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C Proofs of Technical Lemmas

This online supplementary material provides proofs of the technical lemmas in the Appendix.

C.1 Proof of Lemma B.1

Proof. First, (a) and (c) follow directly from AV (2021, Theorems 4(a) and 4(c)), since the assumptions

and specification of the regressors in this paper readily follow their framework.1

For (b), let us first define êt = ê
(1)
t + ê

(2)
t , where

ê
(1)
t ≡ (1− L)d̂1a+B′Q(L)(1− L)d̂1xt−1 + (1− L)d̂1ξ

(−d1)
t−1 , ê

(2)
t ≡ (1− L)d̂1ηt, (C.1)

for which the component ê
(1)
t is equivalent to the case without cointegration considered by AV (2021,

Theorem 4(b)) due to Assumptions D1-D3 and C. By applying the decomposition (C.1), we have

F̂ c
ûê(ℓ,m)− F̂ûê(ℓ,m) = F̂ c

ĉê(ℓ,m) = F̂
(c,1)
ĉê (ℓ,m) + F̂

(c,2)
ĉê (ℓ,m), (C.2)

where F̂
(c,1)
ĉê (ℓ,m) and F̂

(c,2)
ĉê (ℓ,m) are the TDACs between ĉt−1 and ê

(1)
t , respectively, ê

(2)
t . Now, by

applying AV (2021, Theorem 4(b)) and AVOA (2020, Lemma A.12(b)), we have

λ−1
m F̂

(c,1)
ĉê (ℓ,m) ≤ O+

p ((m/n)
dx/ℓ1+ϵ) and wĉ(λj , i) = Op(λ

di
j ), (C.3)
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1While AV (2021) state their results for d = min(d1, dx) rather than dx to maintain simplicity in their framework, it is
clear that their results apply to dx, since the parameter appears when using the differencing operator on ut−1 and ct−1.
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for i = 2, . . . , k + 1. Moreover, we can write θ̂1 = d̂1 − d1 = Op(1/
√
md) and

ê
(2)
t = (1− L)d̂1−d1(1− L)d1ηt ≡ (1− L)θ̂1 ẽ

(2)
t , (C.4)

using Assumption F, such that by AVOA (2020, Lemmas A.8 and A.9(a)), it follows that,

w
(2)
ê (λj)) = w

(2)
ẽ (λj))

(
1 +Op

(
ln(n)/

√
md

)
+Op

(
ln(n)2/md

))
, with (C.5)

w
(2)
ẽ (λj) = λd1j e

−(π/2)id1wη(λj) +Op
(
λd1j ln(n)/j−1/2

)
+Op

(
n−d1−1

)
, (C.6)

and, furthermore, by AVOA (2020, Lemma A.12(b)) that w
(2)
ê (λj) = Op(λ

d1
j ) when ln(n)/j1/2 → 0.

Hence, since 0 < di ≤ d1 + di, i = 2, . . . , k + 1, we may further write

F̂
(c,2)
ĉê (ℓ,m) ≤ 2π

n

m∑
j=ℓ

O+
p (λ

dx
j ) ≤ 2πm1+dx

n1+dx

m∑
j=ℓ

O+
p

((
j

m

)dx 1

j1+ϵ

)
≤ O+

p

((m
n

)1+dx 1

ℓ1+ϵ

)
, (C.7)

for some arbitrarily small ϵ > 0, using |
∑m

j=ℓOp(j
−p)| ≤ O+

p (ℓ
−p) for some p > 1 by Varneskov (2017,

Lemma C.4). The stated result follows by combining bounds for F̂
(c,1)
ĉê (ℓ,m) and F̂

(c,2)
ĉê (ℓ,m).

For (d), by applying the same decomposition as for (b), we have

Ĝc
ûê(ℓG,mG)− Ĝûê(ℓG,mG) = Ĝc

ĉê(ℓG,mG) = Ĝ
(c,1)
ĉê (ℓG,mG) + Ĝ

(c,2)
ĉê (ℓG,mG), (C.8)

where, again, the DFT bounds in (C.3) apply to w
(2)
ê (λj) and wĉ(λj , i). Moreover, by AV (2021,

Theorem 4(c)), we have

Ĝ
(c,1)
ĉê (ℓG,mG) ≤ O+

p ((mG/n)
dx/ℓ1+ϵG ). (C.9)

Next, using, again, 0 < di ≤ d1 + di, i = 2, . . . , k + 1, we may similarly write

Ĝ
(c,2)
ĉê (ℓG,mG) ≤

1

mG − ℓG + 1

mG∑
j=ℓG

O+
p (λ

dx
j )

≤
Km

dx
G

ndx

mG∑
j=ℓG

O+
p

((
j

mG

)dx 1

j1+ϵ

)
≤ O+

p

((mG

n

)dx 1

ℓ1+ϵG

)
, (C.10)

using mG/(mG − ℓG + 1) ≤ K and Varneskov (2017, Lemma C.4). The stated result follows by

combining asymptotic bounds for Ĝ
(c,1)
ĉê (ℓG,mG) and Ĝ

(c,2)
ĉê (ℓG,mG).

For (e), recall η̂
(d1)
t = êt − B̂(ℓ,m)′ût−1 and let us define

η̂
(d1,1)
t = ê

(1)
t − B̂(ℓ,m)′ût−1, τ̂

(1)
t−1 = (B̂c(ℓ,m)− B̂(ℓ,m))′ûct−1, τ̂

(2)
t−1 = B̂(ℓ,m)ĉt−1, (C.11)
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such that we can use êt = ê
(1)
t + ê

(2)
t to decompose η̂

(d1)
t = η̂

(d1,1)
t + ê

(2)
t and write

η̂
(d1,c)
t = êt − B̂c(ℓ,m)′ûct−1 = η̂

(d1,1)
t + ê

(2)
t − τ̂

(1)
t−1 − τ̂

(2)
t−1 = η̂

(d1)
t − τ̂

(1)
t−1 − τ̂

(2)
t−1. (C.12)

The main difference between this decomposition and the corresponding in AV (2021, Theorem 4) is

the presence of ê
(2)
t and the fact that we have d1 ̸= 0 for η

(d1)
t . Hence, we need to distinguish between

cases without cointegration in scenarios (ii) and (iii), where ξt−1 is driving the limit, and scenario (iv),

where ξt−1 = 0, ∀t ≥ 1. In both inference regimes, we have d1 = b > 0. In the first case, we have

fractionally differenced ξ
(−d1)
t−1 such that the resulting error process is ξt−1, asymptotically.

Before treating the subtleties of the two inference regimes, we provide bounds on the error terms

that are common to both. To this end, we use (C.12) and make the decomposition,

Ĝ
(d1,c)
η̂η̂ (ℓG,mG)− Ĝ

(d1)
η̂η̂ (ℓG,mG) = Ĝ

(1,1)
τ̂ τ̂ (ℓG,mG) + Ĝ

(2,2)
τ̂ τ̂ (ℓG,mG) + 2Ĝ

(1,2)
τ̂ τ̂ (ℓG,mG)

− 2Ĝ
(d1,1)
η̂τ̂ (ℓG,mG)− 2Ĝ

(d1,2)
η̂τ̂ (ℓG,mG), (C.13)

where the first three terms are (trimmed) long-run (co)variance estimates for τ̂
(1)
t−1 and τ̂

(2)
t−1, and the

final two terms are their respective long-run covariances with η̂
(d1)
t . Let us further write,

Ĝ
(d1,i)
η̂τ̂ (ℓG,mG) = Ĝ

(d1,i,1)
η̂τ̂ (ℓG,mG) + Ĝ

(d1,i,2)
η̂τ̂ (ℓG,mG), i = 1, 2, (C.14)

to indicate the decomposition of η̂
(d1)
t into η̂

(d1,1)
t and ê

(2)
t . Now, since (a) and (b) yield,

B̂c(ℓ,m)− B̂(ℓ,m) ≤ O+
p

(
(m/n)dx/ℓ1+ϵ

)
, (C.15)

we may use equations (A.23), (A.26) and (A.31) in AVOA (2020) to show

Ĝ
(1,1)
τ̂ τ̂ (ℓG,mG) ≤ O+

p

((m
n

)2dx 1

ℓ2(1+ϵ)

)
×

(
1 +

(mG

n

)dx 1

ℓ1+ϵG

)
,

Ĝ
(2,2)
τ̂ τ̂ (ℓG,mG) ≤ O+

p

((m
n

)2dx 1

ℓ1+ϵ

)
,

Ĝ
(1,2)
τ̂ τ̂ (ℓG,mG) ≤ O+

p

((m
n

)dx 1

ℓ(1+ϵ)

)
×

((mG

n

)dx 1

ℓ1+ϵG

)
,

where, again, the bounds are restated with dx rather than d = min(d1, dx) as in AVOA (2020), since

the parameter appears when applying the fractional differencing operator to ut−1 and ct−1.

The case without cointegration. Here, ê
(1)
t will drive the asymptotic limit and ê

(2)
t will be a lower

order error term. Moreover, the former corresponds to the case considered by AV (2021, Theorem 4),

with ξt−1 acting as the (regression) error process. Hence, by invoking equations (A.27) and (A.30) of
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AVOA (2020), it follows for the two long-run covariance terms involving η̂
(d1,1)
t that,

Ĝ
(d1,1,1)
η̂τ̂ (ℓG,mG) ≤ O+

p

((m
n

)dx 1

ℓ1+ϵ

)
,

Ĝ
(d1,2,1)
η̂τ̂ (ℓG,mG) ≤ O+

p

((mG

n

)dx 1

ℓ1+ϵG

)
×
(
1 +m−1/2

)
.

This implies that in order to complete the proof, we need to establish corresponding asymptotic

bounds for the remaining terms, Ĝ
(d1,1,2)
η̂τ̂ (ℓG,mG) and Ĝ

(d1,2,2)
η̂τ̂ (ℓG,mG), i.e., the long-run covariances

involving ê
(2)
t . To this end, let us use the discrete Fourier transform bounds in (C.3) and (C.5)-(C.6),

B̂(ℓ,m) = Op(1), uniformly by AV (2021, Theorem 1), and 0 < di ≤ d1 + di to write,

Ĝ
(d1,2,2)
η̂τ̂ (ℓG,mG) ≤

1

mG − ℓG + 1

mG∑
j=ℓG

O+
p (λ

dx
j ) ≤ O+

p

((mG

n

)dx 1

ℓ1+ϵG

)
, (C.16)

similarly to (C.10). For the last term, make the decomposition,

Ĝ
(d1,1,2)
η̂τ̂ (ℓG,mG) = (B̂c(ℓ,m)− B̂(ℓ,m))′

(
Ĝ

(2)
ûê (ℓG,mG) + Ĝ

(c,2)
ĉê (ℓG,mG)

)
, (C.17)

where Ĝ
(c,2)
ĉê (ℓG,mG) ≤ O+

p ((mG/n)
dx1/ℓ1+ϵG ) by (C.10). Moreover, for i = 2, . . . , k + 1, since

wû(λj , i) = wu(λj , i) +Op

(
n1/2−di

j1−di

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
, wu(λj , i) = Op(1), (C.18)

by equations (A.8), (A.60), (A.65) and Lemma A.6(a) in AVOA (2020), we may write

Ĝ
(2)
ûê (ℓG,mG) ≤

K

mG

mG∑
j=ℓG

O+
p (λ

d1
j ) +

K

mG

mG∑
j=ℓG

O+
p

(
λ
d1+dx
j n1/2

j

)
+

K

mG

mG∑
j=ℓG

O+
p

(
λd1j ln(n)n1/2

m
1/2
d j

)

≤ O+
p (1) +O+

p

((mG

n

)dx n1/2

m1−ϵ
G ℓ1+ϵG

)
+O+

p

(
n1/2 ln(n)

m1−ϵ
G m

1/2
d ℓ1+ϵG

)
, (C.19)

for some arbitrarily small ϵ > 0, using d1 ≥ 0 and Varneskov (2017, Lemma C.4). Hence, by combining

bounds, n1/2/mG → 0, Lemmas B.1(a)-(b) in the absence of cointegration in conjunction with the

continuous mapping theorem, we have Ĝ
(2)
ûê (ℓG,mG) ≤ O+

p (1) and, thus,

Ĝ
(d1,1,2)
η̂τ̂ (ℓG,mG) ≤ O+

p ((m/n)
dx/ℓ1+ϵ). (C.20)

Consequently, by collecting bounds for all components in (C.14),

Ĝ
(d1,1)
η̂τ̂ (ℓG,mG) + Ĝ

(d1,2)
η̂τ̂ (ℓG,mG) ≤ O+

p ((mG/n)
dx/ℓ1+ϵG ) +O+

p ((m/n)
dx/ℓ1+ϵ), (C.21)
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which, together with bounds for the remaining terms in equation (C.13), provides the requisite result

when cointegration is absent, that is, for the inference scenarios (ii)-(iii).

The case with cointegration. By (a) and (b), whose rates are independent of cointegration, there

is no difference between the treatment of the terms in (C.13) and (C.14) except for Ĝ
(d1,1,1)
η̂τ̂ (ℓG,mG)

and Ĝ
(d1,2,1)
η̂τ̂ (ℓG,mG), that is, the covariance terms involving η

(d1,1)
t . Hence, let us define

ẽ
(1)
t = ê

(1)
t − (1− L)d̂1ξ

(−d1)
t−1 ≡ ê

(1)
t − ξ̂t−1, η̃

(d1,1)
t = ẽ

(1)
t − B̂(ℓ,m)′ût−1, (C.22)

such that the triangle inequality delivers:

∣∣Ĝ(d1,1,1)
η̃τ̂ (ℓG,mG)− Ĝ

(d1,1,1)
η̂τ̂ (ℓG,mG)

∣∣ ≤ O+
p

(
Ĝ

(d1,1,1)

ξ̂τ̂
(ℓG,mG)

)
, (C.23)∣∣Ĝ(d1,2,1)

η̃τ̂ (ℓG,mG)− Ĝ
(d1,2,1)
η̂τ̂ (ℓG,mG)

∣∣ ≤ O+
p

(
Ĝ

(d1,2,1)

ξ̂τ̂
(ℓG,mG)

)
. (C.24)

This implies that the result with cointegration follows from the result without cointegration as well as

establishing (and verifying) the bounds on the long-run covariance terms between ξ̂t−1 and the errors

τ̂
(1)
t−1 and τ̂

(2)
t−1. To this end, we may use AVOA (2020, Lemma A.12(b)) to write

w
ξ̂
(λj) = Op(1) +Op

(
n1/2−d1

j1−d1

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
, (C.25)

w
(1)
τ̂ (λj) =

(
B̂c(ℓ,m)− B̂(ℓ,m)

)′
(wû(λj) +wĉ(λj)) , w

(2)
τ̂ (λj) = B̂(ℓ,m)′wĉ(λj), (C.26)

where the components in w
(1)
τ̂ (λj) and w

(2)
τ̂ (λj) are described by (C.3), (C.15) and (C.18). Hence, it

suffices to study Ĝ
ûξ̂
(ℓG,mG) and Ĝ

ĉξ̂
(ℓG,mG). First, for the latter,

Ĝ
ĉξ̂
(ℓG,mG) ≤

K

mG

mG∑
j=ℓG

O+
p (λ

dx
j ) +

K

mG

mG∑
j=ℓG

O+
p

(
λ
d1+dx
j n1/2

j

)
+

K

mG

mG∑
j=ℓG

O+
p

(
λ
dx
j ln(n)n1/2

m
1/2
d j

)

≤ O+
p

((mG

n

)dx 1

ℓ1+ϵG

)
+O+

p

((mG

n

)dx n1/2

m1−ϵ
G ℓ1+ϵG

)
+O+

p

(
n1/2 ln(n)

m1−ϵ
G m

1/2
d ℓ1+ϵG

)
, (C.27)

by the same arguments used for Ĝ
(2)
ûê (ℓG,mG) in (C.19). Similarly, we have

Ĝ
ûξ̂
(ℓG,mG) ≤

K

mG

mG∑
j=ℓG

O+
p (1) +

K

mG

mG∑
j=ℓG

O+
p

(
λd1j n1/2

j

)
+

K

mG

mG∑
j=ℓG

O+
p

(
ln(n)n1/2

m
1/2
d j

)

+
K

mG

mG∑
j=ℓG

O+
p

(
n

j2

(
λ
d1+dx
j + λd1j ln(n)/

√
md + ln(n)2/md

))

≤ O+
p (1) +O+

p

(
n1/2

m1−ϵ
G ℓ1+ϵG

)
+O+

p

(
n1/2 ln(n)

m1−ϵ
G m

1/2
d ℓ1+ϵG

)
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+O+
p

(
n

mG ℓ2G

((mG

n

)dx
+

ln(n)
√
md

+
ln(n)2

md

))
, (C.28)

which is O+
p (1) by Assumption T-G. Hence, by combining results, we have

Ĝ
(b,2,1)

ξ̂τ̂
(ℓG,mG) ≤ O+

p

((mG

n

)dx 1

ℓ1+ϵG

)
, Ĝ

(b,1,1)

ξ̂τ̂
(ℓG,mG) ≤ O+

p

((m
n

)dx 1

ℓ1+ϵ

)
, (C.29)

which, together with the remaining bounds for the case without cointegration, provides the requisite

result for the case with cointegration, i.e., scenario (iv), thereby concluding the proof.

C.2 Proof of Lemma B.2

Proof. First, for (a), we may use d1 = b, (C.5) and (C.6) to write

w
(2)
ê (λj) = λd1j e

−(π/2)id1wη(λj) +Op
(
λd1j ln(n)m

−1/2
d

)
+Op

(
λd1j ln(n)j−1/2

)
+Op

(
n−d1−1

)
. (C.30)

Moreover, let us define the related long-run covariance measure,

G̃
(2)
êê (ℓG,mG) ≡

1

mG − ℓG + 1

mG∑
j=ℓG

λ2d1j ℜ
(
wη(λj)w̄η(λj)

)
, (C.31)

and subsequently make the error decomposition,

Ĝ
(2)
êê (ℓG,mG)− G̃

(2)
êê (ℓG,mG) ≤

K ln(n)

mG

mG∑
j=ℓG

O+
p

(
λ2d1j

(
j−1/2 +m

−1/2
d

))
+

K

mGnd1+1

mG∑
j=ℓG

O+
p (λ

d1
j )

≤ ln(n)
(mG

n

)2d1 ( mϵ
G

m
1/2
G

+
mϵ
G

m
1/2
d

)
mG∑
j=ℓG

O+
p

((
j

mG

)2d1

j−(1+ϵ)

)

+
(mG

n

)d1 mϵ
G

n

mG∑
j=ℓG

O+
p

((
j

mG

)d1
j−(1+ϵ)

)

≤ O+
p

(
ln(n)

ℓ1+ϵG

(mG

n

)2d1 ( mϵ
G

m
1/2
G

+
mϵ
G

m
1/2
d

))
+O+

p

((mG

n

)d1 mϵ
G

n ℓ1+ϵG

)
, (C.32)

for some arbitrarily small ϵ > 0, using Varneskov (2017, Lemma C.4) and that the remaining cross-

product error terms arising from the product of the decomposition in (C.30) are of strictly lower

asymptotic order by the tuning parameters being ℓG ≍ nνG , mG ≍ nκG and md ≍ nϱ, with 0 < νG <

κG < ϱ ≤ 1 in Assumptions F and T-G. Together with 0 ≤ d1 ≤ 1, this implies

λ−2d1
mG

(
Ĝ

(2)
êê (ℓG,mG)− G̃

(2)
êê (ℓG,mG)

)
≤ o+p (1). (C.33)
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Hence, we continue by examining G̃
(2)
êê (ℓG,mG). By definition, we have

G̃
(2)
êê (ℓG,mG)− G̃

(2)
êê (1,mG) = −

ℓG−1∑
j=1

λ2d1j ℜ
(
wη(λj)w̄η(λj)

)
mG − ℓG + 1

=
−ℓGG̃(2)

êê (1, ℓG − 1)

mG − ℓG + 1
. (C.34)

Let l ∈ {ℓG − 1,mG} be either of the two generic sequences of integers, then we adopt exactly the

same arguments used to establish Christensen & Varneskov (2017, Equation (B.7)) (see also Robinson

& Marinucci (2003, p. 361) and the steps for Lobato (1997, Theorem 1)) to show

λ−2d1
l

∣∣∣G̃(2)
êê (1, l)−Gηη/(1 + 2d1)

∣∣∣ ≤ o+p (1), (C.35)

noting that G̃
(2)
êê (1, l) corresponds to λ−1

m F ∗
zz(1,m) in their notation, and b = d1 to −di. Hence, by

combining equations (C.34) and (C.35), we can establish the following bound,

λ−2d1
mG

(
G̃

(2)
êê (ℓG,mG)− G̃

(2)
êê (1,mG)

)
≤ O+

p

((
λℓG
λmG

)2d1 ℓG
mG

)
= o+p (1). (C.36)

The requisite result, thus, follows by combining results (C.34), (C.35) and (C.36).

Next, for (b), we will study the properties of Ĝ
(d1,1)
η̂η̂ (ℓG,mG) under the scenarios (ii)-(iii) as well

as the cointegration setting (iv). To this end, let us write

η̂
(d1,1)
t = η̂

(d1,1,1)
t + η̂

(d1,1,2)
t + η̂

(d1,1,3)
t + η̂

(d1,1,4)
t (C.37)

where, by addition and subtraction, the components are defined as,

η̂
(d1,1,1)
t = (1− L)d̂1ξ

(−d1)
t−1 , η̂

(d1,1,2)
t = B̂(ℓ,m)′

(
ut−1 − ût−1

)
, η̂

(d1,1,3)
t =

(
B − B̂(ℓ,m)

)′
ut−1,

η̂
(d1,1,4)
t = ê

(1)
t −B′ut−1 = (1− L)d̂1a+B′

(
Q(L)(1− L)d̂1xt−1 − ut−1

)
.

This resembles the decomposition in the proof of AVOA (2020, Lemma A.9(b)) (cf., their equation

(A.77)) and we rely on similar arguments. Next, we will establish results for the discrete Fourier

transforms of each term in the decomposition. First, by AVOA (2020, Lemma A.9(a)), we have

w
(d1,1,1)
η̂ (λj) =

wξ(λj)
(
1 +Op

(
ln(n)/

√
md

))
under models (ii) and (iii),

0 under model (iv).
(C.38)

Second, by combining B̂(ℓ,m) = Op(1) and (C.18), we have

w
(d1,1,2)
η̂ (λj) = Op

(
n1/2−dx

j1−dx

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
. (C.39)
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Third, by applying Theorem 1 and (C.18), we readily have,

w
(d1,1,3)
η̂ (λj) =

Op
(
1/

√
m
)

under models (ii) and (iii),

Op
(
λd1m/

√
m
)

under model (iv).
(C.40)

Fourth, by applying equation (A.63) and Lemmas A.6(a)-(c) of AVOA (2020) (as on their page 32),

it follows that,

w
(d1,1,4)
η̂ (λj) = Op

(
n1/2−d1

j1−d1

)
. (C.41)

Hence, using b = d1 ≤ dx, we may combine results to show,

w
(d1,1)
η̂ (λj) = wξ(λj) +Op

(
ln(n)/

√
md

)
+Op

(
1/
√
m
)
+Op

(
n1/2−d1

j1−d1

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
(C.42)

under models (ii)-(iii), and, similarly, that

w
(d1,1)
η̂ (λj) = Op

(
λd1m/

√
m
)
+Op

(
n1/2−d1

j1−d1

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
(C.43)

under model (iv). We are now ready to study the asymptotic properties of the long-run covariance

estimate Ĝ
(d1,1)
η̂η̂ (ℓG,mG) in the two inference regimes, with and without cointegration.

The case without cointegration. The discrete Fourier transform in (C.42) allows us to write,

Ĝ
(d1,1)
η̂η̂ (ℓG,mG)− Ĝξξ(ℓG,mG) ≤ O+

p

(
ln(n)/

√
md

)
+O+

p

(
1/
√
m
)

+
K

mG

mG∑
j=ℓG

O+
p

(
n1/2

j

(
λd1j +

ln(n)

m
1/2
d

))
+

K

mG

mG∑
j=ℓG

O+
p

(
n

j2

(
λ2d1j +

ln(n)2

md
+

ln(n)λd1j

m
1/2
d

))

≤ O+
p

(
ln(n)/

√
md

)
+O+

p

(
1/
√
m
)
+O+

p

(
n1/2

m1−ϵ
G ℓ1+ϵG

((mG

n

)d1
+

ln(n)

m
1/2
d

))

+O+
p

(
n

mGℓ2G

((mG

n

)2d1
+

ln(n)2

md
+

ln(n)

m
1/2
d

(mG

n

)d1))
(C.44)

similarly to (C.28), for some arbitrarily small ϵ > 0, using, again, Varneskov (2017, Lemma C.4)

and that the remaining cross-product terms of the errors are of strictly lower order by the tuning

parameters satisfying ℓG ≍ nνG , mG ≍ nκG and md ≍ nϱ, with 0 < νG < κG < ϱ ≤ 1 in Assumptions

F and T-G. Next, as for equation (C.34), we have, by definition,

∣∣∣Ĝ(d1,1)
ξξ (ℓG,mG)− Ĝξξ(1,mG)

∣∣∣ = ∣∣∣∣∣ℓGĜξξ(1, ℓG − 1)

mG − ℓG + 1

∣∣∣∣∣ ≤ O+
p

(
ℓG/mG

)
. (C.45)
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Finally, since Christensen & Varneskov (2017, Lemma 6) provides |Ĝξξ(1,mG)−Gξξ| ≤ o+p (1), we can

combine this with (C.44), (C.45) and the triangle inequality to show |Ĝ(d1,1)
η̂η̂ (ℓG,mG)−Gξξ| ≤ o+p (1).

The case with cointegration. The discrete Fourier transform in (C.43) allows us to write,

Ĝ
(d1,1)
η̂η̂ (ℓG,mG) ≤ O+

p

(
λ2d1m /m

)
+

Kλd1m
mG

√
m

mG∑
j=ℓG

O+
p

(
n1/2

j

(
λd1j +

ln(n)

m
1/2
d

))
+

K

mG

mG∑
j=ℓG

O+
p

(
n

j2

(
λ2d1j +

ln(n)2

md
+

ln(n)λd1j

m
1/2
d

))

≤ O+
p

((m
n

)2d1 1

m

)
+O+

p

(
n1/2

m1−ϵ
G ℓ1+ϵG

√
m

(m
n

)d1 ((mG

n

)d1
+

ln(n)

m
1/2
d

))

+O+
p

(
n

mGℓ2G

((mG

n

)2d1
+

ln(n)2

md
+

ln(n)

m
1/2
d

(mG

n

)d1))
, (C.46)

using the same arguments as for (C.44). Now, by invoking the regularity conditions in Assumption

T-G, we have λ−2d1
mG

Ĝ
(d1,1)
η̂η̂ (ℓG,mG) ≤ o+p (1), providing the requisite result.

For (c), since we have by the Cauchy-Schwarz inequality,∣∣∣Ĝ(d1,1,2)
η̂ê (ℓG,mG)

∣∣∣ ≤√Ĝ
(d1,1)
η̂η̂ (ℓG,mG)Ĝ

(2)
êê (ℓG,mG), (C.47)

the convergence results follow by invoking (a) and (b), concluding the proof.

C.3 Proof of Lemma B.3

Proof. (a) follows by the Taylor expansion in equation (A.63) of AVOA (2020) in conjunction with

their Lemmas A.6(a)-(c), since γx > 0. (b)-(d) follow by Lemmas A.8 and A.9(a) in AVOA (2020).

C.4 Proof of Lemma B.4

Proof. First, for (a), we have by Lemma B.3 that,

wě(λj) = Op
(
(j/n)ψ

)
+Op

(
(j/n)ψn1/2j−1

)
+Op

(
ln(n)m

−1/2
d n1/2j−1

)
, (C.48)

since ψ ≥ 0 and ψ ≤ γx. Hence, by (C.3), we can write F̂ c
ûě(ℓ,m) = F̂ûě(ℓ,m) + F̂ĉě(ℓ,m), where,

F̂ĉě(ℓ,m) ≤ 2π

n

m∑
j=ℓ

O+
p

(
λ
dx+ψ
j

)
+

2π

n

m∑
j=ℓ

O+
p

(
λ
dx+ψ
j

n1/2

j

)
+

2π

n

m∑
j=ℓ

O+
p

(
ln(n)n1/2

m
1/2
d j

)

≤ O+
p

((m
n

)1+dx+ψ 1

ℓ1+ϵ

)
+O+

p

((m
n

)dx+ψ mϵ

n1/2ℓ1+ϵ

)
+O+

p

(
mϵ

m
1/2
d n1/2ℓ1+ϵ

)
, (C.49)

which provides the requisite result, since the second and third asymptotic bound are dominated by

the first bound when
√
n/m→ 0, m/md → 0, dx ≤ 1 and ψ ≤ 1.
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For (b). The proof proceeds similarly to that of B.1(e). First, let us write η̌
(d1)
t = ět−B̂(ℓ,m, γ̂x)

′ût−1,

where B̂(ℓ,m, γ̂x) is defined in equation (C.62) and corresponds to B̂c(ℓ,m, γ̂x), but free from endogeneity-

related bias. Moreover, using the notation from equation (B.4), define,

ĕ
(1)
t ≡ ě

(1)
t + ě

(2)
t + ě

(3)
t , ĕ

(2)
t ≡ ě

(4)
t , η̌

(d1,1)
t = ĕ

(1)
t − B̂(ℓ,m, γ̂x)

′ût−1, η̌
(d1)
t = η̌

(d1,1)
t + ĕ

(2)
t , (C.50)

such that, with τ̆
(1)
t−1 = (B̂c(ℓ,m, γ̂x)− B̂(ℓ,m, γ̂x))

′ûct−1 and τ̆
(2)
t−1 = B̂(ℓ,m, γ̂x)ĉt−1, we have,

η̌
(d1,c)
t = ět − B̂c(ℓ,m, γ̂x)

′ûct−1 = η̌
(d1,1)
t + ĕ

(2)
t − τ̆

(1)
t−1 − τ̆

(2)
t−1 = η̌

(d1)
t − τ̆

(1)
t−1 − τ̆

(2)
t−1. (C.51)

Next, using these, we make the decomposition,

Ĝ
(d1,c)
η̌η̌ (ℓG,mG)− Ĝ

(d1)
η̌η̌ (ℓG,mG) = Ĝ

(1,1)
τ̆ τ̆ (ℓG,mG) + Ĝ

(2,2)
τ̆ τ̆ (ℓG,mG) + 2Ĝ

(1,2)
τ̆ τ̆ (ℓG,mG)

− 2Ĝ
(d1,1)
η̌τ̆ (ℓG,mG)− 2Ĝ

(d1,2)
η̌τ̆ (ℓG,mG), (C.52)

where the first three terms are long-run (co)variance estimates for τ̆
(1)
t−1 and τ̆

(2)
t−1, and the final two

terms are their respective long-run covariances with η̌
(d1)
t . Next, let us consider,

w
(1)
τ̆ (λj) =

(
B̂c(ℓ,m, γ̂x)− B̂(ℓ,m, γ̂x)

)(
wû(λj) +wĉ(λj)

)
≤ O+

p

(
(m/n)dx+ψ/ℓ1+ϵ

)
, (C.53)

using equations (C.3), (C.18) and (B.8). Hence, we readily have

Ĝ
(1,1)
τ̆ τ̆ (ℓG,mG) ≤ O+

p

(
(m/n)2(dx+ψ)/ℓ2(1+ϵ)

)
. (C.54)

Similarly, by Theorem 3 and (C.18), w
(2)
τ̆ (λj) ≤ O+

p

(
λψmλ

dx
j

)
such that, by Assumption T-G-d1,

Ĝ
(2,2)
τ̆ τ̆ (ℓG,mG) ≤

λ2ψm K

mG

mG∑
j=ℓG

O+
p

(
λ
2dx
j

)
≤ O+

p

(
(m/n)2(dx+ψ)mϵ/ℓ1+ϵG

)
. (C.55)

Next, since Ĝ
(d1)
η̌η̌ (ℓG,mG) = Op

(
(mG/n)

2ψ
)
by Lemma B.9(c), the Cauchy-Schwarz inequality yields,

Ĝ
(1,2)
τ̆ τ̆ (ℓG,mG) ≤ O+

p

(
(m/n)2(dx+ψ)mϵ/2/(ℓ1+ϵℓ

(1+ϵ)/2
G )

)
,

Ĝ
(d1,1)
η̌τ̆ (ℓG,mG) ≤ O+

p

(
(m/n)2ψ+dx/ℓ1+ϵ

)
,

Ĝ
(d1,2)
η̌τ̆ (ℓG,mG) ≤ O+

p

(
(m/n)2ψ+dxmϵ/2/ℓ

(1+ϵ)/2
G

)
.

Hence, since 0 < dx ≤ 1 and ψ ≥ 0, the dominant asymptotic bounds are provided by the covariance

terms Ĝ
(d1,1)
η̌τ̆ (ℓG,mG) and Ĝ

(d2,2)
η̌τ̆ (ℓG,mG), thereby establishing the requisite result.
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C.5 Proof of Lemma B.5

Proof. First, for (a), we may combine (C.18) and Lemma B.3(a) to write,

F̂
(1)
ûě (ℓ,m) ≤ 2π

n

m∑
j=ℓ

O+
p

(
λγxj

n1/2

j

)
+

2π

n

m∑
j=ℓ

O+
p

(
λ
γx+dx
j

n

j2

)
+

2π

n

m∑
j=ℓ

O+
p

(
λγxj

ln(n)n

m
1/2
d j2

)

≤ O+
p

((m
n

)γx mϵ

n1/2ℓ1+ϵ

)
+O+

p

((m
n

)γx+dx 1

ℓ2

)
+O+

p

((m
n

)γx ln(n)

m
1/2
d ℓ2

)
. (C.56)

Since the third term is dominated by the second as m/md → 0,
√
n/m→ 0 and dx ≤ 1, this gives the

requisite bound. Second, for (b), we may combine (C.18) and Lemma B.3(b) to write,

F̂
(1)
ûě (ℓ,m)− F̂

(2,1)
ûě (ℓ,m) ≤ 2π

n

m∑
j=ℓ

O+
p

(
n1/2

j

(
λψj +

ln(n)
√
md

+ λ
ψ+dx
j + λψj

ln(n)
√
md

))

+
2π

n

m∑
j=ℓ

O+
p

(
n

j2

(
λ
ψ+dx
j +

ln(n)2

md
+ λ

dx
j

ln(n)
√
md

+ λψj
ln(n)
√
md

))

≤ O+
p

(
mϵ

n1/2ℓ1+ϵ

((m
n

)ψ
+

ln(n)
√
md

))
+

+O+
p

(
1

ℓ2

((m
n

)ψ+dx
+

ln(n)2

md
+
(m
n

)dx ln(n)
√
md

+
(m
n

)ψ ln(n)
√
md

))
= O+

p

(
mϵ

n1/2ℓ1+ϵ

(m
n

)ψ)
+O+

p

(
1

ℓ2

(m
n

)ψ+dx)
(C.57)

using, similarly, m/md → 0,
√
n/m→ 0 and 0 ≤ ψ ≤ 1 for the final equality. This gives the requisite

bound. Finally, (c) and (d) follow by the same arguments as (b), concluding the proof.

C.6 Proof of Lemma B.6

Proof. First, for (a), recall that,

F̂
(2,1)
ûě (ℓ,m) =

2π

n

m∑
j=ℓ

λψj ℜ
(
e(π/2)ψiwu(λj)wu(λj)

)
B.

Hence, using ℜ
(
e(π/2)ψi

)
= cos(πψ/2), we seek to establish an error bound for the decomposition,

λ−1−ψ
m

(
F̂

(2,1)
ûě (ℓ,m)− F̃

(2,1)
ûě (ℓ,m)

)
=

cos(ψπ/2)

m

m∑
j=ℓ

ℜ
(
Iuu(λj)

)
B
((

j

m

)ψ
− 1

1 + ψ

)

=
cos(ψπ/2)

m

m∑
j=ℓ

GuuB
((

j

m

)ψ
− 1

1 + ψ

)
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+
cos(ψπ/2)

m

m∑
j=ℓ

(
ℜ
(
Iuu(λj)

)
−Guu

)
B
((

j

m

)ψ
− 1

1 + ψ

)
≡ E1 + E2. (C.58)

First, for E1, we have

∥E1∥ ≤ K

∣∣∣∣∣∣ 1m
m∑
j=ℓ

((
j

m

)ψ
− 1

1 + ψ

)∣∣∣∣∣∣ ≤ O
(
m−1

)
, (C.59)

using Shimotsu & Phillips (2005, Lemma 5.4). Next, for E2, we may use Assumptions D1-D3 to invoke

Theorem 2 and Corollary 1 in Hannan (1970, pp. 248-249)2, providing,

E
[
ℜ
(
Iuu(λj)

)]
= ℜ

(
fuu(λj)

)
+O

(
n−1

)
, ∥fuu(λj)−Guu∥ = O(λϖj ),

V
[
ℜ
(
Iuu(λj)

)]
= ℜ

(
fuu(λj)⊗ fuu(λj)

)
+O

(
n−1

)
, Cov

[
ℜ
(
Iuu(λj),ℜ

(
Iuu(λk)

)]
= O

(
n−1

)
,

for j, k = 1, . . . ,m, m/n→ 0 and j ̸= k. Hence, we obtain the following bound,

E[E2] ≤
K

m

m∑
j=ℓ

∥∥Iuu(λj)−Guu

∥∥× ∣∣∣∣∣
(
j

m

)ψ
− 1

1 + ψ

∣∣∣∣∣ ≤ O
(
n−1

)
+O

(
λϖm
)
. (C.60)

Moreover, using the (co-)periodogram second moment results, we have

V[E2] = cos(πψ/2)2
1

m2

m∑
j=ℓ

((
j

m

)ψ
− 1

1 + ψ

)
m∑
k=ℓ

((
k

m

)ψ
− 1

1 + ψ

)
× E

[
(Iuu(λj)−Guu)⊗ (Iuu(λk)−Guu)

]
≤ K

(
1 +O

(
n−1

))∣∣∣∣∣ 1m
m∑
j=ℓ

((
j

m

)ψ
− 1

1 + ψ

)∣∣∣∣∣
2

+
1

m2

m∑
j=ℓ

∣∣∣∣∣
(
j

m

)ψ
− 1

1 + ψ

∣∣∣∣∣
2

O
(
λϖm(1 + λϖm)

)
≤ O

(
m−2

)
+O

(
m−1λϖm

)
. (C.61)

The moment results for E2 readily imply E2 ≤ O+
p

(
m−1

)
+O+

p

(
m−1/2λ

ϖ/2
m

)
+O+

p

(
λϖm
)
, which, together

with the asymptotic bound in equation (C.59), provides the requisite result.

Finally, (b) and (c) follow directly from AVOA (2020, Lemma A.3), concluding the proof.

C.7 Proof of Lemma B.7

Proof. We have F̂
(i,1)
ûě (ℓ,m) − F̂

(i,1)
ûě (1,m) = −F̂

(i,1)
ûě (1, ℓ − 1), i = 3, 4. Hence, the results follow by

applying AVOA (2020, Lemma A.1(d)) for both (a) and (b).

2See also Parzen (1957, Theorem 4) and Brockwell & Davis (1991, Theorem 10.3.2) for similar results.
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C.8 Proof of Lemma B.8

Proof. First, recall that v̆t = (ĕt, û
′
t−1)

′, then, by invoking Lemmas B.1(a) and B.4(a) as well as the

continuous mapping theorem, while recalling that ψ = γx − d1,

√
mλ−γxm

(
B̂c(ℓ,m, γ̂x)− B̂(ℓ,m, γ̂x)

)
≤ O+

p

(
(m/n)dx−d1

√
m/ℓ1+ϵ

)
, (C.62)

for some arbitrarily small ϵ > 0, where B̂(ℓ,m, γ̂x) = F̂ûû(ℓ,m)−1F̂ûĕ(ℓ,m).Hence, we continue working

with the estimate without endogeneity, v̌t. Next, using the definitions in Lemma B.6, we have

√
mλ−1−γx

m

(
F̂ûĕ(ℓ,m)− F̃

(2,1)
ûě (ℓ,m)− F̂

(3,1)
ûě (ℓ,m)− F̂

(4,1)
ûě (ℓ,m)

)
=

6∑
i=1

Ai, (C.63)

where the asymptotic bounds on the right-hand-side error terms are,

A1 ≤ O+
p

(( n
m

)1/2+d1 mϵ

ℓ1+ϵ

)
, A2 ≤ O+

p

((m
n

)dx−d1 n

m1/2ℓ2

)
, A3 ≤ O+

p

(( n
m

)d1 1

m1/2

)
,

A4 ≤ O+
p

((m
n

)ϖ/2−d1)
, A5 ≤ O+

p

((m
n

)ϖ−d1
m1/2

)
, A6 ≤ O+

p

(( n
m

)d1 ( ℓ

m

)ψ ℓ1+ϖ

m1/2nϖ

)
,

using Lemma B.5 for A1 and A2; Lemma B.6 for A3, A4 and A5; and Lemma B.7 for A6. These are

all op(1) by Assumption T-d1, 0 < d1 < 1 and the mutual consistency condition. Moreover, we have

F̂ûû(ℓ,m)− F̂uu(ℓ,m) ≤ 2π

n

m∑
j=ℓ

O+
p

(
n1/2

j

(
λ
dx
j +

ln(n)
√
md

))

≤ 2π

n

m∑
j=ℓ

O+
p

(
n

j2

(
λ
2dx
j + λ

dx
j

ln(n)
√
md

+
ln(n)2

md

))

≤ O+
p

((m
n

)dx mϵ

n1/2ℓ1+ϵ

)
+O+

p

((m
n

)2dx 1

ℓ2

)
, (C.64)

using (C.18), dx ≤ 1, m/md → 0 and
√
m/n→ 0. Hence

√
mλ−1−γx

m

(
F̂ûû(ℓ,m)− F̂uu(ℓ,m)

)
≤ O+

p

(( n
m

)1/2+γx−dx mϵ

ℓ1+ϵ

)
+O+

p

((m
n

)2dx−γx n

m1/2ℓ2

)
,

which is op(1) using, again, the conditions in Assumption T-d1. Furthermore, we have λ−1
m F̂uu(ℓ,m)

P−→
Guu by AVOA (2020, Lemmas A.1 and A.2). Hence, we can combine results to write,

√
mλ−γxm

(
B̂(ℓ,m, γ̂x)− λψmc(ψ)B

)
=

√
mλ−γxm F̂uu(ℓ,m)−1

(
F̂

(3,1)
ûě (ℓ,m) + F̂

(4,1)
ûě (ℓ,m)

)
+ op(1).

The final results in (a) and (b) follow by applying Lemmas B.6(b) and (c) with scale factors
√
mλ−ψm and

√
mλ−γxm , respectively, to the right-hand-side terms. In models (ii) and (iii), the limit for F̂

(3,1)
ûě (ℓ,m)
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dominates the corresponding for F̂
(4,1)
ûě (ℓ,m), which becomes a higher-order error. In contrast, in

model (iv), we have F̂
(3,1)
ûě (ℓ,m) = 0 and the limit is driven by F̂

(4,1)
ûě (ℓ,m). The requisite central limit

theorems, thus, follow by the continuous mapping theorem and Slutsky’s theorem.

Besides requiring additional tuning parameter restrictions in Assumption T-d1 as well as the condi-

tions 0 < d1 < 1 and 2d1 < ϖ, there are no differences between this and the corresponding treatment

of the mutual consistency condition in Theorem 1, concluding this proof.

C.9 Proof of Lemma B.9

Proof. First, (a) follows by the same arguments as Lemma B.2(a). Second, for (b), we follow the same

steps as in the proof of Lemma B.2(b), implying we will study the properties of Ĝ
(d1,1)
η̌η̌ (ℓG,mG) under

the model scenarios (ii)-(iii) as well as the cointegration setting (iv). To this end, let us write

η̌
(d1,1)
t = η̌

(d1,1,1)
t + η̌

(d1,1,2)
t + η̌

(d1,1,3)
t + η̌

(d1,1,4)
t (C.65)

where, by addition and subtraction, the components are defined as,

η̌
(d1,1,1)
t = (1− L)γ̂x−γxξ

(ψ)
t−1, η̌

(d1,1,2)
t = B̂(ℓ,m, γ̂x)

′(ut−1 − ût−1

)
,

η̌
(d1,1,3)
t =

(
B − B̂(ℓ,m, γ̂x)

)′
ut−1, η̌

(d1,1,4)
t = (1− L)γ̂xa+B′

(
(1− L)γ̂x−d1ut−1 − ut−1

)
.

The proof for the case ψ = 0 follows by the same arguments as Lemma B.2(b). Hence, we focus on the

case ψ > 0 and proceed by initially establishing results for the respective discrete Fourier transforms

of each term in the decomposition. First, by Lemma B.3(c), we have

w
(d1,1,1)
η̌ (λj) =

λ
ψ
j e

−(π/2)ψiwξ(λj) +Op

(
n1/2−ψ

j1−ψ

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
, in models (ii) and (iii),

0, in model (iv).
(C.66)

Second, by combining B̂(ℓ,m) = Op(λ
ψ
m) in Theorem 3 and equation (C.18), we have,

w
(d1,1,2)
η̌ (λj) = Op

(
λψm

n1/2−dx

j1−dx

)
+Op

(
λψm

ln(n)n1/2

m
1/2
d j

)
. (C.67)

Third, by applying Theorem 3 and equation (C.18), we have,

w
(d1,1,3)
η̌ (λj) =


Op
(
λψmm−1/2

)
, in model (ii),(

1− c(ψ)λψm
)
B′wu(λj) +Op

(
λψmm−1/2

)
, in model (iii),(

1− c(ψ)λψm
)
B′wu(λj) +Op

(
λγxmm−1/2

)
, in model (iv).

(C.68)
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Fourth, by the same arguments as given when establishing Lemma B.2(a)-(b), we have

w
(d1,1,4)
η̌ (λj) =


Op

(
n1/2−γx
j1−γx

)
, in model (ii),

−
(
1− λψj e

−(π/2)ψi
)
B′wu(λj) +Op

(
n1/2−ψ

j1−ψ

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
, in (iii)-(iv).

(C.69)

Hence, in model (ii), it follows by 0 < dx < 1, ψ ≥ 0 and ψ ≤ γx,

w
(d1,1)
η̌ (λj) = λψj e

−(π/2)ψiwξ(λj) +Op

(
n1/2

j

(
λψj + λ

dx
j λ

ψ
m +

ln(n)

m
1/2
d

))
+Op

(
λψm

m1/2

)
. (C.70)

Similarly, in model (iii), we have

w
(d1,1)
η̌ (λj) = λψj e

−(π/2)ψiwξ(λj) +Op

(
n1/2

j

(
λψj + λ

dx
j λ

ψ
m +

ln(n)

m
1/2
d

))
+Op

(
λψm

m1/2

)
+
(
λψj e

−(π/2)ψi − c(ψ)λψm

)
B′wu(λj), (C.71)

and model (iv) exhibits a DFT on the same form, but having wξ(λj) = 0 as well as the error term

Op
(
λψmm−1/2

)
being replaced by one of order Op

(
λγxmm−1/2

)
, with ψ ≤ γx. Hence, we will explicitly

treat model (iii) in the following since the same arguments may readily be applied to establish the

corresponding results for models (ii) and (iv). To this end, define

G̃ξ̌ξ̌(ℓG,mG) =
1

mG − ℓG + 1

mG∑
j=ℓG

λ2ψj ℜ
(
Iξξ(λj)

)
,

B̃uu(ℓG,mG) =
1

mG − ℓG + 1

mG∑
j=ℓG

(
λ2ψj + c(ψ)2λ2ψm − 2λψj λ

ψ
m cos(πψ/2)c(ψ)

)
ℜ
(
B′Iuu(λj)B

)
.

Moreover, since Assumptions D1-D3 and M together with Theorem 2 and Corollary 1 in Hannan

(1970, pp. 248-249) imply E[Iuξ(λj)] = O(n−1) and V[Iuξ(λj)] = O(n−1), for j = 1, . . . ,m, we have,

Ĝ
(d1,1)
η̌η̌ (ℓG,mG)− G̃ξ̌ξ̌(ℓG,mG)− B̃uu(ℓG,mG) ≤ O+

p

(
λ2ψm m−1/2

)
+O+

p

(
λ2ψm n−1/2

)
+
Kλψm
mG

mG∑
j=ℓG

O+
p

(
n1/2

j

(
λψm +

ln(n)

m
1/2
d

))
+

K

mG

mG∑
j=ℓG

O+
p

(
n

j2

(
λ2ψm +

ln(n)2

md
+

ln(n)λψm

m
1/2
d

))

≤ O+
p

(
λ2ψm m−1/2

)
+O+

p

(
n1/2

m1−ϵ
G ℓ1+ϵG

(mG

n

)ψ ((mG

n

)ψ
+

ln(n)

m
1/2
d

))

+O+
p

(
n

mGℓ2G

((mG

n

)2ψ
+

ln(n)2

md
+

ln(n)

m
1/2
d

(mG

n

)ψ))
, (C.72)

15



similarly to (C.28), for some arbitrarily small ϵ > 0, using, again, 0 < dx ≤ 1, ψ ≥ 0, Varneskov (2017,

Lemma C.4) and that the remaining cross-product terms of the errors are of strictly lower order by

the tuning parameters satisfying ℓG ≍ nνG , mG ≍ nκG and md ≍ nϱ, with 0 < νG < κG < ϱ ≤ 1 in

Assumptions F-d1 and T-d1. Hence, by invoking the latter, we have

λ−2ψ
m

(
Ĝ

(d1,1)
η̌η̌ (ℓG,mG)− G̃ξ̌ξ̌(ℓG,mG)− B̃uu(ℓG,mG)

)
= op(1). (C.73)

Finally, by the definition c(ψ) = cos(πψ/2)/(1 + ψ) and the same arguments for Lemma B.2(a),

λ−2ψ
m

(
G̃ξ̌ξ̌(ℓG,mG)−Gψψ/(1 + 2ψ)

)
= op(1), (C.74)

λ−2ψ
m

(
B̃uu(ℓG,mG)−

(
1/(1 + 2ψ)− c(ψ)2

)
B′GuuB

)
= op(1). (C.75)

This delivers the requisite convergence result for model (iii), and equivalent arguments establish the

corresponding results for models (ii) and (iv), which appear as special cases of the limit.

For (c), since we have by the Cauchy-Schwarz inequality,∣∣∣Ĝ(d1,1,2)
η̌ĕ (ℓG,mG)

∣∣∣ ≤√Ĝ
(d1,1)
η̌η̌ (ℓG,mG)Ĝ

(2)
ĕĕ (ℓG,mG), (C.76)

the convergence results follow by invoking (a) and (b), concluding the proof.
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