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1 Proofs of Main Theorems

Proof of Theorem 1. The proof for part a) follows from Lemma 1. Parts b-c) follow from Lemma 5.

With ĝ (v; θ) converging to g (v; θ) > 0, part d) follows from parts a-c).

In proving Theorem 2 we adopt the averaging notation from Pakes and Pollard (1989) and define

〈a〉 ≡ 1
N

∑N
i=1 ai.

Proof of Theorem 2. To establish the consistency result in a), recall the objective function Q̂1 (θ)

in D7). Recall also that the trimming function in Q̂1 (θ) is an indicator for the region where each

continuous variable in X is between lower and upper sample quantiles. Define a population trimming

function by replacing sample with population quantiles. Bound the absolute difference in estimated and

population trimming functions by a smooth function as in Klein and Shen (2010). Employing Taylor

series arguments to this bound and the smoothed trimming functions, these functions may be taken as

known.

Referring to D3), define τ(Xi; q
′) as the indicator trimming function depending on quantiles q′1k and

q′2k and let τsm(Xi; q(N)) be the smooth trimming function on a set expanding to the full support for

X that depends on quantiles q1k and q2k. Set q′1k and q
′
2k as fixed quantiles satisfying: q1k < q′1k <

q′2k < q2k. Let M̂s (Vi (θ) ; θ) ≡ M̂s(Vi (θ) ; θ, τ sm), and redefine Q̂1 (θ) and associated objective functions

under known trimming τ i ≡ τ (Xi; q
′) as:

Q̂1 (θ) ≡
〈
τ
[
Y − M̂s(V (θ) ; θ)

]2〉
Q1 (θ) ≡

〈
τ [Yi −Ms(V (θ) ; θ)]

2
〉

Ŝ1 (θ) ≡ Q̂1 (θ)−Q1 (θ0) .

As minimizing Q̂1 (θ) is equivalent to minimizing Ŝ1 (θ) , we prove consistency by showing that Ŝ1 (θ)

is uniformly (in θ) close to ES1 (θ) with ES1 (θ) having a unique minimum at θ0. From Lemma 8, it

follows that for θ in a compact set:

sup
θ

∣∣∣Ŝ1 (θ)− S1 (θ)
∣∣∣ = sup

θ

∣∣∣Q̂1 (θ)−Q1 (θ)
∣∣∣ p→ 0.

Under standard arguments, S1 (θ) is uniformly close to ES1 (θ). Under conditions in Ichimura(1993) and

Ichimura and Lee(1991) ES1 (θ) is uniquely minimized at θ0, which completes the consistency argument.

To establish asymptotic normality, from a standard Taylor series expansion:

√
N
(
θ̂1 − θ0

)
= −Ĥ

(
θ+
)−1√

NĜ (θ0) ,
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where Ĥ is the estimated Hessian matrix, Ĝ is the estimated gradient to the SLS objective function,

and θ+ is between θ̂ and θ0. Let H denote the Hessian matrix with all estimated functions replaced by

the corresponding true ones. As in the consistency argument, all estimated trimming may be taken as

known. From Lemma 11), part a),

sup
θ

∣∣∣Ĥ (θ)−H (θ)
∣∣∣ = op(1).

Under standard arguments,

sup
θ

∣∣∣Ĥ (θ)− E [H (θ)]
∣∣∣ = op(1).

Therefore, with θ+ p→ θ0, Ĥ
(
θ+
) p→ E [H (θ0)] . It now remains to show that the gradient is asymptot-

ically distributed as normal. With Mi ≡M (Vi), εi ≡ Yi −Mi, and M̂si ≡ M̂s(Vi), write the estimated

gradient component as ĜA − ĜB , where:

ĜA ≡
〈
τ (Xi; q̂

′) ε∇θM̂s

〉
; ĜB ≡

〈
τ (Xi; q̂

′)
[
M̂s −M

]
∇θM̂s

〉
.

Write ĜA = ĜA1 + ĜA2 + ĜA3 + ĜA4 , where with ∆si ≡ ĝ2 (Vi)
(
M̂s (Vi)−Mi (Vi)

)
:

ĜA1
≡ 〈τ (Xi; q

′) ε∇θMs〉 ; ĜA2
≡ 〈[τ (Xi; q̂

′)− τ (Xi; q
′)] ε∇θMs〉

ĜA3 ≡
〈
τ (Xi; q

′) ε∇θ
[

∆s

ĝ2

]〉
; ĜA4

≡
〈

[τ (Xi; q̂
′)− τ (Xi; q

′)] ε∇θ
[

∆s

ĝ2

]〉
.

To establish asymptotic normality, we will first show that

ĜAk = op

(
N−1/2

)
, k = 2, 3, 4. (1)

From Pakes and Pollard (1989; Lemma 1.18), ĜA2
= op(N

−1/2). For ĜA3
, referring to Lemma

1, recall the approximating recursion (∆∗s(Vi)). In Lemma 6, the approximating derivative ∆1∗
s (Vi)

is obtained from ∇1
θ∆1(v(w; θ0)) by replacing Â−1 with A−1 [1 + δA] and 1

ĝ2(v) with
1
ḡ2

[1 + δg2 (Vi)]

throughout. Define:

ρsi ≡ ∇θ
[

∆s(Vi)

ĝ2

]
=
∇θ∆s(Vi)

ĝ2
− ∆s(Vi)∇θĝ2

ĝ2
2

ρ∗si ≡
∆1∗
s (Vi)

ḡ2
[1 + δg2 (Vi)]−

∆∗s(Vi)∇θĝ2

ḡ2
2

[1 + δg2 (Vi)]
2
. (2)

Note that from Lemmas 1 and 6, ∆∗s(Vi) and ∆1∗
s (Vi) are uniformly within op(N−1/2) of ∆s(Vi) and

∇1
θ∆s(Vi) respectively. From the expansion in Lemma 1, 1

ĝ2
is uniformly within op(N−1/2) of [1+δg2 (Vi)]

ḡ2
.

Therefore,

ĜA3
= Ĝ∗A3

+ op(N
−1/2), Ĝ∗A3

= 〈τxερ∗s〉 ,

where under a Taylor series argument, we may take smooth trimming as known. From a mean-square

convergence argument, Ĝ∗A3
= op(N

−1/2).

As above, for ĜA4
we may take smooth trimming as known under a Taylor series expansion. Replace

∇θ
[

∆s(Vi)
ĝ

]
with ρ∗si to obtain Ĝ

∗
A4
and note that ĜA4

is uniformly within op(N−1/2) of Ĝ∗A4
. Write:

∣∣∣Ĝ∗A4

∣∣∣ ≤ 〈|τ (Xi; q̂
′)− τ (Xi; q

′)| |ε| |τ∗xρs|〉 ,
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where τ∗xi = 1 if either τ (Xi; q̂
′) = 1 or τ (Xi; q

′) = 1 and is 0 otherwise. Approximating |τ (Xi; q̂
′)− τ (Xi; q

′)|
by a smooth function as in Klein and Shen (2010), from Cauchy-Schwarz and Lemma 5, Ĝ∗A4

=

op(N
−1/2).

For ĜB , denote τ̂x ≡ τ (Xi; q̂
′) , τx ≡ τ (Xi; q

′) , τ̂sm ≡ τsm(Xi; q̂(N)) and τsm ≡ τsm(Xi; q(N). We

make the dependence on estimated smooth trimming explicit and write ĜB as ĜB1 (τ̂sm)+ ĜB2 (τ̂sm)+

ĜB3 (τ̂sm) + ĜB4 (τ̂sm) , where

ĜB1
(τ̂sm) ≡

〈
τx

[
M̂s (τ̂sm)−M

]
∇θMs

〉
ĜB2

(τ̂sm) ≡
〈
τx

[
M̂s (τ̂sm)−M

] [
∇θM̂s (τ̂sm)−∇θM

]〉
ĜB3

(τ̂sm) ≡
〈

[τ̂x − τx]
[
M̂s (τ̂sm)−M

]
∇θM

〉
ĜB4

(τ̂sm) ≡
〈

[τ̂x − τx]
[
M̂s (τ̂sm)−M

] [
∇θM̂s (τ̂sm)−∇θM

]〉
.

We begin by showing that smooth trimming can be taken as known in all terms. From Lemma 10:

√
N
[
ĜB1

(τ̂sm)− ĜB1
(τsm)

]
= op(1).

From Lemma 10 and a Taylor series expansion in sample quantiles applied to
[
∇θM̂s (τ̂sm)−∇θM

]
,

√
N
[
ĜB2

(τ̂sm)− ĜB2
(τsm)

]
= op(1).

For the remaining terms, from Klein and Shen (2010) we may approximate |τ̂x − τx| by a smooth bound.
Employing a Taylor series for this bound and for the smooth trimming function:

√
N
[
ĜBj (τ̂sm)− ĜBj (τsm)

]
= op(1), j = 3, 4.

Next, we may replace recursion elements in the gradients by their approximating counterparts.

Referring to Lemma 1 and recalling that M̂s (Vi)−M (Vi) = ∆s(Vi)
ĝ2(Vi)

, define

[
M̂∗s (Vi)−M (Vi)

]
≡ ∆∗s(Vi)

ḡ2(Vi)
[1 + δg2(Vi)] .

Obtain Ĝ∗Bj (τsm) from ĜBj (τsm) by replacing
[
M̂s (Vi)−M (Vi)

]
with

[
M̂∗s (Vi)−M (Vi)

]
, and ρsi

with ρ∗si from (2). From Lemmas 1 and 6,
√
N
[
ĜBj (τsm)− Ĝ∗Bj (τsm)

]
= op(N

−1/2).

Employing these approximations:

Ĝ∗B1
(τsm) =

〈
τx

∆∗s(Vi)

ḡ2(Vi)
[1 + δg2(Vi)]∇θMs

〉
.

Under Lemmas 4-6, E
(
Ĝ∗B1

(τsm)
)

= o(N−1/2). Then, under arguments similar to those in Jiang

(2021), it can then be shown that N1/2[Ĝ∗B1
−UN ] = op(1) where UN is a centered U-statistic. It follows

from U-statistic projection arguments that

Ĝ∗B1
(τsm) =

√
N 〈εE [τsmδi (θ0) |V ]〉+ op(1) = op(1),

δi (θ0) ≡ ∇θ [M (V (Wi; θ) ; θ)]θ0 . From Cauchy-Schwarz, Lemmas 5-6, and C1), Ĝ∗B2
= op(N

−1/2). For

the remaining terms, from Klein and Shen (2010) we may bound the absolute value of the difference in
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indicators by a smooth bound. Employing a Taylor series for this bound, it can readily be shown that Ĝ∗B3

and Ĝ∗B4
are each op

(
N−1/2

)
. The normality result follows from the form for

√
N
[
ĜA1

− Ĝ∗B1
(τsm)

]
.

To establish b), under index trimming at the second step, consistency follows from an extension of

Lemma 4 in Klein and Shen (2010) to d multiple indices. To outline the argument, recall the definition

of the adjusted estimator in D8), D9), and D10). From D9), M̂sa(Vi) depends on ĝsa(Vj), j = 1, ..., N .

ObtainMa(Vi) from M̂sa(Vi) by replacing ĝsa(Vj) with ga(Vj) ≡ g(Vj)+A(Vj) throughout and all other

components by their probability limits. With g(v) as the density of Vi, notice that Ma(Vi) = M(Vi) if

we replace ga(Vj) with g(Vj). Let M̂sa, Ma, and M be vectors with respective ith elements: M̂sa(Vi),

Ma(Vi), and M(Vi), let τvi ≡ τ (Vi; q
′) and τ̂vi ≡ τ (Vi; q̂

′) . From Klein and Shen (2010), we may

approximate |τvi − τ̂vi| by a smooth bound. Employing a Taylor expansion for this bound and for the
estimated smooth function within M̂sa, all trimming can be taken as given in analyzing the objective

function. Under known trimming, write:

Q̂a ≡
〈
τv

[
Y − M̂sa

]2〉
;Qa ≡

〈
τv [Y −Ma]

2
〉

;Q ≡
〈
τv [Y −M ]

2
〉
.

With uniformity taken with respect to θ in a compact set, we show

i) : sup
θ

∣∣∣Q̂a −Qa∣∣∣ p→ 0

ii) : sup
θ
|Qa − E [Qa]| p→ 0

iii) : sup
θ
|E [Qa]− E [Q]| p→ 0,

with E [Q] having a unique min at θ0. Consistency would then follow. Part i) holds from Lemma 9 and

standard arguments establish part ii). For iii), write the difference as:

|E [Qa]− E [Q]| ≤ 2 |E 〈τvY [Ma −M ]〉|D1
+ |E 〈τv [Ma −M ] [Ma −M ]〉|D2

.

Letting M0 ≡ E(Y |X), for the first difference D1:

D1 = 2

∣∣∣∣E〈τvM0

[
f

g2

g2

g2a
− f

g2

]〉∣∣∣∣ = 2

∣∣∣∣E〈τvM0M

∣∣∣∣g2 − g2a

g2a

∣∣∣∣〉∣∣∣∣ .
With τv,M0, and M bounded and A ≡ g2a−g2 as the adjustment factor in D8), it suffi ces to show that

sup
θ
|E 〈|A/g2a|〉| = op(1).

Let CN = {Xi : g2(Vi) > N−ar/2) and define the indicator τg(Xi) ≡ 1{Xi ε CN}. Then,

sup
θ
|E 〈|A/g2a|〉| ≤ sup

θ

∣∣∣E 〈τgANar/2
〉∣∣∣+ sup

θ
|E 〈1− τg〉| .

Since A = o(N−ar/2), the first component is op(1). The second component is also op(1) under the

vanishing probability on the complement of CN . The argument for D2 is similar to that for D1, which

completes the uniform convergence argument.

With the second stage objective function uniformly converging to the fixed function E[Q], Ichimura

(1993) and Ichimura and Lee (1991) provide conditions under which E[Q] is uniquely maximized at θ0.

Consistency for the second stage estimator of Theorem 2 follows.
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To establish asymptotic normality, note that the estimator has the following linear form:

√
N
(
θ̂2 − θ0

)
= −Ĥ−1

(
θ+
)√

NĜ (θ0) + op(1), θ+ε
[
θ̂2, θ0

]
.

Employing arguments very similar to those above, all trimming can be taken as known. Noting that τvi
ensures that adjustment factors vanish rapidly at θ0, under arguments very similar to those in part a)

and employing Lemmas 1, 5, 6, 9, 10, and 11b), we have:

i) : Ĥ−1
(
θ+
) p→ E[H(θ0)]−1 = E [τvi∇θMi∇θM ′]−1

.

ii) :
√
NĜ (θ0) =

√
N 〈τvε∇θM〉 −

√
N
〈
τv

[
M̂s −M

]
∇θM

〉
+ op(1).

The proof will then follow if

B ≡
√
N
〈
τv

[
M̂s −M

]
∇θM

〉
= op(1).

From Lemma 1:

B = B∗ + op(1), B∗ ≡
√
N

〈
τv

[
M̂∗s −M

] ĝ
ḡ

[1 + δg]∇θM
〉
.

From Newey’s residual result, E [B∗] = 0. In the single index case, Klein and Shen (2010) show that B∗

is a degenerate U-statistic under regular kernels. This argument had been extended to multiple indices

under the recursive estimator, with the extension provided in Jiang (2021). The result now follows.

The remainder of the Appendix is organized as follows. Lemmas 1-9 provide results under known

trimming, while Lemma 10 provides results on taking the estimated trimming set as known. Lemmas 1-5

develop properties of the estimated M -function that are of independent interest apart from estimating

index parameters. The remaining Lemmas 6-11, provide results to establish the asymptotic properties

for the index parameter estimators.

In Lemmas 1-5, the conditional expectation of the dependent variable, Yi, depends on the known

d-dimensional vector Vi. The vector Vi may be interpreted as Vi (θ0) in the semiparametric case or as

a vector of exogenous variables in the nonparametric case. Since gradients to objective functions are

evaluated at true parameter values, this interpretation will be useful when we show that these gradients

are asymptotically distributed as normal.

Prior to Lemma 10 which addresses estimated trimming, we take all trimming as known. The results

in Lemmas 1-5 hold whether trimming is based on the true index vector or on the continuous variables,

Xi. In so doing, we redefine K∗i (v) ≡ τsm(Xi, q(N))Ki(v) or K∗i (v) ≡ τsm(Vi (θ0), q(N)))Ki(v).

2 Intermediate Lemmas

Lemma 1. Recursion Approximation. Recall the definition of the conditional expectation estimator
in D6) and kernel functions in D4-5). With D ≡ diag(K(v)), L and P positive integers, Vi ≡ V (Wi; θ0),
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and Zi (v) ≡ Vi−v
h as the ith row of Z, define:

Â ≡ 1

N

[
Z (v)

′
DZ (v)

]
; A ≡ E(Â); δA (v) ≡

L∑
l=1

[(
A− Â

)
A−1

]l
ḡs(v) = E(ĝs(v)); δgs ≡

P∑
p=1

[
ḡs(Vi)− ĝs(Vi)

ḡs(Vi)

]p
d̂(v) ≡ [Z ′DZ]

−1
Z ′D

[
Y − 1

¯
· Ȳ (v)

]
d̂∗(v) ≡ A−1[I + δA (v)]

1

N

N∑
i=1

Zi (v)
[
Yi − Ȳ (v)

]
ĝ1(v)Ki(v)

ḡ1(v)
[1 + δg1(v)] .

With ∆s(v) ≡ ĝ2(v)
[
M̂s(v)−M(v)

]
, we have:

∆1(v) =
ĝ2(v)

ĝ1(v)

[
1
N

∑N
i=1 [M(Vi)−M(v) + εi]Ki(v)

− 1
N

∑N
i=1 Zi (v)Ki(v)d̂(v)

]

∆s(v) ≡ ∆s−1(v)−
N∑
i=1

∆s−1(Vi)

ĝ2(Vi)
K∗i (v) +

1

N

N∑
i=1

εiK
∗
i (v), s > 1.

The approximating recursion is given as:

∆∗1(v) ≡ ĝ2(v)

ḡ1(v)
[1 + δgs−1(v)]

[
1
N

∑N
i=1 [M1(Vi)−M1(v) + εi]Ki(v)

− 1
N

∑N
i=1 Zi (v)Ki(v)d̂∗(v)

]

∆∗s(v) ≡ ∆∗s−1(v)−
N∑
i=1

[
∆∗s−1(Vi)

ḡ2(Vi)

]
[1 + δg2(Vi)]K

∗
i (v) +

1

N

N∑
i=1

εiK
∗
i (v), s > 1.

For v in a compact subset of its support and with L, P suffi ciently large and finite:

sup
v
|∆∗s(v)−∆s(v)| = op(N

−1/2).

Proof. For s = 1, note that:

Â−1 = A−1 + Â−1
[
A− Â

]
A−1

= A−1[I + δA] + Â−1
[(
A− Â

)
A
]L+1

.

With a similar expansion holding for 1/ĝ(Vi), for L, P suffi ciently large:

sup
v

∣∣∣Â−1 −A−1[I + δA]
∣∣∣ = op(N

−1/2) (3)

sup
v

∣∣∣∣ 1

ĝ(Vi)
− 1

ḡ(Vi)
[1 + δg1(Vi)]

∣∣∣∣ = op(N
−1/2). (4)

The result now follows for s = 1. An induction argument completes the proof.

Lemma 2. Stage Characterization. Define

KP0 (v) ≡ 1

N

∑
i

[M(Vi)−M(v)]Ki(v).
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Recall the definitions of δA (v) and δg1(Vi) in Lemma 1. With Zi ≡ Vi−v
h , let:

e1(v, Vi) ≡ ZiKi(v)A−1(v)

e2(v, Vi) ≡ ZiKi(v) [M(Vi)−M(v)]

e3(v, Vi) ≡ ZiKi(v)

e4(v, Vi) ≡ [M (Vi)−M (v)]Ki (v)

ḡ1 (v)
.

Define ēt(v) = 1
N

∑
i et(v, Vi) and

AKP (v) ≡ ē1(v) [I + δA(v)] {ē2(v)− ē3(v)ē4(v) [1 + δg1(v)]} .

Let Us be a random variable that has zero expectation conditioned on X and define:

KPL(v) ≡ O

(
1

NL

)∑
i1

...
∑
iL

TL,i1,...,iL ,

TL,i1,...,iL ≡


∆∗1(Vi1)
ḡs(Vil)

K∗iL(v) [1 + δgs (Vil)] L = 1

∆∗1(Vi1)∏L

l=1
ḡs(Vil)

K∗iL(v)
∏L
l=1 [1 + δgs (Vil)]

∏L−1
l=1 K∗il (Vil) L > 1

.

Then, there exists integers C1, ..., Cs−1 such that

a) : ∆∗1 (v) = [U1 +KP0 (v)−AKP (v)]
ĝ2(v)

ḡ1(v)
[1 + δg1 (v)] (5)

b) : ∆∗s (v)−∆∗1 (v) = Us +

s−1∑
l=1

ClKPl(v), s > 1. (6)

Proof. The proof for a) is immediate from Lemma 1. For b), due to the form of ∆∗s (v)−∆∗s−1 (v), the

lemma follows because ∆∗s (v)−∆∗1 (v) is given as:

[
∆∗s (v)−∆∗s−1 (v)

]
+
[
∆∗s−1 (v)−∆∗s−2 (v)

]
+ ...+ [∆∗2 (v)−∆∗1 (v)] .

To study the expectations of the estimators as characterized in Lemma 2, Lemma 3 provides as-

ymptotic conditional independence results for studying the expectation of products of averages, which

is the structure of the stage s estimator. Part a) of this lemma is stated in a form more general than is

required so as to illustrate a method of proof that applies to all other parts.

Lemma 3. Kernel Products. For Vi let F (Vi) be a bounded function of Vi. For p a positive

integer, define:

δ(Vi) ≡

 1

N

∑
j

[
F (Vi)−K∗j (Vi)

]
p

ρi ≡
[

∆∗s−1 (Vi)

g(Vi)
[1 + δgs (Vi)]

]
.
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Referring to the definitions in Lemma 1 and to the definition of KP0(v) in Lemma 2:

a) : E [δ(Vi)|Vi] =

 1

N

∑
j

E
[
F (Vi)−K∗j (Vi) |Vi

]
p

+O

(
1

Nhd

)
.

b) : E [δA(v)] ≡ E
{

[ē2(v)]
l
}

= [E (ē2(v))]
l
+O

(
1

Nhd

)
.

c) : E [ē1(v) [I + δA(v)] {ē2(v) + ē3(v) ē4(v) [1 + δg1(v)]}] =

E [ē1(v)] [I + E [δA(v)]]

{
E [ē2(v)] + E [ē3(v)] ×
E [ē4(v)] [1 + E [δg1(v)]]

}
ĝ2(v)

ḡ1(v)
[1 + E [δg1 (v)]] +O

(
1

Nhd

)
.

d) : E

[
KP0(v)

ĝ2(v)

ḡ1(v)
[1 + δg1 (v)]

]
= E [KP0(v)]

E [ĝ2(v)]

ḡ1(v)
[1 + E [δg1 (v)]] +O

(
1

Nhd

)
.

e) : E
{
ρiK

∗
i (v)ρjK

∗
j (v)

}
= E

{
E [ρiK

∗
i (v)|Vi]E

[
ρjK

∗
j (v)|Vj

]}
+O

(
1

Nhd

)
.

f) : E

{
∆∗s−1(Vi)

ḡ2(Vi)
[1 + δg2(Vi)] |Vi

}
=
E
[
∆∗s−1(Vi)|Vi

]
ḡ2(Vi)

[1 + E [δg2(Vi)|Vi]] +O

(
1

Nhd

)
.

With window parameter in D4) satisfying: 0 < r < 1
2d , each O

(
1

Nhd

)
remainder term is o(N−1/2).

Proof. For a), write the expectation of a typical term in δ(Vi):

E

O
(

1

Np

)∑
j 6=i

F (Vi)−K∗j (Vi)

p |Vi
 = E

O
(

1

Np

)∑
j1

∑
j2

...
∑
jp

p∏
l=1

[
F (Vi)−K∗jl (Vi)

]
|Vi

 .

If all of the subscripts are distinct, the result is immediate from independence. Assume there are

m+ 1 > 2 identical subscripts and reorder terms so that these are at the end. The expectation is then:

O

(
1

Nm

)
E

O
(

1

Np−m

)∑
j1

∑
j2

...
∑
j(p−m)

(
p−m−1∏
l=1

[
F (Vi)−K∗jl (Vi)

])[F (Vi)−K∗jp (Vi)
]m+1

|Vi


= O

[(
1

Nhd

)m] p−m−1∏
l=1

[
F (Vi)− E

[
K∗jl (Vi) |Vi

]]
E

{
O(hmd)

[
F (Vi)−K∗jp (Vi)

]m+1

|Vi
}
.

The first term is O
[(

1
Nhd

)m]
, m > 1. It can readily be shown the second component is O(1). For the

final component, let z be a d × 1 vector with lth component
Vi(l)−Vjp (l)

O(h) . With this change of variable,

and the integral being multi-dimensional, we can write the third component as:∫
O(hmd)

[
F (Vi +O(h)z)− 1

O(hd)
k(z)

]m+1

O(hd)g(Vi +O(h)z)dz

=

∫
O(h(m+1)d)

{
m+1∑
i=1

(
m+ 1

i

)
F (Vi +O(h)z)

m+1−i
[

1

O(hd)
k(z)

]i}
g(Vi +O(h)z)dz.

With k(z)p integrable under D4) for all finite p, the above integral is O(1) from which the result follows.

The proofs for b-e) are very similar to that for a) in that they depend on matching subscripts as in the

above argument. For f), from the stage characterization in Lemma 2 and employing the same matching

arguments as in a), the result follows.

Lemma 4. Bias Expansions for Kernel Expectations. Replacing M(v) in assumption A3b)

with F (v) and letting g(v) be the density for Vi. Assume that F (v)g(v) satisfies A3b). Recall that

q(N) is an expanding quantile set that expands from fixed quantiles q1 and q2 to the full support of the
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indices or continuousX-variables for which trimming is applied. With Ti ≡ Xi or Vi, recall from D3) that

τsm (Ti; q(N)) smoothly approximates an indicator on a set that expands from fixed quantiles q1 and

q2 to the full support of the indices or continuous X-variables. With v such that q1 < q′1 < v < q′2 < q2,

kernel functions defined in D4) and Bj(v) ≡
[
∇jt [F (t)g(t)]

]
t=v
:

E [F (Vi)K
∗
i (v)] = E [τsm (Ti; q(N))F (Vi)Ki(v)] = F (v)g(v) +

m∑
j=1

h2jB2j(v) + o(h2m) + O

(
1

N

)
.

Proof. We first prove the result under index trimming where Ti = Vi. Define:

Cj ≡
{
Vi : |Vi − qj(N)| < 1

ln(N)

}
, j = 1, 2,

A ≡ (C1 ∪ C2)
c
,

where c denotes complement. Write E [F (Vi)τsm (Vi; q)Ki(v)] = E1 + E2 + E3 :

E1 ≡ E [ F (Vi) [τsm (Vi; q (N))− τ (Vi; q(N))] 1 {ViεA}Ki(v)] ,

E2 ≡ E [ F (Vi)τ (Vi; q(N)) 1 {ViεA}Ki(v)] ,

E3 ≡ E [ F (Vi)τsm (Vi; q(N)) 1 {ViεAc}Ki(v)] .

On A, supv |τ (v; q)− τsm (v; q)| = O
(

1
N

)
⇒ E1 = O

(
1
N

)
. For E2 =

∫
A

F (vi)Ki(v)g(vi)dvi, let z be a

vector with lth element v(l)−vi(l)
O(h) . Then, making this change of variable and restricting all components

of v to a strict subset of a compact set, the expectation up to higher order terms is given as:

∫
Rd
F (v + hz)k(z)g(v + hz)dz,

where k is the standardized kernel in D4). From a standard Taylor expansion in h about 0, the result

follows on A.

On Ac ≡ C1 ∪ C2 we provide the argument for C1 as the argument for C2 is identical. We have

|E3| ≤ sup
vεC1

|F (v)g(v)|
∫
C1

Ki(v)dVi ≡ sup
vεC1

|F (v)g(v)| I (C1) .

With supv |F (v)g(v)| bounded, it suffi ces to consider the integral I (C1). With v constrained to an

interior subset of [q1, q2], the argument follows as I (C1) = o
(

1
N

)
with v not being close to ViεC1. Noting

that the smooth X-trimming function is on a set expanding to the full support of X, similar arguments

to those above establish the result under smooth X-trimming.

Employing the above lemmas, Lemma 5 obtains uniform bias and variance rates for the proposed

estimator.

Lemma 5. Stage Bias and Variance. Let v be in a compact subset of its support. Assuming
A3), with ∆∗s(v) defined as in Lemma 1:

a) : sup
v
|E [∆∗s(v)]| = O(h2s),

b) : sup
v
V ar [∆∗(v)] = O

(
N−(1−rd)

)
.

9



Proof. To prove a), we will show that:

E [∆∗s(v)] = h2sBs(v) + h2(s+1)Bs+1 (v) + o(h2(s+1)),

where the B-functions are uniformly bounded in v. For s = 1 and with KP0 and KP1 defined in Lemma

2:

E [∆∗1 (v)] = E [KP0 (v)]− E [KP1 (v)] .

It then follows from Lemmas 3-4 that for uniformly bounded B-functions:

|E [∆∗1(v)]| = h2B1 (v) + h4B2 (v) + o(h4).

Continuing with an induction argument for a), with s > 1, assume that

E
[
∆∗s−1(v)

]
= h2(s−1)Bs−1 (v) + h2sBs (v) + o(h2s). (7)

Under Lemma 3f), E [∆∗s(v)] is given as:

E
[
∆∗s−1(v)

]
− E

[
∆∗s−1(Vi)

ḡ2(Vi)
[1 + δg2(Vi)]K

∗
i (v)

]
= E

[
∆∗s−1(v)

]
− E

[
E
[
∆∗s−1(Vi)|Vi

]
ḡ2(Vi)

[1 + E [δg2(Vi)|Vi]]K∗i (v)

]
.

From Lemma 4 it now follows that

E
{
E
[
∆∗s−1(Vi)|Vi

]
K∗i (v)

}
= h2(s−1)Bs−1(v) + h2sBs (v) + o(h2s).

Part a) now follows because E [δgs(Vi)|Vi] = O(h2).

The proof for b) at stage s = 1 is immediate. Assuming the result holds for stage s− 1, we show it

holds for stage s > 1. Recall that

∆∗s(v) ≡ ∆∗s−1(v)− 1

N

∑
i

[
∆∗s−1 (Vi)

ḡ2(Vi)
[1 + δg2 (Vi)]

]
K∗i (v)− 1

N

∑
i

εiK
∗
i (v).

With T ≡ ∆∗s(v) − E [∆∗s(v)] and ρi ≡
∆∗s−1(Vi)

ḡ2(Vi)
[1 + δg2 (Vi)] , from the definition of ∆∗s(v), T = T1 −

T2 − T3 − T4 where

T1 ≡ ∆∗s−1(v)− E
[
∆∗s−1(v)

]
T2 ≡ 1

N

∑
i

εiK
∗
i (v)

T3 ≡ 1

N

∑
i

{E (ρi|Vi)K∗i (v)− E [ρiK
∗
i (v)]}

T4 ≡ 1

N

∑
i

[ρi − E (ρi|Vi)]K∗i (v).

Part b) will follow if E(T 2
l ) = O

(
N−(1−rd)

)
, l = 1, 2, 3, 4. The result is immediate for T1. For T2 and

10



any stage s:

sup
v
E(T 2

2 ) =

[
1

Nhd

]
sup
v

1

N
E
∑
i

[
ε2
ih
dK∗2i (v)

]
=

1

Nhd
σ2 sup

v
E
[
hdK∗2i (v)

]
= O

(
1

Nhd

)
.

For T3, since E {E (ρi|Vi)K∗i (v)− E [ρiK
∗
i (v)]} = E {E (ρi|K∗i (v)Vi)− E [ρiK

∗
i (v)]} = 0, from condi-

tional independence, the expectations of cross products vanish, which implies that:

sup
v
E(T 2

3 ) =

[
1

Nhd

]
sup
v

1

N
E
∑
i

hd {E (ρi|Vi)K∗i (v)− E [ρiK
∗
i (v)]}2 = o

(
1

Nhd

)
.

For T4, write T 2
4 = ST + CPT, where

ST ≡ 1

Nhd
1

N

∑
i

[ρi − E (ρi|Vi)]
2
hdK∗2i (v)

CPT ≡ 1

N2

∑
i

∑
j 6=i

[ρi − E (ρi|Vi)]K∗i (v)
[
ρj − E

(
ρj |Vj

)]
K∗j (v).

For the squared terms (ST):

sup
v
E [ST ] =

1

Nhd
sup
v
E
{

[ρi − E (ρi|Vi)]
2
hK∗2i (v)

}
= O

(
1

Nhd

)
.

For the cross-product terms (CPT), from Lemma 3, part e) :

sup
v
E [CPT ] = sup

v
E
{
E [ρi − E (ρi|Vi) |Vi]E

[
ρj − E

(
ρj |Vi

)
|Vj
]
K∗i (v)K∗j (v)

}
+O

(
1

Nhd

)
.

As the first component is 0, part b) of the lemma follows.

For the estimated derivatives entering the gradient expressions, we require rates at which the squared

bias and variance vanish irrespective of the point at which functions are evaluated. In all remaining

lemmas, we will denote Vi(θ) ≡ V (Wi, θ) as a parametric vector of indices depending on the parameter

vector θ. Lemma 6 below provides the required result.

Lemma 6. Mean-Square Convergence for First Derivatives. For w in a compact subset of

its support, there exists ∆1∗
s (v(w; θ0)) such that:

a) : sup
w

∣∣∇1
θ∆s(v(w; θ0))−∆1∗

s (v(w; θ0))
∣∣ = op

(
N−1/2

)
.

b) : sup
w
E
[(

∆1∗
s (v(w; θ0))

)2]
= O

(
N−4rs +N−(1−r(d+2))

)
.

Proof. With Â defined as in Lemma 1, note that

ÂÂ−1 = I ⇒ ∇1
θÂ
−1 = −Â−1∇1

θ

(
Â
)
Â−1.

In ∇1
θ∆1(v(w; θ0)), refer to Lemma 1 and replace Â−1 with A−1 [1 + δA]. Further, in ∇1

θ∆s replace

all density reciprocals by the expansion in Lemma 1. With ∆1∗
s (v(w; θ0)) as the resulting derivative

11



recursion, part a) follows. Part b) follows from the same term decomposition as in Lemma 5.

For lemmas on uniform convergence for averages involving unbounded random variables, we require

Markov’s inequality for joint events in Lemma 7, part a). We attribute the proof of this result to Markov

as the proof follows immediately from his argument for single random variables. We also require a tail

dominance result given in part b).

Lemma 7. Markov and Moment Inequalities. Let Yi, X1i, and Xmi be continuous random

variables with joint density g(y, xl, xm). Assume that E [|Y |py |Xpl
l | |Xm|pm ] is finite for pj > 0, j =

y, xl, xm. Let Ui be a continuous random variable with density in the tails that is less than that of

a t-distribution with mu + 1 degrees of freedom. Letting A be the set on which |y| > N δy , |xl| >
Nδ1 , |xm| > Nδ2 and Bi a bounded random variable:

a) : Pr (A) ≤ O
(
N−[δypy+δ1p1+δ2p2]

)
.

b) : E(|BiUi| 1
{
|Ui| > Nδu

}
) = O(N−δumu).

Proof. To establish a), following Markov’s argument

E [|Y |py |Xl|pl |Xm|pm ] =

∫∫∫
|y|py |xl|pl |xm|pm g(y, xl, xm)dydxldxm

> NδypyNδlplNδmpm

∫∫∫
A
g(y, xl, xm)dydxldxm

= NδypyNδlplNδmpm Pr (A) ,

and part a) follows. For b), since a t-distribution with df degrees of freedom is proportional to

u[
1 + u2

df

](df+1)/2
<

u[
u2

df

](df+1)/2
,

the expectation in b) has order given as:

O

 ∞∫
Nδu

u−dfdu

 = O
(
N−(df−1)δu

)
= O

(
N−muδu

)
,mu ≡ df − 1.

Part b) follows.

To establish uniform convergence results below, we use a theorem by Bhattacharya (1967) and a

modest extension in Klein and Spady (1993). Let T̄ denote an i.i.d. average of terms and assume that

N−qT̄ is bounded. Then, subject to regularity conditions, the theorem essentially says that T̄ uniformly

converges to its expectation, at a rate that is decreased from the parametric rate by q. In Lemmas 8-9,

as results will hold uniformly over the point at which functions are evaluated and over θ, we will denote

M(v; θ) ≡ E(Y |V (θ) = v) and correspondingly refer to the estimator of this function as M̂s(v; θ).

Lemma 8. Uniform Convergence. Let ∇λT denote the λth derivative of T with respect to θ,

with ∇0T ≡ T. For an arbitrarily small ξ > 0 and for my, mx referring to the least number of finite

12



absolute moments for Y , X, let:

pa (λ) ≡
[

my

my + 1
[1/2− ξ]− r (d+ λ)− λ

mx + 1
[1/2− ξ]

]
,

pb (λ) ≡
[
(1/2− ξ)− r (d+ λ)− λ

mx + 1
[1/2− ξ]

]
.

With pb (λ) > pa (λ) , assume pa (λ) > 0. Referring to D5)-D6) and recalling that Vi ≡ Wiθ, define the

following components:

Ĉ1 (Wi; θ) ≡ ĝ1(Vi; θ)Ȳ (Vi; θ); Ĉ2 (Vi; θ) ≡ Z ′DY/N ; Ĉ3 (Wi; θ) ≡ ĝ1(Vi; θ)Z̄(Vi; θ)

Ĉ4 (Vi; θ) ≡ ĝ1(Vi; θ); Ĉ5 (Vi; θ) ≡ Z ′DZ/N ; Ĉ6 (Vi; θ) ≡ ĝ2(Vi; θ).

C1 (Wi; θ) ≡ g(Vi; θ)M(Vi; θ); C2 (Vi; θ) ≡ 0;C3 (Wi; θ) ≡ 0

C4 (Vi; θ) ≡ g(Vi; θ);C5 (Vi; θ) = g1(Vi; θ)I;C6 (Vi; θ) ≡ g2(Vi; θ).

As we will study an upper bound on the sup over observation i, replace Wi with w to obtain Cj ≡
Cj (w; θ). For w in a compact subset of the support for W , λ = 0, 1, 2, for θ in a compact set, and for

window parameter r:

a) : sup
w,θ

∣∣∣∇λ
[
Ĉj − Cj

]∣∣∣ = Op

(
N−pa(λ) +N−2rd

)
, j = 1, 2.

b) : sup
w,θ

∣∣∣∇λ
[
Ĉj − Cj

]∣∣∣ = Op

(
N−pb(λ) +N−2rd

)
, j = 3, 4, 5, 6.

c) : sup
w,θ

∣∣∣∇λ [M̂s (v; θ)−M (v; θ)
]∣∣∣ = op (1) .

Proof. From a standard Taylor series expansion in h = O(N−r):

sup
w,θ

∣∣∣∇λ
[
E
(
Ĉj

)
− Cj

]∣∣∣ = O(h2) = O(N−2rd), for r > 0.

Accordingly, it suffi ces to obtain rates for supw,θ

∣∣∣∇λ
[
Ĉj − E

(
Ĉj

)]∣∣∣ . Beginning with Ĉ1, and λ = 0,

split Ĉ1 into three components Ĉ11, Ĉ12, Ĉ13:

Ĉ1 =
1

hd
〈τyY k − E [τyY k]〉Ĉ11 +

1

hd
〈[1− τy]Y k〉Ĉ12 −

1

hd
〈E [[1− τy]Y k]〉Ĉ13 ,

where τy = 1
{
|Y | < Nδy

}
, δy > 0. From standard results in the literature:

sup
∣∣∣Ĉ11 − E

(
Ĉ11

)∣∣∣ = op

(
N−[1/2−ξ−rd−δy ]

)
. (8)

Since k is bounded, from A4) and Lemma 7, part b):

sup
∣∣∣Ĉ12 − E

(
Ĉ12

)∣∣∣ = Op

(
N−(myδy−rd)

)
.

Employing the same argument, sup
∣∣∣Ĉ13 − E

(
Ĉ13

)∣∣∣ has the same order. Equating this rate to that for
sup

∣∣∣Ĉ11 − E
(
Ĉ11

)∣∣∣ in (8) the result follows.
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For the derivative with respect to θl :

∇1
l Ĉ1 =

1

hd+1
〈τyτxY (xl −Xl)k

′〉T1 +

1

hd+1
〈[1− τyτx]Y (xl −Xlj)k

′〉T2 .

Since xl is an element of w that is in a compact set, the order will be determined by the Xlj terms.

With T1 and T2, each containing one such term which we respectively denote as T ∗1 and T
∗
2 , we analyze

these below. From Bhattacharya (1967),

sup |T ∗1 − E (T ∗1 )| ≡ 1

hd+1
sup |〈τyτxY Xlk

′〉 − E 〈τyτxY Xlk
′〉| = Op

(
N−[1/2−ξ−r(d+1)−δy−δx]

)
.

For T ∗2 , write it as:

T ∗2 ≡
〈

[1− τyτx]
1

hd+1
Y Xlk

′
〉

=

〈
[1− τx] τy

1

hd+1
Y Xlk

′
〉
T∗21

+〈
[1− τy] τx

1

hd+1
Y Xlk

′
〉
T∗22

+

〈
[1− τy] [1− τx]

1

hd
YjXljk

′
j

〉
T∗23

.

From Lemma 7, part b):

sup |T ∗21 − E (T ∗21)| = Op

(
N−[δxmx−δy−r(d+1)]

)
; sup |T ∗22 − E (T ∗22)| = Op(N

−[δymy−δx−r(d+1)]).

From Cauchy-Schwarz and Lemma 7, part a):

sup |T ∗23 − E (T ∗23)| = Op

(
N−[[δymy+δxmx]/2−r(d+1)]

)
.

Setting δx to equate rates for T ∗1 and T
∗
21 terms:

δx(mx + 1) = [1/2− ξ]⇒ δx =
1/2− ξ
mx + 1

. (9)

Setting δy to equate rates for T ∗1 and T
∗
22:

δy(my + 1) = [1/2− ξ]⇒ δy =
1/2− ξ
my + 1

. (10)

Employing (9) and (10), sup |T ∗1 − E (T ∗1 )| and sup |T ∗2 − E (T ∗2 )| are each Op(N−pa(1)). With δy and δx
set as above, it can be shown that the convergence rate for sup |T ∗23 − E (T ∗23)| is faster than the other
T2 − terms. It then follows from the uniform rate on the bias order being O(N−2rd):

sup
∣∣∣∇1

[
Ĉj − Cj

]∣∣∣ = Op

(
N−pa(1) +N−2rd

)
.

For the second derivative of Ĉ1, let Xlj and Xmj be the jth observation on any two of the continuous

index variables with coeffi cients θl and θm respectively. Then, for the cross partial with respect to θl
and θm :

∇2
lmĈ1 =

〈
τyτxlτxm

1

hd+2
Y (xl −Xl)(xm −Xm)k′′

〉
T1

+〈
[1− τyτxlτxm ]

1

hd+2
Y (xl −Xl)(xm −Xm)k′′

〉
T2

.
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Similar to the analysis for first derivatives, the uniform convergence rate for T1 to its expectation is

determined by the uniform convergence rate for T ∗1 ≡ 1
hd+2

〈τyτxlτxmY XlXmk
′′〉 to its expectation:

sup |T ∗1 − E (T ∗1 )| = Op(N
−[1/2−ξ−r(d+2)−δy−2δx]).

For T2, the convergence rate, as above, will be determined by terms containing XlXm.With T ∗2 denoting

these terms, write T ∗2 = T ∗21 + T ∗22 + T ∗23 + T ∗24, where:

T ∗21 =
1

hd+2
〈(1− τy) τxlτxmY XlXmk

′′〉

T ∗22 =
1

hd+2
〈[(1− τxl) τxm + (1− τxm) τxl ] τyY XlXmk

′′〉

T ∗23 =
1

hd+2
〈(1− τy) (1− τxl) τxmY XlXmk

′′〉

T ∗24 =
1

hd+2
〈(1− τxl) (1− τxl) τyY XlXmk

′′〉

T ∗25 =
1

hd+2
〈(1− τy) (1− τxl) (1− τxm)Y XlXmk

′′〉 .

Under Lemma 7, part b):

sup |T ∗21 − ET ∗21| = Op

(
N−[δymy−2δx−r(d+2)]

)
sup |T ∗22 − ET ∗22| = Op(N

−[δx(mx−1)−δy−r(d+2)]).

Equating rates in the T ∗1 and T
∗
21 terms:

1/2− ξ − δy = δymy ⇒ δy =
1

my + 1
[1/2− ξ] , δymy =

my

my + 1
[1/2− ξ] .

Equating rates for the T ∗1 and T
∗
22 terms:

[1/2− ξ] = δx (mx + 1)⇒ δx =
1

mx + 1
[1/2− ξ] .

By construction, the convergence rates in T ∗1 , T
∗
21, and T

∗
22 are the same. Employing the definitions of

δy and δx, this rate is Op(N−pa(2)). For the choices of δy and δx, it can be shown that convergence

rates for T ∗23, T
∗
24, and T

∗
25 are the same or faster than Op(N

−pa(2)). It can also be shown that the

convergence rates for second derivatives when l = m is not slower than Op(N−pa(2)). With the uniform

bias being O(N−2rd), the proof for part a) with j = 1 follows. With Ĉ2 having the same structure as

Ĉ1, the convergence rate is the same.

With j = 3, note that Ĉ3 has the same kernel structure as the terms in a) with the exception that

it does not depend on Y . The convergence rate is then obtained by letting my →∞ in a). As all terms

in part b) have the same structure, they all have the same convergence rate. Part b) follows.

Turning to part c), with stage s = 1, recall from D6) that:

M̂1(v) ≡ Ȳ (v)− Z̄(v) [Z ′DZ]
−1
Z ′D

[
Y − 1

¯
· Ȳ (v)

]
.

Note that with ∇ as a derivative operator, for any non-singular matrix A:

∇
(
AA−1

)
= 0⇒ ∇

(
A−1

)
= −A−1∇ (A)A.
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Let f̂1(v; θ) ≡ ĝ1(v; θ)M̂1 (v; θ) , f1(v; θ) ≡ g1(v; θ)M1 (v; θ) , and for λ = 0, 1, 2 :

δ (λ) ≡ ∇λ
[
ĝ1(v; θ)

(
M̂1 (v; θ)−M (v; θ)

)]
≡ ∇λ

[
f̂1(v; θ)− f1(v; θ) [ĝ1(v; θ)/g1(v; θ)]

]
. (11)

With trimming controlling density denominators, ĝ1(v; θ) uniformly converges to g1(v; θ) with inf g1(v; θ)

= O(N−ε) under trimming. It then follows from parts a)-b) that δ (λ) is uniformly Op(N−pa(1)+N−2rd).

For λ = 0, since ĝ1(v; θ) = Op(1) under trimming:

D0) : sup
∣∣∣M̂1 (v; θ)−M (v; θ)

∣∣∣ = Op

(
N−pa(1) +N−2rd

)
.

For λ = 1 :

ĝ1(v; θ)∇1
[(
M̂1 (v; θ)−M (v; θ)

)]
= δ (1)−

[
∇1ĝ1(v; θ)

] [(
M̂1 (v; θ)−M (v; θ)

)]
.

Since sup |δ (1)| = Op
(
N−pa(1) +N−rd

)
and sup

∣∣∇1ĝ1(v; θ)
∣∣ = Op(1), it follows from D0) and trimming

that

D1) : sup
∣∣∣∇1

[(
M̂1 (v; θ)−M (v; θ)

)]∣∣∣ = Op

(
N−pa(1) +N−2rd

)
.

Employing results for δ(2), D0), and D1), it can be shown that

D2) : sup
∣∣∣∇2

[(
M̂1 (v; θ)−M (v; θ)

)]∣∣∣ = Op

(
N−pa(2) +N−2rd

)
.

For general stage s > 1 and λ = 0 :

ĝ2(v; θ)M̂s(v; θ) =
1

N

N∑
i=1

{
Yi −

[
M̂s−1(Vi; θ)− M̂s−1 (v; θ)

]}
K∗i (v)

=
1

N

N∑
i=1


[
M̂s−1 (v; θ)−M (v; θ)

]
−[

M̂s−1(Vi; θ)−M (Vi; θ)
] K∗i (v)

+
1

N

N∑
i=1

{M(v; θ) + [Yi −M (Vi; θ)]K
∗
i (v)} .

Therefore, ĝ2(v; θ)
[
M̂s(v; θ)−M (v; θ)

]
= R1(s) +R2, where:

R1(s) =
1

N

N∑
i=1


[
M̂s−1 (v; θ)−M (v; θ)

]
−[

M̂s−1(Vi; θ)−M (Vi; θ)
] K∗i (v) (12)

R2 ≡ 1

N

N∑
i=1

{[Yi −M (Vi; θ)]K
∗
i (v)} .

Employing the result for Ĉ6 in part b) and D1):

sup |R1(s)| = Op

(
N−pa(0) +N−2rd

)
sup |R2 − ER2| = Op

(
N−pa(0)

)
.
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With the trimming set expanding to the full support, it can be shown that

E(R2) = E [E {[Yi −M (Vi; θ)] τsm (Xi, q(N))Ki(v)|Vi}] + o(1) = 0.

As the second expectation is 0, the result follows. An induction argument then completes the proof for

λ = 0. Similar arguments hold for λ = 1, 2.

Lemma 9 provides the analysis for the adjusted expectations that underlie the estimator θ̂2. This

lemma closely parallels Lemma 8 with the exception of the set for θ over which we seek uniformity for

M̂s and its derivatives. To analyze the Hessian matrix, we only require uniformity over a vanishing

neighborhood of θ0. For the trimming structure employed in Lemma 8, this restriction is not required,

but is needed in Lemma 9.

Lemma 9. Uniform Convergence for Adjusted Expectations. Let ∇λT denote the λth

derivative of T with respect to θ, with ∇0T ≡ T. For Xi the ith observation on the continuous variable

vector Xi, assume that Xi is bounded. For ξ
′ > 0, define:

p′a (λ) ≡ my

my + 1
[1/2− ξ′]− r (d+ λ) ,

p′b (λ) =
(
1/2− ξ′

)
− r (d+ λ) ,

where p′a (0) − sar > 0 with an adjustment parameter a satisfying: a < 2/s. Recall the defini-

tion of Ĉj , j = 1, 2, 3 in Lemma 8. From D9) these are the same as in the unadjusted case (e.g.

Ĉ1 (Vi; θ) = ĝ1a(Vi; θ)Ȳa(Vi; θ) = ĝ(Vi; θ)Ȳ (Vi; θ)). Referring to D5)-D6) and D8)-D9), define the follow-

ing components:

Ĉ4a (Vi; θ) ≡ ĝ1a(Vi; θ); Ĉ5a (Vi; θ) ≡ Z ′DaZ/N ; Ĉ6a (Vi; θ) ≡ ĝ2a(Vi; θ)

C4a (Vi; θ) ≡ g1a(Vi; θ);C5a (Vi; θ) = g2a(Vi; θ)I;C6a (Vi; θ) ≡ g2a(Vi; θ).

Let Sd and Sx be the support for the discrete and continuous variables respectively. Define S ≡ Sd ∪Sx
and let Np be an op(1) neighborhood containing θ0. Then, with Ĉj , j = 1, 2, 3 defined as in Lemma 8:

a) : sup
wεS;θεC

∣∣∣∇λ
[
Ĉj − Cj

]∣∣∣ = Op(N
−p′a(λ) +N−2r), j = 1, 2, 3.

b) : sup
wεS;θεC

∣∣∣∇λ
[
Ĉja − Cja

]∣∣∣ = Op(N
−p′b(λ) +N−2r), j = 4, 5, 6.

c) : sup
wεS;θεNp

∣∣∣∇λ [M̂sa (v; θ)−M (v; θ)
]
τ(v; q)

∣∣∣ = Op

(
N−p

′
a(λ) +N−2r

)
.

d) : sup
wεS;θεC

∣∣∣[M̂sa (v; θ)−Ma (v; θ)
]∣∣∣ = Op

(
N−[p′a(0)−sar] +N−r[2−sa]

)
.

Proof. For a)-b), writing sup to mean sup
w;θεC

:

sup
∣∣∣∇λ

[
Ĉj − Cj

]∣∣∣ ≤ sup
∣∣∣∇λ

[
Ĉj − E

(
Ĉj

)]∣∣∣
A

+ sup
∣∣∣∇λ

[
E
(
Ĉj

)
− Cj

]∣∣∣
B
.

For the A-component, with X having moments of all orders and convergence rates being slowed by

at most N−ξ
′′
, ξ
′′
> 0 and arbitrarily small, the rate follows from that in Lemma 8 with ξ replaced by

ξ′ ≡ ξ+2ξ
′′
and letting mx →∞. It can readily be shown that the bias B-component is O(N−2r). Part
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a) follows.

For the terms in b), recall the adjustment factor from D8), and consider explicitly the dependence

on θ :

Âs(v; θ) ≡ γ̂sha [1− τ∆(ĝs(v; θ))] ,

where 0 < a < 2/s, γs is a lower sample quantile for gs in D5), and 1 − τ∆ component is a smoothed

trimming function that is positive in the tails of the index and 0 otherwise. It can be shown that

sup
∣∣∣∇θ [Âs(v; θ)−As(v; θ)

]∣∣∣ = op
(
N−1/2

)
. Employing the same arguments as in Lemma 8 part b),

the proof for Lemma 9 part b) follows.

For part c), it suffi ces to show

sup
wεS;,θεNδ

∣∣∣∇λ [M̂sa (v; θ)−M (v; θ)
]
τ(v (θ0) ; q)

∣∣∣ = Op(N
−p′a(λ) +N−2r),

where Nδ = {θ : |θ − θ0| < δ} , δ = o(1).1 With Xi bounded, τ(v (θ0) ; q) restricting v (θ0) to a subset

of its support, and θεNδ, then v will be restricted to a compact subset of its support where the index

density is bounded away from 0. Then, the result follows from the arguments in Lemma 8, part c).

For part d), let f̂1a(Vi; θ) ≡ ĝ1a(Vi; θ)M̂1a (v; θ), f1a(Vi; θ) ≡ g1a(Vi; θ)M1a (v; θ), write

δa ≡ ĝ1a(Vi; θ)
(
M̂1a (v; θ)−Ma

)
≡

[
f̂1a(Vi; θ)− f1a(Vi; θ) [ĝ1a(Vi; θ)/g1a(Vi; θ)]

]
≡ T1 + T2,

T1 ≡ Ma [ĝ1a(Vi; θ)− g1a(Vi; θ)] ; T2 ≡ f̂1a(Vi; θ)− fa(Vi; θ).

In the first part of the argument, we establish:

sup |δa| = Op(N
−p′a(0) +N−2r). (13)

First, with Ma bounded, from Lemma 9 part b): sup |T1 − E (T1)| = Op(N
−p′b(0)) and it can be shown

that sup |E (T1)| = Op(N
−2r). Turning to T2, it similarly follows that sup |T2| = Op(N

−p′a(0) +N−2r).

Therefore, for stage s = 1,

sup
∣∣∣M̂1a (v; θ)−Ma (v; θ)

∣∣∣ = Op

(
N−[p′a(0)−ar] +N−r(2−a)

)
. (14)

From D9), for stage s = 2, ĝ2a(v)M̂2a(v; θ) = T1 − T2 + T3, where:

ĝ2a(v)M̂2a(v; θ) ≡ 1

N

N∑
i=1

{
Yi −

[
M̂a(Vi; θ)− M̂1a (v; θ)

]}
K∗i (v),

T1 ≡ 1

N

N∑
i=1

YiK
∗
i (v)

T2 ≡ 1

N

N∑
i=1

{[Ma (v; θ)−Ma(Vi; θ)]}K∗i (v)

T3 ≡ 1

N

N∑
i=1


[
M̂1a (v; θ)−Ma (v; θ)

]
−[

M̂a(Vi; θ)−Ma(Vi; θ)
] K∗i (v).

1When uniformity holds for θεNδ for all δ = o(1), it holds in an op(1) neighborhood of θ0.
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With T1 = Ĉ1 in part a):

sup |T1 − E [T1]| = Op

(
N−p

′
a(0)
)
.

From a standard Taylor expansion in the kernel window:

sup |E [T1]− g2M(v; θ)| = Op
(
N−2r

)
.

With Ma (v; θ)−Ma(Vi; θ) bounded, from the same analysis as in part b):

sup |T2 − E [T2]| = Op

(
N−p

′
b(0)
)
.

From standard arguments, sup |E [T2]| = Op
(
N−2r

)
. Finally for stage s = 2, from (14), sup |T3| =

Op(N
−[p′a(0)−2ar] +N−r(2−2a)). Therefore:

sup
wεS;θεC

∣∣∣[M̂2a (v; θ)−Ma (v; θ)
]∣∣∣ = Op(N

−[p′a(0)−2ar] +N−r[2−2a]).

From an induction argument:

sup
wεS;θεC

∣∣∣[M̂sa (v; θ)−Ma (v; θ)
]∣∣∣ = Op

(
N−[p′a(0)−sar] +N−r[2−sa]

)
.

The lemma follows with [p′a (0)− sar] > 0 and 2− sa > 0.

With one notable exception, the arguments for taking smooth trimming as given are straightforward

and are provided in Theorem 2 and Lemma 11. For one of the gradient components, we will employ the

result in Lemma 10 below.

Lemma 10. Smooth Gradient Trimming. Set the stage s, and window parameter r, to satisfy
either condition C1) or C2) in Theorem 2. Let τ̂sm(i) ≡ τsm (Xi; q̂x) or τsm (Vi; q̂v) and correspondingly

let τsm(i) ≡ τsm (Xi; qx) or τsm (Vi; qv). Refer to D3) and let τ ≡ τ (x, q′x) or τ (v, q′v). Let q be

either qx or qv and q′ either q′x or q
′
v. Set quantile vectors q ≡ (q1, q2) and q′ ≡ (q′1, q

′
2) to satisfy:

q1 < q′1 < q′2 < q2. Recalling that the first stage estimator M̂1(v; θ0) does not depend on trimming, for

stage s > 1 :

sup
v
τ
∣∣∣M̂s (v; θ0, τ̂sm)− M̂s (v; θ0, τsm)

∣∣∣ = op(N
−1/2).

Proof. For stage s > 1 :

∆s(v, τ̂sm)/ĝ2 (v, τ̂sm) ≡
[
M̂s (v; θ0, τ̂sm)−M(v)

]
∆s(v, τsm)/ĝ2 (v, τsm) ≡

[
M̂s (v; θ0, τsm)−M(v)

]
.

Then,
[
M̂s (v; θ0, τ̂sm)− M̂s (v; θ0, τsm)

]
is given as:

{
ĝ2 (v, τsm) [∆s(v, τ̂sm)−∆s(v, τsm)]−

∆s(v, τsm) [ĝ2 (v, τ̂sm)− ĝ2 (v, τsm)]

}
1

ĝ2 (v, τsm) ĝ2 (v, τ̂sm)
.
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The proof will follow by showing that for v in a bounded set:

i) : sup
v
τ |∆s(v, τ̂sm)−∆s(v, τsm)| = op(N

−1/2).

ii) : sup
v
τ |∆s(v, τsm) [ĝ2 (v, τ̂sm)− ĝ2 (v, τsm)]| = op(N

−1/2).

iii) : sup
v
τ |ĝ2 (v, τ̂sm)− g2 (v)| = op(1), inf

v
τg2 (v) > 0.

Beginning with i) and stage s = 2, recall that ∆̂2(v, τ̂sm) is given as:

τ
〈[
M̂1 (v; θ0)−M(v)− M̂1 (Vi; θ0)−M(Vi) + εi

]
τ̂smK(v)

〉
.

From D3), and a Taylor series expansion:

τ̂sm (i) = τsm (i) +∇1
qxτsm (i) [q̂ − q] + τrem,

where supv τrem = op(N
−1/2). The derivative has the replicative structure:

∇1
qτsm (i) = [ln(N)]

2
τsm (i)B,

where B is bounded. Noting that [ln(N)]
2

= o
(
Nξ
)
, ξ > 0 and arbitrarily small, the result follows. The

proof for i) then follows from an induction argument. The argument for ii) is the same as that above

with the convergence of ∆s(v, τsm). From part b) of Lemmas 8 and 9 and trimming, iii) follows, which

completes the proof.

Lemma 11 Hessian Matrices. Recall the objective functions associated with the estimators in
D7) and D10). Define:

Ĥ1 (θ) ≡
〈
τ(X; q̂′)∇2

θ

{
Y − M̂s [V (θ) ; τsm(X; q̂ (N))]

}〉
H1 (θ) ≡

〈
τ(X; q′)∇2

θ {Y −M [V (θ) ; τsm(X; q (N))]}
〉

Ĥ2a (θ) ≡
〈
τ
(
V (θ̂1); q̂′

)
∇2
θ

{
Y − M̂sa

[
V (θ) ; τ̂sm

(
V (θ̂1); q̂ (N)

)]}〉
H2 (θ) ≡

〈
τ (V (θ0); q′)∇2

θ {Y −M [V (θ) ; τsm (V (θ0); q (N))]}
〉
.

Referring to Lemma 8, assume[
my

my + 1
[1/2− ξ]− r (d+ 2)− 2

mx + 1
[1/2− ξ]

]
> 0.

Then, with Np an op(1) neighborhood of θ0 :

a) : sup
θξNp

∣∣∣Ĥ1 (θ)− E [H1 (θ)]
∣∣∣ p→ 0.

Assume that the X’s are bounded with[
my

my + 1
[1/2− ξ]− r (d+ 2)

]
> 0.

Then:

b) : sup
θξNp

∣∣∣〈Ĥ2a (θ)− E [H2 (θ)]
〉∣∣∣ p→ 0.
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Proof. For a), employing a similar argument as in Klein and Shen (2010, Proof of Theorem 2), we use

a result due to James Powell to provide a smooth upper bound to the difference in indicators. Using a

Taylor series for this bound and for the smooth trimming function, it can then be shown that indicator

and smooth trimming can be taken as known. The result now follows from Lemma 8, part c).

To establish b), as in a) we may take all trimming as given. The proof then follows from Lemma 9,

part c).
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