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Abstract

This online appendix contains supplementary discussion, proof details, and
supporting lemmas. Specifically, Section S.1 contains some discussion of dis-
tance measures other than the Cramér-von Mises-type (CM-type) used in the
paper. A proof of Lemma A.2, key to establishing the asymptotic equivalence
in Lemma 1, is provided in Section S.2. Section S.3 contains the proof of the
bootstrap equivalence claimed in Lemma 3. Supporting lemmas are gathered
in Section S.4.

S.1 Other Distance Measures

The CM-type statistic (2.9) arises from an equi-weighted sum of squares of (em-
pirical) L2-type norms. Other measures of distance are certainly possible. For
example, the maximum of (empirical) L∞-type norms leads to a statistic TKS

n :=
√
nmax16`6L max16i6n |M̂`(X`i)| akin to the classical Kolmogorov-Smirnov (KS) statis-

tic. One could also, as in Bravo (2012), base a test on the profile empirical (log-
)likelihood process D̂EL : ×L`=1X` → R+ defined by D̂EL(t) := −2∑n

i=1 ln π̂i (t), where
{π̂i(t)}ni=1 solves

max
06πi61

n∑
i=1

ln πi s.t.
n∑
i=1

πi = 1 and
n∑
i=1

πim̂i (t) = 0,
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with m̂i(t) := (m̂i1(t1), . . . , m̂iL(tL))′ and m̂i`(t`) := ρ`(Zi, β̂, ĥ`(W`i))ω`(t`, Xi). Let
F̂X denote the empirical distribution of the union of distinct elements of the X`’s.
Then, under regularity conditions, the asymptotic null distribution of the resulting
CM-type statistic DCM

EL,n :=
∫
×L
`=1X`

D̂EL (t) dF̂X (t) and that of the test statistic Tn
studied here only differ in terms of the (implicit) weighting employed. This observa-
tion follows from the internal studentization property of (generalized) empirical like-
lihood (Bravo, 2012, Footnote 5). See also Bravo (2012, Eq. (2.8)), which should be
compared to Tn in (2.9). Moreover, the same conclusion holds for KS-type statistics,
including TKS

n , and for the test based on generalized empirical likelihood processes
(Bravo, 2012, Remark 2.1). The primary reason for the CM-type of statistic pursued
in this paper is its computational convenience. Moreover, preliminary simulation ex-
periments (not reported) suggest that the CM-based test has somewhat better power
properties than its KS equivalent. Similar experiences are noted in Rothe and Wied
(2013, p. 316).

S.2 Proof of Lemma A.2

Proof of Lemma A.2. The proof proceeds in a number of steps. Since the lemma
is stated for a given `, for notational convenience we drop the ` subscripts throughout,
refer to the (`th) index set (X`) as T itself, and use dt for its dimension.

Step 0 (Main)

Let t ∈ T be arbitrary. Assumption 1 implies that ‖β̂ − β0‖ .P n−1/2 → 0, so
letting N be any open neighborhood of β0 (again provided by Assumption 1), β̂ ∈ N
wp → 1. To simplify notation and ensure that objects are globally well defined, in
what follows we will—without loss of generality—assume that β̂ ∈ N with probability
one for all n. Then by Assumption 3, for any z, v, we may conduct a mean value
expansion of β 7→ ρ(z, β, v) at β̂ around β0 to get

M̂ (t) =
√
nEn[ω (t,Xi) ρ(Zi, β0, ĥ (Wi))] + In (t)′

√
n(β̂ − β0),

In (t) := En
[
ω (t,Xi) (∂/∂β) ρ(Zi, β, ĥ (Wi))

]
,

where β lies on the line segment connecting β̂ and β0, thus satisfying ‖β − β0‖ 6
‖β̂ − β0‖ →P 0. Recall the definition of b(t) in (3.7), which is well defined on T since
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β0 is interior to B (Assumption 1). Step 1 below shows that supt∈T ‖In (t)−b (t)‖ →P 0,
and that b is bounded on T , so Assumption 1 and the previous display combine to
yield

√
nM̂ (t) =

√
nEn[ω (t,Xi) ρ(Zi, β0, ĥ (Wi))] + b (t)′

√
nEn [s (Zi)] + oP (1) , (S.1)

uniformly on T .
The remainder of the proof is about adjusting for estimation of h∗. Given that β0

is held fixed throughout this argument, we will suppress the β argument and write
ρ (z, v) := ρ (z, β0, v). For the purpose of the adjustment, denote the first term on the
right-hand side of (S.1)

√
nM̂∗ (t) :=

√
nEn[ω (t,Xi) ρ(Zi, ĥ (Wi))], (S.2)

and conduct a MVE of v 7→ ρ(Zi, v) at ĥ (Wi) around h∗ (Wi) to arrive at

√
nM̂∗ (t) =

√
nEn

[
ω (t,Xi)

{
ρ(Zi, h∗ (Wi)) + ∂

∂h′
ρ(Zi, h (Wi))[ĥ (Wi)− h∗ (Wi)]

}]
,

where h (Wi) lies on the line segment connecting ĥ (Wi) and h∗ (Wi). Such an ex-
pansion is justified by Assumption 3. Further decomposition of the right-hand side
yields

√
nM̂∗ (t)

=
√
nEn

[
ω (t,Xi) ρ(Zi, h∗ (Wi)) + δ (t,Wi)′ {Yi − h∗ (Wi)}

]
+
√
nEn

[
ω (t,Xi)

{
∂

∂h′
ρ(Zi, h (W`i))−

∂

∂h′
ρ(Zi, h∗ (Wi))

}
{ĥ (Wi)− h∗ (Wi)}

]

+ Gn

[
ω (t,Xi)

∂

∂h′
ρ (Zi, h∗ (Wi))

]
[ĥ (Wi)− h∗ (Wi)]

+
√
n
(

EZ

[
ω (t,X) ∂

∂h′
ρ (Z, h∗ (W )) [ĥ (W )− h∗ (W )]

]
− En[δ (t,Wi)′ {Yi − h∗ (Wi)}]

)
=:
√
nEn

[
ω (t,Xi) ρ(Zi, h∗ (Wi)) + δ (t,Wi)′ {Yi − h∗ (Wi)}

]
+ IIn (t) + IIIn (t) + IVn (t) , (S.3)
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where EZ [·] denotes integration with respect to the distribution of Z, and δ (t, Z)
is defined as in (3.8). The k × k matrix Qk = E[pk (W ) pk (W )′] is invertible by
Assumption 5. Let hk and δk(t, ·) denote the mean-square projections of h∗ and
δ(t, ·), respectively, onto the span of pk, i.e.,

hm,k (·) := pk (·)′Q−1
k E[pk (W )h∗m (W )] = pk (·)′ πhm,k, (S.4)

δm,k (t, ·) := pk (·)′Q−1
k E[pk (W ) δm (t,W )] = pk (·)′ πδm,k (t) , (S.5)

where πhm,k and πδm,k are defined in (3.9) and (3.10), respectively. Consequently,

E[{hm,k (W )− h∗m (W )}2] = r2
hm,k,

E[{δm,k (t,W )− δm (t,W )}2] = r2
δm,k (t) ,

E{‖δm,k (·,W )− δm (·,W )‖2
T } = R2

δm,k,

for r2
hm,k, r2

δm,k and R2
δm,k defined in (3.11), (3.12) and (3.13), respectively. Steps 2–4

below show that the three remainder terms in the decomposition (S.3) satisfy:

‖IIn‖T .P E [R (Z)]
√
n max

16m6d
‖ĥm − h∗m‖

1+γ
W ,

‖IIIn‖T .P max
16m6d

( km,n∑
j=1
‖pj‖2

W

)1/2(√
km,n/n+ k−αmm,n

)
, and

‖IVn‖T .P max
16m6d

{√
nrhm,km,n sup

t∈T
rδm,km,n (t) +

√
ζ2
km,n

km,n ln (km,n) /n

+Rδm,km,n

√
ln
(
km,n/Rδm,km,n

)
+ ζkm,nrhm,km,n

}
.

Plug (S.3) into (S.1), apply T and use the definition of M̂∗ in (S.2) to get the claimed
in-probability bound.

Step 1: In and b

In this step we show that In defined in (S.1) and b defined (3.7) satisfy

(a) sup
t∈T
‖In (t)− b (t)‖ P→ 0 and (b) sup

t∈T
‖b (t)‖ <∞.
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Decompose In as

In (t) = En
[
ω (t,Xi) (∂/∂β) ρ(Zi, β, h∗ (W ))

]
+ En

[
ω (t,Xi)

{
(∂/∂β) ρ(Zi, β, ĥn (Wi))− (∂/∂β) ρ(Zi, βn, h∗ (Wi))

}]
=: Ia,n (t) + Ib,n (t) .

Since ‖β − β0‖ 6 ‖β̂ − β0‖ and β̂ ∈ N , we must have β ∈ N wp → 1, so using T,
Assumptions 2, 3 and 7 and Lemma S.7.4, we get

sup
t∈T
‖Ib,n (t)‖ 6 En

[
a (Zi) ‖ĥ (Wi)− h∗ (Wi)‖c

]
6
√
dEn [a (Zi)] max

16m6d
‖ĥm − h∗m‖cW

.P max
16m6d

‖ĥm − h∗m‖cW
P→ 0,

where we have used M to deduce En [a (Zi)] .P 1.
Given that β0 ∈ N open, there is an r > 0 such that the open ball Br(β0) in Rdβ

centered at β0 with radius r is contained in N . Let B := Br/2(β0) denote the closed
ball in Rdβ with the same center but half the radius. Given that B is a closed and
bounded subset of a finite-dimensional Euclidean space, by the Heine–Borel theorem
it is compact. Assumptions 2 and 3 imply that (t, β) 7→ ω (t, x) (∂/∂β) ρ (z, β, h∗ (w))
is continuous on T × N for each z ∈ Z, hence on the subset T × B, and this
function is dominated by an integrable function depending on z only. Moreover, via
Tychonoff’s theorem, T and B compact imply that is T × B compact. Combining
these observations with the fact that the data are i.i.d., Newey and McFadden (1994,
Lemma 2.4) tells us that

(i) (t, β) 7→ E [ω (t,X) (∂/∂β) ρ (Z, β, h∗ (W ))] is continuous on T ×B,

(ii) sup
(t,β)∈T ×B

‖(En − E) [ω (t,Xi) (∂/∂β) ρ(Zi, β, h∗ (Wi))]‖ P→ 0.

Given (i) and T ×B compact, we must have (cf. Rudin, 1976, Theorem 4.19) that

(iii) (t, β) 7→ E [ω(t,X) (∂/∂β) ρ (Z, β, h∗ (W ))] is uniformly continuous on T ×B.

Let β̃ be an arbitrary consistent estimator of β0. Then β̃ ∈ B wp → 1, and, on this
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event,

sup
t∈T

∥∥∥En [ω (t,Xi) (∂/∂β) ρ(Zi, β̃, h∗ (Wi))
]
− b (t)

∥∥∥
6 sup

t∈T

∥∥∥(En − EZ)
[
ω (t,Xi) (∂/∂β) ρ(Zi, β̃, h∗ (Wi))

]∥∥∥
+ sup

t∈T

∥∥∥EZ

[
ω (t,X) (∂/∂β) ρ(Z, β̃, h∗ (W ))

]
− b (t)

∥∥∥
6 sup

(t,β)∈T ×B
‖(En − E) [ω (t,Xi) (∂/∂β) ρ(Zi, β, h∗ (Wi))]‖

+ sup
t∈T

∥∥∥EZ

[
ω (t,X) (∂/∂β) ρ(Z, β̃, h∗ (W ))

]
− b (t)

∥∥∥ P→ 0,

where the first inequality is due to T, the second uses {β̃ ∈ B}, and we have used
(ii) uniform convergence and (iii) uniform continuity. Invoking the conclusion of the
previous display for the mean value β̃ = β we see that supt∈T ‖Ia,n (t) − b (t)‖ →P 0,
which combined with supt∈T ‖Ib,n (t)‖ →P 0 and T establishes Part (a).

Continuity and T ×B compact also imply (t, β) 7→ E[ω (t,X) (∂/∂β) ρ(Z, β, h∗ (W ))]
is bounded on T × B (cf. Rudin, 1976, Theorem 4.15). Part (b) then follows from
β0 ∈ B.

Step 2: ‖IIn‖T

In this step we show that IIn defined in (S.3) satisfies

‖IIn‖T .P E [R (Z)]
√
n max

16m6d
‖ĥm − h∗m‖

1+γ
W

for R and γ given by Assumption 3. Using T and CS, Assumptions 2 and 3 imply
that

‖IIn‖T 6 ‖ω‖T ×T
√
nEn

[∥∥∥∥∥ ∂∂hρ(Zi, h (Wi))−
∂

∂h
ρ(Zi, h∗ (Wi))

∥∥∥∥∥ ∥∥∥ĥ (Wi)− h (Wi)
∥∥∥]

.
√
nEn[R (Zi) ‖h (Wi)− h∗ (Wi)‖γ‖ĥ (Wi)− h∗ (Wi)‖]

6
√
nEn[R (Zi) ‖ĥ (Wi)− h∗ (Wi)‖1+γ]

6 d(1+γ)/2En [R (Zi)]
√
n max

16m6d
‖ĥm − h∗m‖

1+γ
W

.P E [R (Z)]
√
n max

16m6d
‖ĥm − h∗m‖

1+γ
W ,
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where h(Wi) is on the line segment connecting ĥ(Wi) and h (Wi), thus satisfying
‖h (Wi) − h∗ (Wi)‖ 6 ‖ĥ (Wi) − h∗ (Wi)‖, and En [R (Zi)] .P E [R (Z)] follows from
M.

Step 3: ‖IIIn‖T

In this step we show that IIIn defined in (S.3) satisfies

‖IIIn‖T .P max
16m6d

( km,n∑
j=1
‖pj‖2

W

)1/2(√
km,n/n+ k−αmm,n

)

for α given by Assumption 6. For h :W → Rd composed by maps {hm}d1 in L2 (W ) ,
define the map D

D (t, z, h) := ω (t, x) (∂/∂h′)ρ (z, h∗ (w))h (w) (S.6)

such that h 7→ D (t, z, h) is a linear functional for given (t, z) ∈ T ×Z. Let ∆ denote
the centered version of D, i.e.,

∆ (t, z, h) := ω (t, x) (∂/∂h′)ρ (z, h∗ (w))h (w)

− EZ [ω (t,X) (∂/∂h′)ρ (Z, h∗ (W ))h (W )] (S.7)

which is also linear in h. Letting h̃m = pk′π̃m be as in Assumption 6, by linearity we
may write

IIIn (t) =
√
nEn

[
∆(t, Zi, ĥ− h∗)

]
=
√
nEn

[
∆(t, Zi, ĥ− h̃)

]
+
√
nEn

[
∆(t, Zi, h̃− h∗)

]
=: IIIa,n (t) + IIIb,n (t) . (S.8)

Given that ζk = supw∈W [∑k
j=1 pj (w)2]1/2 and

√
k . ζk (implied by Assumption 5),

ζkn → ∞ and thus ∑kn
j=1‖pj‖2

W → ∞. In particular, ∑kn
j=1‖pj‖2

W is bounded away
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from zero as n→∞. By T, the desired conclusion will therefore follow from showing

‖IIIa,n‖T .P max
16m6d

( km,n∑
j=1
‖pj‖2

W

)1/2(√
km,n/n+ k−αmm,n

)
,

‖IIIb,n‖T .P max
16m6d

k−αmm,n .

Step 3a: ‖IIIa,n‖T In this step we show that IIIa,n defined in (S.8) satisfies

‖IIIa,n‖T .P max
16m6d

( km,n∑
j=1
‖pj‖2

W

)1/2(√
km,n/n+ k−αmm,n

)

for αm given by Assumption 6. Given that

IIIa,n (t) =
√
nEn

[
∆(t, Zi, ĥ− h̃)

]
=

d∑
m=1

√
nEn

[
∆m(t, Zi, ĥm − h̃m)

]
,

∆m(t, Zi, hm) := ω (t, x) (∂/∂hm)ρ (z, h∗ (w))hm (w)

− E [ω (t,X) (∂/∂hm)ρ (Z, h∗ (W ))hm (W )] ,

by T, we may focus on bounding a single supt∈T |
√
nEn[∆m(t, Zi, ĥm − h̃m)]| in prob-

ability. For the remainder of this section we therefore drop the m subscript and write
(∂/∂h) ρ (Z, h∗ (Z)) for the scalar (∂/∂hm) ρ (Z, h∗ (Z)). Let

∆k
i (t) := (∆ (t, Zi, p1) , . . . ,∆ (t, Zi, pk))′.

Then CS implies

‖IIIa,n‖T = sup
t∈T

∣∣∣√nEn [∆(t, Zi, pkn′(π̂ − π̃)
]∣∣∣ = sup

t∈T

∣∣∣∣√n{En[∆kn
i (t)]

}′
(π̂ − π̃)

∣∣∣∣
6 ‖π̂ − π̃‖ sup

t∈T

∥∥∥√nEn[∆kn
i (t)]

∥∥∥ .
Lemma S.7 tells us that ‖π̂ − π̃‖ .P

√
kn/n+ k−αn , so it remains to show that

sup
t∈T

∥∥∥√nEn[∆kn
i (t)]

∥∥∥ .P

( kn∑
j=1
‖pj‖2

W

)1/2
.
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By M it suffices to show the finite-sample moment bound, for any k ∈ N,

E
[
sup
t∈T

∥∥∥√nEn[∆k
i (t)]

∥∥∥2
]
.

k∑
j=1
‖pj‖2

W .

Given that

E
[
sup
t∈T

∥∥∥√nEn[∆k
i (t)]

∥∥∥2
]
6

k∑
j=1

E
[
sup
t∈T

∣∣∣√nEn[∆ (t, Zi, pj)
∣∣∣2] ,

it suffices to show that

E
[
sup
t∈T

∣∣∣√nEn[∆ (t, Zi, pj)
∣∣∣2] . ‖pj‖2

W , j ∈ {1, . . . , k} .

To this end, fix j ∈ {1, . . . , k} , and consider the function class Fj := Fj (T ) := {f :
z 7→ ∆ (t, z, pj) ; t ∈ T }. For f1 := f(·; t1), f2 := f(·; t2) ∈ Fj arbitrary, by T, J and
Assumptions 2 and 3,

|f1 (z)− f2 (z) |

=
∣∣∣∣∣ [ω (t1, x)− ω (t2, x)] ∂

∂h
ρ (z, h∗ (w)) pj (w)

− E
[
{ω (t1, X)− ω (t2, X)} ∂

∂h
ρ (Z, h∗ (W )) pj (W )

] ∣∣∣∣∣
6 |ω (t1, x)− ω (t2, x)|

∣∣∣∣ ∂∂hρ (z, h∗ (w))
∣∣∣∣|pj (w)|

+ E
[
|ω (t1, X)− ω (t2, X)|

∣∣∣∣ ∂∂hρ (Z, h∗ (W ))
∣∣∣∣|pj (W )|

]

.

(∣∣∣∣ ∂∂hρ (z, h∗ (w))
∣∣∣∣|pj (w)|+ E

[∣∣∣∣ ∂∂hρ (Z, h∗ (W ))
∣∣∣∣|pj (W )|

])
‖t1 − t2‖

6

(∣∣∣∣ ∂∂hρ (z, h∗ (w))
∣∣∣∣+ E

[∣∣∣∣ ∂∂hρ (Z, h∗ (W ))
∣∣∣∣
])
‖pj‖W‖t1 − t2‖

= L1 (z) ‖pj‖W‖t1 − t2‖,

such that we may write

|f1 (z)− f2 (z) | 6 F1j (z) ‖t1 − t2‖ , F1j (z) := C1L1 (z) ‖pj‖W ,
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for some constant C1 ∈ (0,∞). Similarly, for f := f(·; t) ∈ Fj arbitrary, by T, J and
Assumptions 2 and 3,

|f (z)| =
∣∣∣∣∣ω (t, x) ∂

∂h
ρ (z, h∗ (w)) pj (w)− EZ

[
ω (t,X) ∂

∂h
ρ (Z, h∗ (W )) pj (W )

]∣∣∣∣∣
. L1 (z) ‖pj‖W ,

such that we may write

|f (z)| 6 F2j (z) , F2j (z) := C2L1 (z) ‖pj‖W ,

for some constant C2 ∈ (0,∞). Let C3 := C1 ∨ C2 and

Fj (z) := C3L1 (z) ‖pj‖W .

Then ‖Fj‖P,2 . ‖pj‖W , so Fj is an square-integrable envelope for Fj satisfying

|f1 (z)− f2 (z) | 6 Fj (z) ‖t1 − t2‖ .

Given that T is compact (Assumption 2), we must have diam (T ) <∞. Pollard (1990,
Lemma 4.1) and the fact that covering numbers are bounded by packing numbers (cf.
van der Vaart and Wellner, 1996, p. 98) therefore combine to yield N (ε, T , ‖·‖) 6
(3diam (T ) /ε)dt for ε ∈ (0, diam (T )]. Hence, by van der Vaart and Wellner (1996,
Theorem 2.7.11) and the previous display,

N[ ](ε‖Fj‖P,2,Fj, L2 (P )) 6 N (ε/2, T , ‖·‖) 6 (6diam (T ) /ε)d 6 (C/ε)d

for ε ∈ (0, diam (T )] (and = 1 otherwise). The bracketing integral of Fj therefore
satisfies the bound

J[ ]
(
δ,Fj, L2 (P )

)
6
∫ δ

0

√
1 + C ln (1/ε)dε.

Note that the right-hand side depends on neither j nor k. In particular, the integral
J[ ] (1,Fj, L2 (P )) is bounded uniformly in j ∈ {1, . . . , k} , k ∈ N. By construction,
E[f(Z)] = E[∆(t, Z, pj)] = 0 for any f ∈ Fj, so we may view the stochastic process
{
√
nEn[∆ (t, Zi, pj)]; t ∈ T } as an empirical process {Gn(f); f ∈ Fj}. van der Vaart
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and Wellner (1996, Theorem 2.14.2) therefore implies the finite-sample bound

E
[
‖Gn‖Fj

]
. J[ ]

(
1,Fj, L2 (P )

)
‖Fj‖P,2 . ‖Fj‖P,2 . ‖pj‖W .

van der Vaart and Wellner (1996, Theorem 2.14.5) now shows

(
E[‖Gn‖2

Fj ]
)1/2
. E

[
‖Gn‖Fj

]
+ ‖Fj‖P,2 . ‖pj‖W ,

which is the desired bound.

Step 3b: ‖IIIb,n‖T In this step we show that IIIb,n defined in (S.8) satisfies

‖IIIb,n‖T .P max
16m6d

k−αmm,n ,

for αm given by Assumption 6. Given that

IIIb,n (t) =
√
nEn

[
∆(t, Zi, h̃− h∗)

]
=

d∑
m=1

√
nEn

[
∆m(t, Zi, h̃m − h∗m)

]
,

as was the case for ‖IIIa,n‖T , by T we may focus on bounding each right-hand side
term in probability and therefore drop the m subscript. For this purpose, fix k ∈ N
and consider the function class Fk := Fk (T ) := {f : z 7→ ∆(t, z, h̃ − h∗); t ∈ T }. For
f := f(·, t), f1 := f(·, t1), f2 := f(·, t2) ∈ Fk arbitrary, arguments analogous to the ones
applied to handle ‖IIIa,n‖T establish that

|f1 (z)− f2 (z) | 6 C1L1 (z) ‖h̃− h∗‖W ‖t1 − t2‖ ,

|f (z)| 6 C2L1 (z) ‖h̃− h∗‖W .

Define C3 := C1 ∨ C2 and Fk (z) := C3L1 (z) ‖h̃ − h∗‖W . Then ‖Fk‖P,2 = C4‖h̃ −
h∗‖W . k−α by Assumption 6. Hence Fk is an square-integrable envelope for Fk, and
arguments analogous to the ones used for ‖IIIa,n‖T show that the resulting bracketing
integral J[ ] (δ,Fk, L2 (P )) is bounded by a constant independent of k. van der Vaart
and Wellner (1996, Theorem 2.14.2) therefore implies

E [‖Gn‖Fk ] . J[ ]
(
1,Fk, L2 (P )

)
‖Fk‖P,2 . ‖Fk‖P,2 . k−α,

11



and the claim follows from M.

Step 4: ‖IVn‖T

In this step we show that IVn defined in (S.3) satisfies

‖IVn‖T .P max
16m6d

{√
nrhm,km,n sup

t∈T
rδm,km,n (t) +

√
ζ2
km,n

km,n ln (km,n) /n

+Rδm,km,n

√
ln
(
km,n/Rδm,km,n

)
+ ζkm,nrhm,km,n

}
,

where ζk, rhm,k, rδm,k and Rδm,k are defined in (3.5), (3.11), (3.12) and (3.13), respec-
tively. Given the decomposition

IVn (t) =
√
n
(

EZ

[
ω (t,X) (∂/∂h′)ρ (Z, h∗ (W )) {ĥ (W )− h∗ (W )}

]
− En[δ (t,Wi)′ {Yi − h∗ (Wi)}]

)

=
d∑

m=1

√
n
(

EZ

[
ω (t,X) (∂/∂hm)ρ (Z, h∗ (W )) {ĥm (W )− h∗m (W )}

]
− En[δm (t,Wi) {Ymi − h∗m (Wi)}]

)
,

by T we may drop them subscript and focus on bounding a single summand uniformly
over T in probability. For this purpose, recall that hk and δk (t, ·) are the mean-square
projections of h∗and δ (t, ·), respectively, onto the linear span of pk and r2

h,k and r2
δ,k (t)

are the mean-square errors resulting from these projections. Define

ψk (t) := E
[
δ (t,W ) pk (W )

]
. (S.9)

By Assumption 5, the population least-square coefficients πk = Q−1
k E[pk (W )Y ] are

well defined for all k ∈ N. Applying Lemma S.3, we see that the inverse of Q̂kn :=
En[pkn (Wi) pkn (Wi)′] exists wp → 1. As a consequence, the sample least-squares
coefficients take the form π̂ = Q̂−1

kn
En[pkn (Wi)Yi] wp → 1. Assuming—without loss

12



of generality—that Q̂−1
kn

exists with probability one for all n,

√
nEW{δ (t,W ) [ĥ (W )− hkn (W )]} =

√
nEW{δ (t,W ) pkn (W )′ (π̂ − πkn)}

= ψkn (t)′
√
n(π̂ − πkn)

= ψkn (t)′
√
n
(
Q̂−1
kn
En
[
pkn(Wi)Yi

]
− πkn

)
= ψkn (t)′ Q̂−1

kn

√
n
(
En
[
pkn(Wi)Yi

]
− Q̂knπkn

)
= ψkn (t)′ Q̂−1

kn

√
nEn

[
pkn (Wi) {Yi − hkn (Wi)}

]
,

where EW [·] denotes integration with respect to the distribution of W . By definition
of δ (t,W ) [see (3.8)] and iterated expectations, for a nonrandom function h of W
alone,

E [ω (t,X) (∂/∂h)ρ (Z, h∗ (W ))h (W )] = E [δ (t,W )h (W )] .

Using the previous two displays and adding and subtracting

√
nEn [δkn (t,Wi) {Yi − hkn (Wi)}]

=
√
nEn

[
pkn (Wi)′Q−1

kn
E[pkn (W ) δ (t,W )] {Yi − hkn (Wi)}

]
= ψkn (t)′Q−1

kn

√
nEn

[
pkn (Wi) {Yi − hkn (Wi)}

]
,

we may decompose IVn(t) as

IVn (t) =
√
nEW [δ (t,W ) {ĥ (W )− h∗ (W )}]−

√
nEn [δ (t,Wi) {Yi − h∗ (Wi)}]

=
√
nEW{δ (t,W ) [hkn (W )− h∗ (W )]}+

√
nEW [δ (t,W ) {ĥ (W )− hkn (W )}]

+
√
nEn [δ (t,Wi) {Yi − h∗(Wi)}]

=
√
nEW [δ (t,W ) {hkn (W )− h∗ (W )}]

+ ψkn (t)′ (Q̂−1
kn
−Q−1

kn
)
√
nEn

[
pkn (Wi) {Yi − hkn (Wi)}

]
+
√
nEn [δkn (t,Wi) {Yi − hkn (Wi)} − δ (t,Wi) {Yi − h∗ (Wi)}]

=: IVa,n (t) + IVb,n (t) + IVc,n (t) .

13



By T it therefore suffices to show that

‖IVa,n‖T 6
√
nrh,kn sup

t∈T
rδ,kn (t) ,

‖IVb,n‖T .P

√
ζ2
kn
kn ln (kn) /n, and

‖IVc,n‖T .P Rδ,kn

√
ln (kn/Rδ,kn) + ζknrh,kn .

Step 4a: ‖IVa,n‖T In order to establish the inequality

‖IVa,n‖T 6
√
nrh,kn sup

t∈T
rδ,kn (t) ,

recall that hk defined in (S.4) is the mean-square projection of h∗ onto the span of
pk, so by orthogonality of projections we have E [δk (t,W ) {hk (W )− h∗ (W )}] = 0 for
each t ∈ T . Now J followed by CS yield

‖IVa,n‖T =
√
n sup
t∈T
|E [δ (t,W ) {hkn (W )− h∗ (W )}]|

=
√
n sup
t∈T
|E [{δkn (t,W )− δ (t,W )} {hkn (W )− h∗ (W )}]|

6
√
n ‖hkn − h∗‖P,2 sup

t∈T
‖δkn (t, ·)− δ (t, ·)‖P,2 =

√
nrh,kn sup

t∈T
rδ,kn (t) .

Step 4b: ‖IVb,n‖T In this step we show that

‖IVb,n‖T .P

√
ζ2
kn
kn ln (kn) /n.

Using the fact that mean-square projections and conditional expectations are L2 (P )-
contractions followed by Assumptions 2 and 3, we see that

ψk (t)′Q−1
k ψk (t) = {Q−1

k E[pk (W ) δ (t,W )]}′Qk{Q−1
k E[pk (W ) δ (t,W )]}

= E[δk (t,W )2] 6 E[δ (t,W )2] 6 E[ω(t,X)2 (∂/∂h) ρ (Z, h∗ (W ))2]

. E[(∂/∂h) ρ (Z, h∗ (W ))2] <∞,

14



with an upper bound that depends on neither t nor k. By the Min-Max Theorem,
Assumption 5, and the previous display, it follows that

‖ψk (t)Q−1
k ‖2 = [ψk (t)Q−1/2

k ]′Q−1
k [Q−1/2

k ψK (t)] . ‖ψk (t)Q−1/2
k ‖2

6 sup
k∈N,t∈T

|ψk (t)′Q−1
k ψk (t)| <∞,

thus implying supk∈N,t∈T ‖ψk (t)Q−1
k ‖ <∞. By Lemma S.6 we have ‖Q̂kn−Qkn‖op .P

[ζ2
kn ln (kn) /n]1/2 → 0 under Assumption 7. Moreover, Lemma S.3 shows that ‖Q̂−1

kn
‖op .P

1. Using these observations and the previous display,

sup
t∈T
‖ψkn (t)′ Q̂−1

kn
− ψkn (t)′Q−1

k ‖ = sup
t∈T
‖ψkn (t)′Q−1

kn
(Qkn − Q̂kn)Q̂−1

kn
‖

6 ‖(Qkn − Q̂kn)Q̂−1
kn
‖op sup

t∈T
‖ψkn (t)′Q−1

kn
‖

6 ‖Q̂kn −Qkn‖op‖Q̂−1
kn
‖op sup

t∈T
‖ψkn (t)′Q−1

kn
‖

.P

√
ζ2
kn

ln (kn) /n→ 0.

From the previous display and supk∈N,t∈T ‖ψk (t)′Q−1
k ‖ <∞ it follows that

sup
t∈T
‖ψkn (t)′ Q̂−1

kn
‖ .P 1.

Observe also that, by the Assumption 5, the Min-Max theorem, and the fact that
E[pk(W ){Y − hk(W )}] = 0 (which follows from hk being the mean-square projection
of h∗),

E
[∥∥∥Q−1

k

√
nEn

[
pk (Wi) {Yi − hk (Wi)}

]∥∥∥2]
. E

[∥∥∥Q−1/2
k

√
nEn

[
pk (Wi) {Yi − hk (Wi)}

]∥∥∥2]
= E

[
pk (W )′Q−1

k pk (W ) {Y − hk (W )}2
]

= E
[
U2pk (W )′Q−1

k pk (W )
]

+ E
[
pk (W )′Q−1

k pk (W ) {hk (W )− h∗ (W )}2
]
,

where we have used U = Y − h∗(W ). By Assumption 4, E [U2|W ] is bounded, so

E[U2pk (W )′Q−1
k pk (W )] = E[E

[
U2|W

]
pk (W )′Q−1

k pk (W )]

. E[pk (W )′Q−1
k pk (W )] = k.
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Moreover, by Assumption 5,

E
[
pk (W )′Q−1

k pk (W ) {hk (W )− h∗ (W )}2
]

. E
[
‖pk (W )‖2{hk (W )− h∗ (W )}2

]
6 ζ2

kr
2
h,k.

Given Assumption 7, ζ2
kr

2
h,k = (ζkrh,k)2 → 0 as k →∞, so

E
[∥∥∥Q−1

k

√
nEn

[
pk (Wi) {Yi − hk (Wi)}

]∥∥∥2]
. k.

M now implies
∥∥∥Q−1

k

√
nEn

[
pkn (Wi) {Yi − hkn (Wi)}

]∥∥∥ .P

√
kn.

Using CS we therefore arrive at

‖IVb,n‖T = sup
t∈T

∣∣∣ψkn (t)′ Q̂−1
kn

(Qkn − Q̂kn)Q−1
kn

√
nEn

[
pkn (Wi) {Yi − hkn (Wi)}

]∣∣∣
6
∥∥∥Q−1

kn

√
nEn

[
pkn (Wi) {Yi − hkn (Wi)}

]∥∥∥ sup
t∈T
‖ψkn (t)′ Q̂−1

kn
(Qkn − Q̂kn)‖

6
∥∥∥Q−1

kn

√
nEn

[
pkn (Wi) {Yi − hkn (Wi)}

]∥∥∥ ‖Q̂kn −Qkn‖op sup
t∈T
‖ψkn (t)′ Q̂−1

kn
‖

.P

√
kn
√
ζ2
kn

ln (kn) /n.

Step 4c: ‖IVc,n‖T In this section we show that

‖IVc,n‖T .P Rδ,kn

√
ln (kn/Rδ,kn) + ζknrh,kn .

Letting Ui := Yi − h∗ (Wi), we may decompose IVc,n (t) as

IVc,n (t)

=
√
nEn [Ui {δkn (t,Wi)− δ (t,Wi)}]−

√
nEn [δkn (t,Wi) {hkn (Wi)− h∗ (Wi)}]

=: IVd,n (t) + IVe,n (t) .

By T it therefore suffices to show that

‖IVd,n‖T .P Rδ,kn

√
ln (kn/Rδ,kn) and ‖IVe,n‖T .P ζknrh,kn .
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For the purpose of bounding ‖IVd,n‖T , consider the function class Fk := Fk (T ) :=
{f : z 7→ {y − h∗ (w)} {δk (t, w)− δ (t, w)} ; t ∈ T }. Note that E[f(Z)] = 0 for any
f ∈ Fk, so we may view the stochastic process {IVd,n(t); t ∈ T } as an empirical
process {Gn (f) ; f ∈ Fk}. For any t1, t2 ∈ T , by conditional J we have

|δ (t1, w)− δ (t2, w)| = |E [{ω (t1, X)− ω (t2, X)} (∂/∂h) ρ (Z, h∗ (W ))|W = w]|

. E [|(∂/∂h) ρ (Z, h∗ (W ))| |W = w] ‖t1 − t2‖ .

Consequently, using Assumption 3 and the fact that conditional expectations are
L2 (P ) contractions,

E
[
{δ (t1,W )− δ (t2,W )}2

]
. E

{E
[∣∣∣∣∣ ∂∂hρ (Z, h∗ (W ))

∣∣∣∣∣ |W
]}2

 ‖t1 − t2‖2

6 E
{ ∂

∂h
ρ (Z, h∗ (W ))

}2
 ‖t1 − t2‖2 . ‖t1 − t2‖2 .

Given that mean-square projections are also L2 (P ) contractions,
∥∥∥Q−1/2

k E
[
pk (W ) {δ (t1,W )− δ (t2,W )}

]∥∥∥2

= E
[(
pk (W )′Q−1

k E
[
pk (W ) {δ (t1,W )− δ (t2,W )}

])2
]

6 E
[
{δ (t1,W )− δ (t2,W )}2

]
so by CS and the previous two displays,

|δk (t1, w)− δk (t2, w)| =
∣∣∣pk (w)′Q−1

k E
[
pk (W ) {δ (t1,W )− δ (t2,W )}

]∣∣∣
6
∥∥∥pk (w)′Q−1/2

k

∥∥∥ ∥∥∥Q−1/2
k E

[
pk (W ) {δ (t1,W )− δ (t2,W )}

]∥∥∥
.
∥∥∥pk (w)′Q−1/2

k

∥∥∥ ‖t1 − t2‖ . (S.10)
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Thus, for any f1 := f(·, t1), f2 := f (·, t2) ∈ Fk, by T,

|f1 (z)− f2 (z)|

6 |y − h∗ (w)| (|δk (t1, w)− δk (t2, w)|+ |δ (t1, w)− δ (t2, w)|)

6 C |y − h∗ (w)|
{ ∥∥∥pk (w)>Q−1/2

k

∥∥∥+ E [|(∂/∂h) ρ (Z, h∗ (W ))| |W = w]
}
‖t1 − t2‖

=: F1k (z) ‖t1 − t2‖ .

Moreover, for any f := f(·, t) ∈ Fk,

|f (z)| = |y − h∗ (w)| |δk (t, w)− δ (t, w)|

6 |y − h∗ (w)| ‖δk (·, w)− δ (·, w)‖T =: F2k (z) .

Using Assumptions 3 and 4, the inequality (a + b)2 6 2a2 + 2b2, and the fact that
conditional expectations are L2 (P ) contractions, we see that

E[F1k (Z)2] . E
U2

{∥∥∥pk (W )′Q−1/2
k

∥∥∥+ E
[∣∣∣∣∣ ∂∂hρ (Z, h∗ (W ))

∣∣∣∣∣ |W
]}2


. E

[∥∥∥pk (W )′Q−1/2
k

∥∥∥2
]

+ E
{E

[∣∣∣∣∣ ∂∂hρ (Z, h∗ (W ))
∣∣∣∣∣ |W

]}2


6 k + E
[
(∂/∂h) ρ (Z, h∗ (W ))2

]
. k.

Given Assumptions 4 and 7, we get

E[F2k(Z)2] = E
[
U2 ‖δk (·,W )− δ (·,W )‖2

T

]
. E

[
‖δk (·,W )− δ (·,W )‖2

T

]
= R2

δ,k → 0

as k →∞. Thus, defining Fk := F1,k + F2,k we must have

E[Fk (Z)2] . k +R2
δ,k . k as k →∞,

and it follows that Fk is a square-integrable envelope for Fk satisfying

|f1 (z)− f2 (z)| 6 Fk (z) ‖t1 − t2‖ and ‖Fk‖P,2 . k1/2 as k →∞.
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Using T compact and the previous display, van der Vaart and Wellner (1996, Theorem
2.7.11) implies that

N[ ](ε‖Fk‖P,2,Fk, L2 (P )) 6 (C/ε)dt , ε ∈ (0, 1],

and thus

J[ ]
(
δ,Fk, L2 (P )

)
6
∫ δ

0

√
1 + dt ln (C/ε)dε, δ ∈ (0, 1],

where the right-hand side does not depend on k. In particular, J[ ] (1,Fkn , L2 (P )) . 1.
Defining

σ2
n := sup

f∈Fkn
En
[
f (Zi)2

]

we see that

σ2
n = sup

t∈T
En
[
U2
i {δkn (t,Wi)− δ (t,Wi)}2

]
6 En

[
U2
i ‖δkn (·,Wi)− δ (·,Wi)‖2

T

]
,

such that

E
[
σ2
n

]
6 E

[
U2‖δkn (·,W )− δ (·,W )‖2

T

]
. E

[
‖δkn (·,W )− δ (·,W )‖2

T

]
= R2

δ,kn .

There are two cases: (1) Rδ,kn/‖Fkn‖P,2 → 0 and (2) Rδ,kn/‖Fkn‖P,2 9 0.
Case 1 : Rδ,kn/‖Fkn‖P,2 → 0. Given that

√
E [σ2

n] 6 C1Rδ,kn , by the change of
variables ε′ := ε/C1 we have

J[ ]

(√
E [σ2

n]/‖Fkn‖P,2,Fkn , L2 (P )
)
6 J[ ]

(
C1Rδ,kn/‖Fkn‖P,2,Fkn , L2 (P )

)
= C1

∫ Rδ,kn/‖Fkn‖P,2

0

√
1 + dt ln (C3/ε′)dε′

=: C1J [ ] (Rδ,kn/‖Fkn‖P,2) . (S.11)

van der Vaart and Wellner (2011, p. 196) establishes the maximal inequality

E
[
‖Gn‖Fkn

]
. J[ ]

(√
E [σ2

n]/‖Fkn‖P,2,Fkn , L2 (P )
)
‖Fkn‖P,2.
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The previous two displays show that

E
[
‖Gn‖Fkn

]
) . J [ ] (Rδ,kn/‖Fkn‖P,2) ‖Fkn‖P,2

and from van der Vaart and Wellner (1996, p. 239) we know that an integral of the
form

∫ δ
0 [1 + ln(1/u)]1/2du—as in (S.11)—satisfies

∫ δ
0 [1 + ln(1/u)]1/2du . δ

√
ln(1/δ)

as δ → 0+. Since Rδ,kn/‖Fδ,kn‖P,2 → 0 holds by hypothesis, the previous display
combined with ‖Fkn‖P,2 .

√
kn and M yields

‖Gn‖Fkn .P (Rδ,kn/‖Fkn‖P,2)
√

ln (‖Fkn‖P,2/Rδ,kn)‖Fkn‖P,2
= Rδ,kn

√
ln (‖Fkn‖P,2/Rδ,kn) . Rδ,kn

√
ln (kn/Rδ,kn).

Case 2. Rδ,kn/‖Fkn‖P,2 9 0. Given that Rδ,kn → 0 (Assumption 7), we must
have ‖Fkn‖P,2 . Rδ,k. van der Vaart and Wellner (1996, Theorem 2.14.2) and
J[ ] (1,Fkn , L2 (P )) . 1 yield

E
[
‖Gn‖Fkn

]
. J[ ]

(
1,Fkn , L2 (P )

)
‖Fkn‖P,2 . ‖Fkn‖P,2 . Rδ,kn . Rδ,kn

√√√√ln
(

kn
Rδ,kn

)
.

M now yields the same rate as in Case 1. In either case, we observe that ‖IVd,n‖T .P

Rδ,kn

√
ln (kn/Rδ,kn).

For the purpose of bounding ‖IVe,n‖T , consider the function class Fk := {f :
z 7→ δk (t, w) {hk (w)− h∗ (w)} ; t ∈ T }. Note that, by orthogonality of mean–square
projections we have E[f(Z)] = 0 for any f ∈ Fk, so we may view the stochastic process
{IVe,n (t) ; t ∈ T } as an empirical process {Gn(f); f ∈ Fkn}. For any t1, t2 ∈ T , using
the bound in (S.10) we have that f1 := f (·; t1) , f2 := f (·; t2) ∈ Fk, satisfy

|f1 (z)− f2 (z)| = |δk (t1, w)− δk (t2, w)| |hk (w)− h∗ (w)|

.
∥∥∥pk (w)′Q−1/2

k

∥∥∥ |hk (w)− h∗ (w)| ‖t1 − t2‖

. ζk |hk (w)− h∗ (w)| ‖t1 − t2‖ .

The previous display implies

|f1 (z)− f2 (z)| 6 F1,k (z) ‖t1 − t2‖ ,
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for F1k (z) := C1ζk |hk (w)− h∗ (w)| and some C1 ∈ (0,∞). Since conditional expec-
tations are L2(P ) contractions, by Assumptions 2 and 3,

E[δ (t,W )2] = E
[{

E
[
ω(t,X)

∣∣∣∣ ∂∂hρ (Z, h∗ (W ))
∣∣∣∣∣∣∣W ]}2

]

6 E
[
ω(t,X)2 ∂

∂h
ρ (Z, h∗ (W ))2

]
. E

[
∂

∂h
ρ (Z, h∗ (W ))2

]
<∞,

thus implying supt∈T E[δ (t,W )2] < ∞. By CS and using that mean–square projec-
tions are L2 (P ) contractions as well, we get

|δk (t, w)| = |pk (w)′Q−1
k E[pk (W ) δ (t,W )]|

6
∥∥∥pk (w)′Q−1/2

k

∥∥∥ ∥∥∥Q−1/2
k E[pk (W ) δ (t,W )]

∥∥∥
.
∥∥∥pk (w)

∥∥∥E[δ (t,W )2] . ζk,

which implies that for any f := f(·; t) ∈ Fk,

|f (z)| = |δk (t, w)| |hk (w)− h∗ (w)| . ζk |hk (w)− h∗ (w)| .

The previous diplay shows that |f (z)| 6 F2k (z) for F2k (z) := C2ζk |hk (w)− h∗ (w)|
and some C2 ∈ (0,∞). Let C3 := C1 ∨C2, and define Fk (z) := C3ζk |hk (w)− h∗ (w)| .
Then by Assumption 7,

‖Fk‖P,2 = C3ζk‖hk − h∗‖P,2 = C3ζkrh,k → 0 as k →∞.

In particular, ‖Fk‖P,2 . 1. Now, Fk is a square-integrable envelope for Fk satisfying

|f1 (z)− f2 (z)| 6 Fk (z) ‖t1 − t2‖ .

Using T compact and the previous display, by van der Vaart and Wellner (1996,
Theorem 2.7.11) we see that

N[ ](ε‖Fk‖P,2,Fk, L2 (P)) 6 (C/ε)dt , ε ∈ (0, 1],
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and thus

J[ ]
(
δ,Fk, L2 (P )

)
6
∫ δ

0

√
1 + dt ln (C/ε)dε, δ ∈ (0, 1],

where the right-hand side does not depend on k. In particular, J[ ] (1,Fk, L2 (P )) . 1.
Using van der Vaart and Wellner (1996, Theorem 2.14.2) J[ ] (1,Fkn , L2 (P )) . 1, we
arrive at

E
[
‖Gn‖Fkn

]
. J[ ]

(
1,Fkn , L2 (P )

)
‖Fkn‖P,2 . ‖Fkn‖P,2 . ζknrh,kn ,

so ‖IVe,n‖T .P ζknrh,kn by M.

S.3 Proofs for Section 3.2

Define the stochastic processes Ĝu and G∗un by

Ĝu (t) := 1√
n

n∑
i=1

ξiĝ (t, Zi) and G∗un (t) := 1√
n

n∑
i=1

ξig (t, Zi) .

which are the ‘uncentered’ versions of Ĝ and G∗n defined in (3.18) and (3.15), re-
spectively, i.e., the displayed processes are not centered at the sample mean. The
following lemma shows that the uncentered processes are asymptotically equivalent.

Lemma S.1. If Assumptions 1–8 hold, then max16`6L‖Ĝu
` −G∗u`n‖X` →P 0.

Proof of Lemma S.1. The proof proceeds in a number of steps parallelling the
proof of Lemma A.2. It suffices to establish the claimed convergence for given `. We
therefore drop the ` subscripts throughout, refer to the (`th) index set (X`) as T
itself, and use dt for its dimension.
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Step 0 (Main)

For fixed t ∈ T a decomposition yields

Ĝu (t)−G∗un (t) =
√
nEn [ξi{ĝ (t, Zi)− g (t, Zi)}]

=
√
nEn

[
ξiω (t,Xi) {ρ(Zi, β̂, ĥ (Wi))− ρ(Zi, β0, h

∗ (Wi))}
]

− [b̂ (t)− b (t)]′
√
nEn [ξis (Zi)]

− b̂ (t)′
√
nEn [ξi{ŝ (Zi)− s (Zi)}]

+
√
nEn

[
ξi(δ̂ (t,Wi)′ {Yi − ĥ (Wi)} − δ (t,Wi)′ Ui)

]
,

=: In (t) + IIn (t) + IIIn (t) + IVn (t) . (S.12)

where Ui = Yi − h∗(Wi). The following steps show that the four remainder terms
→P 0 uniformly over T . The claim therefore follows from T.

Step 1: ‖In‖T →P 0

Assumption 1 and M implies that β̂ →P β0 interior (also under H1), so letting N
be the open neighborhood of β0 provided by Assumption 3, β̂ ∈ N wp → 1. To
simplify notation and ensure that objects are globally well defined, in what follows
we will—without loss of generality—assume that β̂ ∈ N with probability one for all
n. Assumption 3, a MVE, J and CS followed by T then imply

‖In‖T 6 ‖β̂ − β0‖ sup
t∈T

∥∥∥∥∥√nEn
[
ξiω (t,Xi)

∂

∂β
ρ(Zi, β0, h

∗ (Wi))
]∥∥∥∥∥

+
√
n‖β̂ − β0‖ sup

t∈T

∥∥∥∥∥En
[
ξiω (t,Xi)

{
∂

∂β
ρ(Zi, β, ĥ (Wi))−

∂

∂β
ρ(Zi, β0, h

∗ (Wi))
}]∥∥∥∥∥

=: Ia,n + Ib,n,
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where β satisfies ‖β − β0‖ 6 ‖β̂ − β0‖ such that also β ∈ N . Per Assumptions 2 and
8.2, J and M,

Ib,n 6
√
n‖β̂ − β0‖En

[
|ξi| sup

t∈T
|ω (t,Xi)|

∥∥∥∥∥ ∂∂βρ(Zi, β, ĥ (Wi))−
∂

∂β
ρ(Zi, β0, h

∗ (Wi))
∥∥∥∥∥
]

.
√
n‖β̂ − β0‖En

[
|ξi| a′ (Zi)

(
‖β − β0‖+ ‖ĥ (Wi)− h∗ (Wi)‖

)]
6
√
n‖β̂ − β0‖En

[
|ξi| a′ (Zi)

(
‖β̂ − β0‖+

√
d max

16m6d
‖ĥm − h∗m‖W

)]
.P E [a′ (Z)]

√
n‖β̂ − β0‖

(
‖β̂ − β0‖ ∨ max

16m6d
‖ĥm − h∗m‖W

)
,

which →P 0 also by Assumption 8.2. By now familiar arguments (see the proof of
Lemma 1), each function class

F ′j :=
{

(v, z) 7→ vω (t, x) ∂

∂βj
ρ (z, β0, h

∗ (w)) ; t ∈ T
}

may be proven Donsker. Weak convergence of
√
nEn[ξiω (·, Xi) (∂/∂βj) ρ(Zi, β0, h

∗ (Wi))]
in L∞ (T ) follows and, therefore,

sup
t∈T

∥∥∥∥∥√nEn
[
ξiω (t,Xi)

∂

∂β
ρ(Zi, β0, h

∗ (Wi))
]∥∥∥∥∥

. max
16j6dβ

sup
t∈T

∣∣∣∣∣√nEn
[
ξiω (t,Xi)

∂

∂βj
ρ(Zi, β0, h

∗ (Wi))
]∣∣∣∣∣ .P 1.

It then follows from β̂ →P β0 that also Ia,n →P 0, and, thus, ‖In‖T →P 0.

Step 2: ‖IIn‖T →P 0

By CS, IIn defined in (S.12) satisfies

‖IIn‖T 6
∥∥∥√nEn [ξis (Zi)]

∥∥∥ sup
t∈T

∥∥∥b̂ (t)− b (t)
∥∥∥ ,

To show ‖IIn‖T →P 0, it therefore suffices to show ‖
√
nEn [ξis (Zi)]‖ .P 1 and

supt∈T ‖b̂ (t)− b (t)‖ →P 0.
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Step 2a: ‖
√
nEn [ξis (Zi)]‖ .P 1. Given that the ξi’s are i.i.d., zero-mean, unit

variance and independent of the data we have

E
[∥∥∥√nEn [ξis (Zi)]

∥∥∥2
∣∣∣∣ {Zi}n1] = En

[
‖s (Zi)‖2

]
.

The desired ‖
√
nEn [ξis (Zi)]‖ .P 1 now follows from iterated expectations, integra-

bility of ‖s (Z) ‖2 (Assumption 1) and M.

Step 2b: Behavior of b̂. In this step we show that

(a) sup
t∈T
‖b̂ (t)− b (t)‖ P→ 0 and (b) sup

t∈T
‖b̂ (t)‖ .P 1,

with b and b̂ defined in (3.7) and (3.21), respectively. To show (a), note that the
argument used in Step 1 of the proof of Lemma A.2 shows that

(t, β) 7→ E [ω (t,X) (∂/∂β) ρ (Z, β, h∗ (W ))] is uniformly continuous on T ×B,

and sup
T ×B
‖(En − E)ω (t,Xi) (∂/∂β) ρ (Zi, β, h∗ (Wi))‖ P→ 0,

where B ⊂ N is any closed set containing β0 in its interior (Assumption 1). By T we
have

sup
t∈T
‖b̂ (t)− b (t)‖ 6 sup

t∈T

∥∥∥∥∥En
[
ω (t,Xi)

{
∂

∂β
ρ(Zi, β̂, ĥ (Wi))−

∂

∂β
ρ(Zi, β̂, h∗ (Wi))

}]∥∥∥∥∥
+ sup

t∈T

∥∥∥∥∥(En − EZ)
[
ω (t,Xi)

∂

∂β
ρ(Zi, β̂, h∗ (Wi))

]∥∥∥∥∥
+ sup

t∈T

∥∥∥∥∥EZ

[
ω (t,X) ∂

∂β
ρ(Z, β̂, h∗ (W ))

]
− b (t)

∥∥∥∥∥ .
Given that β̂ ∈ B wp → 1, the second and third term on the right →P 0 due to
uniform convergence and uniform continuity, respectively. By T and Assumptions 2
and 3, the first term is bounded by a constant multiple of

En[a (Zi) ‖ĥ (Zi)− h∗ (Zi)‖c] 6 dc/2En [a (Zi)] max
16m6d

‖ĥm − h∗m‖cW

.P max
16m6d

‖ĥm − h∗m‖cW
P→ 0,
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where the .P follows from M and the →P 0 from Lemma S.7. The previous display
finishes the proof of (a) and therefore the proof of Step 2 (‖IIn‖T →P 0).

To show (b), note that the argument used in Step 1 of the proof of Lemma A.2
also shows that supt∈T ‖b (t)‖ . 1. Two applications of T yield

∣∣∣∣ sup
t∈T
‖b̂ (t)‖ − sup

t∈T
‖b (t)‖

∣∣∣∣ 6 sup
t∈T

∣∣∣‖b̂ (t)‖ − ‖b (t)‖
∣∣∣ 6 sup

t∈T
‖b̂ (t)− b (t)‖ P→ 0,

which combined with supt∈T ‖b (t)‖ . 1 implies supt∈T ‖b̂ (t)‖ .P 1.

Step 3: ‖IIIn‖T →P 0

By CS, IIIn defined in (S.12) satisfies

‖IIIn‖T 6
∥∥∥√nEn [ξi{ŝ (Zi)− s (Zi)}]

∥∥∥ sup
t∈T

∥∥∥b̂ (t)
∥∥∥ . (S.13)

By Step 2b, supt∈T ‖b̂ (t)‖ .P 1, so to show ‖IIIn‖T →P 0, it suffices to show that
∥∥∥√nEn [ξi{ŝ (Zi)− s (Zi)}]

∥∥∥ P→ 0.

To this end, note that by the ξi’s being i.i.d., zero-mean, unit variance and indepen-
dent of the data, and Assumption 8, we have

E
[∥∥∥√nEn [ξi{ŝ (Zi)− s (Zi)}]

∥∥∥2
∣∣∣∣ {Zi}n1] = En

[
‖ŝ (Zi)− s (Zi)‖2

] P→ 0,

so ‖
√
nEn [ξi{ŝ (Zi)− s (Zi)}]‖ →P 0 follows from Lemma S.9.

Step 4: ‖IVn‖T →P 0

Given that IVn defined in (S.12) may be written as the sum

IVn (t) =
d∑

m=1

√
nEn

[
ξi{δ̂m (t,Wi) {Ymi − ĥm (Wi)} − δm (t,Wi)Umi}

]
,

it suffices to bound each summand uniformly over T in probability. We therefore
omit also the m subscript for the remainder of Step 4 and interpret (∂/∂h) ρ as a
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scalar derivative. By T, the (mth) summand satisfies the uniform bound

sup
t∈T

∣∣∣√nEn [ξi{δ̂ (t,Wi) {Yi − ĥ (Wi)} − δ (t,Wi)Ui}
]∣∣∣

6 sup
t∈T

∣∣∣√nEn [ξiUi{δ̂ (t,Wi)− δ (t,Wi)}
]∣∣∣

+ sup
t∈T

∣∣∣√nEn [ξiδ̂ (t,Wi) {ĥ (Wi)− h∗ (Wi)}
]∣∣∣ =: ‖IVa,n‖T + ‖IVb,n‖T . (S.14)

We consider each term on the right-hand side in turn.

Step 4a: ‖IVa,n‖T →P 0. Recalling the definitions of δk and ψk in (S.5) and (S.9),
respectively, we may write δk (t, w) = pk (w)′Q−1

k ψk (t), such that by T,

‖IVa,n‖T = sup
t∈T

∣∣∣∣√nEn [ξiUipkn (Wi)′ Q̂−1
kn
ψ̂kn (t)

]
6 sup

t∈T

∣∣∣∣ψ̂kn (t)′ (Q̂−1
kn
−Q−1

kn
)
√
nEn

[
pkn (Wi) ξiUi

] ∣∣∣∣
+ sup

t∈T

∣∣∣∣{ψ̂kn (t)− ψkn (t)}′Q−1
kn

√
nEn

[
pkn (Wi) ξiUi

] ∣∣∣∣
+ sup

t∈T

∣∣∣√nEn [ξiUi{δkn (t,Wi)− δ (t,Wi)}]
∣∣∣

=: ‖IVa,1,n‖T + ‖IVa,2,n‖T + ‖IVa,3,n‖T , (S.15)

where we employ the convenient shorthand

ψ̂k (t) = En
[
pk (Wi)ω (t,Xi)

∂

∂β
ρ(Zi, β̂, ĥ (Wi))

]

as defined in the (auxilliary) Step 4c below.

Step 4a(1): ‖IVa,1,n‖T →P 0. Using Assumptions 4 and 5 and the ξi’s being
i.i.d., zero-mean, unit variance and independent of the data,

E
[∥∥∥∥Q−1/2

kn

√
nEn

[
pkn (Wi) ξiUi

] ∥∥∥∥2]
= E[ξ2U2pkn (W )′Q−1

kn
pkn (W )]

= E[U2pkn (W )′Q−1
kn
pkn (W )]

. E[pkn (W )′Q−1
kn
pkn (W )] = kn,
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so by M we have ∥∥∥∥Q−1/2
kn

√
nEn

[
pkn (Wi) ξiUi

] ∥∥∥∥ .P

√
kn. (S.16)

Step 4c shows that supt∈T ‖ψ̂kn (t)′ Q̂−1
kn
‖ .P 1, so by CS, Assumption 5, Lemma S.6,

and the previous display,

‖IVa,1,n‖T = sup
t∈T

∣∣∣∣ψ̂kn (t)′ Q̂−1
kn

(Qkn − Q̂kn)Q−1
kn

√
nEn

[
pkn (Wi) ξiUi

] ∣∣∣∣
6
∥∥∥∥Q−1

kn

√
nEn

[
pkn (Wi) ξiUi

] ∥∥∥∥ sup
t∈T

∥∥∥ψ̂kn (t)′ Q̂−1
kn

(Qkn − Q̂kn)
∥∥∥

6
∥∥∥∥Q−1

kn

√
nEn

[
pkn (Wi) ξiUi

] ∥∥∥∥‖Q̂kn −Qkn‖op sup
t∈T

∥∥∥ψ̂kn (t)′ Q̂−1
kn

∥∥∥
.
∥∥∥∥Q−1/2

kn

√
nEn

[
pkn (Wi) ξiUi

] ∥∥∥∥‖Q̂kn −Qkn‖op sup
t∈T

∥∥∥ψ̂kn (t)′ Q̂−1
kn

∥∥∥
.P

√
kn[ζ2

kn ln (kn) /n]1/2 = [ζ2
knkn ln (kn) /n]1/2,

which → 0 by Assumption 7.

Step 4a(2): ‖IVa,2,n‖T →P 0. By CS, Assumption 5, (S.16) and Step 4c,

‖IVa,2,n‖T 6
∥∥∥∥Q−1

kn

√
nEn

[
pkn (Wi) ξiUi

] ∥∥∥∥ sup
t∈T

∥∥∥ψ̂kn (t)− ψkn (t)
∥∥∥

.
∥∥∥∥Q−1/2

kn

√
nEn

[
pkn (Wi) ξiUi

] ∥∥∥∥ sup
t∈T

∥∥∥ψ̂kn (t)− ψkn (t)
∥∥∥

.P

√
kn

[ {
E
[
R′ (Zi)2

]}1/2
ζkn

(
‖β̂ − β0‖ ∨ max

16m′6d
‖ĥm′ − h∗m′‖n,2

)

+
( kn∑
j=1
‖pj‖2

W

)1/2
/
√
n

]

=
{

E
[
R′ (Zi)2

]}1/2
ζkn

√
kn

(
‖β̂ − β0‖ ∨ max

16m′6d
‖ĥm′ − h∗m′‖n,2

)

+
( kn∑
j=1
‖pj‖2

W

)1/2
√
kn
n
,

which →P 0 by Assumptions 7 and 8.4.
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Step 4a(3): ‖IVa,3,n‖T →P 0. Fix k and let

F ′k := {(v, z) 7→ v{y − h∗ (w)}{δk (t, w)− δ (t, w)}; t ∈ T }.

Given that each E[f(ξ, Z)] = 0 for each f ∈ F ′k, the stochastic process IVn may
be viewed as an empirical process Gn indexed by the changing classes F ′kn . For
f = ft, f1 = ft1 , f2 = ft2 ∈ F ′kn arbitrary, by arguments parallel to those used in Step
4c in the proof of Lemma A.2, there exists a function z 7→ Fk (z) such that

|f (v, z)| 6 |v|Fk (z) ,

|f1 (v, z)− f2 (v, z)| 6 |v|Fk (z) ‖t1 − t2‖,

and ‖Fk‖P,2 .
√
k. The ξi’s being zero mean, unit variance and independent of the

data implies that F ′k : (v, z) 7→ |v|Fk (z) is an envelope for F ′k with (E[F ′k(ξ, Z)2])1/2 =
‖Fk‖P,2 .

√
k as k →∞, satisfying

|f1 (s, z)− f2 (s, z)| 6 F ′k (s, z) ‖t1 − t2‖.

Using T compact and the previous display, by van der Vaart and Wellner (1996,
Theorem 2.7.11) we see that

N[ ](ε(E[F ′k(ξ, Z)2])1/2,F ′k, L2 (ξ, Z)) 6 (C/ε)dt , ε ∈ (0, 1].

and thus

J[ ]
(
δ,F ′k, L2 (ξ, Z)

)
6
∫ δ

0

√
1 + dt ln (C/ε)dε, δ ∈ (0, 1].

where the right-hand side does not depend on k. In particular, J[ ]
(
1,F ′kn , L2 (ξ, Z)

)
.

1. Defining

σ2
n := sup

f∈F ′
kn

En[f(ξi, Zi)2]

we see that

σ2
n = sup

t∈T
En
[
ξ2
i U

2
i {δkn (t,Wi)− δ (t,Wi)}2

]
6 En

[
ξ2
i U

2
i ‖δkn (·,Wi)− δ (·,Wi)‖2

T

]
,
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thus implying

E
[
σ2
n

]
6 E

[
ξ2U2‖δkn (·,W )− δ (·,W )‖2

T

]
6 CE

[
‖δkn (·,W )− δ (·,W )‖2

T

]
= CR2

δ,kn ,

where the second inequality follows from the ξi’s being zero mean, unit variance, and
independent of the data and Assumption 4, and the last equality follows from the
definitions of δk and Rδ,k [the latter in (3.13)].

It suffices to consider the two cases (1)Rδ,kn/‖Fkn‖P,2 → 0 and (2)Rδ,kn/‖Fkn‖P,2 9
0 in turn. Case 1 : Rδ,kn/‖Fkn‖P,2 → 0. Given that

√
E [σ2

n] 6 CRδ,kn , by the change
of variables ε′ := ε/C we have

J[ ]

(√
E [σ2

n]/‖Fkn‖P,2,F ′k, L2 (ξ, Z)
)
6 J[ ]

(
CRδ,kn/‖Fkn‖P,2,F ′k, L2 (ξ, Z)

)
= C

∫ Rδ,kn/‖Fkn‖P,2

0

√
1 + dt ln (C ′/ε′)dε′

=: CJ [ ] (Rδ,kn/‖Fkn‖P,2) . (S.17)

By van der Vaart and Wellner (2011, p. 196) we have the maximal inequality

E[‖Gn‖F ′
kn

] . J[ ]


√

E [σ2
n]

‖Fkn‖P,2
,F ′kn , L

2 (ξ, Z)
 ‖Fkn‖P,2

. J [ ]

(
Rδ,kn

‖Fkn‖P,2

)
‖Fkn‖P,2,

and from van der Vaart and Wellner (1996, p. 239) we know that an entropy in-
tegral (bound) of the form (S.17) satisfies J [ ] (δ) . δ

√
ln(1/δ) as δ → 0+. Since

Rδ,kn/‖Fkn‖P,2 → 0 holds by hypothesis, the previous display combined with ‖Fkn‖P,2 .√
kn yields

E[‖Gn‖F ′
kn

] . Rδ,kn

‖Fkn‖P,2

√√√√ln
(
‖Fkn‖P,2
Rδ,kn

)
‖Fkn‖P,2 = Rδ,kn

√√√√ln
(
‖Fkn‖P,2
Rδ,kn

)

. Rδ,kn

√
ln (kn/Rδ,kn).

Case 2. Suppose that Rδ,kn/‖Fkn‖P,2 9 0. Given that Rδ,kn → 0 (Assumption 7),
we must have ‖Fkn‖P,2 . Rδ,kn . van der Vaart and Wellner (1996, Theorem 2.14.2)
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and J[ ]
(
1,F ′kn , L2 (ξ, Z)

)
. 1 yield

E[‖Gn‖F ′
kn

] . J[ ]
(
1,Fk′

n
, L2 (ξ, Z)

)
‖Fkn‖P,2

. ‖Fkn‖P,2 . Rδ,kn . Rδ,kn

√
ln (kn/Rδ,kn)

as in Case 1. The claim ‖IVa,3,n‖T as defined in (S.15)→P 0 now follows from M and
Rδ,kn

√
ln (kn/Rδ,kn) → 0 (Assumption 7). Via (S.15), this →P 0 in turn shows that

‖IVa,n‖T as defined in (S.14) →P 0.

Step 4b: ‖IVb,n‖T →P 0. Employ the shorthand ψ̂k(t) defined in (S.18) below,
such that δ̂k(t,Wi) = pk(Wi)′Q̂−1

k ψ̂k(t). Step 4c shows that supT ‖ψ̂kn (t)′ Q̂−1
kn
‖ .P 1,

so by CS it follows that

‖IVb,n‖T = sup
t∈T

∣∣∣∣ψ̂kn (t)′ Q̂−1
kn

√
nEn

[
pkn (Wi) ξi{ĥ (Wi)− h∗ (Wi)}

] ∣∣∣∣
6
∥∥∥∥√nEn [pkn (Wi) ξi{ĥ (Wi)− h∗ (Wi)}

] ∥∥∥∥ sup
t∈T

∥∥∥ψ̂kn (t)′ Q̂−1
kn

∥∥∥
.P

∥∥∥∥√nEn [pkn (Wi) ξi{ĥ (Wi)− h∗ (Wi)}
] ∥∥∥∥.

To show that the right-hand side →P 0, note that by the ξi’s being i.i.d., zero-mean,
unit variance and independent of {Zi}n1 , and ĥ being {Zi}n1 -measurable,

E
[∥∥∥∥√nEn [pkn (Wi) ξi{ĥ (Wi)− h∗ (Wi)}

] ∥∥∥∥2∣∣∣∣{Zi}n1]

= En
[
‖pkn (Wi)‖2|ĥ (Wi)− h∗ (Wi)|2

]
6
( kn∑
j=1
‖pj‖2

W

)
‖ĥ− h∗‖2

n,2

.P

[( kn∑
j=1
‖pj‖2

W

)1/2 (√
kn/n+ k−αn

) ]2
→ 0,

where the .P follows from Lemma S.7 and the → 0 from Assumption 7. Lemma S.9
then implies ‖

√
nEn[pkn (Wi) ξi{ĥ (Wi) − h∗ (Wi)}]‖ →P 0. This →P 0 finishes the

proof of the claim that ‖IVb,n‖T as defined in (S.14) →P 0, which in turn shows that
‖IVn‖T as defined in (S.12) →P 0.
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Step 4c (auxilliary): Behavior of ψ̂kn and Q̂−kn. Motivated by the LOIE, we
estimate ψk(t) = E[pk (W ) δ (t,W )] as defined in (S.9) by

ψ̂k (t) := En
[
pk (Wi)ω (t,Xi)

∂

∂h
ρ(Zi, β̂, ĥ (Wi))

]
. (S.18)

Note that this definition allows us to write δ̂ defined in (3.22) as

(t, w) 7→ δ̂ (t, w) = pkn (w)′ Q̂−knψ̂kn (t) .

This section shows that

(a) sup
t∈T

∥∥∥ψ̂kn (t)− ψkn (t)
∥∥∥

.P
{

E
[
R′ (Zi)2

]}1/2
ζkn

(
‖β̂ − β0‖ ∨ max

16m′6d
‖ĥm′ − h∗m′‖n,2

)

+ 1√
n

( kn∑
j=1
‖pj‖2

W

)1/2
→ 0,

(b) sup
t∈T

∥∥∥ψ̂kn (t)′ Q̂−kn − ψkn (t)′Q−1
kn

∥∥∥ P→ 0,

and (c) sup
t∈T

∥∥∥ψ̂kn (t)′ Q̂−kn
∥∥∥ .P 1.

To show (a), recall ∆ (t, z, h) from (S.7) and define

∆k
i (t) := (∆(t, Zi, p1), . . . ,∆(t, Zi, pk))′.

Then by T we have

sup
t∈T

∥∥∥ψ̂kn (t)− ψkn (t)
∥∥∥

6 sup
t∈T

∥∥∥∥∥En
[
ω (t,Xi)

{
∂

∂h
ρ(Zi, β̂, ĥ (Wi))−

∂

∂h
ρ(Zi, β0, h

∗ (Wi))
}
pkn (Wi)

]∥∥∥∥∥
+ sup

t∈T
‖(En − E) ∆kn

i (t)‖.
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By Assumptions 1, 2 and 8 and T followed by CS and M,

sup
t∈T

∥∥∥∥∥En
[
ω (t,Xi)

{
∂

∂h
ρ(Zi, β̂, ĥ (Wi))−

∂

∂h
ρ(Zi, β0, h

∗ (Wi))
}
pkn (Wi)

]∥∥∥∥∥
. En

[∥∥∥pkn (Wi)
∥∥∥R′ (Zi) (‖β̂ − β0‖+ ‖ĥ (Wi)− h∗ (Wi)‖

)]
.P

{
E
[
R′ (Zi)2

]}1/2
ζkn

(
‖β̂ − β0‖ ∨ max

16m′6d
‖ĥm′ − h∗m′‖n,2

)
,

which →P 0 by Assumption 8.
Moreover, the argument used in Step 3a of the proof of Lemma A.2 shows that

sup
t∈T

∥∥∥En [∆kn
i (t)

]∥∥∥ .P

( kn∑
j=1
‖pj‖2

W

)1/2
/
√
n.

Lemmas S.3 and S.6 and Assumptions 5 and 7 show that Q̂kn is invertible wp → 1
and λmin(Q̂kn)−1 .P 1. To ease notation we will (without loss of generality) assume
that Q̂−1

kn
exists with probability one for all n, such that Q̂−kn = Q̂−1

kn
. The argument

used in Step 4b of the proof of Lemma A.2 shows that supT ‖ψkn (t)>Q−1
kn
‖ . 1, so

by (a) and T,

sup
t∈T

∥∥∥ψ̂kn (t)′ Q̂−1
kn
− ψkn (t)′Q−1

kn

∥∥∥
6 sup

t∈T

∥∥∥{ψ̂kn (t)− ψkn (t)}′Q̂−1
kn

∥∥∥+ sup
t∈T

∥∥∥ψkn (t)′ (Q̂−1
kn
−Q−1

kn
)
∥∥∥

6 ‖Q̂−1
kn
‖op sup

t∈T

∥∥∥ψ̂kn (t)− ψkn (t)
∥∥∥+ sup

t∈T

∥∥∥ψkn (t)′Q−1
kn

(Q̂kn −Qkn)Q̂−1
kn

∥∥∥
6 ‖Q̂−1

kn
‖op

(
sup
t∈T

∥∥∥ψ̂kn (t)− ψkn (t)
∥∥∥+ ‖Q̂kn −Qkn‖op sup

t∈T

∥∥∥ψkn (t)′Q−1
kn

∥∥∥ ) P→ 0,

which shows (b). Part (c) follows from (b) and supt∈T ‖ψkn (t)′Q−1
kn
‖ . 1. This

concludes the proof of the claim that ‖IVn‖T as defined in (S.12) →P 0 and hence
the proof of Lemma S.1.

Lemma S.2. If Assumptions 1–8 hold, then

max
16`6L

‖En[ĝ` (·, Zi)− g` (·, Zi)]‖X`
P→ 0.

Proof of Lemma S.2. The proof proceeds in a number of steps. Since the lemma
is stated for a given `, for notational convenience we drop the ` subscripts throughout
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and refer to the (`th) index set X` as T itself.

Step 0 (Main)

For fixed t ∈ T we may write

En[ĝ (t, Zi)− g (t, Zi)] = En
[
ω (t,Xi) {ρ(Zi, β̂, ĥ (Wi))− ρ(Zi, β0, h

∗ (Wi))}
]

− {b̂ (t)− b (t)}′En [s (Zi)]− b̂ (t)′ En [ŝ (Zi)− s (Zi)]

+ En[δ̂ (t,Wi)′ {Yi − ĥ (Wi)} − δ (t,Wi)′ Ui]

=: In (t) + IIn (t) + IIIn (t) + IVn (t) .

The following steps show that the four remainder terms→P 0 uniformly over T . The
claim therefore follows from T.

Step 1: ‖In‖T →P 0

Assumption 1 implies that β̂ →P β0 interior (also under H1), so letting N be an open
neighborhood of β0, β̂ ∈ N wp → 1. To simplify notation and ensure that objects
are globally well defined, in what follows we will—without loss of generality—assume
that β̂ ∈ N with probability equal to one for all n. A MVE of β 7→ ρ(Zi, β, ĥ (Wi))
at β̂ around β0 followed by CS show that

‖In‖T 6 sup
t∈T
|En[ω (t,Xi) {ρ(Zi, β0, ĥ (Wi))− ρ(Zi, β0, h

∗ (Wi))}]|

+ ‖β̂ − β0‖ sup
t∈T
‖En[ω (t,Xi) (∂/∂β) ρ(Zi, β, ĥ (Wi))]‖

=: ‖Ia,n‖T + ‖β̂ − β0‖‖Ib,n‖T ,

where β satisfies ‖β − β0‖ 6 ‖β̂ − β0‖ such that β ∈ N . Since ‖β̂ − β0‖ →P 0 it
suffices to show that ‖Ia,n‖T →P 0 and ‖Ib,n‖T .P 1. Step 1 in the proof of Lemma
A.2 shows that

sup
t∈T
‖Ib,n (t)− b (t)‖ P→ 0 and sup

t∈T
‖b (t)‖ <∞,

which combine to yield ‖Ib,n‖T .P 1.
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Step 1a: ‖Ia,n‖T →P 0. Abbreviate (z, v) 7→ ρ (z, β0, v) by ρ. By a MVE of
v 7→ ρ(Zi, v) at ĥ (Wi) around h∗ (Wi) and T we may bound ‖Ia,n‖T by

sup
t∈T

∣∣∣∣∣En
[
ω (t,Xi)

{
∂

∂h′
ρ(Zi, h (Wi))−

∂

∂h′
ρ(Zi, h∗ (Wi))

}
{ĥ (Wi)− h∗ (Wi)}

]∣∣∣∣∣
+ sup

t∈T

∣∣∣∣∣En
[
ω (t,Xi)

∂

∂h′
ρ(Zi, h∗ (Wi)){ĥ (Wi)− h∗ (Wi)}

]∣∣∣∣∣
=: ‖Ia,1,n‖T + ‖Ia,2,n‖T ,

where ‖h (Wi)− h∗ (Wi)‖ 6 ‖ĥ (Wi)− h∗ (Wi)‖. By T, CS, Assumptions 2 and 8 and
M,

‖Ia,1,n‖T . En[R′ (Zi) ‖ĥ (Wi)− h∗ (Wi)‖2] .P E [R′ (Zi)] max
16m6d

‖ĥm − h∗m‖2
W

P→ 0.

Similarly, by T, CS and Assumptions 2 and 3,

‖Ia,2,n‖T . En
[∣∣∣∣∣ ∂∂h′ρ(Zi, h∗ (Wi)){ĥ (Wi)− h∗ (Wi)}

∣∣∣∣∣
]

. En
[∥∥∥∥∥ ∂∂hρ(Zi, h∗ (Wi))

∥∥∥∥∥
]

max
16m6d

‖ĥm − h∗m‖W

.P max
16m6d

‖ĥm − h∗m‖W
P→ 0,

where the .P follows from M and ‖(∂/∂h) ρ(Z, h∗ (W ))‖2 being integrable (Assump-
tion 3) and the →P 0 from Lemma S.7.

Step 2: ‖IIn‖T →P 0

Step 2b in the proof of Lemma S.1 shows that supt∈T ‖b̂ (t) − b (t)‖ →P 0, so by T,
CS, Assumption 1, and M

‖IIn‖T 6 ‖En [s (Zi)]‖ sup
t∈T
‖b̂ (t)− b (t)‖ .P sup

t∈T
‖b̂ (t)− b (t)‖ P→ 0.
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Step 3: ‖IIIn‖T →P 0

Step 2b in the proof of Lemma S.1 also shows supt∈T ‖b̂ (t)‖ .P 1, so by T, CS and
Assumption 8,

‖IIIn‖T 6 ‖En[ŝ (Zi)− s (Zi)]‖ sup
t∈T
‖b̂ (t)‖ .P

{
En
[
‖ŝ (Zi)− s (Zi)‖2

]}1/2 P→ 0.

Step 4: ‖IVn‖T →P 0

Given that

En[δ̂ (t,Wi)′ {Yi − ĥ (Wi)} − δ (t,Wi)′ Ui]

=
d∑

m=1
En[δ̂m (t,Wi) {Ymi − ĥm (Wi)} − δm (t,Wi)Umi],

by T, it suffices to bound each right-hand side summand uniformly over T in proba-
bility. We therefore drop also the m subscript for the remainder of this step. Now, for
fixed t ∈ T , adding and subtracting pkn (Wi)′Q−1

kn
ψ̂kn (t)Ui [with ψ̂k defined in (S.18)],

recalling that δk (t, w) = pk (w)′Q−1
k ψk (t) we may decompose (the mth summand) as

follows:

En[Ui{δ̂ (t,Wi)− δ (t,Wi)}]− En[δ̂ (t,Wi) {ĥ (Wi)− h∗ (Wi)}]

= ψ̂kn (t)′ (Q̂−1
kn
−Q−1

kn
)En[pkn (Wi)Ui] + [ψ̂kn (t)− ψkn (t)]′Q−1

kn
En[pkn (Wi)Ui]

+ En[Ui{δkn (t,Wi)− δ (t,Wi)}]− ψ̂kn (t)′ Q̂−1
kn
En[pkn (Wi) {ĥ (Wi)− h∗ (Wi)}]

=: IVa,n (t) + IVb,n (t) + IVc,n (t) + IVd,n (t) .

The desired ‖IVn‖T →P 0 will follow by T if we can show that the four remainder
terms →P 0. To this end, note first that by Assumptions 4 and 5,

E
[
‖Q−1

k En[pk (Wi)Ui]‖2
]
. E

[
‖Q−1/2

k En[pk (Wi)Ui]‖2
]

= E[U2pk (W )′Q−1
k pk (W )]/n

. E[pk (W )′Q−1
k pk (W )]/n = k/n,

so by M and Assumption 7,

‖Q−1
kn
En[pkn (Wi)Ui]‖ .P

√
kn/n→ 0.
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Step 4c in the proof of Lemma S.1 shows that supt∈T ‖ψ̂kn (t)′ Q̂−1
kn
‖ .P 1. Moreover,

Lemma S.6 show that ‖Q̂kn − Qkn‖op .P [ζ2
kn ln(kn)/n]1/2 → 0, so by the previous

display, CS and Assumption 7,

‖IVa,n‖T =
∥∥∥ψ̂kn (t)′ Q̂−1

kn
(Qkn − Q̂kn)Q−1

kn
En
[
pkn (Wi)Ui

]∥∥∥
T

6
∥∥∥Q−1

kn
En
[
pkn (Wi)Ui

]∥∥∥ ‖Q̂kn −Qkn‖op sup
t∈T

∥∥∥ψ̂kn (t)′ Q̂−1
kn

∥∥∥
.P (kn/n)1/2

{
ζ2
kn ln(kn)/n

}1/2
→ 0.

Step 4c in the proof of Lemma S.1 also shows that supt∈T ‖ψ̂kn (t)−ψkn (t)‖ →P 0, so
by CS,

‖IVb,n‖T 6
∥∥∥Q−1

kn
En
[
pkn (Wi)Ui

]∥∥∥ sup
T

∥∥∥ψ̂kn (t)− ψkn (t)
∥∥∥ P→ 0.

Step 4c in the proof of Lemma A.2 shows that

‖IVc,n‖t∈T = sup
t∈T
|En[Ui{δkn (t,Wi)− δ (t,Wi)}]| .P Rδ,kn

√
ln(kn/Rδ,kn)→ 0.

Lastly, by CS, Lemma S.7 and supt∈T ‖ψ̂kn (t)′ Q̂−1
kn
‖ .P 1 we get

‖IVd,n‖T 6
∥∥∥En [pkn (Wi) {ĥ (Wi)− h∗ (Wi)}

]∥∥∥ sup
t∈T

∥∥∥ψ̂kn (t)′ Q̂−1
kn

∥∥∥
.
( kn∑
j=1
‖pj‖2

W

)1/2
max

16m′6d
‖ĥm′ − h∗m′‖n,2 sup

t∈T

∥∥∥ψ̂kn (t)′ Q̂−1
kn

∥∥∥
.P

( kn∑
j=1
‖pj‖2

W

)1/2
max

16m′6d

(√
km′,n/n+ k

−αm′
m′,n

)
,

which→ 0 by Assumption 8.4. This finishes the proof of ‖En[ĝ (·, Zi)−g (·, Zi)]‖T →P

0.

Proof of Lemma 3. Since the lemma is stated for a given `, we drop the ` sub-
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scripts throughout and refer to the (`th) index set X` as T itself. Then by T,

‖Ĝ−G∗n‖T =
∥∥∥√nEn [(ξi − ξ) ĝ (·, Zi)

]
−
√
nEn

[(
ξi − ξ

)
g (·, Zi)

]∥∥∥
T

=
∥∥∥√nEn [ξiĝ (·, Zi)]−

√
nEn [ξig (·, Zi)]−

√
n · ξ · En[ĝ (·, Zi)− g (·, Zi)]

∥∥∥
T

=
∥∥∥Ĝu −G∗un −

√
n · ξ · En[ĝ (·, Zi)− g (·, Zi)]

∥∥∥
T

6 ‖Ĝu −G∗un ‖T + |
√
n · ξ| ‖En[ĝ (·, Zi)]− En [g (·, Zi)]‖T .

The first term on the right →P 0 by Lemma S.1. Given that
√
n · ξ ∼ N (0, 1) ,

certainly |
√
n · ξ| .P 1. The second term therefore →P 0 by Lemma S.2.

S.4 Supporting Lemmas

For now, let Q and Q̂ be symmetric but otherwise arbitrary random matrices of
possibly growing dimension. Also, denote the smallest and largest eigenvalue of a
matrix A by λmin (A) and λmax (A), respectively.

Lemma S.3. If λmin (Q) > c wp→ 1 for some constant c ∈ (0,∞) and ‖Q̂−Q‖op →P

0, then Q̂ is invertible wp→ 1 and λmin(Q̂)−1 .P 1.1

Proof. Given that the eigenvalues of a symmetric (hence square) matrixA are bounded
in absolute value by the operator norm, for conformable vectors v,

λmin(Q̂) = min
‖v‖=1

{
v′Qv + v′(Q̂−Q)v

}
> λmin (Q)− λmax(Q− Q̂)

> λmin (Q)− ‖Q̂−Q‖op.

It follows that

P
(
λmin(Q̂) < c/2

)
6 P

(
λmin (Q)− ‖Q̂−Q‖op < c/2

)
6 P

(
‖Q̂−Q‖op > c/2

)
+ P (λmin (Q) < c)→ 0,

so P(λmin(Q̂) > c/2)→ 1. Hence, Q̂ is invertible wp→ 1, and its smallest eigenvalue
is bounded away from zero in probability.

1This is Newey (1995, Lemma A.4) except that we state convergence in terms of the (weaker)
operator matrix norm instead of the (stronger) Frobenius norm.
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For now, let Y,H ∈ Rn, P ∈ Rn×k be arbitrary and of possibly growing dimensions
n and k and abbreviate U := Y −H, π̂ := (P ′P )− P ′Y and Ĥ := Pπ̂.

Lemma S.4. For any π ∈ Rk,

‖Ĥ −H‖2 6 U ′P (P ′P )− P ′U + ‖Pπ −H‖2 ,

‖Ĥ − Pπ‖2 6 2U ′P (P ′P )− P ′U + 2‖Pπ −H‖2.

Proof. Generalized inversion preserves symmetry, so PP := P (P ′P )− P ′ and MP :=
In×n−PP are symmetric idempotent. Given that also PPP = P [see, e.g., Rao (1973,
1b.5(vi)(a))], for any fixed π ∈ Rk, we must have

‖Ĥ −H‖2 = ‖PPY −H‖2 = ‖PPU −MPH‖2 = U ′PPU +H ′MPH

= U ′PPU + (H − Pπ)′MP (H − Pπ) 6 U ′PPU + ‖Pπ −H‖2 ,

where the inequality follows from the Min-Max theorem and an idempotent matrix
having only zero or one eigenvalues. Similarly, abbreviating Hπ := Pπ,

‖Ĥ − Pπ‖2 = ‖PPY −Hπ‖2 = ‖PP (U +H −Hπ)‖2

= (U +H −Hπ)′PP (U +H −Hπ)

6 2U ′PPU + 2(H −Hπ)′PP (H −Hπ)

6 2U ′PPU + 2‖Hπ −H‖2,

where the first inequality follows from (v + w)′A(v + w) 6 2v′Av + 2w′Aw for A
positive semi-definite (p.s.d.), and the second from idempotency of PP .

Next, interpret {(Yi,Wi)}n1 as i.i.d. R1+d-valued random variables with d ∈ N
(fixed),E [Y 2] < ∞,W := supp (W ) , and let pk : Rd → Rk be a nonrandom vector
function of possibly growing length satisfying ζk := supw∈W ‖pk (w) ‖ < ∞ for all
k ∈ N. Also, define h (w) := E[Y |W = w], σ2 (w) := var(Y |W = w), w ∈ W , and
Ui := Yi − h (Wi) and let U and P be the n× 1 vector and n× k matrix of Ui’s and
pk (Wi)’s, respectively.

Lemma S.5. E[U′P (P ′P )− P ′U] 6 ‖σ2‖W (n ∧ k) .
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Proof. By the i.i.d. assumption, the positive semidefinite (p.s.d.) matrix

E [UU′| {Wi}n1 ] = diag
{
σ2 (Wi)

}n
1
.

Given that PP := P (P ′P )− P ′ is also p.s.d., using tr (AB) 6 λmax (A) tr (B) for A,B
p.s.d., we get

E
[
U′P (P ′P )− P ′U

∣∣∣ {Wi}n1
]

= tr (E [UU′| {Wi}n1 ]PP )

6 max
16i6n

σ2 (Wi) tr (PP ) 6 ‖σ2‖Wtr (PP ) .

Now, tr(PP ) = tr((P ′P )−P ′P ) = rank (P ′P ) , the latter equality following from Rao
(1973, 1b(ii)(a)). The claim now follows from rank(P ′P ) = rank(P ) 6 n ∧ k upon
taking expectation over the Wi’s.

Lemma S.6. If the eigenvalues of Qk := E[pk (W ) pk (W )′] are bounded from above
uniformly in k, then Q̂kn := En[pkn(Wi)pkn(Wi)′] satisfies

E
[∥∥∥Q̂kn −Qkn

∥∥∥
op

]
.
ζ2
kn ln kn
n

+
√
ζ2
kn

ln kn
n

.

Proof. The matrix Q̂k is the average of the n independent p.s.d. k× k-matrix valued
random variables pk (Wi) pk (Wi)′ with the matrix Qk as their common mean. Given
that

∥∥∥pk (Wi) pk (Wi)′
∥∥∥

op
6
∥∥∥pk (Wi) pk (Wi)′

∥∥∥
F

= [tr(pk (Wi) pk (Wi)′ pk (Wi) pk (Wi)′)]1/2

=
∥∥∥pk (Wi)

∥∥∥2
6 ζ2

k ,

these n random matrices are bounded in operator norm by ζ2
k . By hypothesis,

‖Qk‖op = [λmax (Q′kQk)]1/2 = λmax (Qk) . 1 as k → ∞. The claim now follows
from Belloni et al. (2015, Lemma 6.2), which builds on a fundamental result obtained
by Rudelson (1999).

Lemma S.7. Let σ2 be bounded on W, the eigenvalues of Qk := E[pk (W ) pk (W )′]
bounded from above and below uniformly in k, let π̃ ∈ Rk satisfy ‖pk′π̃ − h‖W. k−α

for some α ∈ (0, 1), and define h̃ := pk′π̃ and ĥ := pk′π̂, where π̂ := Q̂−knEn[pkn(Wi)Yi].
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Then, provided kn/n→ 0 and ζ2
kn ln (kn) /n→ 0, we have

1. ‖ĥ− h‖n,2 .P

√
kn/n+ k−αn ,

2. ‖ĥ− h̃‖n,2 .P

√
kn/n+ k−αn ,

3. ‖π̂ − π̃‖ .P

√
kn/n+ k−αn , and

4. ‖ĥ− h‖W .P ζkn
(√

kn/n+ k−αn
)
.

Proof. By Lemma S.4,

‖ĥ− h‖2
n,2 6 U′P (P ′P )− P ′U/n+ ‖h̃− h‖2

n,2,

‖ĥ− h̃‖2
n,2 6 2U′P (P ′P )− P ′U/n+ 2‖h̃− h‖2

n,2.

By hypothesis ‖h̃ − h‖n,2 6 ‖h̃ − h‖W . k−α. Moreover, via M, Lemma S.5 and
‖σ2‖W <∞ imply U′P (P ′P )− P ′U .P kn. The first two claims now follow from the
previous display.

Via M, given that λmax (Qk) . 1, Lemma S.6 and ζ2
kn ln (kn) /n→ 0 imply ‖Q̂kn−

Qkn‖op →P 0. Given that also λmin (Qk)−1 . 1, Lemma S.3 then implies that Q̂kn is
invertible wp→ 1 and λmin(Q̂kn)−1 .P 1. Hence wp→ 1, by the Min-Max theorem

‖π̂ − π̃‖2 6 λmin(Q̂kn)−1‖P (π̂ − π̃)‖2/n = λmin(Q̂kn)−1‖ĥ− h̃‖2
n,2 .P ‖ĥ− h̃‖2

n,2.

The third claim now follows from the second. Given that ‖ĥ−h̃‖W = supw∈W |pk (w)′ (π̂−
π̃)| 6 ζk‖π̂ − π̃‖ and ‖h̃− h‖W . k−α, by T and the third claim,

‖ĥ− h‖W .P ζkn‖π̂ − π̃‖+ k−αn .P ζkn

(√
kn/n+ k−αn

)
.

Lemma S.8. Let Xn and Yn be sequences of stochastic processes defined on a common
probability space (Ω,F , P ) and taking values in a separable metric space (D, d), and
let Fn be a sequence of sub-σ-algebras. If Xn  P,F X in D and d (Xn, Yn)→P 0, then
Yn  P,F X in D.
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Proof. By T,

sup
h∈BL1(D)

|E [h (Yn)| Fn]− E [h (X)]|

6 sup
h∈BL1(D)

|E [h (Yn)− h (Xn)| Fn]|+ sup
h∈BL1(D)

|E [h (Xn)| Fn]− E [h (X)]|

6 d (Xn, Yn) ∧ 2 + oP (1) = oP (1) .

Lemma S.9. If Xn is a sequence of nonnegative random variables defined on a com-
mon probability space (Ω,F ,P), Fn is a sequence of sub-σ-algebras, and E [Xn| Fn]→P

0, then Xn →P 0.

Proof. Fix n ∈ N, let Yn := E [Xn| Fn] and let An := {Yn = 0}. Then Xn = 0
almost everywhere on An. Indeed, if Xn is not zero almost everywhere on An, then
there would exist a C ∈ (0,∞) such that Bn,C := {ω ∈ An;Xn (ω) > 1/C} satisfies
P (Bn,C) > 0. By definition of (a version of) the conditional expectation of Xn given
Fn, we must have

∫
AXndP =

∫
A YndP for every A ∈ Fn and, in particular, for An.

Since Yn = 0 on An and Bn,C is a subset of An, it follows that

0 =
∫
An
YndP =

∫
An
XndP >

∫
Bn,C

XndP > P (Bn,C) /C,

which contradicts P (Bn,C) > 0. Since n ∈ N was arbitrary, we have shown that
Xn = 0 on An for each n ∈ N. Now, fix ε, δ > 0. Then P (Xn > ε ∩ Yn = 0) = 0 by
the previous claim, and it follows that

P (Xn > ε) = P (Xn > ε ∩ Yn = 0) + P (Xn > ε ∩ 0 < Yn 6 δε) + P (Xn > ε ∩ Yn > δε)

6 P
(
Xn > δ−1Yn > 0

)
+ P (Yn > δε) .

Given that Yn is Fn measurable, by conditional M we have

P
(
Xn > δ−1Yn > 0

)
= E

[
1Yn>0P

(
Xn > δ−1Yn

∣∣∣Fn)] 6 E [1Yn>0δE [Xn| Fn] /Yn]

= δP (Yn > 0) 6 δ.

By Yn →P 0 and the previous two displays we see that for any ε, δ > 0, lim supn→∞ P(Xn >

ε) 6 δ, so the claim follows from letting δ → 0+.
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