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1 Convolution theorem

This section gives the proof of Theorem 4.1.

Let ℓ̇θ0,η0(x) = −E[∇mθ0(X)]E[mθ0(X)mθ0(X)′]−1mθ0(x). Our tangent set is given by ṖP =

lin ℓ̇θ0,η0 + ηṖP , where

ηṖP =
{

l̇ ∈ L2(P ) : E[l̇(X)] = 0 and E[l̇(X)mθ0(X)] = 0
}

.

It is clear that ṖP is a linear space.

For g ∈ ṖP , Pt,g denotes the one-dimensional submodel whose score is g. A sequence of

estimators {Tn} is regular with respect to ṖP if there exists a fixed probability measure L such

that
√
n(Tn − ψ(P1/

√
n,g))

P
1/

√
n,g
 L

for all g ∈ ṖP , where
P
1/

√
n,g
 denotes weak convergence under P1/

√
n,g.

We utilize the following lemma for the proof.

Lemma 4.1 Suppose that Assumption 4.1 holds. Then, for any h ∈ R
p and l̇ ∈ ηṖP , there exists

a path t 7→ ηt such that

∫
(√

pθ0+th,ηt −
√
pθ0,η0

t
− 1

2
(h′ℓ̇θ0,η0 + l̇)

√
pθ0,η0

)2

dξ → 0

as t→ 0.

The following proof closely follows that of Theorem 25.20 in van der Vaart (1998) and Theorem

3.11.2 in van der Vaart and Wellner (1996).
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Proof of Theorem 4.1 Let gP = (g1, . . . , gm)′ be an orthonormal basis of a subspace of ṖP .

Then, by Lemma 4.1 and Lemma of 25.14 of van der Vaart (1998), it follows that

Λn,h ≡ log
n
∏

i=1

dP1/
√
n,h′gP

dP
(Xi) =

1√
n

n
∑

i=1

h′gP (Xi)−
1

2
h′h+ oP (1) (1)

for any h ∈ R
m. Lemma 4.1 also implies that

√
n(ψ(P1/

√
n,h′gP

)− ψ(P )) → Ah, (2)

where A = E[ψ̃P (X)gP (X)′] and ψ̃P = I−1

θ0,η0
ℓ̇θ0,η0 (see Lemma 25.25 of van der Vaart 1998).

Let Zn,h =
√
n(Tn − ψ(P1/

√
n,h′gP

)) and ∆n,h = 1√
n

∑n
i=1 h

′gP (Xi). Then, the marginals of the

sequence (Zn,0,∆n,h) converge in distribution under P . Thus, by Prohorov’s theorem, there exists

a subsequence {n} such that

(Zn,0,∆n,h)
P
 (Z, h′∆)

jointly. By (1) and (2), we also have

(Zn,h,Λn,h)
P
 

(

Z −Ah, h′∆− 1

2
h′h

)

.

Notice that Λn,h converges to N(−1
2
h′h, h′h). Thus, by applying the Le Cam’s third lemma, the

limit law of Zn,h under P1/
√
n,h′gP is obtained by

Lh(B) = E1B(Z −Ah)eh
′∆− 1

2
h′h.

Because of the regularity of Tn, Lh must coincide with L for any h. Thus, taking the averaging

of both sides over h with respect to N(0, λ−1I), we obtain

L(B) =

∫

E1B

(

Z − A∆

1+ λ
− Ah

(1 + λ)1/2

)

cλ(∆)dN(0, I)(h),

where cλ(∆) = (1 + λ−1)−m/2 exp(1
2
(1 + λ)−1∆′∆). This representation shows that L can be

written as the law of the sum of two independent random elements −Gλ and Wλ, where Gλ ∼
N(0, AA′/(1 + λ)) and

P (Wλ ∈ B) = E1B

(

Z − A∆

1+ λ

)

cλ(∆).

By letting λ→ 0, we have (Gλ,Wλ) (G+W ), where G and W are independent, G ∼ N(0, AA′),

and G+W ∼ L.

The proof completes if the difference between AA′ and E[ψ̃P (X)ψ̃P (X)′] can be arbitrarily

small. Here, since gP is orthonormal, AgP is the orthogonal projection of ψ̃P onto lin gP . Because

ψ̃P is contained in the closed linear span of ṖP , we can choose gP so that AgP is arbitrarily close

to ψ̃P . ✷
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2 Bernstein-von Mises theorem

This section gives proofs of Theorems 5.1 and 6.1.

Throughout this section, ‖P −Q‖ denotes the total variation distance between two probability

measures P and Q. For a probability measure P , we define PK(B) = P (B ∩K)/P (K).

Let Φn denote the normal distribution with mean ∆n and variance matrix I−1

θ0,η0
. Let πn(h)

be the Lebesgue prior density of the local parameter h =
√
n(θ − θ0). Moreover, let ΠEL

n and

Πn denote the BEL posterior and the semiparametric Bayesian posterior of the local parameter,

respectively. Our goal is to show that

‖ΠEL
n − Φn‖ P→ 0 and ‖Πn − Φn‖ P→ 0.

To show the theorems, we utilize the following lemmas.

Lemma A.1 Suppose that Assumption 5.1 holds. Then, we have

sup
h∈K

∣

∣

∣

∣

∣

log
n
∏

i=1

dPθ0+h/
√
n,Pn

dPθ0,Pn

(Xi)−
1√
n

n
∑

i=1

h′ℓ̇θ0,η0(Xi) +
1

2
h′Iθ0,η0h

∣

∣

∣

∣

∣

= oP (1)

for any compact K ⊂ R
p.

Lemma A.2 Suppose that Assumptions 5.1 and 5.2 hold. Then, for any sequence of origin

centered balls {Kn} with radii Mn → ∞, we have

ΠEL
n (h ∈ Kn|X1, . . . ,Xn)

P→ 1.

Lemma A.5 Suppose that Assumptions 6.1 and 6.2 hold. Then, for any bounded random sequence

{hn}, we have

log
sn(hn)

sn(0)
=

1√
n

n
∑

i=1

h′nℓ̇θ0,η0(Xi)−
1

2
h′nIθ0,η0hn + oP (1),

where

sn(h) =

∫ n
∏

i=1

pθ0+h/
√
n,η

pθ0,η0
(Xi)dΠH (η). (3)

Lemma A.6 Suppose that Assumptions 6.1–6.3 hold. Then, for any sequence of origin centered

balls {Kn} with radii Mn → ∞, we have

Πn(h ∈ Kn|X1, . . . ,Xn)
P→ 1.

The following proof closely follows that of Theorem of 2.1 in Kleijn and van der Vaart (2012).

3



Proof of Theorem 5.1 Let K ⊂ R
p be a compact set centered at the origin. Also, let φn be the

Lebesgue density of Φn. Then, the function fn : K ×K → R given by

fn(g, h) =

(

1− φn(h)

φn(g)

sn(g)

sn(h)

πn(g)

πn(h)

)

+

with

sn(h) =

n
∏

i=1

dPθ0+h/
√
n,Pn

dPθ0,Pn

(Xi)

is well-defined for large n.

For any random sequences {hn}, {gn} ⊂ K, we have πn(gn)/πn(hn) → 1. Therefore, it follows

from Lemma A.1 that

log
φn(hn)

φn(gn)

sn(gn)

sn(hn)

πn(gn)

πn(hn)
= oP (1).

Since fn is continuous with respect to its two arguments, the above equation also implies that

sup
g,h∈K

fn(g, h)
P→ 0.

Let ΠEL,K
n be the conditional version of ΠEL

n . Similarly, let ΦK
n and φKn denote the conditional

versions of Φn and φn, respectively. SinceK contains a neighborhood of 0, Φn(K) > 0 is guaranteed.

Let Ξn be a sequence of events such that
{

ΠEL
n (K) > 0

}

. For a given η > 0, we define

Ωn =

{

sup
g,h∈K

fn(g, h) ≤ η

}

.

Because the total variation distance can be written as ‖P−Q‖ = 2
∫

(1− dQ
dP )+dP for any probability

measures P and Q, we have

1

2
‖ΠEL,K

n − ΦK
n ‖1Ωn∩Ξn =

∫

K

(

1− φKn (h)
∫

K sn(g)πn(g)dg

sn(h)πn(h)

)

+

dΠEL,K
n (h)1Ωn∩Ξn

=

∫

K

(

1−
∫

K

sn(g)πn(g)φn(h)

sn(h)πn(h)φn(g)
dΦK

n (g)

)

+

dΠEL,K
n (h)1Ωn∩Ξn ,

where we use φKn (h)/φKn (g) = φn(h)/φn(g). Thus, by applying the Jensen’s inequality, we obtain

1

2
‖ΠEL,K

n − ΦK
n ‖1Ωn∩Ξn ≤

∫

K

∫

K

(

1− sn(g)πn(g)φn(h)

sn(h)πn(h)φn(g)

)

+

dΦK
n (g)dΠEL,K

n (h)1Ωn∩Ξn

≤
∫

K

∫

K
sup

g,h∈K
fn(g, h)1Ωn∩ΞndΦ

K
n (g)dΠEL,K

n (h).

Because the total variation norm is bounded by 2, it follows that

E[‖ΠEL,K
n − ΦK

n ‖1Ξn ] ≤ E[‖ΠEL
n − ΦK

n ‖1Ωn∩Ξn ] + 2P (Ξn \ Ωn) → 0.

Let {Km} be a sequence of balls centered at the origin with radii Mm → ∞ as m → ∞.

Then, the above display is true for each Km. Hence, we can choose a sequence {Kn} that satisfies
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E[‖ΠEL,Kn
n − ΦKn

n ‖1Ξn ] → 0. Moreover, the corresponding events Ξn = {ΠEL
n (Kn) > 0} satisfy

P (Ξn) → 1 by Lemma A.2. Thus, we obtain

E[‖ΠEL,Kn
n − ΦKn

n ‖] → 0,

where it is understood that the conditional probabilities are well-defined on sets of probability

growing to one. Furthermore, by Lemma A.2 and Lemma 5.2 of Kleijn and van der Vaart (2012),

we have

ΠEL
n (Rp \Kn)

P→ 0 and Φn(R
p \Kn)

P→ 0.

Thus, by Lemma 5.1 of Kleijn and van der Vaart (2012), we conclude that

‖ΠEL,K
n − ΦK

n ‖ − ‖ΠEL
n −Φn‖ P→ 0.

✷

Proof of Theorem 6.1 The proof is a simple modification of that of Theorem 5.1. We replace

sn(h) in the previous proof by (3). Then, Lemma A.5 implies that

sup
g,h∈K

fn(g, h)
P→ 0.

Thus, for any compact set K centered at the origin, we have

E[‖ΠK
n − ΦK

n ‖1Ξn ] → 0

where Ξn = {Πn(K) > 0}.
Lemma A.6 implies that we can also find a sequence of sets {Kn} such that Πn(R

p \Kn) → 0

and E[‖ΠKn
n −ΦKn

n ‖] → 0. Thus, using Lemmas of 5.1 and 5.2 of Kleijn and van der Vaart (2012),

we obtain the desired result. ✷
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