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Appendix B Proofs of the Lemmas in Appendix A

Proof of Lemma A.1

Proof. The following proves inequality (A.8). By the definition of supremum and the definition ofAsyRD⇣(�̂n,ŵn ,

�̂n,SP ) in (A.6), there exists a sequence of DGPs, denoted by {Fn}n2N, such that

AsyRD⇣(�̂n,ŵn , �̂n,SP ) = lim sup
n!1

EFn [`⇣(�̂n,ŵn ,�Fn)� `⇣(�̂n,SP ,�Fn)].

The real sequence {EFn [`⇣(�̂n,ŵn ,�Fn) � `⇣(�̂n,SP ,�Fn)]}n2N itself may not be convergent, but by the

definition of limsup, there exists a subsequence of {n}n2N, denoted by {pn}n2N, such that the corresponding

real subsequence {EFpn
[`⇣(�̂n,ŵn ,�Fpn

) � `⇣(�̂n,SP ,�Fpn
)]}n2N is convergent, where {Fpn}n2N denotes the

subsequence of DGPs corresponding to {pn}n2N, then

AsyRD⇣(�̂n,ŵn , �̂n,SP ) = lim
n!1

EFpn
[`⇣(�̂n,ŵn ,�Fpn

)� `⇣(�̂n,SP ,�Fpn
)]. (B.1)

Now consider the sequence of k-dimensional vectors {p1/2n �Fpn
}n2N, and let {p1/2n �Fpn ,◆}n2N (◆ = 1, . . . , k)

denote their ◆th coordinates. For ◆ = 1, one has either (i) lim sup
n!1

���p1/2n �Fpn ,◆

��� < 1, or (ii) lim sup
n!1���p1/2n �Fpn ,◆

��� = 1. For case (i), there exists some subsequence {pn,◆}n2N such that p
1/2
n,◆ �Fpn,◆ ,◆ ! d◆ for

some d◆ 2 R, by the definition of limsup. For case (ii), there exists some subsequence {pn,◆}n2N such that

p
1/2
n,◆ �Fpn,◆ ,◆ ! 1 or �1, by the definition of limsup. In both cases, therefore, there exists some subsequence

{pn,◆}n2N such that p
1/2
n,◆ �Fpn,◆ ,◆ ! d◆ for some d◆ 2 R1. Since k is finite, one can sequentially apply the

same argument to all coordinates ◆ = 2, . . . , k and let the resulting subsequence be denoted by {pn,k}n2N,

which satisfies p
1/2
n,k�Fpn,k

! d for some d 2 Rk
1
. Next consider {S(Fpn,k)}n2N, the sequence of nuisance

parameter vectors in S induced by the DGPs {Fpn,k}n2N. {S(Fpn,k)}n2N itself may not be convergent, but

since S is compact by Condition 3(i), then there exists a convergent subsequence, denoted by {S(Fp⇤
n
)}n2N,

such that S(Fp⇤
n
) �! s

⇤ with some s
⇤
2 S. Moreover, by Condition 3(ii), there exists a DGP F

⇤ in F such

that S(F ⇤) = s
⇤. This shows that there exists some subsequence {p

⇤

n}n2N of {pn}n2N such that

p
⇤1/2
n �Fp⇤n

! d for some d 2 R1 and S(Fp⇤
n
) �! S(F ⇤) for some F

⇤
2 F . (B.2)

Note that for any subsequence of {pn}n2N, the limit of the right hand side in (B.1) remains the same, which

implies

AsyRD⇣(�̂n,ŵn , �̂n,SP ) = lim
n!1

EFp⇤n
[`⇣(�̂n,ŵn ,�Fp⇤n

)� `⇣(�̂n,SP ,�Fp⇤n
)]. (B.3)

The definitions of `(�̂n,�) in (2.1) and of `⇣(�̂n,�) in (3.10), as well as (A.3) suggest that in order to

prove (A.8), one needs to link the right hand side of (B.3) with R⇣(uF,d) and R̄⇣(uF,d) defined in (A.1) and
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(A.2). First consider the case where kdk < 1 in (B.2). By Condition 2(i) and Lemma 1(i),

p
⇤1/2
n (�̂n,SP � �Fp⇤n

)
d.
�! ⇠F,SP and p

⇤1/2
n (�̂n,ŵn � �Fp⇤n

)
d.
�! ⇠̄F,d,

which combined with the continuous mapping theorem implies that

`(�̂n,SP ,�Fp⇤n
)

d.
�! ⇠

0

F,SP⌥⇠F,SP and `(�̂n,ŵn ,�Fp⇤n
)

d.
�! ⇠̄

0

F,d⌥⇠̄F,d.

Since ⌥ is positive semi-definite, ⇠0F,SP⌥⇠F,SP and ⇠̄0F,d⌥⇠̄F,d are both nonnegative. Note that the function

f(x) ⌘ min{x, ⇣} is a bounded continuous function of x � 0 for fixed positive ⇣. Applying the Portmanteau

lemma (e.g., Lemma 2.2 in Van der Vaart, 2000) and invoking (A.1) and (A.2), one gets

EFp⇤n

h
`⇣(�̂n,SP ,�Fp⇤n

)
i
! R⇣(uF⇤,d) and EFp⇤n

h
`⇣(�̂n,ŵn ,�Fp⇤n

)
i
! R̄⇣(uF⇤,d). (B.4)

Next consider the case where kdk = 1 in (B.2). By Condition 2(ii) and Lemma 1(ii),

p
⇤1/2
n (�̂n,SP � �Fp⇤n

)
d.
�! ⇠F,SP and p

⇤1/2
n (�̂n,ŵn � �Fp⇤n

)
d.
�! ⇠F,SP .

Using the same argument, one also gets (B.4) in this case. Combining (A.3), (B.3) and (B.4), one can unify

the two cases and write

AsyRD⇣(�̂n,ŵn , �̂n,SP ) = r⇣(uF⇤,d), for some F
⇤
2 F and some d 2 Rk

1

 max

(
sup

uF,d2U

r⇣(uF,d), sup
uF,d2U1

r⇣(uF,d)

)

= max

(
sup

uF,d2U

r⇣(uF,d), 0

)
.

This proves (A.8).

The proof of (A.9) follows the same argument and hence is omitted here.

Proof of Lemma A.2

Proof. The following proves inequality (A.10). By the definition of U in (3.25), kdk < 1 and �F = 0 for

any F 2 F such that uF,d 2 U . For any uF,d 2 U , let N✏F denote the smallest n such that n�1/2
kdk < ✏F ,

where ✏F satisfies Condition 3(ii). Then by Condition 3(ii), for each n � N✏F , there is an Fn 2 F with

�Fn = n
�1/2

d and kS̄(Fn)� S̄(F )k  n
�/2

Ckdk
 for some C, > 0. For each n < N✏F , let Fn = F . Thus, a

sequence of DGPs {Fn}n2N in F satisfying n
1/2
�Fn ! d and S̄(Fn) ! S̄(F ) is constructed for any uF,d 2 U .

Recalling the definition of S̄(F ) in (3.17), this immediately implies that for such {Fn}n2N,

n
1/2
�Fn ! d 2 Rk, VFn,SP ! VF,SP , CFn ! CF , and VFn,P ! VF,P . (B.5)

The real sequence {EFn [`⇣(�̂n,ŵn ,�Fn)� `⇣(�̂n,SP ,�Fn)]}n2N that corresponds to {Fn}n2N may not be con-

vergent, but by the definition of lim sup, there exists a subsequence {pn}n2N of {n}n2N such that the

corresponding real sequence {EFpn
[`⇣(�̂n,ŵn ,�Fpn

)� `⇣(�̂n,SP ,�Fpn
)]}n2N is convergent and

lim
n!1

EFpn
[`⇣(�̂n,ŵn ,�Fpn

)� `⇣(�̂n,SP ,�Fpn
)] = lim sup

n!1

EFn [`⇣(�̂n,ŵn ,�Fn)� `⇣(�̂n,SP ,�Fn)]. (B.6)
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Since {pn}n2N is a subsequence of {n}n2N, (B.5) implies that

n
1/2
�Fpn

! d 2 Rk, VFpn ,SP ! VF,SP , CFn ! CF , and VFpn ,P ! VF,P . (B.7)

Combined with Condition 2(i) and Lemma 1(i), this implies that

p
1/2
n (�̂n,SP � �Fpn

)
d.
�! ⇠F,SP , and p

1/2
n (�̂n,ŵn � �Fpn

)
d.
�! ⇠̄F,d,

which, combined with the continuous mapping theorem, in turn implies that

lim
n!1

EFpn

h
`⇣(�̂n,SP ,�Fpn

)
i
= R⇣(uF,d), and lim

n!1

EFpn

h
`⇣(�̂n,ŵn ,�Fpn

)
i
= R̄⇣(uF,d). (B.8)

This, combined with (B.6), the definition of AsyRD⇣(�̂n,ŵn , �̂n,SP ) in (A.6), the definition of supremum and

the definition of r(uF,d) in (A.3), implies that for any uF,d 2 U ,

AsyRD⇣(�̂n,ŵn , �̂n,SP ) � lim sup
n!1

EFn [`⇣(�̂n,ŵn ,�Fn)� `⇣(�̂n,SP ,�Fn)] = r(uF,d),

which further implies that

AsyRD⇣(�̂n,ŵn , �̂n,SP ) � sup
uF,d2U

r(uF,d). (B.9)

On the other hand, by the definition of U1 in (3.26), for any uF,d 2 U1, kdk = 1 and either (i) �F = 0

or (ii) k�F k > 0. For case (i), let `k be a k ⇥ 1 vector of ones and let N✏F denote the smallest n such

that n
�1/4

k`kk
1/2 = n

�1/4
k
1/2

< ✏F , where ✏F satisfies Condition 3(ii). Then by Condition 3(ii), for each

n � N✏F , there is an Fn 2 F with �Fn = n
�1/4

`k and kS̄(Fn) � S̄(F )k  Cn
�/4

k
/2 for some C, > 0.

For each n < N✏F , let Fn = F . For case (ii), let Fn = F for all n. Thus, a sequence of DGPs {Fn}n2N in

F satisfying n
1/2
�Fn ! 1, �Fn ! F and S̄(Fn) ! S̄(F ) is constructed for any uF,d 2 U1, regardless of

whether �F = 0 or k�F k > 0. Recalling the definition of S̄(F ) in (3.17), this immediately implies that for

such {Fn}n2N,

kn
1/2
�Fnk ! 1, VFn,SP ! VF,SP , CFn ! CF , and VFn,P ! VF,P .

Then a similar argument used to show (B.6) - (B.8) can be applied to show that there exists a subsequence

{pn}n2N of {n}n2N such that (B.6) and (B.8) are satisfied, with the help of Condition 2(ii) and Lemma 1(ii).

Combining this with the definition of AsyRD⇣(�̂n,ŵn , �̂n,SP ) in (A.6), the definition of supremum and the

definition of r(uF,d) in (A.3), one gets that for any uF,d 2 U1,

AsyRD⇣(�̂n,ŵn , �̂n,SP ) � lim sup
n!1

EFn [`⇣(�̂n,ŵn ,�Fn)� `⇣(�̂n,SP ,�Fn)] = 0. (B.10)

(A.10) immediately follows inequalities (B.9) and (B.10).

The proof of (A.11) follows the same argument and hence is omitted here.

Proof of Lemma A.3

Proof. For any F 2 F , since ⇠F,SP ⇠ N (0k⇥1, VF,SP ) by Condition 2, one gets

⇠
0

F,SP⌥⇠F,SP
d.
= Z

0
V

1/2
F,SP⌥V

1/2
F,SPZ,
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where Z ⇠ N (0k⇥1, Ik⇥k). By Condition 3(i), and because ⌥ is a fixed matrix, there exists some constant

C such that

sup
F2F

⇢max

⇣
V

1/2
F,SP⌥V

1/2
F,SP

⌘
 C.

This implies that

sup
uF,d2U

E
h�
⇠
0

F,SP⌥⇠F,SP

�2i
 sup

uF,d2U

⇢
2
max

⇣
V

1/2
F,SP⌥V

1/2
F,SP

⌘
· E[(Z 0

Z)2]  C,

where the second inequality holds because Z ⇠ N (0k⇥1, Ik⇥k) and that VF,SP does not depend on d. This

proves (A.12).

By the definition of ⇠̄F,d in (3.22) and that of ⇠̃F in Condition 2(i), Cauchy-Schwarz inequality and the

simple inequality 2|ab|  a
2 + b

2 for any real numbers a and b, one gets

⇠̄
0

F,d⌥⇠̄F,d  2⇠0F,SP⌥⇠F,SP + 2w2
F (⇠F,P + d� ⇠F,SP )

0 ⌥ (⇠F,P + d� ⇠F,SP )

= 2⇠0F,SP⌥⇠F,SP + 2w2
F

⇣
⇠̃F + d̃

⌘0
D

⇣
⇠̃F + d̃

⌘
, (B.11)

where D and d̃ are defined in (A.21). Combining (B.11) and the simple inequality (a+ b)2  2(a2 + b
2) for

any real numbers a and b, one gets

�
⇠̄
0

F,d⌥⇠̄F,d

�2
8
�
⇠
0

F,SP⌥⇠F,SP

�2
+ 8


w

2
F

⇣
⇠̃F + d̃

⌘0
D

⇣
⇠̃F + d̃

⌘�2

C + 8


w

2
F

⇣
⇠̃F + d̃

⌘0
D

⇣
⇠̃F + d̃

⌘�2
, (B.12)

where the second inequality is by (A.12). By the definitions of wF in (3.21) and that of AF and BF in (3.20),

one has

w
2
F

⇣
⇠̃F + d̃

⌘0
D

⇣
⇠̃F + d̃

⌘
=

[tr(AF )]2
⇣
⇠̃F + d̃

⌘0
D

⇣
⇠̃F + d̃

⌘


tr(BF ) +

⇣
⇠̃F + d̃

⌘0
D

⇣
⇠̃F + d̃

⌘�2  Ctr(AF ) = Ctr(⌥VF,SP )� Ctr(⌥CF ),

where the inequality follows by tr(AF ) > 0, tr(BF ) > 0 and that ⌥ being positive semi-definite implies

(⇠̃F + d̃)0D(⇠̃F + d̃) � 0. Combined with the simple inequality (a+ b)2  2(a2 + b
2), this implies that

E

w

2
F

⇣
⇠̃F + d̃

⌘0
D

⇣
⇠̃F + d̃

⌘�2
 2C[tr(⌥VF,SP )]

2 + 2C[tr(⌥CF )]
2

 2C[tr(⌥VF,SP )]
2 + 2C[tr(⌥VF,SP )]

2
 C, (B.13)

where the second inequality holds by Condition 2(i), Condition 3(i) and that Cauchy-Schwarz inequality

implies CF  max{VF,SP , VF,P } for any F 2 F . Together, (B.12) and (B.13) imply (A.13), since the upper

bound does not depend on F .

Proof of Lemma A.4

Proof. First note that

sup
uF,d2U

��E
⇥
min{⇠̄0F,d⌥⇠̄F,d, ⇣}� ⇠̄

0

F,d⌥⇠̄F,d

⇤��
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= sup
uF,d2U

��E
⇥�
⇣ � ⇠̄

0

F,d⌥⇠̄F,d

�
I
�
⇠̄
0

F,d⌥⇠̄F,d > ⇣
 ⇤��

 sup
uF,d2U

E
⇥��⇣ � ⇠̄

0

F,d⌥⇠̄F,d

�� · I
�
⇠̄
0

F,d⌥⇠̄F,d > ⇣
 ⇤

⇣ sup
uF,d2U

E
⇥
I
�
⇠̄
0

F,d⌥⇠̄F,d > ⇣
 ⇤

+ sup
uF,d2U

E
⇥�
⇠̄
0

F,d⌥⇠̄F,d

�
· I
�
⇠̄
0

F,d⌥⇠̄F,d > ⇣
 ⇤

2⇣�1 sup
uF,d2U

E
h�
⇠̄
0

F,d⌥⇠̄F,d

�2i
 2C⇣�1

, (B.14)

where the first equality is by the fact that min{x, ⇣}�x = (⇣�x) ·I{x > ⇣}; the first inequality is by Jensen’s

inequality and the fact that an indicator function is always non-negative; the second inequality holds because

⇣ > 0, ⇠̄0F,d⌥⇠̄F,d � 0, and the simple inequality |a � b|  a + b for any non-negative real numbers a and b;

the third inequality holds by Markov’s inequality;2 the fourth inequality is by (A.13) in Lemma A.3.

By (A.12) in Lemma A.3 and the same argument, one can show that

sup
uF,d2U

|E [min{⇠F,SP⌥⇠F,SP , ⇣}� ⇠F,SP⌥⇠F,SP ]|  2C⇣�1
. (B.15)

Combining inequalities (B.14) and (B.15), the definitions of r⇣(uF,d) and r(uF,d) in (A.4) and (A.5), and the

triangular inequality, one gets sup
uF,d2U

|r⇣(uF,d)� r(uF,d)|  4C⇣�1, which immediately implies (A.14).

Appendix C Details on Section 2

The reasons for ŵn 2 [0, 1] with probability one. Note that bVn,SP + bVn,P � bCn � bC 0

n is the sample

asymptotic variance-covariance matrix of �̂n,P � �̂n,SP and recall that ⌥ is symmetric positive semi-definite,

so the first term in the denominator of (2.2) is positive with probability one; the second term is a quadratic

form with positive semi-definite ⌥, so the denominator of (2.2) is positive with probability one. Moreover,

if the parametric restrictions are correctly specified or mildly misspecified, then VF,SP � VF,P (Condition 2)

implies bVn,SP � bVn,P with probability one, which, together with Cauchy-Schwarz inequality, further implies
bVn,SP � bCn.3 Furthermore, if the parametric restrictions are severely misspecified, then bVn,SP , bVn,P and bCn

having finite probability limits (Condition 2) implies that the second term in the denominator approaches

the infinity while the other terms are finite. Together, these imply that the averaging weight ŵn 2 [0, 1] with

probability one.

Computing asymptotic variance-covariance matrices via robust influence functions. Let  F,SP (z)

denote the non-centered influence function of �̂n,SP , let  F,P (z) denote that of �̂n,P , and let  n,SP (z) and

 n,P (z) denote their sample analogs, respectively. Then

bVn,SP =
1

n

nX

i=1

 n,SP (Zi) 
0

n,SP (Zi)�

"
1

n

nX

i=1

 n,SP (Zi)

#
·

"
1

n

nX

i=1

 n,SP (Zi)

#0
, (C.1)

bVn,P =
1

n

nX

i=1

 n,P (Zi) 
0

n,P (Zi)�

"
1

n

nX

i=1

 n,P (Zi)

#
·

"
1

n

nX

i=1

 n,P (Zi)

#0
, (C.2)

2The first term is bounded using Chebyshev’s inequality. Using the same argument as Markov’s inequality, one can show
that for non-negative random variable X and constant a > 0, E[X · I{X > a}]  E(X2)/a, since E(X2) = E[X2 · I{X >
a}] + E[X2 · I{X  a}] � E[X2 · I{X > a}] � aE[X · I{X > a}]. Applying this result to the second term gives the desired
inequality.

3Condition 2(i) postulates VF,SP � VF,P , which is the case where the averaging is meaningful, otherwise �̂n,P dominates

�̂n,SP . Allowing for VF,SP < VF,P is also easy and discussed in Remark 2.
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bCn =
1

n

nX

i=1

 n,SP (Zi) 
0

n,P (Zi)�

"
1

n

nX

i=1

 n,SP (Zi)

#
·

"
1

n

nX

i=1

 n,P (Zi)

#0
. (C.3)

The asymptotic variance-covariance matrix estimates in (C.1) - (C.3) can then be plugged into (2.2) to

compute the averaging weight.

It is worth emphasizing that the influence functions need to be valid under potential misspecification (e.g.,

Ichimura and Lee, 2010), such that the estimators bVn,SP , bVn,P and bCn are consistent regardless of whether

the parametric restrictions hold or not. In other words, they must be robust against misspecification of the

parametric restrictions; otherwise the resulting averaging estimator might not conform to the asymptotic

theory in Section 3. Appendix D will illustrate this point using the partially linear model in Section 4.

Appendix D Details on Section 4

Robust influence function in partially linear models. In this example, the estimators are based on

the objective function Q(z,�, h) ⌘
1
2 [y � h1(x2) � (x1 � h2(x2))0�]2 where z represents the vector of all

observed variables, so that QF (�, h) in (3.1) equals to EF [Q(Z,�, h)], where the expectation is taken with

regard to the distribution F of the data Z. Under DGP F , let h1F (s) ⌘ EF (Y |s(X1, X2) = s) and h2F ⌘

EF (X1|s(X1, X2) = s) denote the conditional mean functions of Yi and X1i given s(X1i, X2i) = s.4 Since

these functions do not depend on �, the general formula of the influence function of an estimator �̂n robust

to potential misspecification of h can be derived using Theorem 3.3 of Ichimura and Lee (2010). Borrowing

their notation, one gets

�1(z) ⌘ D�Q(z,�, h) = �[y � h1(x2)� (x1 � h2(x2))
0
�](x1 � h2(x2)),

D��0Q(z,�, h) = (x1 � h2(x2))(x1 � h2(x2))
0
,

V0 =
d
2
Q(�, h)

d�d�0
= D��0Q(�, h) = E[(X1 � h2(X2))(X1 � h2(X2))

0],

DhQ(z,�, hF )[h] = � [y � h1F (x2)� (x1 � h2F (x2))
0
�](h1(x2)� h2(x2)

0
�),

�1(z) =
d

d�0
DhQ(�, hF )[h]

= D�hQ(�, hF )[h]

= EF [(X1 � h2F (X2))
0
�(h1(X2)� h2(X2)

0
�]

+ EF [(Y � h1F (X2)� (X1 � h2F (X2))
0
�)h2(X2)]

= 0,

where the last equality holds by the law of iterated expectations (i.e., first conditional on X2). By Theorem

3.3 of Ichimura and Lee (2010), the influence function of an estimator �̂n is

 (z) = �V
�1
0 �1(z)

= �{E[(X1 � h2(s(X1, X2))) · (X1 � h2(s(X1, X2)))
0]}�1

· [y � h1(s(x1, x2))� (x1 � h2(s(x1, x2)))
0
�] · (x1 � h2(x1, x2)). (D.1)

4Here s(X1, X2) = s is a shorthand notation to indicate conditioning on all the additively separable components
of s(X1, X2). For example, in the model (4.2) in Section 4, s(X1, X2) = s is a shorthand for the entire vector
(X0

2, X11X21, X12X22, X13X23, X14X24)0 being fixed.
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Note that �1(z), the term in Ichimura and Lee (2010) that captures the impact of first step estimation error

of h on the asymptotic distribution of �̂n, is zero.

For the parametric estimator, s is restricted to be a linear function of x2 only, i.e., s(x1, x2) = ✓0 +

x
0

2✓1, then �̂n,P is just the least squares coe�cient of X1 in a linear regression of Y on X1, X2, and

an intercept. Under this modeling restriction, both h1 and h2 are also linear functions of x2 only. Let

X
⇤

2 ⌘ (1, X 0

2)
0, then standard results of linear regressions imply that h1F,P (x2) = x

⇤0

2 �1F and h2F,P (x2) =

x
⇤0

2 �2F with �1F = [EF (X⇤

2X
⇤0

2 )]�1EF (X⇤

2Y ) and �2F = [EF (X⇤

2X
⇤0

2 )]�1EF (X⇤

2X
0

1), which can then be

plugged into (D.1) to obtain the influence function of �̂n,P . In order to get its sample version, let �̂1,n ⌘�Pn
i=1 X

⇤

2,iX
⇤0

2,i

��1 �Pn
i=1 X

⇤

2,iYi

�
and �̂2,n ⌘

�Pn
i=1 X

⇤

2,iX
⇤0

2,i

��1 �Pn
i=1 X

⇤

2,iX
0

1,i

�
, then one has

 n,P (Zi) = �

"
1

n

nX

i=1

(X1,i �X
⇤0

2,i�̂2,n)(X1,i �X
⇤0

2,i�̂2,n)
0

#�1

· {Yi �X
⇤0

2,i�̂1,n � (X1,i �X
⇤0

2,i�̂2,n)
0
�̂n,SP } · (X1,i �X

⇤0

2,i�̂2,n), (D.2)

where note that � in the influence function (D.1) is replaced by its robust estimator �̂n,SP .

For the semiparametric estimator, a series of basis functions G
L(x1, x2) ⌘ (g1L(x1, x2), g2L(x1, x2), . . . ,

gLL(x1, x2))0 is used to approximate the unknown function s(x1, x2) in the original model, where L is

an integer that increases with n and glL(x1, x2) is a known function (e.g., polynomial functions) for each

l 2 {1, . . . , L}. In this case, �̂n,SP is just the least squares coe�cient of X1 in a linear regression of Y on

X1 and G
L(X1, X2), and its influence function is what is in (D.1). The argument in Ackerberg, Chen and

Hahn (2012) and Ackerberg, Chen, Hahn and Liao (2014) allows one to treat this series approximation as

the true model in estimating the asymptotic variance of �̂n,SP . To proceed, let

�̂1,n ⌘

 
nX

i=1

G
L(X1,i, X2,i)G

L0(X1,i, X2,i)

!�1 nX

i=1

G
L(X1,i, X2,i)Yi

!
, and

�̂2,n ⌘

 
nX

i=1

G
L(X1,i, X2,i)G

L0(X1,i, X2,i)

!�1 nX

i=1

G
L(X1,i, X2,i)X

0

1,i

!
,

then one has

 n,SP (Zi) = �

"
1

n

nX

i=1

(X1,i �G
L0(X1,i, X2,i)�̂2,n)(X1,i �G

L0(X1,i, X2,i)�̂2,n)
0

#�1

· {Yi �G
L0(X1,i, X2,i)�̂1,n � (X1,i �G

L0(X1,i, X2,i)�̂2,n)
0
�̂n,SP }

· (X1,i �G
L0(X1,i, X2,i)�̂2,n). (D.3)

As a result, the averaging weight can be constructed by first plugging (D.2) and (D.3) into (C.1), (C.2)

and (C.3), and then plugging the latter into (2.2).

Two points are worth emphasizing here. First, � naturally arises in the influence functions (D.1) and

is invariant to how the conditional mean function h is modeled. Therefore, when computing the sample

analogs of the influence functions using (D.2) and (D.3), � should be replaced by �̂n,SP , the estimator that

is consistent regardless of whether the joint normality restriction is correctly specified or not. Second, the

nuisance function h directly enters the influence function of �̂n. As a result, how h is modeled (by the linear

function of x2 only or without such restriction) a↵ects the functional form of the influence functions, even

though neither (D.2) nor (D.3) contains a correction term for the first step estimation error of h.
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Primitive conditions. For a specific model and specific estimators �̂n,SP and �̂n,P , Conditions 1 and 3 are

straightforward to verify, and Condition 2 can be verified under more primitive conditions. The following

condition is the primitive condition of Condition 2 for the partially linear model 4.

Condition 20. Let k · k indicate the Euclidean norm of a vector and let k · kL2 indicate the L2 norm of a

function. For the partially linear model in (4.1) and the estimators described in Section 2, assume that the

following conditions hold for any F 2 F , where 0 < M < 1 and ⌧ > 0 are some generic constants.

(i) EF {[X1 � EF (X1|s(X1, X2))] · [X1 � EF (X1|s(X1, X2))]0} is positive definite.

(ii) EF {[U + s(X1, X2)�EF (s(X1, X2)|X2)]2[X1 �EF (X1|X2)] · [X1 �EF (X1|X2)]0} is positive definite.

(iii) For functions s(x1, x2) and h2F,P (x2) ⌘ EF (X1|X2) = x
⇤0

2 �2F , there exist ds, d2, ⇡s,L and ⇡2,L

such that ks(x1, x2)�G
L0(x1, x2)⇡s,LkL2 = O(L�ds) and kh2F (x2)�G

L0(x2)⇡2,LkL2 = O(L�d2) as L ! 1,

where G
L(x1, x2) and G

L(x2) are series basis functions of order L.

(iv) varF [Y |X1, s(X1, X2)]  M < 1 and varF [X1|s(X1, X2)]  M .

(v) EF {kX1 � EF [X1|s(X1, X2)]k2+⌧
}  M .

(vi) The series order L is such that L ! 1, L/n ! 0 and
p
nL

�ds�d2 ! 0 as n ! 0.

(vii) The variance-covariance matrix (under F ) of (X 0

1, X
0

2)
0 is positive definite.

(viii) EF [kX1k
2+⌧ ]  M and EF [kX2k

2+⌧ ]  M .

Condition 20(i) - (vi) follow Assumption 2 and Theorem 2 in Donald and Newey (1994), which ensure the

asymptotic normality of �̂n,SP based on series first step. Among them, (i) is the key identification requirement

of �F ; (i) and (ii) ensure that the asymptotic variance-covariance matrix of �̂n,SP is well defined; (iii) implies

that the nuisance functions can be approximated well by the series basis functions; (iv) implies that they can

be consistently estimated; (v) is the moment condition required by the central limit theorem; and (vi) gives

the under-smoothing order of the series basis functions. (vii) is the key identification requirement of �F,P ,

and (viii) is the usual moment condition for the asymptotic normality of �̂n,P based on linear regression of

Y on (X 0

1, X
0

2)
0 and an intercept.5

Verification of the primitive conditions. This part verifies Conditions 1, 20 and 3 for the Monte Carlo

model (4.2) and the estimators used in Section 4. Recall that in this model,

s(x1, x2) ⌘ x
0

2✓1 + t(x1, x2), with t(x1, x2) ⌘ ⇢

0

@
4X

j=1

✓2j exp(x2j) +
4X

j=1

✓3jx1jx2j

1

A . (D.4)

Because the misspecified model (4.3) only uses ✓0+x
0

2✓1 as s(x1, x2), ⇢ controls the degree of misspecification.

Note that for 8F 2 F , one has

2

64
✓0,F,P � ✓0,F

�F,P � �F

✓1,F,P � ✓1,F

3

75 =

2

64
1 EF (X 0

1) EF (X 0

2)

EF (X1) EF (X1X
0

1) EF (X1X
0

2)

EF (X2) EF (X2X
0

1) EF (X2X
0

2)

3

75

�1 2

64
EF [t(X1, X2)]

EF [X1t(X1, X2)]

EF [X2t(X1, X2)]

3

75 , (D.5)

where (✓00,F,P ,�
0

F,P , ✓
0

1,F,P )
0 is the pseudo-true parameter value in the misspecified model (4.3) and (✓00,F ,

�
0

F , ✓
0

1,F )
0 is the true parameter vector in model (4.2).6 The joint normal distribution of (X 0

1, X
0

2)
0 implies

that on the right hand side of (D.5), the entries of the first matrix are non-zero finite numbers, and the

second vector is proportional to ⇢, since EF (XlX1jX2j) and EF [Xl exp(X2j)] are both finite (l = 1, 2 and

5The joint asymptotic normality can be shown under Condition 20 by invoking Cramér-Wold theorem (not elaborated here).
6In particular, ✓0,F = 0.
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j = 1, 2, 3, 4).7 So, one gets

�F ⌘ �F,P � �F = c1⇢ (D.6)

with non-zero c1, where the non-zero constant c1 depends on the moments of polynomials up to the third

order and the exponential functions of (X 0

1, X
0

2)
0. As a result, as long as the values of ⇢ contain an open

set around 0, Condition 1(ii) is satisfied. Moreover, note that the nuisance function hF in Condition 1(i) is

s(x1, x2) and g�F in Condition 1(i) is x0

2✓1,F,P , then one has

kg�F � hF kL2 = kx
0

2(✓1,F,P � ✓1,F ) + ✓0,F,P � t(x1, x2)kL2 = c2|⇢|, for some c2 > 0,

where the second equality holds due to (D.5), the definition of t(x1, x2) in (D.4), the joint normal distribution

of (X 0

1, X
0

2)
0 and that ✓0,F = 0 in model (4.2). As a result, Condition 1(i) is satisfied.

The joint normal distribution of (X 0

1, X
0

2)
0 in Section 4 immediately implies that Conditions 20(vii), (viii)

and the second part of (iv) are satisfied.8 Moreover, the normal distribution of U and its independence from

(X 0

1, X
0

2)
0 ensure Condition 20 (ii) and the first part of (iv). In addition, the definition of s(x1, x2) in (D.4)

shows that X1 and s(X1, X2) are not perfectly collinear, indicating that Condition 20(i) and (v) are satisfied.

Furthermore, note that s(x1, x2) only contains linear, quadratic and exponential functions of x1 and x2 and

h2F,P (x2) only contains linear function of x2, which are all four times continuously di↵erentiable functions,

so Condition 20(iii) is satisfied with ds = d2 = 1
2 .

9 Given this, one can choose L such that L ! 1, L/n ! 0

and L
2
/n ! 1 to satisfy Condition 20(vi).

To verify Condition 3, first recall �F = c1⇢ with non-zero c1 shown in (D.6), so �F belongs to a compact

set as long as ⇢ does. Second, note that the asymptotic variance-covariance matrices of �̂n,SP and �̂n,P are

VF,SP = �
2
U · (EF {[X1 � EF (X1|s(X1, X2))] · [X1 � EF (X1|s(X1, X2))]

0
})

�1
, (D.7)

VF,P = (EF {[X1 � EF (X1|X2)] · [X1 � EF (X1|X2)]
0
})

�1

·
�
EF {[U + s(X1, X2)� EF (s(X1, X2)|X2)]

2[X1 � EF (X1|X2)] · [X1 � EF (X1|X2)]
0
}
�

· (EF {[X1 � EF (X1|X2)] · [X1 � EF (X1|X2)]
0
})

�1
, (D.8)

CF = (EF {[X1 � EF (X1|s(X1, X2))] · [X1 � EF (X1|s(X1, X2))]
0
})

�1

· (EF {[U + s(X1, X2)� EF (s(X1, X2)|X2)] · [X1 � EF (X1|s(X1, X2))]
0
})

· (EF {[X1 � EF (X1|X2)] · [X1 � EF (X1|X2)]
0
})

�1
, (D.9)

where �2
U ⌘ EF (U2). Given the specification in (4.2) (reiterated in (D.4)) and the joint normal distribution

of (X 0

1, X
0

2)
0 in Section 4, the following points can be verified.

1. h2F,P (·) = EF (X1|X2) defined before (D.2) is a 4⇥ 1 vector-valued linear function of x2 that does not

depend on ⇢; in particular, its jth coordinate is h2F,P,j(x2) ⌘ EF (X1j |X2 = x2) = 0.4 + 0.2
P4

l=1 x2,l

for j = 1, 2, 3, 4.

2. Note that once the values of exp(X2j) and X1jX2j (j = 1, 2, 3, 4) are fixed, then so are the values of

X1j and X2j (j = 1, 2, 3, 4); and vice versa. For this reason, the function h2F (·) = EF (X1|s(X1, X2)) =

EF (X1|X2, X11X21, X12X22, X13X23, X14X24) defined before (D.1) does not depend on ⇢, although its

functional form is di�cult to obtain and hence is omitted here.10

7The finite moments of exp(X2) can be shown using the moment generating function of the normally distributed X2. For
example, E{[exp(X2j)]2} = E[exp(2X2j)] = MX2j (2) = exp(2µ2j + 2�2

2j) < 1, with µ2j = 2 and �2
2j = 0.52.

8Note that conditional variance is bounded above by unconditional variance.
9s(x1, x2) is four times continuously di↵erentiable and has eight arguments, so by the discussion that follows Assumption 3

in Newey (1997), ds = 4
8 = 1

2 . Similarly, h2F (x2) is twice continuously di↵erentiable and has four arguments, so d2 = 2
4 = 1

2 .
10See Footnote 4 for details on EF (X1|s(X1, X2)).
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3. By the specification in (4.2), one has

s(X1, X2)� EF (s(X1, X2)|X2) = ⇢

4X

j=1

✓3jX2j [X1j � EF (X1j |X2)] ⌘ C3⇢, (D.10)

where C3 is a random variable that depends on X1 and X2.

Point 2 immediately implies that VF,SP in (D.7) equals to

VF,SP = �
2
U · [EF (WF,SPW

0

F,SP )]
�1

,

with WF,SP ⌘ X1 � EF (X1|X2, X11X21, X12X22, X13X23, X14X24), (D.11)

which does not depend on ⇢. Points 1 - 3 together imply that VF,P in (D.8) equals to

VF,P = [EF (WF,PW
0

F,P )]
�1

· {EF [(U + C6⇢)
2
WF,PW

0

F,P ]} · [EF (WF,PW
0

F,P )]
�1

,

with WF,P ⌘ X1 � EF (X1|X2), (D.12)

which is a quadratic function of ⇢. Similarly, one can show that CF in (D.9) is a linear function of ⇢. In

summary, S̄(F ) defined in (3.17) is a quadratic function of ⇢; that is, for F 2 F such that �F = c1⇢, there

exist some fixed vectors c4, c5 and c6 such that S̄(F ) = c4 + c5⇢+ c6⇢
2. This has two implications. First, as

long as ⇢ takes values from a compact set, so does S(F ) defined in (3.17), satisfying Condition 3(i). Second,

Condition 3(ii) is satisfied with  = 2, ✏F = 1 and C being some constant depending on c4, c5 and c6 but

not ⇢.

Verification of VF,SP � VF,P in Condition 2(i). The paragraph that follows Condition 2 provided

intuition for VF,SP � VF,P using the semiparametric e�ciency bound and Le Cam’s third lemma. For a

specific model, however, this result can often be verified directly. What follows will use (D.11) and (D.12)

to verify it for the parameterization of the partially linear model in (4.2).

Recall that (D.6) shows that �F ⌘ �F,P ��F = c1⇢ with non-zero c1. Also recall that the presumption of

Condition 2(i) is kdk < 1 with n
1/2
�Fn ! d, then any sequence ⇢n of ⇢ values considered here satisfies ⇢n =

�Fn
c1

= O(n�1/2). Moreover, U is independent of WF,P due to the independence between U and (X 0

1, X
0

2)
0.

These together imply that in the scenario of Condition 2(i), VF,P in (D.12) equals to �2
U · [EF (WF,PW

0

F,P )]
�1.

Comparing it with (D.11), it is obvious that EF (WF,SPW
0

F,SP )  EF (WF,PW
0

F,P ) since WF,SP conditions

on more variables. This further implies that VF,SP � VF,P .

More Monte Carlo results. This subsection reports Monte Carlo results for the second, the third and

the fourth coordinates of � (i.e., �2, �3 and �4). Similar results for �1, the first coordinate of �, are reported

in Figure 2 and Table 1 in Section 4.

Figures D.1 - D.3 plot the Monte Carlo distributions (kernel densities) of the averaging estimator �̂n,ŵn

(thick solid lines) for representative ⇢ values. Figure D.1 is for �2, Figure D.2 is for �3 and Figure D.3 is

for �4. In the same figures, the normal distributions based on the naive inference method with the common

standard error are represented by the thick dashed lines (one randomly chosen Monte Carlo replication)

and dotted lines (averaged over all Monte Carlo replications). It is obvious that the naive inference method

miscalculates the randomness in the averaging estimators �̂n,ŵn,2, �̂n,ŵn,3 and �̂n,ŵn,4, since it treats the

averaging weight ŵn as non-random.

Tables D.1 - D.3 report for di↵erent ⇢ values the rejection rates of �̂n,SP with the common standard error

and those of �̂n,ŵn with both the naive and the two-step inference methods (S = 1000 random draws in the
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Figure D.1: True vs. Naive Distributions of �̂n,ŵn,2 for the Partially Linear Model

(a) Correct Specification (⇢ = 0): (b) Misspecification (⇢ = 0.2):

(c) Misspecification (⇢ = 0.4): (d) Misspecification (⇢ = 0.6):

(e) Misspecification (⇢ = 0.8): (f) Misspecification (⇢ = 1):

Notes: (1) All distributions are based on R = 10000 Monte Carlo replications and n = 1000 sample size.

(2) Solid lines represent the MC distributions of �̂n,ŵn,2, the averaging estimator of �2. Dashed and dotted lines both represent

the asymptotic distribution of �̂n,ŵn,2 if the naive inference method, which takes ŵn as fixed, is used. The former show a
randomly chosen MC replication, while the latter show the average over all MC replications.
(3) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Figure D.2: True vs. Naive Distributions of �̂n,ŵn,3 for the Partially Linear Model

(a) Correct Specification (⇢ = 0): (b) Misspecification (⇢ = 0.2):

(c) Misspecification (⇢ = 0.4): (d) Misspecification (⇢ = 0.6):

(e) Misspecification (⇢ = 0.8): (f) Misspecification (⇢ = 1):

Notes: (1) All distributions are based on R = 10000 Monte Carlo replications and n = 1000 sample size.

(2) Solid lines represent the MC distributions of �̂n,ŵn,3, the averaging estimator of �3. Dashed and dotted lines both represent

the asymptotic distribution of �̂n,ŵn,3 if the naive inference method, which takes ŵn as fixed, is used. The former show a
randomly chosen MC replication, while the latter show the average over all MC replications.
(3) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Figure D.3: True vs. Naive Distributions of �̂n,ŵn,4 for the Partially Linear Model

(a) Correct Specification (⇢ = 0): (b) Misspecification (⇢ = 0.2):

(c) Misspecification (⇢ = 0.4): (d) Misspecification (⇢ = 0.6):

(e) Misspecification (⇢ = 0.8): (f) Misspecification (⇢ = 1):

Notes: (1) All distributions are based on R = 10000 Monte Carlo replications and n = 1000 sample size.

(2) Solid lines represent the MC distributions of �̂n,ŵn,4, the averaging estimator of �4. Dashed and dotted lines both represent

the asymptotic distribution of �̂n,ŵn,4 if the naive inference method, which takes ŵn as fixed, is used. The former show a
randomly chosen MC replication, while the latter show the average over all MC replications.
(3) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Table D.1: Rejection Rates for �̂n,ŵn,2 in the Partially Linear Model (5% Level)

⇢ �̂n,SP,2 �̂n,ŵn,2 CI Length
Naive Naive (robust SE) Two-step CI(�̂n,ŵn,2)

CI(�̂n,SP,2)Size Power Size Power Size Power Size Power
0.00 9.19% 24.71% 9.20% 64.11% 9.10% 63.93% 1.55% 10.96% 33.1069
0.05 10.03% 25.49% 13.89% 66.46% 13.60% 66.38% 1.73% 14.32% 33.1784
0.10 9.36% 23.99% 18.18% 65.45% 17.99% 65.38% 1.77% 16.07% 33.2881
0.15 8.94% 24.48% 21.56% 63.96% 21.39% 63.89% 2.01% 18.84% 33.4046
0.20 9.80% 24.67% 22.22% 61.40% 22.06% 61.36% 2.48% 22.26% 33.5380
0.25 9.34% 24.71% 21.00% 58.04% 20.96% 57.98% 2.86% 23.80% 33.6886
0.30 9.93% 24.78% 20.19% 53.85% 20.10% 53.83% 3.67% 25.05% 33.8610
0.35 9.56% 24.86% 19.26% 51.33% 19.21% 51.24% 4.08% 26.55% 33.9920
0.40 9.85% 25.03% 17.26% 48.73% 17.21% 48.71% 4.71% 26.65% 34.1516
0.45 9.11% 23.67% 15.68% 44.38% 15.67% 44.35% 4.92% 25.28% 34.2996
0.50 9.99% 24.93% 15.83% 43.27% 15.79% 43.22% 5.67% 26.60% 34.4368
0.55 9.95% 24.79% 14.70% 41.33% 14.65% 41.29% 5.54% 26.01% 34.5620
0.60 9.43% 24.07% 13.32% 39.86% 13.32% 39.80% 5.57% 25.21% 34.6631
0.65 9.64% 24.30% 12.89% 37.71% 12.88% 37.73% 6.00% 24.58% 34.7839
0.70 9.74% 24.48% 13.03% 36.81% 13.04% 36.81% 6.25% 24.56% 34.8843
0.75 9.68% 24.40% 12.19% 35.12% 12.15% 35.11% 6.10% 23.76% 34.9779
0.80 10.40% 24.34% 12.28% 34.57% 12.28% 34.56% 6.40% 23.90% 35.0621
0.85 9.94% 24.49% 11.89% 34.28% 11.89% 34.28% 6.40% 23.52% 35.1280
0.90 9.93% 24.92% 11.90% 33.84% 11.88% 33.82% 6.41% 23.66% 35.2114
0.95 9.93% 24.16% 11.43% 32.50% 11.42% 32.52% 6.31% 22.65% 35.2659
1.00 9.69% 24.71% 11.30% 32.19% 11.30% 32.18% 6.24% 22.80% 35.3216
1.05 9.98% 25.03% 11.41% 32.58% 11.41% 32.55% 6.43% 22.92% 35.3794
1.10 10.46% 24.29% 11.98% 31.07% 11.98% 31.05% 6.75% 21.94% 35.4232
1.15 9.80% 24.67% 10.98% 31.84% 10.95% 31.85% 6.59% 22.27% 35.4762
1.20 10.11% 24.46% 10.77% 30.80% 10.77% 30.79% 6.23% 21.67% 35.5112
1.25 10.22% 23.85% 11.30% 29.97% 11.30% 29.96% 6.68% 21.26% 35.5386
1.30 10.43% 24.41% 11.34% 30.03% 11.33% 30.02% 6.41% 21.53% 35.5749

Notes: (1) This table reports the inference results for �̂n,ŵn,2, the averaging estimator of �2.
(2) All results are based on R = 10000 Monte Carlo replications and n = 1000 sample size. The two-step inference method
uses S = 1000 random draws to simulate the distribution of ⇠̄F,d ⌘ (1� wF )⇠F,SP + wF (⇠F,P + d) in (3.22).
(3) The naive inference methods treat the averaging weight ŵn as non-random, and hence underestimate the randomness

in �̂n,ŵn,2. Two naive methods are reported here: the first uses the common estimators of VF,P and CF , which might be
biased under misspecification (see the discussion after (C.3)); and the second (robust SE) uses the robust influence function
(D.2) when computing the standard error (see Appendix D for details).
(4) The test value for the “Size” columns is 3, the true value of �2; the test value for the “Power” columns is 0.

(5) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Table D.2: Rejection Rates for �̂n,ŵn,3 in the Partially Linear Model (5% Level)

⇢ �̂n,SP,3 �̂n,ŵn,3 CI Length
Naive Naive (robust SE) Two-step CI(�̂n,ŵn,3)

CI(�̂n,SP,3)Size Power Size Power Size Power Size Power
0.00 9.35% 16.49% 9.42% 46.84% 9.22% 46.65% 1.80% 6.06% 31.8093
0.05 9.69% 16.52% 14.45% 52.31% 14.17% 52.17% 1.93% 8.16% 31.8198
0.10 9.49% 16.33% 20.92% 53.27% 20.61% 53.14% 2.20% 10.44% 31.8614
0.15 10.07% 16.77% 25.42% 52.54% 25.21% 52.52% 2.78% 13.99% 31.9477
0.20 9.63% 17.04% 25.25% 50.24% 25.09% 50.21% 3.20% 17.46% 31.0517
0.25 9.65% 17.02% 23.98% 47.67% 23.86% 47.65% 4.42% 20.00% 32.1615
0.30 10.15% 16.74% 22.78% 43.62% 22.56% 43.59% 5.70% 20.86% 32.3306
0.35 9.61% 16.22% 20.77% 40.84% 20.76% 40.77% 6.25% 21.78% 32.4561
0.40 9.90% 16.80% 19.42% 38.84% 19.35% 38.83% 7.05% 23.04% 32.6202
0.45 10.06% 16.79% 18.22% 35.95% 18.20% 35.87% 7.97% 22.56% 32.7834
0.50 10.25% 15.83% 16.34% 32.80% 16.28% 32.77% 7.71% 21.51% 32.9379
0.55 9.89% 16.35% 15.58% 31.71% 15.56% 31.67% 8.12% 21.49% 33.0857
0.60 10.37% 16.99% 15.40% 30.73% 15.35% 30.74% 8.68% 21.88% 33.2150
0.65 9.91% 16.83% 14.31% 29.00% 14.30% 29.00% 8.37% 20.75% 33.3506
0.70 10.14% 17.00% 13.90% 28.56% 13.86% 28.51% 8.43% 20.84% 33.4695
0.75 9.46% 16.54% 12.88% 26.52% 12.87% 26.50% 8.05% 19.66% 33.5899
0.80 10.62% 17.09% 13.44% 26.64% 13.42% 26.60% 8.71% 20.37% 33.6846
0.85 9.89% 16.79% 12.35% 25.31% 12.35% 25.31% 8.05% 19.32% 33.7756
0.90 10.71% 17.31% 12.88% 25.08% 12.87% 25.10% 8.72% 19.34% 33.8567
0.95 10.64% 16.45% 12.50% 23.82% 12.49% 23.81% 8.11% 18.27% 33.9313
1.00 10.08% 16.81% 12.13% 23.45% 12.12% 23.44% 8.02% 18.17% 33.9944
1.05 10.93% 16.74% 12.61% 23.32% 12.61% 23.30% 8.63% 18.13% 34.0518
1.10 10.58% 17.66% 12.37% 23.85% 12.36% 23.84% 8.58% 18.72% 34.1105
1.15 10.69% 17.19% 12.31% 22.54% 12.32% 22.53% 8.35% 18.01% 34.1666
1.20 10.91% 17.07% 12.18% 22.46% 12.17% 22.41% 8.71% 17.61% 34.2091
1.25 11.08% 17.57% 12.51% 22.91% 12.52% 22.93% 8.63% 17.98% 34.2507
1.30 11.08% 17.38% 12.50% 21.84% 12.49% 21.86% 8.75% 17.59% 34.2906

Notes: (1) This table reports the inference results for �̂n,ŵn,3, the averaging estimator of �3.
(2) All results are based on R = 10000 Monte Carlo replications and n = 1000 sample size. The two-step inference method
uses S = 1000 random draws to simulate the distribution of ⇠̄F,d ⌘ (1� wF )⇠F,SP + wF (⇠F,P + d) in (3.22).
(3) The naive inference methods treat the averaging weight ŵn as non-random, and hence underestimate the randomness

in �̂n,ŵn,3. Two naive methods are reported here: the first uses the common estimators of VF,P and CF , which might be
biased under misspecification (see the discussion after (C.3)); and the second (robust SE) uses the robust influence function
(D.2) when computing the standard error (see Appendix D for details).
(4) The test value for the “Size” columns is 2, the true value of �3; the test value for the “Power” columns is 0.

(5) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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Table D.3: Rejection Rates for �̂n,ŵn,4 in the Partially Linear Model (5% Level)

⇢ �̂n,SP,4 �̂n,ŵn,4 CI Length
Naive Naive (robust SE) Two-step CI(�̂n,ŵn,4)

CI(�̂n,SP,4)Size Power Size Power Size Power Size Power
0.00 10.25% 11.89% 10.34% 24.59% 10.19% 24.24% 1.61% 2.57% 33.1842
0.05 9.75% 11.86% 15.86% 34.95% 15.67% 34.70% 2.00% 3.43% 33.1979
0.10 9.60% 11.69% 23.23% 38.97% 23.00% 38.78% 1.97% 4.47% 33.2342
0.15 9.61% 11.45% 27.28% 40.30% 27.13% 40.29% 2.58% 5.88% 33.2914
0.20 9.26% 11.05% 27.23% 39.53% 27.16% 39.41% 3.19% 8.01% 33.3738
0.25 9.52% 11.28% 26.18% 36.56% 26.08% 36.48% 4.38% 10.66% 33.4788
0.30 10.48% 11.81% 25.09% 34.94% 25.09% 34.85% 6.25% 13.17% 33.6082
0.35 10.01% 11.59% 22.91% 32.41% 22.87% 32.35% 7.43% 14.00% 33.7167
0.40 8.75% 10.72% 19.98% 29.64% 19.96% 28.59% 7.45% 14.08% 33.8650
0.45 9.77% 11.76% 19.52% 26.84% 19.54% 26.77% 8.63% 15.06% 34.0064
0.50 9.53% 11.68% 18.34% 25.77% 18.33% 25.71% 8.81% 15.00% 34.1383
0.55 10.01% 11.73% 17.10% 23.62% 17.09% 23.57% 8.96% 14.76% 34.2743
0.60 9.84% 11.79% 16.38% 23.08% 16.38% 23.08% 8.82% 14.94% 34.3891
0.65 10.58% 12.45% 15.89% 21.82% 15.86% 21.77% 9.62% 14.52% 34.5273
0.70 9.89% 11.50% 14.72% 20.47% 14.67% 20.49% 8.77% 13.84% 34.6379
0.75 10.26% 12.13% 14.46% 20.10% 14.45% 20.11% 8.69% 13.84% 34.7625
0.80 10.48% 12.44% 14.12% 19.43% 14.11% 19.44% 9.18% 13.83% 34.8632
0.85 10.07% 11.54% 13.32% 18.49% 13.30% 18.47% 8.36% 12.68% 34.9520
0.90 11.21% 12.84% 14.21% 18.65% 14.20% 18.65% 9.07% 13.43% 35.0439
0.95 11.84% 13.21% 14.45% 18.67% 14.43% 18.66% 9.36% 13.47% 35.1175
1.00 10.83% 12.16% 13.06% 17.49% 13.03% 17.49% 8.21% 12.65% 35.1874
1.05 11.01% 12.42% 13.15% 17.24% 13.15% 17.25% 8.79% 12.42% 35.2540
1.10 11.90% 13.29% 13.68% 17.32% 13.66% 17.32% 8.80% 12.65% 35.3121
1.15 11.26% 12.32% 12.76% 16.22% 12.77% 16.22% 8.39% 11.92% 35.3659
1.20 11.22% 12.93% 12.98% 17.44% 12.99% 17.43% 8.58% 12.29% 35.4167
1.25 11.12% 12.97% 12.85% 16.68% 12.84% 16.67% 8.78% 12.54% 35.4533
1.30 11.85% 13.16% 12.97% 16.79% 13.00% 16.79% 8.77% 12.14% 35.4980

Notes: (1) This table reports the inference results for �̂n,ŵn,4, the averaging estimator of �4.
(2) All results are based on R = 10000 Monte Carlo replications and n = 1000 sample size. The two-step inference method
uses S = 1000 random draws to simulate the distribution of ⇠̄F,d ⌘ (1� wF )⇠F,SP + wF (⇠F,P + d) in (3.22).
(3) The naive inference methods treat the averaging weight ŵn as non-random, and hence underestimate the randomness

in �̂n,ŵn,4. Two naive methods are reported here: the first uses the common estimators of VF,P and CF , which might be
biased under misspecification (see the discussion after (C.3)); and the second (robust SE) uses the robust influence function
(D.2) when computing the standard error (see Appendix D for details).
(4) The test value for the “Size” columns is 1, the true value of �4; the test value for the “Power” columns is 0.

(5) See Section 4 for the details of the partially linear model example and the Monte Carlo experiments.
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second step). Table D.1 is for �2, Table D.2 is for �3 and Table D.3 is for �4. Two variations of the naive

inference method for �̂n,ŵn are considered. The “Naive” one uses the common estimators of VF,P and CF

when computing the standard error, but they can be biased under misspecification (see the discussion after

(C.3)). The “Naive (robust SE)” one uses the robust influence function (D.2) when computing the standard

error (see Appendix D for details). For the “Size” columns, the test value is the true value of the coordinate

(i.e., 3 for �2, 2 for �3 and 1 for �4); for the “Power” columns, the test value is 0. Table D.1 - D.3 also report

the average ratios between the lengths of the two-step confidence intervals of �̂n,ŵn,j and of the standard

confidence intervals of �̂n,SP,j (j = 2, 3, 4).

All these results are categorically similar to those for �1.

Appendix E Justification for VSP � VP in Condition 2

Justification for Condition 2(i)

This section provides rationale of VSP � VP in Condition 2(i) based on the semiparametric e�ciency theory

and Le Cam’s third lemma. (The subscript F is suppressed throughout this subsection for notational

simplicity.) What follows is not the proof of Condition 2(i), since Condition 2 is a maintained assumption

and can be verified with corresponding primitive conditions for a specific model (like Appendix D for the

partially linear model). This subsection merely argues that VSP � VP in Condition 2(i) holds for quite

general semiparametric models as it does not require much more than the setup of the semiparametric

model.

Consider a set P consisting of densities f(z|�,�P , h, ⌘), where h is the nuisance parameter identified

by the objective function R(h) in (3.2), � is the parameter of interest identified by h and the objective

function Q(�, h) in (3.1), �P is the parameter identified by g� and the objective function Q(�, g�) in (3.8),11

and let ⌘ 2 E denote the parameter that determines the features of the distribution of Z other than those

characterized by �, �P and h.12 Maintain the assumption that the true density is in P; in other words, P

is the semiparametric model. Let VSP and VP denote the e�ciency bounds of � and �P , respectively.

Let � ⌘ �P��, then the densities in P can be rewritten as f(z|�,�+�, h, ⌘). For any f(z|�,�+�, h, ⌘) 2 P,

one can define a parametric model (a subset of P) that incorporates the parametric restriction

P�,�,� ⌘ {f(z|�,� + �, g� , ⌘) : �, � 2 Rk
, � 2 Rt;

� is identified by the objective function R(g�) in (3.7);

� = 0 only if h = g� for some � 2 Rt
 
.

Note that this parametric model internalizes the parametric restriction and Condition 1(i) that the parametric

restriction leads to bias if misspecified. Also note that P�,�,� may or may not include f(z|�,�+�, h, ⌘) itself,

depending on whether h admits the parametric restriction g� .

If the density f(z|�,�+ �, h, ⌘) itself belongs to P�,�,� (i.e., h = g� for some � 2 Rt), then the parametric

restriction is correctly specified, and P�,�,� is a parametric submodel – that is, a parametric model that

includes the true DGP – like that defined by Bickel, Klaassen, Ritov and Wellner (1993, Definition 1 on

page 46) or Tsiatis (2006, page 59). As a result, one has VSP � VP by the definition of the semiparametric

e�ciency bound – that is, the e�ciency bound of the semiparametric model is the supremum of e�ciency

bounds of all parametric submodels – such as equation (2) on page 46 in Bickel et al. (1993) or equation

11Recall that g� is a given parametric function characterized by � 2 Rt, which is identified by the objective function R(g�)
in (3.7). In fact, for given g� function, one can rewrite f(z|�,�P , h, ⌘) as f(z|�,�P , h, g� , ⌘) to make the dependence of �P on
� explicit, but g� is suppressed here for notational simplicity.

12This follows the setup in the proof of Lemma 1 in Ackerberg et al. (2014). ⌘ may have infinite dimension.
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(4.16) in Tsiatis (2006). At the same time, the construction of P�,�,� dictates that � = 0 and � = �P

when f(z|�,� + �, h, ⌘) 2 P�,�,� . This implies that the statement VSP � VP in Condition 2(i) is a plausible

condition when the parametric restriction is correctly specified.

Remark 3. By the definition of the e�ciency bounds, one has VSP � VSP and VP � VP , and either equality

holds if the corresponding estimator is e�cient. Because the above shows that VSP � VP , the statement

VSP � VP in Condition 2(i) only means that �̂n,P is at least as e�cient as �̂n,SP , but does not require �̂n,P
to be e�cient in general. For instance, if VSP > VP or VSP > VSP , then there is room between VSP and

VP such that it is possible that the asymptotic variance VP of some ine�cient parametric estimator �̂n,P
satisfies VSP > VP .13

What follows shows that the relationship VSP � VP remains invariant if the parametric restriction

deviates from correct specification to mild misspecification. For any fixed density f(z|,�⇤
,�

⇤
, g�⇤ , ⌘

⇤) in

P�⇤,�⇤,�⇤ (i.e., �⇤ = 0 by the construction of P�⇤,�⇤,�⇤), let P denote the resulting probability measure, and

let Pn = P be a sequence of such probability measures (same for all n 2 N). Note that Pn corresponds to the

case where the parametric restriction is correctly specified. For any nuisance function h that does not admit

the functional form g� , one has f(z|�⇤
,�

⇤ + �, h, ⌘
⇤) /2 P�⇤,�⇤,�⇤ and � 6= 0 by the construction of P�⇤,�⇤,�⇤ .

Inspired by Theorem 7.2 in Van der Vaart (2000), consider a sequence of such nuisance functions, denoted

by hn, such that the resulting densities f(z|�⇤
,�

⇤ + �n, hn, ⌘
⇤) satisfy �n = dnp

n
, dn ! d for some d 2 Rk

with kdk 2 (0,1) and the corresponding g�n are g�⇤ . Note that the sequence of hn, by the construction

of P�⇤,�⇤,�⇤ , converges to g�⇤ , since the corresponding �n converges to zero. Let Qn denote the resulting

sequence of probability measures, and it corresponds to the case where the parametric restriction is mildly

misspecified. Under a technical condition called di↵erentiable in quadratic mean at �⇤,14 the log likelihood

ratio between Qn and Pn admits the following Taylor expansion with respect to �P (i.e., �⇤ + �n) around

�
⇤:

log
nY

i=1

dQn

dPn
= log

nY

i=1

fn(Zi|�
⇤
,�

⇤ + �n, hn, ⌘
⇤)

f(Zi|�
⇤,�⇤, g�⇤ , ⌘⇤)

= d
0

 
1
p
n

nX

i=1

˙̀
�P (Zi)

!
�

1

2
d
0

 
�
1

n

nX

i=1

῭
�P (Zi)

!
d+ op(1),

where ˙̀
�P (z) ⌘

@f(z|�⇤,�⇤,g�⇤ ,⌘⇤)/@�P

f(z|�⇤,�⇤,g�⇤ ,⌘⇤) is the score function with respect to �P under Pn evaluated at �⇤,

and ῭
�P (z) ⌘

@2f(z|�⇤,�⇤,g�⇤ ,⌘⇤)/@�@�0

f(z|�⇤,�⇤,g�⇤ ,⌘⇤) is the corresponding Hessian matrix. Note that EPn [ ˙̀�P (Zi)] = 0 and

EPn [�῭
�P (Zi)] = I�P (the Fisher information matrix with respect to �P ). By the central limit theorem and

Cramér-Wold theorem, it can be shown that

0

B@

p
n(�̂n,SP � �)
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dQn

dPn

1

CA Pn
�! N

0

B@

0

B@
0

0

�
1
2d

0
I�P d

1

CA ,

0

B@
VSP C ⌧SP

C VP ⌧P

⌧
0

SP ⌧
0

P d
0
I�P d

1

CA

1

CA , (E.1)

where the symbol
Pn
�! means that the left hand side converges in distribution to the right hand side if Pn is

13A well known special case is the inverse probability weighted (IPW) estimator of the average treatment e↵ect (ATE) with
series logit propensity score. For the ATE, Hahn (1998) proves that VSP = VP under the correct specification of the parametric
restriction, and Hirano, Imbens and Ridder (2003) show that the IPW estimator with series logit propensity score satisfies
VSP = VSP . Together, these require that the parametric estimator has to be e�ciency for VSP � VP to hold (with equality).
The author thanks an anonymous referee for pointing this out.

14See (7.1) in Van der Vaart (2000), for example. This assumption is common and maintained for the majority of the models
in the M estimation literature.
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the true distribution of the data.15 This fulfills the assumption of Le Cam’s third lemma (Example 6.7 in

Van der Vaart, 2000), so by this lemma one gets

 p
n(�̂n,SP � �)

p
n(�̂n,P � �)

!
Qn
�! N

  
⌧SP

⌧P

!
,

 
VSP C

C VP

!!
. (E.2)

That is, Le Cam’s third lemma implies that the asymptotic variance-covariance matrices of �̂n,SP and �̂n,P
remain invariant whether the parametric restriction is correctly specified or mildly misspecified. Together

with the earlier condition that VSP � VP under the correct specification, it provides the rationale behind

VSP � VP in Condition 2(i).

Remark 4. In (E.1) and (E.2), ⌧SP ⌘ EPn [ SP (Zi) ˙̀�P (Zi)]d and ⌧P ⌘ EPn [ P (Zi) ˙̀�P (Zi)]d by the central

limit theorem, where  SP (z) and  P (z) are the (centered) influence functions of �̂n,SP and �̂n,P , respectively.

Note that �̂n,SP is a regular and asymptotically linear (RAL) estimator of � but �̂n,P is an RAL estimator of

�P ,16 then by Theorem 4.2 in Tsiatis (2006), one has EPn [ SP (Zi) ˙̀�P (Zi)] = 0 and EPn [ P (Zi) ˙̀�P (Zi)] = Ik

(i.e., the k ⇥ k identity matrix), further implying that ⌧SP = 0 and ⌧P = d. This, combined with the above

argument for VSP � VP , indicates that the joint asymptotic distribution postulated in Condition 2(i) is in

fact a general result for the semiparametric model and the estimators considered in this paper.

Justification for Condition 2(ii)

Note that the asymptotic properties of the semiparametric estimator �̂n,SP do not depend on whether

kdk < 1 or kdk = 1, so one still has n1/2(�̂n,SP � �Fn)
d.
�! ⇠F,SP under the same primitive conditions like

those for Condition 2(i).

To study the asymptotic properties of the parametric estimator �̂n,P when kdk = 1, consider two cases:

(i) �Fn = o(1); and (ii) k�Fnk > c for some c > 0. For case (i), let  F,P (z) denote the (centered) influence

function of �̂n,P under DGP F , which is an Op(1) term, then by the definition of �F,P and �,

n
1/2(�̂n,P � �Fn,P ) = n

�1/2
nX

i=1

 Fn,P (Zi) + op(1)

=) n
1/2(�̂n,P � �Fn) = n

1/2
�Fn +Op(1). (E.3)

Note that the presumption of Condition 2(ii) is that kn
1/2
�Fnk ! kdk = 1, then n�

0

Fn
�Fn ! 1, which

together with (E.3) implies that kn1/2(�̂n,P � �Fn)k
p.
�! 1.

For case (ii), note that �F,P is identified in (3.8), then under the same conditions for �̂n,SP = �Fn +op(1),

one gets �̂n,P = �Fn,P + op(1).17 This, combined with the presumption that k�Fnk = k�Fn,P � �Fnk > c,

implies that

kn
1/2(�̂n,P � �Fn)k � |kn

1/2(�̂n,P � �Fn,P )k � kn
1/2
�Fnk| = kn

1/2
�Fnk · (1 + op(1))

p.
�! 1.
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