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1 Convolution theorem

This section gives the proof of Theorem 4.1.
Let £gyny(2) = —E[Vmg, (X)|E[mg, (X)mg,(X)'] " me, (). Our tangent set is given by Pp =

lin éﬁo,no + 777'3];:, where
Pp = {z’ € Ly(P) : E[i(X)] = 0 and E[i(X)mg, (X)] = o} .

It is clear that Pp is a linear space.
For g € Pp, P; 4, denotes the one-dimensional submodel whose score is g. A sequence of
estimators {T},} is regular with respect to Pp if there exists a fixed probability measure L such

that
Pl/
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\/H(Tn - ¢(P1/\/ﬁ,g))
: Py g
for all g € Pp, where "~ denotes weak convergence under P, NV T

We utilize the following lemma for the proof.

Lemma 4.1 Suppose that Assumption 4.1 holds. Then, for any h € RP and [ e n75p, there exists
a path t — 1y such that

Poo+thm — +/Poo, 1, . : 2
/<\/ o+ mt V. OnO—g(hlgeo,no+l)‘/p907ﬁ0> d¢ — 0

ast — 0.

The following proof closely follows that of Theorem 25.20 in van der Vaart (1998) and Theorem
3.11.2 in van der Vaart and Wellner (1996).
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Proof of Theorem 4.1 Let gp = (g1,...,9m) be an orthonormal basis of a subspace of Pp.
Then, by Lemma 4.1 and Lemma of 25.14 of van der Vaart (1998), it follows that

dP, /
nh—lOgH l/fhgp Z \/—Zh, ——hh+0p() (1)
for any h € R™. Lemma 4.1 also implies that

V(O(Pry ym ) — 0(P)) — Ah, (2)

where A = E[¢p(X)gp(X)'] and ¢p = [9_017706907770 (see Lemma 25.25 of van der Vaart 1998).

Let Znpn = V(T — (P mpgp)) and Ay p = \/— > Wgp(X;). Then, the marginals of the
sequence (Zy 0, Ay, ) converge in distribution under P. Thus, by Prohorov’s theorem, there exists

a subsequence {n} such that
(Zno: D) = (Z,HA)

jointly. By (1) and (2), we also have

(Zn,hyAn,h) “’E‘) <Z - Ah, h/A — %h/h> .

Notice that A, j converges to N (—%h’ h,h'h). Thus, by applying the Le Cam’s third lemma, the
limit law of Z, ;, under Py, s jq,, is obtained by

Lyn(B) = E15(Z — Ah)el'2—2h'h,

Because of the regularity of T},, Ly must coincide with L for any h. Thus, taking the averaging
of both sides over h with respect to N (0, A"'1), we obtain

L(B) = / Els (z - 1A+AA -5 ff)l /2> ex(A)AN (0, T)(h),

where ¢\ (A) = (1 + A~1)=™/2 exp( (1 + A\)71A’A). This representation shows that L can be
written as the law of the sum of two independent random elements —G) and W), where Gy ~
N(0,AA"/(1+ X)) and

1+ A
By letting A — 0, we have (G, Wy) ~ (G+ W), where G and W are independent, G ~ N (0, AA’),
and G+ W ~ L.
The proof completes if the difference between AA’ and E[p(X)p(X)'] can be arbitrarily

P(W, € B) =Elg <z - ﬁ) A(A).

small. Here, since gp is orthonormal, Agp is the orthogonal projection of TZJP onto lin gp. Because

TZJP is contained in the closed linear span of Pp, we can choose gp so that Agp is arbitrarily close

to T/NJP. (|



2 Bernstein-von Mises theorem

This section gives proofs of Theorems 5.1 and 6.1.

Throughout this section, ||P — Q|| denotes the total variation distance between two probability
measures P and Q. For a probability measure P, we define PX(B) = P(BNK)/P(K).

Let @, denote the normal distribution with mean A, and variance matrix I, ?770. Let m,(h)
be the Lebesgue prior density of the local parameter h = /n(6 — ). Moreover, let IIEL and
II,, denote the BEL posterior and the semiparametric Bayesian posterior of the local parameter,

respectively. Our goal is to show that
IMEL — @, 50 and |, — @, 5 0.

To show the theorems, we utilize the following lemmas.

Lemma A.1 Suppose that Assumption 5.1 holds. Then, we have

dFy +h/\/_]P’
] 0 " (X, Wi h’I h = op(1
sup OgH o Z 600 (Xi) + 5h gy noh| = 0p(1)

for any compact K C RP.

Lemma A.2 Suppose that Assumptions 5.1 and 5.2 hold. Then, for any sequence of origin
centered balls { K, } with radii M,, — oo, we have

5L (h € K| X, ..., X,) 5 1.

Lemma A.5 Suppose that Assumptions 6.1 and 6.2 hold. Then, for any bounded random sequence
{hn}, we have

Sn(hn)
sn(0)

log \/— Z h/ 907770 Xi) - h/ 1000 Ttn + op(1),

where

/ Hp%*h/ V(X )Ly (). 3)

Pog,mo

Lemma A.6 Suppose that Assumptions 6.1-6.3 hold. Then, for any sequence of origin centered
balls { K, } with radii M, — oo, we have

I, (h € Kn|X1,...,Xn) 5 1.

The following proof closely follows that of Theorem of 2.1 in Kleijn and van der Vaart (2012).



Proof of Theorem 5.1 Let K C RP be a compact set centered at the origin. Also, let ¢, be the
Lebesgue density of ®,,. Then, the function f, : K x K — R given by

¢n(h) sn(g )Wn(9)>
¢n(9) sn(h) mn(h) )

falg, h) = <1 -

with

& APy ih) np,
sn(h) = [ =5 (x0)
i=1 0,6'n

is well-defined for large n.
For any random sequences {h,}, {gn} C K, we have m,(gn)/mn(hn) — 1. Therefore, it follows
from Lemma A.1 that

Gn(hn) sn(gn) mn(gn) —0
tog Gn(gn) sn(hn) mn(hn) =op(l)-

Since f,, is continuous with respect to its two arguments, the above equation also implies that

sup fu(g,h) 5 0.
g,he K

Let TIZLX be the conditional version of 2L Similarly, let ®X and ¢& denote the conditional
versions of ®,, and ¢,,, respectively. Since K contains a neighborhood of 0, ®,,(K) > 0 is guaranteed.

Let =, be a sequence of events such that {HEL(K ) > 0}. For a given 7 > 0, we define

Q, = { sup fn(g7 h) < 77} .

g,he K

Because the total variation distance can be written as |P—Q|| =2 [(1— )+dP for any probability

measures P and (), we have

1 K () [ 5n(9)mn(g)dg
S|IFEE — ol 10,02, = / 1— =k Aty X (h)lg,nz
92 H n n H QpN=Ey, K Sn(h)ﬂ'n(h) N n ( ) QpNE,

= L[ Siagyeto) e wince.

where we use ¢ (h)/¢E (g) = ¢n(h)/Pn(g). Thus, by applying the Jensen’s inequality, we obtain

I —afine, < [ [ (1- R0 gtz e,
< [ [ sw filo.mia,nz,a0k @antH ),
9,

Because the total variation norm is bounded by 2, it follows that
E[|IL75% — @ 1=,] < (I — @7 ||1e,nz,] + 2P(En \ 25) — 0

Let {K,,} be a sequence of balls centered at the origin with radii M,, — oo as m — oo.

Then, the above display is true for each K,,. Hence, we can choose a sequence {K,} that satisfies



E[|[IE55 — ®Kn|l1z ] — 0. Moreover, the corresponding events =, = {IIFL(K,) > 0} satisfy
P(E,) — 1 by Lemma A.2. Thus, we obtain

E[JIL; 55 — @5 [|] — 0,

where it is understood that the conditional probabilities are well-defined on sets of probability
growing to one. Furthermore, by Lemma A.2 and Lemma 5.2 of Kleijn and van der Vaart (2012),

we have
MELRP\ K,) 50 and ®,(RP\ K,) 5 0.

Thus, by Lemma 5.1 of Kleijn and van der Vaart (2012), we conclude that

[IELE — oK) — |uE — o, 5 o,

Proof of Theorem 6.1 The proof is a simple modification of that of Theorem 5.1. We replace
sp(h) in the previous proof by (3). Then, Lemma A.5 implies that

sup fu(g,h) 5 0.
g,he K

Thus, for any compact set K centered at the origin, we have

E[IL; — @7 1z,] =0

—n

where Z,, = {II,,(K) > 0}.
Lemma A.6 implies that we can also find a sequence of sets {K,,} such that II,(RP \ K,) — 0
and E[||TI&» — ®X#||] — 0. Thus, using Lemmas of 5.1 and 5.2 of Kleijn and van der Vaart (2012),

we obtain the desired result. O
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