|[7 In this section we show that
[TVenllT Sp Rog\/In (Kn/ Rog,) + CroThok -
Letting U; :=Y; — h* (W), we may decompose IV, (t) as

Ve, (t)
= VB (Ui {84, (6, W) = 8 (6 Wi)Y] = v/ B, (£, W) (I, (W) = b* (W)}
= IV () + Ve, (1) .

By T it therefore suffices to show that

1TVanllr Sp Rsp,/In (kn/Rsk,) and  [[IVenllr Sp CrnThiks-
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For the purpose of bounding |[IV4,||7, consider the function class Fy = Fi (T) =
{f:2z—={y—nh"(w)} {0 (t,w) — 0 (t,w)};t € T}. Note that E[f(Z)] = 0 for any
f € Fi, so we may view the stochastic process {IVy,(t);t € T} as an empirical
process {G,, (f); f € Fr}. For any t1,ts € T, by conditional J we have

10 (tr, w) = 6 (t2, w)| = |E[{w (i1, X) —w (t2, X)} (9/0h) p (Z, h* (W))| W = w]|
S E[[(0/0h) p (2, k" (W)W = w] [ty — ta| -

Consequently, using Assumption 3 and the fact that conditional expectations are

L? (P) contractions,

B[{6 (1, W) — 3 (6, W)F] S E { [F% mww»\w]}zl It —

2
<E { s @il ] It = ol S 1t — o]
Given that mean-square projections are also L? (P) contractions,

Qi E [p (W) 46 (11, W) = 6 (12, W3]
= [0 (V) B [ ) (8 1 >—6<tzaW>}D2}
E [{8 (12, W) = 6 (t2, W)}?]

so by CS and the previous two displays,

‘516 (tl) >_5k t27

" (w leE[ (W) {0 (t2, W) = 8 (t2, W)} ]|
‘pk w) —1/2H Hle/Q [ (W) {0 (t1, )—5(t2,W)}”(
P () Q| It =t (S.10)

IZANN/A

P
|
|

17



Thusv for any fl = f('atl)v f2 = f ('7t2) € fk: by T

1) = £ ()]
< Jy = b @) (85 (t1,10) = 3 (3,0 + 13 (1, 0) = 0 22, w)])
<Cly—n* @) { | @)7 QM7 + Ell@/0m) p (2.0 WHIIW = w] |11 - ]

= Flk: (Z) ||t1 — t2|| .
Moreover, for any f = f(-,t) € Fy,

[f (D) = ly = h* ()] |6x (¢, w) = 6 (£, w)]
<y =27 () |0k (- w) = 6 (- w)ll7 = Fax (2).-

Using Assumptions 3 and 4, the inequality (a + b)? < 2a® + 2b?, and the fact that

conditional expectations are L? (P) contractions, we see that

{W @ﬂﬂ+EH%thwwwwﬂ}]

{|%pZWﬂW*W”1

E[F (2)°] SE

<v [l ovy @] + e

< k+E[(0/0h) p (2, " (W
Given Assumptions 4 and 7, we get
BIF(2)] = B U 0 (5 W) = 8 (. W)IZ] S B {10 (W) =8 (W)I7] = iy = 0
as k — oo. Thus, defining F}, == Fy ;, + F5 ), we must have
E[F}, (Z)z] Sk+ Rik Sk as k — oo,
and it follows that F} is a square-integrable envelope for Fj satisfying

1fi(2) — fa(2)| < F (2) ||t1 — t2|| and |[[Fillp2 S < k2 as k — oo.

18



Using 7 compact and the previous display, van der Vaart and Wellner (1996, Theorem
2.7.11) implies that

Niy(el| Fillpa, Fi, L2 (P) < (C/e)™ e € (0,1],

and thus

Jiy (8. Fi. L (P)) </05 V1+dIn(Cle)de, &€ (0,1],

where the right-hand side does not depend on k. In particular, Jjy (1, Fy,, L? (P)) S 1.
Defining

o2 = sup B, [f(Z)]
f€Fky

we see that

o2 = sup By, [UZ {3, (t,W:) = 3 (t, W:)}?| < B, [U2(I0, (- Wi) = 6 (- Wi)|[F]
teT

such that

n

Blon] <B[U106, (W) =0 (W] S B [[10, (W) =8 (, W)IF] = RS,

There are two cases: (1) Rsg, /|| Fr,llp2 — 0 and (2) Rsg, /|| F,|p2 = 0.
Case 1: Rsp, /|| Fr,llp2 — 0. Given that /E[02] < CiRsk,, by the change of
variables ¢’ := ¢/C} we have

Iy (VE2/ 1 ln2s Fi L2 (P)) < iy (CiRag /| P lpas Fio o 12 ()

Rs ke /1 Frer Il P,
:Ol/ " * P2\/1+dt1n(03/8/)d5/
0

= Cle (R(s,kn/||F]€n||P72) . (S.ll)

van der Vaart and Wellner (2011, p. 196) establishes the maximal inequality

B[IGul5,] < i (VEIA/NFw 2 Fi L (P)) IFi,
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The previous two displays show that

E[IGullz, |) S 71y (Bsra/I1Fx, llp2) | Fe, | p2

and from van der Vaart and Wellner (1996, p. 239) we know that an integral of the

form [J[1 + In(1/u)]"/2du—as in (S.11)satisfies [[1 + In(1/u)]"2du < §,/In(1/6)
as 0 — 04. Since Rsy, /|| Fsk,|lp2 — 0 holds by hypothesis, the previous display

combined with ||Fy, ||p2 < vk, and M yields

1Gull7, Sp (Ropa /| Frllp2) \/1n(||FanP,2/Ré,kn)HFkn||P,2

= Rsjo\/In (| By, | P2/ Rok) S Rsjen/In (kuf R, ).

Case 2. Rsp,/||Fi.llp2 - 0. Given that Rsj, — 0 (Assumption 7), we must
have ||Fj,|lp2 S Rsk. van der Vaart and Wellner (1996, Theorem 2.14.2) and
Jiy (1, Fi L2 (P)) < 1 yield

ki
EIGullz, | S Ji (1, Fe L2 (P)) | Fiullpz S 1 Fkllpz S Rok, S Rogoy|In (RM )

M now yields the same rate as in Case 1. In either case, we observe that [|[IVy,|7 Sp

Ré,kn \/ lIl (kn/R&kn)

For the purpose of bounding |[IV.,|r, consider the function class Fj = {f :
z = 0 (t,w) {hx (w) — h* (w)};t € T}. Note that, by orthogonality of mean—square
projections we have E[f(Z)] = 0 for any f € F}, so we may view the stochastic process
{IVen (t);t € T} as an empirical process {G,(f); f € Fi, }. For any t1,t5 € T, using
the bound in (S.10) we have that f1 = f (-;t1), fo = f (:;t2) € Fy, satisfy

£1(2) = fo ()] = [0 (b1, w) = 0k (£, w)| | (w) — h* (w)]
< pF () Q2| (w) = B (w)[[[t2 = o]
< Gl (w) = B (w)] [t — ta]

The previous display implies

[f1(2) = f2(2)] < P (2) [[ta = tal|,
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for Fix (2) = C1¢k |h (w) — h* (w)| and some C; € (0,00). Since conditional expec-

tations are L?(P) contractions, by Assumptions 2 and 3,

B (L, W) = B [{E[w(t, X)’;p(z, W) |[w] }21

(2.0 (W)F| S B[ a0p (20 (1) < ox,

a
< 27
<E lw(t,X) P

thus implying sup,. E[6 (¢, W)2] < 00. By CS and using that mean—square projec-

tions are L? (P) contractions as well, we get

81 (£, w)| = [p* (w)’ Q' Elp* (W) 8 (¢, W)
<|lp* () Qi @k PELRT (W) 6 (¢, W]
< [Pt )| Bl (6.9 S G

which implies that for any f = f(-;t) € Fy,
1f ()] = 6% &, w)| [, (w) = h* ()] S G [ (w) = h* (w)].

The previous diplay shows that |f (2)| < Fy (2) for Fop (2) = Coly |hg (w) — h* (w)]
and some Cy € (0,00). Let C5 := Cy V Cy, and define Fy, (z) = C3Cx |h (w) — h* (w)] .
Then by Assumption 7,

| Fillp2 = CsCkl|/hk — h*||p2 = CsCerni — 0 as k — oo.
In particular, | Fg|p2 S 1. Now, Fy is a square-integrable envelope for Fj, satisfying
1 (2) = f2(2)] < Fi (2) [[t1 — to -

Using 7 compact and the previous display, by van der Vaart and Wellner (1996,
Theorem 2.7.11) we see that

Niy(el| Fellpe: Fis L (P) < (C/e)™, e € (0,1],
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and thus

J) ((5,.7-"k,L2 (P)) < /05 \/1+dtln(C/e)de, J € (0,1],

where the right-hand side does not depend on k. In particular, J;j (1, Fy, L* (P)) < 1.
Using van der Vaart and Wellner (1996, Theorem 2.14.2) J;j (1, Fy,,, L* (P)) S 1, we

arrive at

E|IGull7, | < I (1 Frns L2 (P)) 1 Fullpz S 1Fkllpz S Chuhok

S.3 Proofs for Section 3.2

Define the stochastic processes G* and G by

G (t) = \/15 S 6G(t,Z) and G (t) = 1 S &g (t, 7).
i=1 1

n .z

which are the ‘uncentered’ versions of G and G* defined in (3.18) and (3.15), re-
spectively, i.e., the displayed processes are not centered at the sample mean. The

following lemma shows that the uncentered processes are asymptotically equivalent.
Lemma S.1. If Assumptions 1-8 hold, then maxi<s<p||GY — G5¥||x, —p 0.

PRrROOF OoF LEMMA S.1. The proof proceeds in a number of steps parallelling the
proof of Lemma A.2. It suffices to establish the claimed convergence for given /. We
therefore drop the ¢ subscripts throughout, refer to the (¢th) index set (X;) as T

itself, and use d; for its dimension.
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Step 0 (Main)

For fixed t € T a decomposition yields

G"(t) — G (t) = VnE, €49 (1, Z) — g (t’ Zz)}]

—[b(t) = b (t)V/nE, [sz <Z>]

—b(t) VnE, [&{5(Z) — s (Z)}]

+ VB, [6(0 (8 W) {Y; = h (Wi)} = 6 (W) U;)]

=T, (t) + 10, (£) + 111, (t) + IV, (¢). (S.12)

where U; = Y; — h*(W;). The following steps show that the four remainder terms

—p 0 uniformly over 7. The claim therefore follows from T.

Step 1: ||I,||r —p 0

Assumption 1 and M implies that B —p By interior (also under Hy), so letting N
be the open neighborhood of §y provided by Assumption 3, BeNw — 1. To
simplify notation and ensure that objects are globally well defined, in what follows
we will—without loss of generality—assume that B € N with probability one for all
n. Assumption 3, a MVE, J and CS followed by T then imply

Il < 15 = ll s | VAT [0 (8, ) 7002 1 O H]
teT B
V= s B e 0.0 { 2o B 090) = otz i)}

= Ia,n + Ib,n;

23



where 3 satisfies ||3 — Bo|| < ||8 — SBo|| such that also 5 € . Per Assumptions 2 and
8.2, J and M,

- -~ 0
L, < V1|5 — Bol|En |§z| SUP |w (¢, X;)] Haﬁ B, h (W;)) — %p(zivﬁoa h* (Wz))|H
< VallB — BolEn _|@-| d (Z;) (1B = Boll + IIh (W3) — b (W3)]])]

<Vl - ol [J6l @ (Hﬁ foll + V& marx I = 7 ) |

SeBla (2)] Va3 - sl (118 - 5o||\/maX||h —h:;nw),

which —p 0 also by Assumption 8.2. By now familiar arguments (see the proof of

Lemma 1), each function class

J 8/8]

may be proven Donsker. Weak convergence of /nE,[§w (-, X;) (0/08;) p(Zi, Bo, h* (
in L> (7)) follows and, therefore,

]-"-::{( 2) = ow (t,r) — 0 (,60,h*(w));t67}

sup
teT

0
VnE, [fiw (t, Xi) %P

fﬂz[ Wit %) 2

(Zi, Bo, b (M))] ||

0
86]

< max sup
1<]<dﬁ teT

p(Zi, Bo, h* (VVZ))H <p 1.

It then follows from 3 —p 3y that also L., —p 0, and, thus, ||L,||[7 —p O.

Step 2: ||IL,|lr —=p O

By CS, 1I,, defined in (S.12) satisfies

I ll7 < [V, €5 (

‘ sup Hb —-b(t)|,
teT

To show ||IL,||[7 —p 0, it therefore suffices to show |[v/nE, [&s(Z)]|| <p 1 and
supger[b (t) = b (¢)[| = 0.

24
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Step 2a: |vnE, [&s(Z:)]|l Sp 1. Given that the &’s are i.i.d., zero-mean, unit

variance and independent of the data we have

|| = ls (Z01].

The desired ||v/nE, ;s (Z;)]]| Sp 1 now follows from iterated expectations, integra-
bility of ||s (Z) ||* (Assumption 1) and M.

E ||| Vak, s (2

Step 2b: Behavior of b. In this step we show that
(a) sup[[b(t) =b () =0 and (b) sup[lb(t)]| e 1
teT teT

with b and b defined in (3.7) and (3.21), respectively. To show (a), note that the
argument used in Step 1 of the proof of Lemma A.2 shows that
(t,8) = Elw(t,X) (0/08) p(Z, 3, h* (W))] is uniformly continuous on 7 x B,
and sup ||(E, — E)w (t, X;) (8/9B) p (Zi, B, h* (Wi)|| = 0,

TxB

where B C A is any closed set containing f3, in its interior (Assumption 1). By T we

have
~ 9, S~ 0 5 .
iél;)“b(t) —b(t)] < sup En [W (t, Xi) {86 (Zi, B, h (W3)) — %P(Zmﬁ,h (Wz))H H
.
oup |5, ~ Ex) | 0,0 oot B (2]
sup B2 o (1) (25,0 )| =00

Given that 3 € B wp — 1, the second and third term on the right —p 0 due to
uniform convergence and uniform continuity, respectively. By T and Assumptions 2
and 3, the first term is bounded by a constant multiple of

Eu[a(Z) |1 (Z:) — h* (Z)||] < d°Ey [a (Z:)] max by — b 15y

1<m<d

S

P
e max [ = oy 5 0,
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where the <p follows from M and the —p 0 from Lemma S.7. The previous display
finishes the proof of (a) and therefore the proof of Step 2 (||IL,,||7 —p 0).

To show (b), note that the argument used in Step 1 of the proof of Lemma A.2
also shows that sup,c+||b(t)|| < 1. Two applications of T yield

> > > P
supl[b (£)[| — Sup||b(t)||‘ <sup [[b ()] = [ @] < suplb () = b (®)] =0,
teT teT teT teT

which combined with sup,.||b (¢)|| < 1 implies sup,er||b ()| <p 1.

Step 3: ||IIL,||7 —p O

By CS, I1I,, defined in (S.12) satisfies

1Ll < [V, (645 (2) = s (Z}] | sup [b ()] (5.13)

By Step 2b, sup,r||b (t)|| <p 1, so to show ||IIL, || —p 0, it suffices to show that
" P
|VRE, [6(3 (Z) — s (Z)})]| = 0.

To this end, note that by the &;’s being i.i.d., zero-mean, unit variance and indepen-

dent of the data, and Assumption 8, we have

B[ |[Vika (645 (2) - s (20}

(Z)] =B [I5(2) - s(27] o,
so ||[v/nE, [&45(Z;) — s (Z;)}]|| —p 0 follows from Lemma S.9.

Step 4: ||[IV,|]l7 —p 0

Given that IV,, defined in (S.12) may be written as the sum

Vo () = 3 Vi, [6{0m (&, W) {Vons — T (W)} = 6 (8, W3) Unii}] |

it suffices to bound each summand uniformly over 7 in probability. We therefore

omit also the m subscript for the remainder of Step 4 and interpret (0/0h)p as a
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scalar derivative. By T, the (mth) summand satisfies the uniform bound

sup |V/nEy, [640 (1, W) {Y; = h (Wa)} = 8 (6. W) U}

teT
< sup |V, [§UL0 (8 W) — 3 (1, W)} |
o+ sup VA, [&6 (8, W) {h (Wi) — h* (W)}]| = IIVaull7 + [TViullr. (S:14)

We consider each term on the right-hand side in turn.

Step 4a: ||IV,,|l7 —p 0. Recalling the definitions of d; and v, in (S.5) and (5.9),
respectively, we may write 0y (£, w) = p* (w) Q' (t), such that by T,

ViE, [&Us* (W) Q5w (0)]

”IvamHT = sup
teT

De, (1) Q) = Qi IVAE, [p (W) &U]

< sup
teT

+sup (¥, () =, (O Q1 VAE, [ (W) €U

+sup ‘\/ﬁEn (& Ui {65, (t, W) — 6 (¢, Wi)}]!

= ”Iva,LnHT + ”Iva,ln”?’ + ||1Va,3,nHT= (8'15)

where we employ the convenient shorthand

o~

0ul0) = B 34 () (0. X) 3 0(, 3R 7))
as defined in the (auxilliary) Step 4c below.

Step 4a(1): ||IVai.ll7 —p 0. Using Assumptions 4 and 5 and the §’s being

i.i.d., zero-mean, unit variance and independent of the data,

| = Bievs vy gt )
= E[U*p" (W) Qplp™ (W)]
E[p* (W) Qp" (W)] = ku,

|| Q. Vi, [ (W) U]

AN
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so by M we have

@z v, [ (W) 6]

’ p \/17 (S.16)

Step 4c¢ shows that supteTHian (t) @,;}H <p 1, so by CS, Assumption 5, Lemma S.6,
and the previous display,

D (8) QN (@, — Qi) Qi VB, [p (W) &U]
< | Q. VRE, [P (W;) &U]
< |Qu! ViR, [p (W) &
S @nt Vi, [t W) 60 1@, = Q. lansup [, 1) Q!
e v kalGE, 0 (k) /0]% = [GE o T (K) /]2,

”Iva,l,nHT = sup
teT

SUPHW ) Qe (Qk, — Q)

teT

1@k = Quallop sup [, (2) Q)

which — 0 by Assumption 7.
Step 4a(2): ||[IVa2xll7 —p 0. By CS, Assumption 5, (S.16) and Step 4c,

IWVazally < Q0 VAE, [p (W) €U
< Ju v, ot v 01

sup HQan () = ¥r, (t)H

sup [V, () =, (8]
teT
o Vi | (B[R]} G (1 oll v s e = )
kn /
+ (Dl v
— (B[R @]} ol (18 = Boll v s e = B2
kn

kn N
+(Slnaly) Ty
j=1

which —p 0 by Assumptions 7 and 8.4.
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Step 4a(3): [|[IVa3nll7 —p 0. Fix k and let
wo={(v,2) = o{y — h* (w) H{or (t,w) — 0 (t,w)};t € T}

Given that each E[f(¢,Z)] = 0 for each f € Fj, the stochastic process IV,, may
be viewed as an empirical process G, indexed by the changing classes F; . For
f=rfofi=fu fo = fi, € Fj, arbitrary, by arguments parallel to those used in Step
4c¢ in the proof of Lemma A.2, there exists a function z — Fj (2) such that

and || Fi|lp2 S Vk. The &’s being zero mean, unit variance and independent of the
data implies that F} : (v, z) = |v|F} (2) is an envelope for F|, with (E[F}(¢, Z)?])Y/? =
| Fxllpe < VE as k — oo, satisfying

[f1(s,2) = fa (s, 2)| < Fy (s,2) [ty — ta.

Using T compact and the previous display, by van der Vaart and Wellner (1996,
Theorem 2.7.11) we see that

N (e(BIFL(E, 22, Fi L2 (€, 2)) < (C/e)™, e €(0,1).

and thus

J[ (5,}}2,[12 (&, Z)) < /0(S \/1+dtln(0/€)d€, 5 € (0,1].

where the right-hand side does not depend on k. In particular, Ji (1, Fi L* (&, Z )) <
1. Defining

o2 = sup E,[f(&, Z)?]
fer;,

we see that

o2 = sup B, [CU? b, (t,W;) — 8 (, Wi)}?| < By [QUZ|0k, (W) = 5 (- Wi)[3]
teT
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thus implying
E[02] < B[00k, (W) =8 (. W)IF] < CE |16, (. W) =0 (-, W)[3] = CRY,

where the second inequality follows from the &;’s being zero mean, unit variance, and
independent of the data and Assumption 4, and the last equality follows from the
definitions of 0, and Rsy [the latter in (3.13)].

It suffices to consider the two cases (1) Rs, /|| Fk, ||p2 — 0and (2) Rs, /|| Fk. |l p2 =
0 in turn. Case 1: Rsy, /|| Fk,|lp2 — 0. Given that /E[02] < CRyy,, by the change

of variables ¢’ := ¢/C' we have

‘]H (\/ E[gg]/HFanR?v"TI/wLQ (57 Z)) < ‘]H (CR57kn/||Fkn||P,27Fl:;7L2 (ga Z))

Rk /| Fren |l P,
:C/ B Pz\/l—i—dtln(C’/g’)de’
0

= Cj[] (R67kn/||Fkn ||p72) . (817)

By van der Vaart and Wellner (2011, p. 196) we have the maximal inequality

EllGull7 ] S i) ”—VFka L& 2) ) || Pl o
- Rs . )
< J L F ,
< (g ) 15l

and from van der Vaart and Wellner (1996, p. 239) we know that an entropy in-
tegral (bound) of the form (S.17) satisfies Jij(6) < 64/In(1/0) as & — 04. Since
Rs k., /|| Fk, |l p2 — 0 holds by hypothesis, the previous display combined with || Fy,, || p2 <

Vk,, vields

n||F, S) F T lIl = : n n 111 “ =
[H H kn] || kn, Hl 72\l Ré,k H g HP’Q 67k R5,kn

5 Ré,kn \/ 111 (kn/Rd,kn)-

Case 2. Suppose that Ry, /|| Fr,|p2 - 0. Given that Rsy, — 0 (Assumption 7),
we must have [|Fy, ||p2 S Rsk,. van der Vaart and Wellner (1996, Theorem 2.14.2)

~
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and Ji1 (1,7, L% (£, Z)) $ 1 yield

EllGull7 1 < Jy (1, Fiy, L2 (€, 2)) | P, |l 2

S Fkallp2 S Rok, S Rogo/In (kn/Rsk,)

as in Case 1. The claim ||IV, 3 ,|/7 as defined in (S.15) —p 0 now follows from M and

Rs g, \/In (kn/Rsx,) — 0 (Assumption 7). Via (S.15), this —p 0 in turn shows that
IIVanll7 as defined in (S.14) —p 0.

Step 4b: |[IV,,|lr —p 0. Employ the shorthand 1 (¢) defined in (S.18) below,
such that 0y, (t, W;) = p*(W;)'Q; "bi(t). Step 4c shows that sups||dn, (1) Qilll Se 1,
so by CS it follows that

Dr (0 QB [ (W) &R (W) — 1 (W)} |

1TVip]|7 = sup
teT

sup vy, (1) Q!

teT

< |[vaE. ot (W b (W) - (W)

Sp

VB, [ (W) & (W) — i (]|

To show that the right-hand side —p 0, note that by the &;’s being i.i.d., zero-mean,

unit variance and independent of {Z;}7, and h being {Z;}?-measurable,

2

| |VaE, [p (W) & {h (W) - b* (W)

17:31]

kn o~
= B [l W IPh (W) = b (W] < ( Sllosl ) IR — 2712,
j=1

2

< |( %Z_éllmll%)l/z (Vinfr+ k) | 0.

where the <p follows from Lemma S.7 and the — 0 from Assumption 7. Lemma S.9
then implies ||v/nE,[p" (W;) &{h (W;) — h* (W;)}]|| —p 0. This —p 0 finishes the
proof of the claim that ||IV,,||7 as defined in (S.14) —p 0, which in turn shows that
|IIV.,.||7 as defined in (S.12) —p 0.
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Step 4c (auxilliary): Behavior of ¢, and Q,;n. Motivated by the LOIE, we
estimate ¢ (t) = E[p* (W) (¢, W)] as defined in (S.9) by

—=p(Zi, B, (W) . (S.18)

Note that this definition allows us to write § defined in (3.22) as
(t,w) = 3 (t,w) = p* (w) Qi i, (1) .
This section shows that
(a) sup |, (6) — v, (t)]
teT
1/2 ~ ~ .
e (B[R 2]} G (18 = ll v mas o = Ko lnz)
1 kn 9 1/2
7 (Xleli) o

(b) sup [, (1) Qp,, = ¥, (1) Q)

and (c) supH@ZJk Q;;LH Sel
teT

To show (a), recall A (t,z, h) from (S.7) and define
Af (t> = (A(tv Zi7p1)7 ce ,A(i, Ziapk))/~
Then by T we have

sup [, (1) = . 1)

i@? B o (0 X0 { o2 BB W) S0l (W) 09|

+ sup||(E, — E) A" (1)].
teT
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By Assumptions 1, 2 and 8 and T followed by CS and M,

sup [ 11 ) {fhmzi, B 00) — o (0 bt )|
<E, [Hpkn 7:) (1B = Boll + b (Wi) = b (Wi)])]
e (B[R @)} o (18 = Boll v s e = Tz

which —p 0 by Assumption 8.

Moreover, the argument used in Step 3a of the proof of Lemma A.2 shows that

sup 5 [t 0] | 5o (i) v

teT

Lemmas S.3 and S.6 and Assumptions 5 and 7 show that @kn is invertible wp — 1
and A (Qr, )" <p 1. To ease notation we will (without loss of generality) assume
that Q,;nl exists with probability one for all n, such that CA),; = @,;1 The argument
used in Step 4b of the proof of Lemma A.2 shows that sup.|¢y, (1) Qulll S 1,50
by (a) and T,

sup| |, (¢) Q! = ¥, (' Qx!
< sup [{x, (8) = v, (OY Q| +sup o, (1 (@) — Q1)
< ||©l;n1”0p§37PH1/}kn ) = U, (¢ H+SUPH¢kn "Qi) (Qr, — Qr,) Q)

<HQEJHOp@ggH%n(t)—%n )| + 10k, — anHopsuprkn Q.

)5

which shows (b). Part (c) follows from (b) and sup,er||¢w, (t) Qx| < 1. This
concludes the proof of the claim that ||IV,|7 as defined in (S.12) —p 0 and hence
the proof of Lemma S.1. O

Lemma S.2. If Assumptions 1-8 hold, then

max [|E,[Ge (-, Zi) — g¢ (- Zi)]l|, ~ O-

1<l<L

ProoF oF LEMMA S.2. The proof proceeds in a number of steps. Since the lemma

is stated for a given ¢, for notational convenience we drop the ¢ subscripts throughout
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and refer to the (¢th) index set X, as T itself.

Step 0 (Main)

For fixed t € T we may write

Ea[§(t, Z:) — 9 (8, Z)] = En |w (. X:) {p(Zi B, 1 (W2)) = p(Zi, Bo, b (W)}
—{b(t) = b (O} En [s(Z)] = b (1) By [5(Z:) — 5 (Z)]
+Enl6 (8, W) {Y; = b (Wi)} = 6 (t, Wi)' U]
=1, (t) + 1L, (t) + IIL, (t) + IV, (¢) .

The following steps show that the four remainder terms —p 0 uniformly over 7. The

claim therefore follows from T.

Step 1: HInHT —p 0

Assumption 1 implies that 8 —p 3, interior (also under Hy), so letting A/ be an open
neighborhood of 3y, B € N wp — 1. To simplify notation and ensure that objects
are globally well defined, in what follows we will—without loss of generality—assume
that 3 € N with probability equal to one for all n. A MVE of 3 o(Z;, B, h (W)
at B around [, followed by CS show that

ILallr < SuplE o (8 X5) {p(Zs, o, B (W) = p(Zs s 7 (W)}
+ 13 = Boll supllEaLw (¢, X,) (9/08) p(Z2, B (W)
= Manllr + 113 = Goll el

where 3 satisfies |3 — So|| < ||f — Bol| such that 3 € N. Since ||§ — Bo|| —p O it
suffices to show that ||I,,|l7 —p 0 and ||I,,||7 Sp 1. Step 1 in the proof of Lemma
A.2 shows that

sup|| Lo (£) = b (2)|| B0 and sup||b ()] < oo,
teT teT

which combine to yield ||Ip.,|l7 Sp 1.
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Step la: ||I,.|l[7 —p 0. Abbreviate (z,v) — p(z,00,v) by p. By a MVE of
v p(Z;,v) at h (W;) around h* (W;) and T we may bound ||I,.,||7 by

sup | En [w (t,Xz-){ ai/ (Zi, h (W) = ai/ (Zi,h* ( i))}{ﬁ(Wi)—h* (Wi)}H
sup B, [ (0. X0) ol (V)R 9 — (9|

= HIa,l,nHT + ||Ia,2,n||7’a

where || (W;) — h* (W;)|| < ||h (W;) — b* (W;)]||. By T, CS, Assumptions 2 and 8 and
M

Y

e pallr < BB (Z:) B (W:) = B* (W) |*) Sp B[R (Z)] max [l — by, [y 0.

1<m

Similarly, by T, CS and Assumptions 2 and 3,

0 . = «
ool S B || ol (V)G (09 — 1 7)) |
S || 5oz (W) | max i, — 1 |
~ n oh 2 7 1<m<d m m W
< * s
~P 1gla§d||h hmHW — 0,

where the <p follows from M and ||(0/0h) p(Z, h* (W))||* being integrable (Assump-
tion 3) and the —p 0 from Lemma 5.7.

Step 2: ||IL,||r —=p O

Step 2b in the proof of Lemma S.1 shows that sup,.r||b(t) — b(t)|| —p 0, so by T,
CS, Assumption 1, and M

(ML |7 < (I [ ( i)]||§gr>||5(t)—b(t)ll Sp fggllg(t)—b(t)llg(l
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Step 3: ||IIL,]|7 —p O

Step 2b in the proof of Lemma S.1 also shows sup,.||b (t)]| <p 1, so by T, CS and

Assumption 8,

1/2 p

MLy < .5 (Z0) = s (Z0)suplb ()] <o {E 1520 — s (2]]} " Bo.

Step 4: HIVnHT —p 0

Given that

E,[0 (t, Wi)' {Y; — h (W)} — & (t, W;)' U}]
= f B[O (8, Wi) {Yoni = B (Wi)} = 81 (£, W;) U],

m=1

by T, it suffices to bound each right-hand side summand uniformly over 7 in proba-
bility. We therefore drop also the m subscript for the remainder of this step. Now, for
fixed ¢ € T, adding and subtracting p*» (W;)’ anlwkn (t) U; [with U, defined in (S.18)],
recalling that &, (t,w) = p* (w)' Q; "¢k (t) we may decompose (the mth summand) as

follows:

E, Ui (t, W) = 8 (t. W)} — B [6 (8, W) {7 (W) — h™ (W)}

= dp, (1) Q1) = QuDE™ (W) U ] [Dk, (£) = Wp, (D] Qr Enlp® (Wi) Ul
+ B [Uif 6, (8, W2) = 6 (8, Wi)}] = e, (1) Qi Elp™ (Wi) {A(W;) — h™ (W;)}]
IV (£) +IVe, (t) + IV, (B) + IVd,n (t).

The desired ||IV,||7 —p 0 will follow by T if we can show that the four remainder
terms —p 0. To this end, note first that by Assumptions 4 and 5

E Q¢ Enlp® (Wi) Ui)I?] S E[I1Qk ZEalp® (Wi) Ui]|1?] = E[U2p* (W) Q;'p* (W)]/n
SERF (W) Q' (W))/n = k/n,

so by M and Assumption 7,

Qi Enlp®™ (W) Uilll Sp \/kn/n — 0.
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Step 4c in the proof of Lemma S.1 shows that supteTH@Ekn (t) @,;}H <p 1. Moreover,
Lemma S.6 show that [|Qr, — Qk,llop Sp [, In(k,)/n]"/? = 0, so by the previous
display, CS and Assumption 7,

Vanllr = H@an (t) Q) (Qk, — Qr) Qi B [P (W) U] .
< HQI;:En {Pk" (W;) Uz':| 1Qk, — Qunllop 23712 )Wkn (t)/@:nl

e (ka/m)* {2, ()} = 0.

Step 4c in the proof of Lemma S.1 also shows that supteTH@an (t) =y, (t)]| —p 0, so
by CS,

TVonllr < |QulEn [P (W:) U]

sup [, (6) = ¥, ()] 5 0.
Step 4c in the proof of Lemma A.2 shows that

IIVenllter = iH;)!En[Ui{(Skn (t, Wi) =6 (t, W)}l Sp Rsg,\/In(kn/Rs,) — 0.
S

Lastly, by CS, Lemma S.7 and sup,c ||t (t)’ @,;:H Sp 1 we get

IV anllr < [En o (W3) £ (W3) = i (W)} sup [, (6) Q3

kn 1/2 R N N
S(Xile) o o = b losup [, (0 Q!
j=1

1<m’/<d
En ) 1/2 o
<o (Lll) s, (Vi + 230).

which — 0 by Assumption 8.4. This finishes the proof of [|E,[g (-, Z;) —g (-, Z:)]|lT —p
0. ]

PROOF OF LEMMA 3. Since the lemma is stated for a given ¢, we drop the ¢ sub-
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scripts throughout and refer to the (¢th) index set A, as T itself. Then by T,

IG = Gillr = [VaE. [(& =€) (-, Z)] — ViEa [(& - €) 9~ Z)]| .
= |V, [€§ (-, Z)] = ViR (69 (- Z:)] = V- § - Balg (- Z:) = g (-, Z5)]
= |Gr =G = V€ Eala (- Z) — g (- 2],
<NG" = Gitllr + 1V - €l Eald (-, 2] = Enlg (- Z)] -

.

The first term on the right —p 0 by Lemma S.1. Given that /n - & ~ N(0,1),
certainly |\/n - £| <p 1. The second term therefore —p 0 by Lemma S.2. O

S.4 Supporting Lemmas

For now, let () and @ be symmetric but otherwise arbitrary random matrices of
possibly growing dimension. Also, denote the smallest and largest eigenvalue of a

matrix A by Apin (A) and Ayax (A), respectively.

Lemma S.3. If \uin (Q) = ¢ wp — 1 for some constant ¢ € (0,00) and ||CA2—QHOp —p
0, then Q is invertible wp — 1 and )\min(@)*l <p 1.!

Proof. Given that the eigenvalues of a symmetric (hence square) matrix A are bounded

in absolute value by the operator norm, for conformable vectors v,

in(Q) = i {#Qu+v/(Q ~ Q)
2 )\min (Q) - Amax(@ - @)
2 )\min (Q) - ||@ - QHOP’

It follows that

P (Muin(@) < ¢/2) <P (Auin (@) = 1Q ~ Qe < ¢/2)
<P (10 = Qllop = ¢/2) +P (huin (Q) <€) = 0,

50 P(Amin(Q) > ¢/2) — 1. Hence, Q is invertible wp — 1, and its smallest eigenvalue

is bounded away from zero in probability. m

IThis is Newey (1995, Lemma A.4) except that we state convergence in terms of the (weaker)
operator matrix norm instead of the (stronger) Frobenius norm.
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For now, let Y, H € R", P € R™** be arbitrary and of possibly growing dimensions
n and k and abbreviate U =Y — H, 7 := (P'P)” P'Y and H = P7.

Lemma S.4. For any m € R”,

|H — H|?> <U'P(P'P)” PU+ ||Pr—H|?,
|H — Pr||> < 2U'P (P'P)” P'U +2|Pr — H|]%.

Proof. Generalized inversion preserves symmetry, so Pp := P (P'P)” P’ and Mp =
I,xn — Pp are symmetric idempotent. Given that also PpP = P [see, e.g., Rao (1973,
1b.5(vi)(a))], for any fixed 7 € R¥, we must have

|H — H|]* = |PpY — H|* = ||PpU — MpH|* = U'PpU + HMpH
= U'PpU + (H — Pr) Mp (H — Pr) < U'PpU + ||Pr — H|]?,

where the inequality follows from the Min-Max theorem and an idempotent matrix

having only zero or one eigenvalues. Similarly, abbreviating H, = P,

|H — Pr|* = |PpY — Hy||* = ||Pp(U + H — Hy)||?
=(U+H — H,)Pp(U+H — Hy)
<2U'PpU + 2(H — H,)Pp(H — H,)
<2U'PpU +2||H, — H|%,

where the first inequality follows from (v + w)'A(v + w) < 2v"Av + 2w Aw for A

positive semi-definite (p.s.d.), and the second from idempotency of Pp. n

Next, interpret {(V;, W;)}] as i.i.d. R!'™-valued random variables with d € N
(fixed), E[Y?] < oo, W = supp (W), and let p* : RY — R* be a nonrandom vector
function of possibly growing length satisfying (x = sup,ep ||p" (w) || < oo for all
k € N. Also, define h(w) = E[Y|W = w], 0 (w) = var(Y|W = w),w € W, and
Ui =Y; — h(W;) and let U and P be the n x 1 vector and n x k matrix of U;’s and
Pk (W;)’s, respectively.

Lemma S.5. E[U'P (P'P)” P'U] < ||o®|lw (n A k).
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Proof. By the i.i.d. assumption, the positive semidefinite (p.s.d.) matrix

E[UU {Wi}}] = diag {o* (W)}

1

Given that Pp = P (P'P)” P’ is also p.s.d., using tr (AB) < A\pax (A) tr (B) for A, B
p-s.d., we get

E|U'P(P'P)” PU|{Wi}]] = tr (E[UU'|{W;}}] Pp)

< max o (W;) tr (Pp) < ||o?|jwtr (Pp).

1<i<n

Now, tr(Pp) = tr((P'P)~P'P) = rank (P'P), the latter equality following from Rao
(1973, 1b(ii)(a)). The claim now follows from rank(P'P) = rank(P) < n A k upon
taking expectation over the W;’s. O

Lemma S.6. If the eigenvalues of Qy = E[p* (W) p* (W)'] are bounded from above
uniformly in k, then Qy, = By [ph» (W;)pk»(W;)] satisfies

2 2
}Sgknlnkn+ /Cknlnkn.
op n n

Proof. The matrix Qy is the average of the n independent p.s.d. k x k-matrix valued

B | - o,

random variables p* (W;) p* (W;)" with the matrix Qj as their common mean. Given
that

|p* (W) pF (W)’

op = [t vyt vy |,
= [en(p (W) (W2 (W) (W)

these n random matrices are bounded in operator norm by ¢Z. By hypothesis,
1Qkllp = [Amax (QLQ]Y? = Mnax (Q) < 1 as k — oo. The claim now follows

~

from Belloni et al. (2015, Lemma 6.2), which builds on a fundamental result obtained

by Rudelson (1999). O

Lemma S.7. Let 0% be bounded on W, the eigenvalues of Qy = E[p* (W) p* (W)']
bounded from above and below uniformly in k, let # € RF satisfy |p¥7 — h|w< k=@
for some a € (0,1), and define h = p¥7F and h = pM7, where 7 = @,;nEn[pk"(W/,)K]
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Then, provided k,/n — 0 and ¢ In (k,) /n — 0, we have
L7 = hllnz Sp f/n+ k%,
2. |lh = hllns Sp m‘f‘ R
3. |7 = 7l Sp fha/n+ ke, and
4o 1R = hllw Sp G (\ha/n+ K7) |

Proof. By Lemma S.4,

Ih = h|l%, <U'P(P'P)” P'U/n+ ||h—hl;
<

n,2)
|h — |2, < 2U'P (P'P)” P'U/n+2|[h — A% ,.

By hypothesis || — hlln2 < ||k — hllw < k= Moreover, via M, Lemma S.5 and
o],y < oo imply U'P (P'P)” P'U Sp ky,. The first two claims now follow from the
previous display.

Via M, given that Apax (Qx) < 1, Lemma S.6 and ¢Z. In (k,) /n — 0 imply ||Qy, —
Qk, |lop —p 0. Given that also Ay, (Qk)_l < 1, Lemma S.3 then implies that @kn is
invertible wp — 1 and )\min(@kn)*l <p 1. Hence wp — 1, by the Min-Max theorem

17 = 71* < Auin( Qi) PG = F)IP/1 = Ain (Qu) ™ IR = DA% 5 S 12— A .

~

The third claim now follows from the second. Given that ||h—h|y = supycp |p* (w)’ (7—
)| < GllF — 7| and ||h — hlw < k=, by T and the third claim,

I = hllw S G I = 7l + k% o G, (/o + k7).
U

Lemma S.8. Let X,, andY,, be sequences of stochastic processes defined on a common
probability space (2, F, P) and taking values in a separable metric space (D,d), and
let F,, be a sequence of sub-c-algebras. If X, ~pr X inD and d (X,,,Y,) —p 0, then
Y, ~pr X inD.
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Proof. By T,

sup [E[h (Vo) Fa] = E[h (X)]]

heBL; (D)
< sup [B[A(Y,) —h(Xo)[ Full +  sup [E[h (X)) Fa] = E [ (X)]|
heBL;1 (D) heBL1 (D)

<d(Xn,Y,) A2+ o0p (1) =op (1).

]

Lemma S.9. If X, is a sequence of nonnegative random variables defined on a com-
mon probability space (0, F,P), F, is a sequence of sub-o-algebras, and E [ X,,| F,] —p
0, then X,, —p 0.

Proof. Fix n € N, let Y,, = E[X,|F,] and let A, = {Y¥, =0}. Then X, = 0
almost everywhere on A,,. Indeed, if X,, is not zero almost everywhere on A,,, then
there would exist a C' € (0,00) such that B, ¢ = {w € A,; X, (w) > 1/C} satisfies
P (B, ) > 0. By definition of (a version of) the conditional expectation of X,, given

Fn, we must have [, X, dP = [, Y,dP for every A € F, and, in particular, for A,.
Since Y,, = 0 on A,, and B, ¢ is a subset of A, it follows that

0= / Y,dP = [ X,dP> / X,dP > P (B,c) /C,
n Bn,C’

ATL

which contradicts P (B, ) > 0. Since n € N was arbitrary, we have shown that
X, =0on A, for each n € N. Now, fix £,0 > 0. Then P (X,, >enY, =0) =0 by

the previous claim, and it follows that

P(X,>e)=P(X,>enY,=0)+P(X,>ecnN0<Y, <d)+P((X,>ecnNY, > d)
<P (X, > 67, > 0) + P (Y, > de).

Given that Y,, is F,, measurable, by conditional M we have

P (X, > 071, > 0) = B [1y,50P (X, > 07, | )] < B[ly,200B [X,] £ /Y]
=o0P (Y, > 0) <.

By Y,, —p 0 and the previous two displays we see that for any €, > 0, limsup,,_, ., P(X,, >
g) < 9, so the claim follows from letting 6 — 0. O
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