Supplement to "Large Sample Justifications for the Bayesian Empirical Likelihood"

Naoya Sueishi*
Kobe University

October 20, 2022

1 Convolution theorem

This section gives the proof of Theorem 4.1.
Let $\dot{\ell}_{\theta_{0}, \eta_{0}}(x)=-\mathbb{E}\left[\nabla m_{\theta_{0}}(X)\right] \mathbb{E}\left[m_{\theta_{0}}(X) m_{\theta_{0}}(X)^{\prime}\right]^{-1} m_{\theta_{0}}(x)$. Our tangent set is given by $\dot{\mathcal{P}}_{P}=$ lin $\dot{\ell}_{\theta_{0}, \eta_{0}}+{ }_{\eta} \dot{\mathcal{P}}_{P}$, where

$$
{ }_{\eta} \dot{\mathcal{P}}_{P}=\left\{i \in L_{2}(P): \mathbb{E}[i(X)]=0 \text { and } \mathbb{E}\left[\dot{l}(X) m_{\theta_{0}}(X)\right]=0\right\} .
$$

It is clear that $\dot{\mathcal{P}}_{P}$ is a linear space.
For $g \in \dot{\mathcal{P}}_{P}, P_{t, g}$ denotes the one-dimensional submodel whose score is g. A sequence of estimators $\left\{T_{n}\right\}$ is regular with respect to $\dot{\mathcal{P}}_{P}$ if there exists a fixed probability measure L such that

$$
\sqrt{n}\left(T_{n}-\psi\left(P_{1 / \sqrt{n}, g}\right)\right) \stackrel{P_{1 / \sqrt{n}, g}}{\sim} L
$$

for all $g \in \dot{\mathcal{P}}_{P}$, where $\stackrel{P_{1 / \sqrt{n}, g}}{\sim}$ denotes weak convergence under $P_{1 / \sqrt{n}, g}$.
We utilize the following lemma for the proof.

Lemma 4.1 Suppose that Assumption 4.1 holds. Then, for any $h \in \mathbb{R}^{p}$ and $\dot{i}{ }_{\eta} \dot{\mathcal{P}}_{P}$, there exists a path $t \mapsto \eta_{t}$ such that

$$
\int\left(\frac{\sqrt{p_{\theta_{0}+t h, \eta_{t}}}-\sqrt{p_{\theta_{0}, \eta_{0}}}}{t}-\frac{1}{2}\left(h^{\prime} \dot{\ell}_{\theta_{0}, \eta_{0}}+i\right) \sqrt{p_{\theta_{0}, \eta_{0}}}\right)^{2} d \xi \rightarrow 0
$$

as $t \rightarrow 0$.

The following proof closely follows that of Theorem 25.20 in van der Vaart (1998) and Theorem 3.11.2 in van der Vaart and Wellner (1996).

[^0]Proof of Theorem 4.1 Let $g_{P}=\left(g_{1}, \ldots, g_{m}\right)^{\prime}$ be an orthonormal basis of a subspace of $\dot{\mathcal{P}}_{P}$. Then, by Lemma 4.1 and Lemma of 25.14 of van der Vaart (1998), it follows that

$$
\begin{equation*}
\Lambda_{n, h} \equiv \log \prod_{i=1}^{n} \frac{d P_{1 / \sqrt{n}, h^{\prime} g_{P}}}{d P}\left(X_{i}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} h^{\prime} g_{P}\left(X_{i}\right)-\frac{1}{2} h^{\prime} h+o_{P}(1) \tag{1}
\end{equation*}
$$

for any $h \in \mathbb{R}^{m}$. Lemma 4.1 also implies that

$$
\begin{equation*}
\sqrt{n}\left(\psi\left(P_{1 / \sqrt{n}, h^{\prime} g_{P}}\right)-\psi(P)\right) \rightarrow A h, \tag{2}
\end{equation*}
$$

where $A=\mathbb{E}\left[\tilde{\psi}_{P}(X) g_{P}(X)^{\prime}\right]$ and $\tilde{\psi}_{P}=I_{\theta_{0}, \eta_{0}}^{-1} \dot{\theta}_{\theta_{0}, \eta_{0}}$ (see Lemma 25.25 of van der Vaart 1998).
Let $Z_{n, h}=\sqrt{n}\left(T_{n}-\psi\left(P_{1 / \sqrt{n}, h^{\prime} g_{P}}\right)\right)$ and $\Delta_{n, h}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} h^{\prime} g_{P}\left(X_{i}\right)$. Then, the marginals of the sequence ($Z_{n, 0}, \Delta_{n, h}$) converge in distribution under P. Thus, by Prohorov's theorem, there exists a subsequence $\{n\}$ such that

$$
\left(Z_{n, 0}, \Delta_{n, h}\right) \stackrel{P}{\rightsquigarrow}\left(Z, h^{\prime} \Delta\right)
$$

jointly. By (1) and (2), we also have

$$
\left(Z_{n, h}, \Lambda_{n, h}\right) \stackrel{P}{\rightsquigarrow}\left(Z-A h, h^{\prime} \Delta-\frac{1}{2} h^{\prime} h\right) .
$$

Notice that $\Lambda_{n, h}$ converges to $N\left(-\frac{1}{2} h^{\prime} h, h^{\prime} h\right)$. Thus, by applying the Le Cam's third lemma, the limit law of $Z_{n, h}$ under $P_{1 / \sqrt{n}, h^{\prime} g_{P}}$ is obtained by

$$
L_{h}(B)=\mathbb{E} 1_{B}(Z-A h) e^{h^{\prime} \Delta-\frac{1}{2} h^{\prime} h}
$$

Because of the regularity of T_{n}, L_{h} must coincide with L for any h. Thus, taking the averaging of both sides over h with respect to $N\left(0, \lambda^{-1} I\right)$, we obtain

$$
L(B)=\int \mathbb{E} 1_{B}\left(Z-\frac{A \Delta}{1+\lambda}-\frac{A h}{(1+\lambda)^{1 / 2}}\right) c_{\lambda}(\Delta) d N(0, I)(h),
$$

where $c_{\lambda}(\Delta)=\left(1+\lambda^{-1}\right)^{-m / 2} \exp \left(\frac{1}{2}(1+\lambda)^{-1} \Delta^{\prime} \Delta\right)$. This representation shows that L can be written as the law of the sum of two independent random elements $-G_{\lambda}$ and W_{λ}, where $G_{\lambda} \sim$ $N\left(0, A A^{\prime} /(1+\lambda)\right)$ and

$$
P\left(W_{\lambda} \in B\right)=\mathbb{E} 1_{B}\left(Z-\frac{A \Delta}{1+\lambda}\right) c_{\lambda}(\Delta) .
$$

By letting $\lambda \rightarrow 0$, we have $\left(G_{\lambda}, W_{\lambda}\right) \rightsquigarrow(G+W)$, where G and W are independent, $G \sim N\left(0, A A^{\prime}\right)$, and $G+W \sim L$.

The proof completes if the difference between $A A^{\prime}$ and $\mathbb{E}\left[\tilde{\psi}_{P}(X) \tilde{\psi}_{P}(X)^{\prime}\right]$ can be arbitrarily small. Here, since g_{P} is orthonormal, $A g_{P}$ is the orthogonal projection of $\tilde{\psi}_{P}$ onto lin g_{P}. Because $\tilde{\psi}_{P}$ is contained in the closed linear span of $\dot{\mathcal{P}}_{P}$, we can choose g_{P} so that $A g_{P}$ is arbitrarily close to $\tilde{\psi}_{P}$.

2 Bernstein-von Mises theorem

This section gives proofs of Theorems 5.1 and 6.1.
Throughout this section, $\|P-Q\|$ denotes the total variation distance between two probability measures P and Q. For a probability measure P, we define $P^{K}(B)=P(B \cap K) / P(K)$.

Let Φ_{n} denote the normal distribution with mean Δ_{n} and variance matrix $I_{\theta_{0}, \eta_{0}}^{-1}$. Let $\pi_{n}(h)$ be the Lebesgue prior density of the local parameter $h=\sqrt{n}\left(\theta-\theta_{0}\right)$. Moreover, let $\Pi_{n}^{E L}$ and Π_{n} denote the BEL posterior and the semiparametric Bayesian posterior of the local parameter, respectively. Our goal is to show that

$$
\left\|\Pi_{n}^{E L}-\Phi_{n}\right\| \xrightarrow{P} 0 \quad \text { and } \quad\left\|\Pi_{n}-\Phi_{n}\right\| \xrightarrow{P} 0
$$

To show the theorems, we utilize the following lemmas.

Lemma A. 1 Suppose that Assumption 5.1 holds. Then, we have

$$
\sup _{h \in K}\left|\log \prod_{i=1}^{n} \frac{d P_{\theta_{0}+h / \sqrt{n}, \mathbb{P}_{n}}}{d P_{\theta_{0}, \mathbb{P}_{n}}}\left(X_{i}\right)-\frac{1}{\sqrt{n}} \sum_{i=1}^{n} h^{\prime} \dot{\theta}_{\theta_{0}, \eta_{0}}\left(X_{i}\right)+\frac{1}{2} h^{\prime} I_{\theta_{0}, \eta_{0}} h\right|=o_{P}(1)
$$

for any compact $K \subset \mathbb{R}^{p}$.

Lemma A. 2 Suppose that Assumptions 5.1 and 5.2 hold. Then, for any sequence of origin centered balls $\left\{K_{n}\right\}$ with radii $M_{n} \rightarrow \infty$, we have

$$
\Pi_{n}^{E L}\left(h \in K_{n} \mid X_{1}, \ldots, X_{n}\right) \xrightarrow{P} 1 .
$$

Lemma A.5 Suppose that Assumptions 6.1 and 6.2 hold. Then, for any bounded random sequence $\left\{h_{n}\right\}$, we have

$$
\log \frac{s_{n}\left(h_{n}\right)}{s_{n}(0)}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} h_{n}^{\prime} \dot{\Theta}_{\theta_{0}, \eta_{0}}\left(X_{i}\right)-\frac{1}{2} h_{n}^{\prime} I_{\theta_{0}, \eta_{0}} h_{n}+o_{P}(1)
$$

where

$$
\begin{equation*}
s_{n}(h)=\int \prod_{i=1}^{n} \frac{p_{\theta_{0}+h / \sqrt{n}, \eta}}{p_{\theta_{0}, \eta_{0}}}\left(X_{i}\right) d \Pi_{H}(\eta) . \tag{3}
\end{equation*}
$$

Lemma A. 6 Suppose that Assumptions 6.1-6.3 hold. Then, for any sequence of origin centered balls $\left\{K_{n}\right\}$ with radii $M_{n} \rightarrow \infty$, we have

$$
\Pi_{n}\left(h \in K_{n} \mid X_{1}, \ldots, X_{n}\right) \xrightarrow{P} 1 .
$$

The following proof closely follows that of Theorem of 2.1 in Kleijn and van der Vaart (2012).

Proof of Theorem 5.1 Let $K \subset \mathbb{R}^{p}$ be a compact set centered at the origin. Also, let ϕ_{n} be the Lebesgue density of Φ_{n}. Then, the function $f_{n}: K \times K \rightarrow \mathbb{R}$ given by

$$
f_{n}(g, h)=\left(1-\frac{\phi_{n}(h)}{\phi_{n}(g)} \frac{s_{n}(g)}{s_{n}(h)} \frac{\pi_{n}(g)}{\pi_{n}(h)}\right)_{+}
$$

with

$$
s_{n}(h)=\prod_{i=1}^{n} \frac{d P_{\theta_{0}+h / \sqrt{n}, \mathbb{P}_{n}}}{d P_{\theta_{0}, \mathbb{P}_{n}}}\left(X_{i}\right)
$$

is well-defined for large n.
For any random sequences $\left\{h_{n}\right\},\left\{g_{n}\right\} \subset K$, we have $\pi_{n}\left(g_{n}\right) / \pi_{n}\left(h_{n}\right) \rightarrow 1$. Therefore, it follows from Lemma A. 1 that

$$
\log \frac{\phi_{n}\left(h_{n}\right)}{\phi_{n}\left(g_{n}\right)} \frac{s_{n}\left(g_{n}\right)}{s_{n}\left(h_{n}\right)} \frac{\pi_{n}\left(g_{n}\right)}{\pi_{n}\left(h_{n}\right)}=o_{P}(1) .
$$

Since f_{n} is continuous with respect to its two arguments, the above equation also implies that

$$
\sup _{g, h \in K} f_{n}(g, h) \xrightarrow{P} 0
$$

Let $\Pi_{n}^{E L, K}$ be the conditional version of $\Pi_{n}^{E L}$. Similarly, let Φ_{n}^{K} and ϕ_{n}^{K} denote the conditional versions of Φ_{n} and ϕ_{n}, respectively. Since K contains a neighborhood of $0, \Phi_{n}(K)>0$ is guaranteed. Let Ξ_{n} be a sequence of events such that $\left\{\Pi_{n}^{E L}(K)>0\right\}$. For a given $\eta>0$, we define

$$
\Omega_{n}=\left\{\sup _{g, h \in K} f_{n}(g, h) \leq \eta\right\} .
$$

Because the total variation distance can be written as $\|P-Q\|=2 \int\left(1-\frac{d Q}{d P}\right)_{+} d P$ for any probability measures P and Q, we have

$$
\begin{aligned}
\frac{1}{2}\left\|\Pi_{n}^{E L, K}-\Phi_{n}^{K}\right\| 1_{\Omega_{n} \cap \Xi_{n}} & =\int_{K}\left(1-\frac{\phi_{n}^{K}(h) \int_{K} s_{n}(g) \pi_{n}(g) d g}{s_{n}(h) \pi_{n}(h)}\right)_{+} d \Pi_{n}^{E L, K}(h) 1_{\Omega_{n} \cap \Xi_{n}} \\
& =\int_{K}\left(1-\int_{K} \frac{s_{n}(g) \pi_{n}(g) \phi_{n}(h)}{s_{n}(h) \pi_{n}(h) \phi_{n}(g)} d \Phi_{n}^{K}(g)\right)_{+} d \Pi_{n}^{E L, K}(h) 1_{\Omega_{n} \cap \Xi_{n}},
\end{aligned}
$$

where we use $\phi_{n}^{K}(h) / \phi_{n}^{K}(g)=\phi_{n}(h) / \phi_{n}(g)$. Thus, by applying the Jensen's inequality, we obtain

$$
\begin{aligned}
\frac{1}{2}\left\|\Pi_{n}^{E L, K}-\Phi_{n}^{K}\right\| 1_{\Omega_{n} \cap \Xi_{n}} & \leq \int_{K} \int_{K}\left(1-\frac{s_{n}(g) \pi_{n}(g) \phi_{n}(h)}{s_{n}(h) \pi_{n}(h) \phi_{n}(g)}\right)_{+} d \Phi_{n}^{K}(g) d \Pi_{n}^{E L, K}(h) 1_{\Omega_{n} \cap \Xi_{n}} \\
& \leq \int_{K} \int_{K} \sup _{g, h \in K} f_{n}(g, h) 1_{\Omega_{n} \cap \Xi_{n}} d \Phi_{n}^{K}(g) d \Pi_{n}^{E L, K}(h) .
\end{aligned}
$$

Because the total variation norm is bounded by 2 , it follows that

$$
\mathbb{E}\left[\left\|\Pi_{n}^{E L, K}-\Phi_{n}^{K}\right\| 1_{\Xi_{n}}\right] \leq \mathbb{E}\left[\left\|\Pi_{n}^{E L}-\Phi_{n}^{K}\right\| 1_{\Omega_{n} \cap \Xi_{n}}\right]+2 P\left(\Xi_{n} \backslash \Omega_{n}\right) \rightarrow 0
$$

Let $\left\{K_{m}\right\}$ be a sequence of balls centered at the origin with radii $M_{m} \rightarrow \infty$ as $m \rightarrow \infty$. Then, the above display is true for each K_{m}. Hence, we can choose a sequence $\left\{K_{n}\right\}$ that satisfies
$\mathbb{E}\left[\left\|\Pi_{n}^{E L, K_{n}}-\Phi_{n}^{K_{n}}\right\| 1_{\Xi_{n}}\right] \rightarrow 0$. Moreover, the corresponding events $\Xi_{n}=\left\{\Pi_{n}^{E L}\left(K_{n}\right)>0\right\}$ satisfy $P\left(\Xi_{n}\right) \rightarrow 1$ by Lemma A.2. Thus, we obtain

$$
\mathbb{E}\left[\left\|\Pi_{n}^{E L, K_{n}}-\Phi_{n}^{K_{n}}\right\|\right] \rightarrow 0,
$$

where it is understood that the conditional probabilities are well-defined on sets of probability growing to one. Furthermore, by Lemma A. 2 and Lemma 5.2 of Kleijn and van der Vaart (2012), we have

$$
\Pi_{n}^{E L}\left(\mathbb{R}^{p} \backslash K_{n}\right) \xrightarrow{P} 0 \quad \text { and } \quad \Phi_{n}\left(\mathbb{R}^{p} \backslash K_{n}\right) \xrightarrow{P} 0 .
$$

Thus, by Lemma 5.1 of Kleijn and van der Vaart (2012), we conclude that

$$
\left\|\Pi_{n}^{E L, K}-\Phi_{n}^{K}\right\|-\left\|\Pi_{n}^{E L}-\Phi_{n}\right\| \xrightarrow{P} 0 .
$$

Proof of Theorem 6.1 The proof is a simple modification of that of Theorem 5.1. We replace $s_{n}(h)$ in the previous proof by (3). Then, Lemma A. 5 implies that

$$
\sup _{g, h \in K} f_{n}(g, h) \xrightarrow{P} 0 .
$$

Thus, for any compact set K centered at the origin, we have

$$
\mathbb{E}\left[\left\|\Pi_{n}^{K}-\Phi_{n}^{K}\right\| 1_{\Xi_{n}}\right] \rightarrow 0
$$

where $\Xi_{n}=\left\{\Pi_{n}(K)>0\right\}$.
Lemma A. 6 implies that we can also find a sequence of sets $\left\{K_{n}\right\}$ such that $\Pi_{n}\left(\mathbb{R}^{p} \backslash K_{n}\right) \rightarrow 0$ and $\mathbb{E}\left[\left\|\Pi_{n}^{K_{n}}-\Phi_{n}^{K_{n}}\right\|\right] \rightarrow 0$. Thus, using Lemmas of 5.1 and 5.2 of Kleijn and van der Vaart (2012), we obtain the desired result.

References

Kleijn, B. J. K. and A. W. van der Vaart (2012). The Bernstein-von-Mises theorem under misspecification. Electronic Journal of Statistics 6, 354-381.
van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.
van der Vaart, A. W. and J. A. Wellner (1996). Weak Convergence and Empirical Processes. Springer.

[^0]: ${ }^{*}$ Graduate School of Economics, 2-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan. Email: sueishi@econ.kobe-u.ac.jp. Phone: +81-78-803-6827.

