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Abstract
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SA Asymptotic Properties of (3

In this section, we derive the asymptotic properties of B and the consistency of the asymptotic variance
estimator defined in Appendix D of Hahn, Liao, and Ridder (2022). The consistency and the asymptotic
distribution of fj, are presented in Subsection SA.1. In Subsection SA.2, we present the consistency of
the estimator of the asymptotic variance of Bk which can be used to construct confidence intervals for
Br,0- Proofs of the consistency and the asymptotic normality of Bk, and the consistency of the standard

deviation estimator are included in Subsection SA.3.

SA.1 Consistency and Asymptotic Normality

To show the consistency of Bk, we use the standard arguments for showing the consistency of the extremum
estimator which requires two primitive conditions: (i) the identification uniqueness condition of the
unknown parameter 3 o; and (ii) the convergence of the estimation criterion function n=1 % | 7;(8k)?
to the population criterion function uniformly over 8 € ©. We impose the identification uniqueness
condition of B¢ in condition (SA.1) below, which can be verified under low-level sufficient conditions.
The uniform convergence of the estimation criterion function is proved in Lemma SA1 in Subsection

SA.3.

Lemma SA1 Let 7;(B;) = yo,i — l2,i81,0 — Brk2,i — 9(w1,i(Bk); Br) for any By, € O. Suppose that for any

e > 0, there exists a constant d. > 0 such that

inf E[n(8:)? — 7 21 > 6. SA.1
{Bke@krlgz:—ﬁk,olzs} [T wk) T(ﬂk’o)] ‘ ( )

Then under Assumptions SB1 and SB2 in Section SB, we have By = Bro + 0p(1).

The asymptotic normality of Bk can be derived from its first-order condition:

=1

where for any Sr € O

09(w1,i(Br); Br)
0Bk

0P (1,1 (Br))

a5, + Pg(wl,i(ﬁk))’w. (SA.3)




By the definition of Q(d}l,i(ﬁk); 1) in (34) of Hahn, Liao, and Ridder (2022), we can write

n"Y " Po(@1i(Bk)) (@1 (Br); Br) = n7 1Y Pa(@ni(Br)) (85, — ka.iBk)

=1 =1

which implies that

n=t Y Fi(Br) Pa(Gni(Br)) = 0.

=1

Therefore, the first-order condition (SA.2) can be reduced to

IN L g o 0P (01,:(Br)
1 !

i koi — k14 ————— 1 =0 A4
n ;:17(510 < 2. = k1,189 (Pr) w (SA.4)
which slightly simplifies the derivation of the asymptotic normality of Bk

Theorem SA1 Let gi(w) = dg(w)/0w. Suppose that
T=E (Ugji — 7)171‘91(&)1’@‘))2 > 0, (SA5)

where v;; = k;; — Elk;ilwis] for j = 1,2. Then under (SA.1) in Lemma SA1, and Assumptions SBI,
SB2 and SB3 in Section SB

02 (B = Bro) = Y'Y T ug (vai — vrigr(wia))
=1

n
=YY g (wi) (03 — viign(w1))
=1

— YR 2(8) — Bro) + 0p(1), (SA.6)

where I' = E [(lgﬂ‘ — ll,igl (Wl,i)) <’U>2kﬂ< — V1,i91 (wlyi))] and U;,i = E[k?27i|$17i] — E[kg’i

wi,i]. Moreover
n'2(By — Bro) —a N0, YY), (SA.7)

2
where Q = E |:<U21 (v2,i — v1,i91(w1,i)) — M,i91(w1,) (USZ — U191 (Wl,i)) - FELZ‘) ] :

REMARK. The local identification condition of Sj is imposed in (SA.5) which is important to ensure

the root-n consistency of Bk ([l



REMARK. The random variable €1 ; in the definition of 2 is from the linear representation of the estimator

error

Bi—Bo=n"") e+ op(n~1/?%),

i=1
which is maintained in Assumption SB1(iii) in Section SB. Different estimation procedures of B may give

different forms for €1 ;. Therefore, the specific form of €1 ; has to be derived case by case. ]

REMARK. Since E[vj,i|w17i] =0forj=1,2,

E(la; (v2,; — v1,i91(w1,))] = E[(l2;; — Elloi|wi]) (v2; — v191(wi))] -

Therefore we can write

I' =E[(la; — Ella|wi,i] — h(z1,5)g1(wi)) (v2,6 — v1,91(w1,0))] (SA.8)

which is the form used in the main text of the paper. Moreover when the perpetual inventory method

(PIM) i.e., k2; = (1 — 0) k1,; + 41 holds, v1 4, v2; and wy; are functions of 1 ;. Therefore

E [h(z1,4)g1(w1,i) (V2,5 — v1ig1(wi))] = E 1591 (wi) (v2,i — 1,591 (wi,))]

by the law of iterated expectation. Hence we deduce that

I'=E[(l2; — l1,i91(w1,5)) (v2,5 — v1,491(w14))] (SA.9)

under PIM. OJ

REMARK. From the asymptotic expansion in (SA.6), we see that the asymptotic variance of Bk; is
determined by three components. The first component, n~1/2 S ug, (V2 — v1ig1(wr ) comes from
the third-step estimation with known wy ;. The second and the third components are from the first-step
estimation. Specifically, the second one, n~1/2 o Mg (wii) (v2,; — v1,91(wi4)) is from estimating ¢(-)

in the first step, while the third component FnI/Q(Bl — B10) is due to the estimation error in B, O

SA.2 Consistent Variance Estimation

The asymptotic variance of Bk can be estimated using its explicit form and the estimators of vy 4, va;,

* : M *
€1,is My U2, V54 M(21,;) and g1(w1,;). The unknown functions in vy, vo,i, €14, Myis U2, V34, M(71,:) and
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g1(w1,;) can be estimated by the kernel or the series method. Since Bk is constructed using the series
method and its asymptotic properties have been established in the previous subsection, in Appendix D.2
of Hahn, Liao, and Ridder (2022) we provide a estimator of the asymptotic variance based on the series
approach. In this subsection, we provide the consistency of this variance estimator.

For ease of reference, we repeat the definition of the variance estimator in Appendix D.2 of Hahn,

Liao, and Ridder (2022). First, it is clear that g(w;,;) can be estimated by g1 (@1Z(Bk), B1,) where

A ,OP2(01,i(Br))

91(@1,i(Br); Br) = By(Br) o for any By € Oy. (SA.10)

Second, the residual ¢; = v ; — v1 ;91 (w1 ;) can be estimated by

G = Akgi — Po(@14(Br)) (P2(Br) Pa(Br)) D Pal@ra(Br)) Ak,
i=1
where Aky; = ko — k1,iG1(@1,4(Br); Br)-
Given the estimated residual ¢;, the Hessian term Y in the asymptotic variance of Bk can be estimated

by

n

To=n') & (SA.11)
i=1

Moreover the Jacobian term I' can be estimated by

Do =071 (i — higa(@1,6(Bk); Br))S (SA.12)
i=1
where iLZ =P (l’l,i)/(Pllpl)_l Z?:l P ($1,i)l1,i- Define

Ui = Y20 — l2,iBl - k2,in: — @(wl,i(ﬁk); Bx) and My = Y1,i — ll,iBl - Qg(ﬂﬁu)-

Then € is estimated by

n
. .. . 2
Q,=nt Z ((ﬂzi — 1,391 (1, (Br); Br))Si — Fnél,i> (SA.13)
i=1
where €1; denotes the estimator of e1; fori =1,...,n.



Theorem SA2 Under Assumptions SB1, SB2, SB3 and SB/ in Section SB, we have
T,=Y+0,(1) and Q,=Q+0,(1) (SA.14)

and moreover R
n2(By — Brp)

——— N(0,1 SA.15
(TglﬁnTgl)l/Q —d ( ) )7 ( )

where Q,, is defined in (SA.13).

SA.3 Proof of the Asymptotic Properties

In this subsection, we prove the main results presented in the previous subsection. Throughout this
subsection, we use C' > 1 to denote a generic finite constant which does not depend on n, mj or mo but
whose value may change in different places.

ProOOF OF LEMMA SA1. By (SB.67) in the proof of Lemma SB5 and Assumption SB2(i)

sup E [Tz(ﬁk)ﬂ <C (SA.16)
Br€O

which together with Lemma SB5 implies that

sup nt Zn(ﬁk)2 = Op(1). (SA.17)

BrEOK i=1

By the Markov inequality, Assumptions SB1(i, iii) and SB2(i), we obtain

n! Z — 5> = (B—B)n Y 13, = Op(n). (SA.18)
=1



By the definition of 7;(8;) and 7;(8k), we can write

n Y # () — E [1i(Br)?]
=1
=7 (B — E [m(B)?]) + 207> 7B (55 — v3.)
=1 =1
=207 (B (§(@14(Be); Br) — g(wri(Br): Br))
=1

ol Z 935 — 5. ((@1,:(Br); Br) — 9(w1,i(Br); Br))

n

12 Ui —v3:)° Z (@1,4(Br); Br) — g(wr,i(Br); Br))?,

which together with Assumption SB2(vi), Lemma SB4, Lemma SB5, (SA.17), (SA.18) and the Cauchy-

Schwarz inequality implies that

sup |n IZTZ —IE [7:(Br) ] = o0p(1). (SA.19)
5k€®k i=1

The consistency of S follows from its definition in (35) of Hahn, Liao, and Ridder (2022), (SA.19), the
identification uniqueness condition of ) o assumed in (SA.1) and the standard arguments of showing the

consistency of the extremum estimator. Q.E.D.

Lemma SA2 Let g1, = gi(wi;) and Ji(Br) = #4(Br) (kai — k1ig1(@14(Br); Br)) for any By € Oy, where
G1(@01,4(Br); Br) is defined in (SA.10). Then under Assumptions SB1, SB2 and SB3, we have

n

! Z Ji(Bro) =n"" Z(uu —m1ig1.) (V25 — v14910) — D(Br — Bro) + op(n=1/?). (SA.20)
i=1 i=1
PRrOOF OF LEMMA SA2. By the definition of 7;(f,0) and Lemma SB7,

n'Y " #i(Bro) (k2 — k1,id1 (@14 (Br0); Bro))

i=1

nt Z i(Br0) = g(wi,i)) (k2 — k1,i91,4)

n~t Z (@1,6(Br.0); Bro) — 9(w1i)) (ki — k1ig1,) + op(n~1/2), (SA.21)



where 95 (Br.0) = Y2, — 12,3 — k2,810, and by Lemma SB9

n”! Z 01,6(B0); Bro) — 9(wia)) (kas — k1 s91.4)
=n"! Z ug,ip(wi,1) — Ell2i0(w1,)](Br — Bio)

-1 291 ((D(x1) — Dla1,)) (v — v1ig14) + 0p(n~?), (SA.22)

where ¢p(w1;) = E[kzi|wi ] — E[k1i|lwii]g1,;. By the definition of 75 ;(Bk0), we get

n~t Z@;z(ﬁko) — g(wi)) (ki — k1,491,4)
i—1

=n""Y gk — krigri) — (B — Bro)n! 252 i(k2,i — K1,i91,4)

i=1 i=1
=n"") ugi(ka; — krigri) — (B — Buo)Ellai (ke — k1ig14)] + op(n'/?) (SA.23)
i=1

where the second equality is by Assumption SB1(iii) and

n! Z lai(kai — k1ig1) = Ellai(kai — k1ig1:)] + Op(n/?)
i=1

which holds by the Markov inequality, Assumptions SB1(i) and SB2(i, ii). Therefore by (SA.21), (SA.22)
and (SA.23), we obtain

Z (Br,0) (k2,i — K1,:91(@1,i(Br,0); Br0))

=n! Z Ui (2, — v1,i914) — (B — Br0)Ell2,i(v2,; — v1,ig14)]

i=1
! Zgl i(@(w1,4) — d(21,:)) (V2 — v1ig14) + Op(n_1/2). (SA.24)
The claim of the lemma follows from (SA.24) and Lemma SB10. Q.E.D.



Lemma SA3 Under Assumptions SB1, SB2 and SB3, we have
n! Z Ji(Br) = Ji(Bro)) = — (B — Bro) [El(vai — v1,91,4)%] + 0p(1)] + 0p(n~/2).

PROOF OF LEMMA SA3. First note that by the definition of .J;(f;) and 7;(8), we can write

nl i( Ji(Br) = Ji(Br.0))
= B Bron zj;kg,ium Fuidn (@14(30); )
—n! zn;(ﬁ(wl i(Br); Br) — 901, (Bry0); Bro)) (k2 — k1,191 (@16 (Br,0); Bryo))
—n! 2; ug,ik1,i (§1(@1i(Br); Br) — §1(@1,4(Br.0); Br0))
— Brojn szz (31(@1.4(Be): Br) — 91(@1,4(Bro): o) (SA.25)

which together with Assumption SB1(iii), Lemma SB14, Lemma SB18 and Lemma SB20 implies that

n! Z( i (Br) — Ji(Bro)) = —(Br — Br.0)Elkai(kai — k1,91.)]
i=1
+ (B — Br,0) [Elk1,:91,i(v2,s — v1,i91,6)] + E[k2:0(w14)]]
+ (B = Bro)op(1) + 0p(n™H?)
= —(B — Bro) [El(va, — v1.491.4)%) + op(1)] + Op(n_l/z)
which finishes the proof. Q.E.D.

I =E[(l2; — higi(w1,)) (vo,; — v1,i91(w1,4))] < C (SA.26)

and

Q = E[((u2 — m1.491(w1.)) (ai — v1igi(wii)) — Ters)?]
< CEluy; +ni; +vi; + vy, +ei,] < C. (SA.27)



By Assumption SB1(i), (SA.27) and the Lindeberg-Lévy central limit theorem,
n1/? D (w2 = migr (wi4)) (v25 — v1ig1(wi)) — Ter) —a N(0,9). (SA.28)
=1

By (SA.4), Assumption SB1(iii), Lemma SA2 and Lemma SA3, we can write
0=n"" Z Ji(Bro) +n7" Z(ji(ék) — Ji(Bro))
i=1 i=1

=n"1Y (2 — m1igi(w) (Ve — viigr(wi) — Tn'/?(B — Bio)
=1

— (B — Bro) [E[(va; — v1,i91(w1,i))?] + 0p(1)] + 0p(n~1/?) (SA.29)

which together with (SA.5) and (SA.28) implies that

”1/2(Bk—5k,0) =Y In71/2 Z(Uzi—Ul,igl(m,z‘))(vzi—v1,i91(w1,i))—T_lfnl/Q(ﬁl—5170)—1—01)(1). (SA.30)
i—1

This proves (SA.6). The claim in (SA.7) follows from Assumption SB1(iii), (SA.28) and (SA.30).Q.E.D.

PrROOF OF THEOREM SA2. The results in (SA.14) are proved in Lemma SB22(i, iii), which together
with Theorem SA1, Assumption SB4(iii) and the Slutsky Theorem proves the claim in (SA.15). Q.E.D.

SB Auxiliary Results

In this section, we provide the auxiliary results which are used to show Lemma SA1, Theorem SA1 and
Theorem SA2. The following notations are used throughout this section. We use ||-||, to denote the Lo-
norm under the joint distribution of (¢, ¢, kti, le,i)i=1,2, ||-]| to denote the Euclidean norm and ||-||g to
denote the matrix operator norm. For any real symmetric square matrix A, we use Apin(A) and Apax(A)
to denote the smallest and largest eigenvalues of A respectively. Throughout this section, we use C' > 1
to denote a generic finite constant which does not depend on n, m; or mo but whose value may change

in different places.

SB.1 The Asymptotic Properties of the First-step Estimators

Let Qm, = E[Pi(x1,)Pi(z14)']. The following assumptions are needed for studying the first-step estimator

().
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Assumption SB1 (Z) The data {(yt,iait,i,kt,ialt,i)tzl,Q}?zl are ZZd, (ZZ) ]E[Tll,i’xl,’i] =0 and E[liz +

nfi\xl,i] < C; (iii) there exist i.i.d. random variables €1 ; with E[E‘ii] < C such that

n
Bi—Bo=n""> eri+op(n'?);

i=1

(i) there exist ry > 0 and Bym € R™ such that sup,cy |dm(x) — ¢(x)] = O(m™"*) where ¢, (x)

P ({L‘),qu,m and X denotes the support of x1; which is compact; (v) C™! < Mnin(Qmy) < Amax(Qumy) <
C uniformly over my; (vi) m3n=t + n'2m " = O(1) and log(ml)ﬁamln_l = o(1) where &y m, is a

nondecreasing sequence such that sup,cx || P1(x)]] < &om, -

Assumption SB1(iii) assumes that there exists a root-n consistent estimator Bl of B;. Different es-
timation procedures of Bl may give different forms for €1 ;. For example, Bl may be obtained together
with the nonparametric estimator of ¢(-) in the partially linear regression proposed in Olley and Pakes
(1996), or from the GMM estimation proposed in Ackerberg, Caves, and Frazer (2015). Therefore, the
specific form of €1; has to be derived case by case. The rest of the conditions in Assumption SB1 are
fairly standard in series estimation; see, for example, Andrews (1991), Newey (1997) and Chen (2007).!
In particular, condition (iv) specifies the precision for approximating the unknown function ¢ (-) via
approximating functions, for which comprehensive results are available from numerical approximation
theory.

The properties of the first-step estimator ¢2() are presented in the following lemma.

Lemma SB1 Under Assumption SB1, we have

n Y o) — ¢lara) P = Op(man™) (SB.31)
i=1
and moreover
sup. [B(x1) = d(x1)| = Op(Eomymy/*n~172), (SB.32)
x1€

PrROOF OF LEMMA SB1. Under Assumption SB1(i, v, vi), we can invoke Lemma 6.2 in Belloni, Cher-

nozhukov, Chetverikov, and Kato (2015) to obtain

Hn_lpllPl = Qm, HS = Op((log m1)1/2§0,m1”_1/2) = op(1), (SB.33)

'For some approximating functions such as power series, Assumptions SB1(v, vi) hold under certain nonsingular trans-
formation on the vector approximating functions P; (-), i.e., BPi(+), where B is some non-singular constant matrix. Since
the nonparametric series estimator is invariant to any nonsingular transformation of P;(-), we do not distinguish between
BP;(-) and Pi(-) throughout this appendix.

11



which together with Assumption SB1(v) implies that

C™' < Amin(n'PIP1) < Amax(n'PIP1) < C

(SB.34)

uniformly over m; with probability approaching 1 (wpal). Since 1, = Y1, — luﬁl = ¢(z1,;) + My —

11.:(B1 — Buo), we can write

B = Boam = (PIP1) 1> Pi(w1i)m
i1
+ (P1P1)” Z Pi(z14)(@(z1,6) — Omy (21,4))
— (B — Buo)(PiP1) 7! Z Py(z1,)l.

=1

By Assumption SB1(i, ii, v) and the Markov inequality

n 3" Pr(1i)ns = Op(my*n1/?)

i=1
which together with Assumption SB1(vi), (SB.33) and (SB.34) implies that
n
_ _ 17— 1/2 _

(0 "PIP) T = Q2 n ) Pu(mia)ma = Op((log M) Y260, mymy *n 1) = o0p(n~1/2).

By Assumption SB1(iv, vi) and (SB.34)
(P1Py)” ZP1 210)(0(210) = b (214)) = Oplm ™) = Op(n™"12).
Under Assumption SB1(i, ii, v, vi), we can use similar arguments in showing (SB.36) to get
n
_ 1/2
01" Pi(er)l — E[P(@1)l,] = Op(my*n1/2) = 0,(1).

By Assumption SB1(i, ii, v),

B[Py (x1.)]])° < Amax(le)E[ll,ipl(xl,i)/]Q;zllE[Pl(xl,i)ll,i] < CE[lii] <C

12

(SB.35)

(SB.36)

(SB.37)

(SB.38)

(SB.39)

(SB.40)



which combined with (SB.39) implies that
n! Zn: Pi(z1,)l1; = Op(1). (SB.41)
i=1
By Assumption SB1(iii, v, vi), (SB.33), (SB.39), (SB.40) and (SB.41),
(B — Bro) (P P1)~ ZPI 1)l = Q E[P(21,)l1,] (81— Bro) + Op(n~1?)

which combined with Assumption SB1(vi), (SB.35), (SB.37) and (SB.38) shows that

By — Bomi = Qi (Z Py(z1,0)m, — B[Py (z1,0)l,4) (B — 51,0)) +0,(n V%) = Op(mi/Qn’l/Q), (SB.42)
=1

where the second equality follows from Assumptions SB1(iii, v), (SB.36) and (SB.40). By the Cauchy-

Schwarz inequality

n! Z |(21,) — dlar)|* < 207 Z |(214) = bmy (21,0)]* + 207! Z | by (21,6) — d(1,0)]?

i=1 i=1

® 42 5up 6wy (2) — 6()] = Op(m/2n112), (SB.43)

< 2max(nPIP) [y = B,
TEA]

where the equality is by Assumptions SB1(iv, vi), (SB.34) and (SB.42), which proves (SB.31). By the

triangle inequality, the Cauchy-Schwarz inequality, Assumption SB1(iv, vi) and (SB.42)

sup |p(z1) — ¢(21)| < sup |$(21) — b, (21)] + SUP [P, (21) — B(21)]

T1EX T1EX T1EX
< €om || = Bom || + O(my ") = Op(€omymy*n ™) (3B.44)
which proves the claim in (SB.31). Q.E.D.

SB.2 Auxiliary Results for the Consistency of Bk

Recall that wi; (Bk) = é(z1,)) — Brk1,i and g(w; Bk) = Elys,; — Brke,ilwi,i (Bk) = w]. For any Sy € Oy,
let Q(Bk) = [ag,,bp,] denote the support of wy ;(Bx) with ¢, < ag, < bg, < C., where ¢, and C,, are

finite constants. Define Q.(8) = [ag, — €,bg, + €] for any constant € > 0. For an integer d > 0, let

\g(ﬁk)!d = Maxo<;j<d SUPuen(By,) ‘5jg(w; Bk)/awj|-

13



Assumption SB2 (i) ]E[(yék’i)4 + l;i + k§7i|x17i] < C; (i) g(w; Br) is continuously differentiable with
uniformly bounded derivatives; (iii) for some d > 1 there exist Bgm,(Br) € R™* and ry > 0 such that

supg, co, 19(Bk) — Ims (Be)|g = O(my ) where g, (w; Br) = P2 (w) Bgmy (Br); (iv) for any By, € Oy, there
exists a nonsingular matriz B(8y,) such that for Py (wi(Br); Br) = B(Br)Pa (wi(Br)),

C_l < )\min(sz (ﬂkz)) < )\maX(ng (Bk)) < C
uniformly over By, € Oy, where Qmy(Br) = E[Py (wi1(Br); Be) Pa (wi(Br): Br)']: (v) for j = 0,1,2,3, there

exist sequences §jm, such that supg, ce, SUP,cq. (5,) ‘Wﬁg (w; Br) /0wt 85%7]'1

e = m2_2; (Vi) &jmy < C'mg—‘_1 and fo,ml(miﬂm% + (log(71))1/2)n_1/2 + n1/2m2_r9 =o(1).

< &jms, where j1 < j and

Assumption SB2(i) imposes an upper bound on the conditional moments of 3 ;, lo; and k; given
be well approximated by linear combinations of P5 (w). Assumption SB2(iv) imposes normalization on
the approximating functions P» (w), and uniform lower and upper bounds on the eigenvalues of Q,,, (Bx)-
Assumption SB2(v, vi) restrict the magnitudes of the normalized approximating functions and their
derivatives, and the convergence rate of the series approximation error.

Since the series estimator §(w1:(Bk); Br) = P2 (djl,i(ﬁk))'ﬁg (B) is invariant to any non-singular trans-

formation on P (w), throughout the rest of the Supplemental Appendix we let
Py(Br) = (Poa(Br). - Pan(Br)) and Po(Br) = (Poa(Br); - Pon(Br))',

where Py ;(Br) = B(Br) Pa(w1i(Br)), Poi(Br) = B(Br)Pa(@14(Bk)) and &14(Br) = (w1.4) — k1.i8k-> Define

o pz (UJ} Br)

and &Py (Br) = & Py (w1,i(Br): Br)
forj=1,2,3andi=1,...,n.

Lemma SB2 Under Assumptions SB1 and SB2, we have

sup
BrEOK
2Note that we define Ps ;(8x) = P2(@1.:(Bx)) in Section D.1 of Hahn, Liao, and Ridder (2022). We change its definition

here since the asymptotic properties of the series estimator §(w1,i(8k); Br) = P2 (@1,:(Br)) By (Br) shall be investigated under
the new definition Pz,i(ﬁk) = B(ﬁk)Pz(@Ll(ﬁk))

0 Pa(5) Pa() = Pa(B) Pa(B)]| | = OplErmami ).
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PRrROOF OF LEMMA SB2. Since w;; (8x) = <ZA>(1’1,1‘) — Brki1,i, by Lemma SB1

Sup ma [n(B) — ()] = max [B(x1,5) = B(w1,6) = OplEommi*n™2) = 0,(1)  (SB.45)
LEOQ, SN <n

which together with Assumption SB2(vi) implies that

w1,i(Br) € Q:(Bx) wpal (SB.46)

for any ¢ < n and uniformly over 5, € ©. By the mean value expansion, we have for any vy € R™2
Uh(Po(B) = PoalBe))| = [v40" P (@14(81): Bi) (@14(Be) = w14(81)|. (SB.47)

where @ ;(B) lies between wy ;(Bx) and wy ;(Bk). Since wy;(Bk) and @y 4(Bk) are in Q. (By) uniformly over
Br € O and for any i = 1,...,n wpal, the same property holds for @; ;(5x). By the Cauchy-Schwarz
inequality, Assumption SB2(v) and (SB.47)

Vh(Pai(Br) — Poi(Br))| < llvall €1ms|0(21,) — d(21,:)| wpal.

Therefore,

vy (Pa(Br) — Pa(Br)) (Pa(Br) — Pa(Br))ve
= > (Wh(Poi(Br) — Poi(Br)))? < [loall® &5y D 16(w1,0) — l1,0)
=1

=1

wpal, which together with Lemma SB1 implies that

sup 1P2(8r) — P2(Be)lls = Op(€xmemy’?). (SB.48)
k€O

By Lemma SB24 and Assumption SB2(iv, vi), we have uniformly over i € Oy

C_l < Amin(n_IPZ(ﬁk)/f’Q(ﬁk)) < )\max(n_IPZ(Bk)/lSQ(/Bk)) < C Wpal. (SB49)
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By the triangle inequality, Assumption SB2(vi), (SB.48) and (SB.49), we get

sup {|n~ ' Pa(B) Pa(Br) — n_lf’Q(/Bk)/p2(Bk)H
BrEOK o
< sup 0! |[(Pa(B) — Pa(B) (Pa(By) — Pa(Be))
Br€O o

+ sup nt H(Pz(ﬁk) - PQ(B’C))/PQ(&)HS
BrEOK

+ sup n ! Hf)2(5k)/(132(ﬁk) — 152(5k))H = Op(fl,QO}ﬂn_l/Z)

Br€OL s

which proves the claim of the lemma. Q.E.D.

Lemma SB3 Under Assumptions SB1 and SB2, we have

sup 1S Poa84) By (B) — eni(8): B1)| = Opl(m3 + & pymin™) = 0,(1),

Pe€Ok i=1
where By (B) = (Pa(5) P2(8i)) " Pa(Br) Y3 (Br).
ProoOF OF LEMMA SB3. By the Cauchy-Schwarz inequality and Assumption SB2(iii)
n! i ‘pQ,i(/Bk)/Bg(Bk) — g(w1,i(Br): 5k)’2
i=1
<2n~ zn: )Pz,i(ﬁk)/ﬁg(ﬁk) — gms (W1,i(Bk); ﬁk:)r
i=1

+207 0 gy (w1, (Br): Br) — 9(w1,i(Br); B

=1

< 2 (0 Po(B) Pa(B)) 18y (Br) — Byma (Be)I[> + Cmy " (SB.50)

for any By, € Oy, where By.m, (8r) = (B(Br)) " By.ms (Br) and By ms, (k) is defined in Assumption SB2(iii).
We next show that

~ ~ 2
Ba(B1) = B (B)|| = Opl(m3 + € yman™) = 0,(1) (SB.51)

sup
Br€EO

which together with (SB.49) and (SB.50) proves the claim of the lemma.
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Let u2,i(Bk) = y5; — k2,i8k — 9(w1,i(Bk), Br)- Then we can write

By(Br) = Bgana (Br) = (P2(B1) P2(Br) "' P2(Br) (Y3(Br) — P2(Br) Byams (Br))
(PZ Bk P2 ﬁk ZPZZ 616 le Bk) Bk) _gm2(d}l,i(ﬁk)wﬁk))

— (B — Bro)(Pa(Br) Pa(Br)) szz Br)l2,i

+ (Pa(S) P2(Br)) ZPQ i(Br)u2,i(Br), (SB.52)

where g, (01:(8k), Bk) = Poi(Br) Bgms (Br). By Assumption SB2(vi), Lemma SB2 and (SB.49), we have

uniformly over i € Oy
C™' < Ain (0 P2(B1) P2(Br)) < Amax(n ™ P2(B4)P2(By)) < C wpal (SB.53)

which implies that Po(8y)(P2(8r) P2(Br)) *Pa(B) is an idempotent matrix uniformly over 8, € Oy

wpal. Therefore,

2

(P2(Br)'Pa(Br)) me Br)(9(w1,i(Br); Br) — Gma (01,i(Br), Br))

< Op(1)n~" Z(g(wl,i(ﬁk)a Br) = s (@1:(Br), Br))?, (SB.54)

uniformly over fj, € O. Since wy ;(Bk) = ¢(x1,;) — k1,:k, we can use Assumptions SB1(i) and SB2(i) to
deduce

sup [g(w1,:(Br); Br)| < C. (SB.55)
Br €O

Therefore,

sG] < 5D O @una (G0)) ™ [P (1) Bns (81|

sup
BrEO BrEO
< C sup ||g(wi(Br); Br) — Gms (wi.i(Br); Be) 3
BrEOL
+C sup lg(wii(Br); Br)lla < C. (SB.56)
BrE€O

By the second order expansion, Assumption SB2(iii, v, vi), Lemma SB1, (SB.55) and (SB.56), we have
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uniformly over B € O,

nt Z(QM (w1,:(Br): Br) — Gma (@1, (Br), Br))?

201 (01 Po,i(Br) Byuma (Br) (9(1.4) — pla1,4))?

i=1

2n~! 2(52152 (@1,:(B1); Br) By,ma (Br)(d(x1,3) — d(21,1)%)?

=1
= Op(man™") + 0p(€3 1, &8 mymin ) = Op(man™"),

where @1 ;(8k) is between wy ;(8x) and @i ;(B) and it lies in Q.(B)) uniformly over 85 € ©) wpal by

(SB.46), which together with Assumption SB2(iii, vi) implies that
n
nY (g(wri(Br)s Be) = Gma (@14(Br), Br))?
i=1

<COn ' (g(wri(Br), Bk) — gma (wri(Br), Br))?

i=1

O™ Y (gma (Wi (Br)s Br) — G (@1,3(Br), Br))?

i=1

= Op(min~" +my7"%) = Op(min). (SB.57)
From (SB.54) and (SB.57), we get uniformly over S € Oy

(P2(Br) Pa(Br)) ! ZP2 i) (9(w14(Br)s Br) = gma (@1,4(Br), Br)) = Op(my/*n=12). (SB.58)

By Assumptions SB1(i) and SB2(i), and the Markov inequality,
n~! zn: 15,=0 (SB.59)

i=1
which together with Assumption SB1(iii) and (SB.53) implies that

(81— Bro) (P2(Br) Pa(Br)) Z i(Br)lai = Op(n~1/?) (SB.60)

uniformly over i € ©. By the mean value expansion, the Cauchy-Schwarz inequality and the triangle
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inequality, we have for any ve € R™2

n

nt Y oh(Poi(Br) — Pai(Bi))uzi(Br)

i=1

n~! Z VRO Py (@1,:(Br); Bre) (@1, (Br) — wii(Br))uz,i(Bk)

i=1

n

< ol €man™" )

=1

(¢(z1,) — ¢($1,i))u2,i(5k)‘ : (SB.61)

By the definition of us;(8), we can use Assumptions SB1(i) and SB2(i), (SB.55) and the Markov in-
equality to deduce

sup n 12 ug i (Br))? = Op(1). (SB.62)
BrEOK i—1

Thus by the Cauchy-Schwarz inequality, Lemma SB1 and (SB.62),

A1) — da1.i))uzi(Br)| = Op(mi/*n=1/2)

sup n~
BrEOK i—1

which together with (SB.53) and (SB.61) implies that
(P2(Br) P2(Br)) 12 (Poi(Br) — Po,i(Br))uzi(Br) = Op(Ermymy*n~Y/?) (SB.63)
uniformly over Sy € ©. Applying Lemma SB25 and (SB.53) yields

(P2(Br)'P2(Br)) Z Poi(Br)u2i(Br) = Op(man~1/?) (SB.64)

uniformly over f € Of. The claim in (SB.51) then follows from Assumption SB2(vi), (SB.52), (SB.58),
(SB.60), (SB.63) and (SB.64). Q.E.D.

Lemma SB4 Under Assumptions SB1 and SB2, we have

sup n IZ 19(@13(Br); Br) — 9(wri(Br); Br)l” = Op((m3 + €8 ppyma)n™) = 0p(1).

BrEOk i—1
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PROOF OF LEMMA SB4. By the triangle inequality, (SB.51) and (SB.56)

sup
BrEOL

By(Bo)|| < sup
BrEOK

/Bng Bk H + sup

BrEO

By(B1) = Byama (8| = O (SB.65)

By the mean value expansion, the Cauchy-Schwarz inequality, Assumption SB2(v, vi), Lemma SB1 and

(SB.65),

sup S| (Paa(G) — Paa(50)) BulB)|
i=1

BrEOK

= sup 37 [0 Py (@ua(80): B0 By(51) @148k — wra(0)|

6k€®k i=1

<& pn Z $(z1,) — p(x1,4))* sup

BrEO

By(By)|| = Op(€ uymun™) = 0,(1), (SB.66)
where @1 () is between wy ;(5x) and wi ;(Bx) and hence by (SB.46) it lies in Q.(8y) wpal for any ¢ <n

and uniformly over B € ©f. The claim of the lemma directly follows from Lemma SB3 and (SB.66).
Q.E.D.

Lemma SB5 Under Assumptions SB1 and SB2, we have

sup n 12 Ti Bk —-E [Tz(/Bk) ]) = P(n_l/Q)'

BrEOK i—1

PrROOF OF LEMMA SB5. For any [ € O, by the Cauchy-Schwarz inequality and (SB.55),
ni(B)? < C [(Z/Sz)z + k%zﬁ]% + g(w1,i(Br); 5k)2] <C(+ (ygz)g + k%z) (SB.67)

For any f.1, Br,2 € O, by the triangle inequality and Assumption SB2(ii),

17i(Br,1) — Ti(Br2)| < (C + ko) [Br1 — (SB.68)
By Assumption SB2(ii), (SB.67) and (SB.68), we get
E | 7:(8%)? |7:(Bea) — Ti(Br2)*| < C(Bry — Br2)? (SB.69)
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for any By € ©p, which implies that

E [’Ti(ﬁk,l)Q - Ti(ﬁka)Qﬂ < C(Bra — Bro)*.

Therefore we have for any 81, B2 € O,

|7:(Be1)? = 7:(Br2)?|, < C1Bka — Bral - (SB.70)
By Assumptions SB1(i) and SB2(i), and (SB.55),

| |

=E [n(80)"] - (E[n(81)%])* < C (B [(5.)* + ki + (9(wi:(Br); Br)']) < C

nfl/QZ —E Tz(ﬂk) ])

for any i € ©, which implies that

n2 Y (1(B)” — B [1(8r)°]) = 0p(1) (SB.71)
1=1

|

<E [‘Ti(ﬁk,l)z - Ti(ﬁk,2)2ﬂ < OBk — Bral®. (SB.72)

for any By € ©f. Moreover, by Assumption SB1(i) and (SB.70)

{ _1/22 i(Br1)? = 7i(Br2)* = E [1:(Br,1)* = 7i(Br1)?])

Collecting the results in (SB.71) and (SB.72), we can invoke Theorem 2.2.4 in van der Vaart and Wellner
(1996) to deduce that

sup |n 1/22 *—E[nB?])||| <C
BrEOK 9
which together with the Markov inequality finishes the proof. Q.E.D.

SB.3 Auxiliary Results for the Asymptotic Normality of Bk

Let aj(w) = E[k}ji

)

wi; =w] and v;; = kj; — aj(w,;) for j = 1,2. Define

hi(z1,;) = Elliilz1]  and  p(w) = az(w) — a1(w)g1(w),
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where ¢1(w) = dg(w)/0w. For any B, € O and i =1,...,n, let

9i(Br) = 9(©01,:(Br); Br)  and  §1,i(Br) = 91(01,i(Br); Br)-

The following assumptions are needed for showing the asymptotic normality of Br.

Assumption SB3 (i) ¢(w) is continuously differentiable with uniformly bounded derivatives over w €

Q(Bro); (i1) there exist Bym, € R™* and 1, > 0 such that

sup  [p(w) = m, (W)| = O(my "),
weQ(B,0)

where O, (W) = Pa(w) Bpmy; (1) for any function (-) with |[Y(z1,)|, < oo, there exists By m, € R™?

such that ||t — Ym, ||y — 0 asmy — 00 where Y, (21) = P(21) By, ; (v) nt/?my ¢ +mimin=12 = o(1).

Assumptions SB3(i, ii) require that the function ¢(w) is smooth and can be well approximated by
the approximating functions P> (w). Assumption SB3(iii) requires that any function of z;,; with finite
Ly-norm can be approximated by the approximating functions P; (x; ;). Assumption SB3(iv) restricts

the numbers of the approximating functions, and the smoothness of p(w).

Lemma SB6 Under Assumptions SB1, SB2 and SB2(iv), we have
5 > 1/2 /2 _
Hﬁg(ﬁk,o) — Bgma (@c,o)H = 0y((my? +my/*yn=1/?),

where By.my(Br.o0) = (B(Br.0)) ™ Byma (Bro) and Byms(Bro) is defined in Assumption SB2(iii).

PROOF OF LEMMA SB6. By the definition of 3,(8)), we can utilize the decomposition in (SB.52), and
the results in (SB.58) and (SB.60) to get

By (Br,0) = Bgams (B.0) = P2(Br0) P2(Br0)) " D Pai(Bro)uzi + O, (m\/*n=1/2). (SB.73)
i=1
By the second order expansion, we have for any vy € R™2

n v (Poi(Bro) — Pri(Bro))uzs =n~ 'Y vhd Po; (Bro) (i — ¢i)ua,

=1 =1

+ 07 b0 Py (@133 Bro) (6 — i) uai. (SB.74)

=1
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By Assumption SB2(i) and (SB.55),
E [u3;]z1] < C. (SB.75)

By Assumptions SB1(i, v) and SB2(vi), (SB.75) and the Markov inequality

n! Z ug,i| Pr(x13)Pr(x13) — E [Jugi| Pr(x1,) P (1))
i=1

= 0,(1). (SB.76)
S

Since Amax(E [|ug,i| Pi(x1,)Pi(z1,)"]) < C by Assumption SB1(v) and (SB.75), from (SB.76) we deduce
that
)\max (nl Z "LLQJ“ P1 (JJM)Pl(a:M)’) S C Wpal. (SB77)

=1

By (SB.42) and (SB.77), we get
n~t i ‘W,i(@z’ - Cbml,i)Q‘ = Op(min™?). (SB.78)
i=1
By Assumptions SB1(i, iv) and SB2(i), and the Markov inequality
nt z": |u2,i(bmyi — 81)] = Op(my ™)
i=1
which together with (SB.78) and Assumption SB2(vi) implies that
n! i uzil (i — ¢i)” = Op(man™). (SB.79)
i=1

By the Cauchy-Schwarz inequality and the triangle inequality, Assumption SB2(v) and (SB.79)

n”! Z V2 Py (@155 Bro) (9i — i) uzs| < || Op(Eameman™). (SB.80)
i=1
By Assumptions SB1(i, v) and SB2(v), and (SB.75),
2

n
n' ugi0' Py (Bro) Pi(1)

=1

E < CfiQOln_l
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which together with the Cauchy-Schwarz inequality, the Markov inequality and (SB.42) implies that

n~! Z 2,750 Po i (Bro) Pr(1,4) (Bs — Bomy)

i=1
< ozl B = Bom | |n 7 D s 0" Pai (Bro) Pa(an, ) | = [[v2l] Op(€rmamin™). (SB.81)
i=1
By Assumptions SB1(i) and SB2(iii, v, vi), and (SB.75),
2
|| - Z 0" Pai (Bro) (dmai — Gi)uza|| | < CE&n~°

which together with the Cauchy-Schwarz inequality and the Markov inequality implies that

n b0 Py (Bro) (Smai — di)uzi| < [|vall Op(rmyn ™). (SB.82)
i=1
Collecting the results in (SB.81) and (SB.82) obtains
n 1Y 050" Pai (Bro) (i — di)ua,i| < [|vall Op(E1myman ™). (SB.83)
i=1

Therefore, from Assumptions SB2(vi) and SB3(iv), (SB.53), (SB.74), (SB.80) and (SB.83) we can deduce

(P2(Br.0)P2(Br0)) Z(pQ,i(/Bk,O) — Pyi(Bro))uz; = Op(m)/*n=1/2). (SB.84)

i=1

By Assumptions SB1(i) and SB2(v), and (SB.75),
n' Y Pri(Brolusi = Op(my/*n='1?)
which together with (SB.53) implies that

(Pa(Br,0)P2(Br.0)) Z i(Bro)uzi = Op(my/*n=1/2). (SB.85)

The claim of the lemma follows from (SB.73), (SB.84) and (SB.85). Q.E.D.
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Lemma SBT7 Under Assumptions SB1, SB2 and SB3, we have:
nY 7 (Bro)kri(91i(Bro) — g1(wi4)) = op(n~1?).
i=1

Proor oF LEMMA SB7. By the definition of 7;(8 ), we can write

n

n! Z 7i(Br,0)k1,i(91,: (Br,0) — 91(w1,i))

=1

=0~ kri(g(wi) — §i(Br0)) (91i(Bro) — 91(wra))
=1

nY k(3 (Bro) — 9(w14)) (G1i(Bro) — g1 (wr))- (SB.86)

i=1

We shall show that both terms in the right hand side of the above equation are op(n_l/ 2). By the
Cauchy-Schwarz inequality, (SB.53), (SB.57) and Lemma SB6

n~! Z (Br0) — 9(wi4))?

<Cnt Z(pz,i(ﬁk,o),(ég(ﬁk,o) — Bgms(Br0)))?

=1

™ (Po,i(Bro) Bgms (Bro) — 9(wri)))?

i=1
< 2By (80)  Byns (Be0)| || Amasn™ P(Bi0) Pa0) + Oplrman™)
= Op((m1 +ma)n™h). (SB.87)
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Similarly, we can show that

n! Z (91, (Bro) — g1(w1,1))?
Cn~! Z(alpz,i(ﬁk,o)/(ﬁg(ﬁm) — Bygms (Bro)))?
=1

™1 (0" Poi(Bro) — 0" Pai(Bro)) Bgama (Bro))?

=1

Cn! 2(31152,i(5k,0)/5g,m2 (Bro) — g1(wi,))?

=1
2 A 5 2 2 -1
< Cfl,mg /Bg(ﬁk,o) - ﬁg,mz (516,0) H + Op(gzmgmln )

- Op(é.imz (ml + m2)n71 + §§7m2m1n*1). (SB88)

Therefore, by the Cauchy-Schwarz inequality, Assumption SB3(iv), (SB.87) and (SB.88),
nY ki (9i(Bro) — 9(w1a)) (G1i(Bro) — g1(w4)) = op(n?). (SB.89)

Since 95 ;(Br0) — g(wi,i) = u; — li(B — Buo), we can write

nt> (5 (Bro) — 9(wia))k1i(G1i(Bro) — g1(wi)
i=1
=01 ugik1i(§1i(Bro) — 91(w14))
i=1
— (B — Bro)n Zzl ik14(91.6(Bro) — 91(wr4))- (SB.90)

Since k;; has bounded support, by Assumptions SB1(i, ii, iii), SB2(vi) and SB3(iv), (SB.88) and the
Markov inequality,

(B — Bro)n le ik13(91,6(Bro) — g1(wr,i)) = op(n™/?). (SB.91)

Let
O' Py i(Br) = 0" Pa(@1.4(Br); Br) for any B, € Oy
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Then we can write

n g ik (914 (Bro) — g1(wi)
i=1

=n! Z u2,ik1,i(31152’7;(ﬁk70) — 81152,i(5k,0))/3g(5k,0)

i=1

+n! Z g, ik1,:0" P i(Br.0) (B (Bro) — Boma (Bro))
i=1

+nt Z ug ik (81]32,1'(&,0)’5’977”2 (Bro) — 0 (Wl,i)) . (SB.92)
i=1

By Assumptions SB1(i) and SB2(iii), (SB.75) and the Markov inequality, we have

n~! Zum‘/ﬂ,i (81]52,1'(5&0)’39,”12 (Bro) — o1 (Wl,i)> = Op(n—l/z)_ (SB.93)

i=1

Similarly,

n~! Z u2,ik1,;0" Pai(Br0) = Op(E1,mon ™ /?)
=1

which together with Assumptions SB2(vi) and SB3(iv), and Lemma SB6 implies that

n! Z u,ik1,:0" Pa,i(B10) (Bo(Br0) — Bgma (Bro)) = 0p(n™'/3). (SB.94)
=1

By Assumption SB1(i), (SB.75) and the Markov inequality

nt ud k] = 0p(1). (SB.95)
1=1

~

Let (ﬁz = ¢(z1,) and ¢; = ¢(x1,4). By the second order expansion,

n~! Z u2,ik1,i(51p2,z'(5k,o) — 61F’2,i(5k70))’ﬁg(5k70)
i—1
=n"! Z uz,ik1: (¢ — 61)0* Pai(Br.0) By (Br.0)
=1
0ty ua ik (s — 60)*0° Pa(@1,i(Bro); Br0) By (Bro), (SB.96)
=1

where @1 ;(Bk0) is between @i ;(Bro) and wii(Bro). By the Cauchy-Schwarz inequality, Assumption
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SB2(v), Lemma SB1, (SB.65) and (SB.95)
nty ug,ik1,i(di — 03)20° Po(@1,1(Bro); Bro) By (Br.o) = Op(E3meman™) = op(n~"/2), (SB.97)
=1

where the second equality is by Assumptions SB2(vi) and SB3(iv). By Assumptions SB1(i, v) and SB2(v),
and (SB.75)

nt Z ug k1, Pr(21,)0*Pai(Bro) = Op(§2,m2m}/2n71/2)
=1

which together with Lemma SB1 and (SB.65) implies that
nh ug ik (i — 0)07Pai(Bro) By (Bro) = Op(€amymin™") = op(n~1?), (SB.98)
i=1
where the second equality is by Assumptions SB2(vi) and SB3(iv). Similarly, we can show that

n g ik i(Gmy (£16) — G(21,6))0% Pri(Br) By (Bro) = op(n™'/?)

i=1

which together with (SB.98) implies that
n! Z g ik i (¢ — 61)0*Pai(Bro) By(Bro) = op(n~/?). (SB.99)
i=1
Collecting the results in (SB.96), (SB.97) and (SB.99) we get

n ug ik (0" Poi(Bro) — 0" Pai(Bro)) Be(Bro) = op(n~/?). (SB.100)

=1

By (SB.90), (SB.91), (SB.92), (SB.93), (SB.94) and (SB.100),

n! Z(Qg,i(ﬁk,()) — g(w1,0))k1,i(91,i(Bro) — 91(w1,)) = 0p(n~1/3). (SB.101)
i=1
The claim of the lemma follows from (SB.86), (SB.89) and (SB.101). Q.E.D.
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Lemma SB8 Under Assumptions SB1, SB2 and SB3, we have

1 (Poi(Br) Byama (Bro) — 9(wi,) (ka,i — krigr (wi4))

=1

=n! Zgl (w1,)(D(w14) — d(@1,4)) (k2 — krigr(wi ) + op(n ).
i=1

Proor or LEMMA SBR. First we write

n

0 (Poi(Br0) Boms (Bro) — 9(wi i) (ka.i — kriga (wi))

=1

=n! Z(ﬁ’zi(ﬂk,o) — Py,i(Br0)) Bgms (Br0) (ki — k1ig1 (wi ;)
=1

+ 17 (PoilBro) Boans (Bro) — 9(wii)) (ko — kigi(wi))-
i=1

By Assumptions SB1(i) and SB2(i, ii), and the Markov inequality
nY (ko — krigi(wi)? = Op(1).
i=1

Therefore by Assumption SB2(iii, vi) and (SB.103), we have

n! Z(PQ,i(Bk,O)/Bg,mg (Bro) — 9(w1,)) (k2,i — krigr (wi4)) = op(n™'/3).
=1

Recall that ¢; = ¢(z1,) and ¢; = ¢(z1,). By the second order expansion,

1 (Poi(Bro) — Poi(Bro0)) Boans (Bro) (k2 — k1ig1(wi))
i=1

=01 0" Py i(Br0) Bg.ma (Bro) (i — ¢i) (kai — k1igr (wi,6))
=1

+n Y P Pol@1,i(Br0); Bro) By (Bro) (@i — ¢i)* (k2 — k1ign (wi4))-

i=1

29
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By the Cauchy-Schwarz inequality and the triangle inequality, Assumption SB2(v), (SB.46) and (SB.56)
n ~ ~ A
n= 07 Po(@1,i(Br0); Bro) Bgama (Br,0) (6 — ¢i)? (ki — kign (wii)

i=1

< Op(bams)n™ " Ik — kragr(wia)] (i — ¢4)>. (SB.106)
i=1

Since by Assumption SB2(i, ii) E[[k2,; — k1,91 (w1,:)[* |21,4] < C, we can use similar arguments for showing

(SB.79) to get
nThY ko — kg (wii)] (6 — ¢0)? = Op(man™)

=1

which combined with Assumption SB3(iv) and (SB.106) implies that

n=Y 0 Po(@1(Br.0); Bro) Boma (Bro) (@i — ¢0)? (ki — krign (wiq)) = op(n~'/?). (SB.107)

i=1

By the Cauchy-Schwarz inequality, Assumption SB2(iii), Lemma SB1 and (SB.103)
nt z": 0" Pai(Br.0) By.ms (Bro0) (i — ) (kai — kign (w1,6))
i=1
=n! Zn:g1(w1,i)(<z>i — i) (k2 — k1igi(wis)) + op(n~'/?)
i=1
which together with (SB.105) and (SB.107) shows that

nN (Pri(Bro) — Poi(Br0)) Boans (Bro) (b2 — k1ig1(wi))
i=1

=0 g1(wr) (@ — ¢i) (ko — kriga (i) + op(n ™). (SB.108)
i=1
The claim of the lemma follows from (SB.102), (SB.104) and (SB.107). Q.E.D.
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Lemma SB9 Under Assumptions SB1, SB2 and SBS3, we have

n (Gi(Bro) — 9(wra)) (k2 — k1igr (wi,))

=1

=n"") ugip(wii) — Ellaip(wia)] (B — Bio)
-1

Y gr(wra) (@) — (@14)) (2 — viigr (W) + op(n1?),
=1

where (w1 ;) = Elka; — k1301(w1,i)|wis] and vj; = kj; — Elkjilwi ] for j =1,2.

PrOOF OF LEMMA SB9. By the definition of §;(8k,0), we can write

n Y (Gi(Bro) — 9w i) (ko — k1igr (w1,))
=1

= (Bg(Br0) = Boans (Br0))n ™" Pai(Bro) (b2 — k1ig(wi))

i=1

+nt Z(PQ,i(ﬁk,O)//ég,mz (Br,0) — g(w1,i)) (ki — k1,591 (w14))- (SB.109)
i1

In view of Lemma SB8 and (SB.109), the claim of the lemma follows if

(By(Br.0) = Boma (Br0))n ™" > Poi(Bro) (kai — k1igr (wi)
i=1
=11 upsp(wn ) — Ellaiplwn )] (B — ro)
i=1
—n~! Z g1(w1,0)(d(x1,5) — G(x1,))p(wi i) + op(n~/2). (SB.110)
i=1

We next prove (SB.110).
Let B,(8k0) = (P2(Br0)P2(Bro)) " S50 Poi(Bro)(kai — k1.:91(wi4)). Then we can write

(By(Br0) — Byums(Bro))n™} Z Py (Bro) (ki — k1.ig1(wis))

i=1

= (By(Br.0) — Boyms (Br0)) (0 Pa(Br.0) P2(Br0)) B (Bro)- (SB.111)

Under Assumptions SB1, SB2 and SB3, we can use the same arguments for proving Lemma SB6 to show
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that
B (B10) = Boms(Br0) = Op((m* + my*n=112) = 0,(1), (SB.112)

where Bp.my(Br0) = (B(Bro)) " Boms and Bum, is defined in Assumption SB3(ii). By Assumptions
SB2(v, vi) and SB3, Lemma SB1, Lemma SB6, (SB.53) and (SB.112)

(By(Br.0) = Bgima (Bro)) (0" P2(Br.0) P2(Br.o)) Be(Bro)
= (Bg(ﬁk,0> - Bgmu (6k 0))%”71132 <5k 0)/132(519 0))B<p,m2 (ﬂk,o) + Op(nil/Q)

= (By(Bro) — Bgims (Bro))'n ZP22 Br.0)2(@1.i (Bro)) + 0p(n~Y?)

= (Bg(Br,0) = Bgams (Br))'n ™" Z Pyi(Bro)e(wii) + op(n~'/?). (SB.113)
Using the decomposition in (SB.52), we can write

(Bg(ﬁk,O) Bg mg BkO -1 ZP21 ﬁkO Wl,i)

_ ¢ Pa(Br0) (P2(Bro) PQ(ﬁk,o)) ZPQ ()

- (W1,i) = Ima (@1, (Br,0)s Br0))

— (G- B 0)¢%P2(5k,0)(f’2(5k,0) P2(5k,0)) Z Pyi(Bo)la

@' Pa(Bro)(P2(Br0) P2(Bro)) !

+ n : n : : ZPQ:i(ﬁkﬂ)uli’ (SB114)

where ¢, = (p(w11),-..,¢(w1,))". The rest of the proof is divided into 3 steps. The claim in (SB.110)
follows from (SB.111), (SB.113), (SB.114), (SB.115), (SB.119) and (SB.125) below.
Step 1. In this step, we show that

¢, P2(Br.0) (P2(Br0) Pa(Brp) Z

n

9(W14) = Ima (©01,:(Br0)s Bro))
-1

= —n"! Zgl w1,) $1 i) — ¢(x13))p(wri) + Op(n_1/2)» (SB.115)

Recall that ¢; = dA)(x“) and ¢; = ¢(z1,). By the second order expansion, Assumptions SB2(iii, v, vi)
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and SB3(iv), Lemma SB1, (SB.46), (SB.53) and (SB.56),

> " Poi(Br0) (s (@1,6(Bro): Bro) — 9(wii))

=1

= Z Poi(Br0) (Po,i(Bro) — Poi(Br0)) Boms (Bro) + 0p(n~?)
=1

= Poi(Bro)(di — 6:)0" Pai(Br0) Bgms (Br.0)
=1

+ Z Poi(Br0)(di — 0i)20 Pa(61,:(Br.0); Br.0) Boms (Bro) + 0p(n~/?)
=1

= Z P i(Bro)(di — ¢i)g1(wii) + op(n~1/3). (SB.116)

By Assumptions SB1(i) and SB3(i), and (SB.53),

7IZP22 BkO le = (]-)

which together with (SB.53) and (SB.116) implies that

@' Pa(Br.0) (P2(Br0) P2(Bro)) ZPQ (B4)(g

n

wl 'L — 9mo (wl,i (5kz,0)> Bk,O))
_ %f’z(ﬁk,o)(Pz(ﬂk,o)'f’z(ﬁk,o))

n

Z Py i(Br0) g1 (wi,)(9i — @) + 0p(n~'?). (SB.117)

i=1

By Assumptions SB2(ii) and SB3(ii, iv), Lemma SB1 and (SB.53)

nt Z — 00)91(w14) Pai(Br0) (P2(Br.0) P2(Br0)) " Pa(Bro) (¥n — Pman)

= op(mV?n—”?)op(m;”) = op(n~'/?)
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which further implies that

’1 Z — 6091 (1.0 P (o) (Pa(B0) PalBi)) " Pa(Bio) on
_IZ = 00)91(w1) P (Br.0) Bms (Br.o) + op(n~"/?)
! Z — 61)g1(w1,0)P(@1,i(Br0)) + 0p(n~/?)
o Z — ) g1 (wi1)p(wi) + op(n/?). (SB.118)

The claim in (SB.115) follows from (SB.117) and (SB.118).
Step 2. In this step, we show that

@' P2(Br.0) (P2(Br0)P2(Bro))
n

P2 (Br0) Lo — Bro) = Ellaio(w1)](Bi — Bio) + op(n~?). (SB.119)

By Assumptions SB1(i) and SB2(i), and (SB.53),

n_l Z pgﬂ'(ﬁk’())lgﬂ' = Op(l). (SB.lQO)

i=1

Using the similar arguments for showing (SB.57), we get

n~! Z (PZ,i(ﬁk,O)/,&p,mg (Br,0) — cp(wl,i)>2 = 0, (min™Y)

which together with (SB.53) and (SB.120) implies that
1 (o0 = Binan) P2(Bro) (Po(Br0) Pa(Bro)) ™ Pa(Bro) L = Oplmy*n™"2), (SB.121)
where Gy n = (Pmy (01,1(B8k.0))s - - - » Pms (@1,0(Brp)))’. Therefore,

n” 1 Pa(Br,0) P2(Br0) Pa(B0)) " P2(Bro) Lz = n~" Y 12iP2i(Br0) Boums (Bro) + O, (my/*n=1/2).
- (SB.122)
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By the first order expansion,
nil zn: l27ip2,i(ﬁk,0)//3<p,m2 (ﬁk,o)
i=1
=n! i laip(wr i) + nt i l2,i(Vmy (W1i) — @(w14))
i=1 i=1
+nt i Io.i(hi — ¢i)0" Pa(@1:(Br.0); Bro) Boums (Bro)
i=1

=01 boip(wi ) + Oplmemyn1?), (SB.123)
=1

where the second equality is by Assumptions SB1(i), SB2(i, v, vi) and SB3(ii, iv), Lemma SB1, (SB.46)
and (SB.56). Collecting the results in (SB.122) and (SB.123), we deduce that

717190;1132(5/%,0) (152(516’0)’132(5&0))*1132 (Br,0) Lo

= n_l Z l27i<,0(w1,i) + Op(§17m2m}/2n_1/2) = E[lg,i@(wlyi)] + Op(l), (SB.124)
=1

where the second equality is by the Markov inequality, Assumptions SB1(i), SB2(i) and SB3(i, iv). The
claim in (SB.119) follows from Assumption SB1(iii) and (SB.124).
Step 3. In this step, we show that

¢, P2(Bk,0) (P2(Br0) P2(Bro))~

n

1 n n
Z P27i(ﬂk70)’LL27i =n! Z UQ’Z‘QO(WLZ‘) + Op(nilﬂ). (SB.125)

i=1 i=1
By the second order expansion, we have for any vy € R™2
n n
> 5P i(Bro)uz = > V5 Poi(Bro)us,
i=1 i=1
n
+ Z 050" Pai(Bro) (i — di)uai
i=1

+ ) 0507 Pa(@1,i(Br); Bro) (di — ¢i) uai. (SB.126)

=1

By the Markov inequality, Assumptions SB1(i, iv, v), SB2(v, vi) and SB3(iv), Lemma SB1 and (SB.75),

we can show that

nhY b Py i(Bro) (9 — ¢i)uai = ||vall op(n ). (SB.127)
=1
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By the Cauchy-Schwarz inequality, Assumptions SB2(v) and SB3(iv), and (SB.46)
n= Y 0507 Pa(@1,4(Bro); Br0) (i — i) uzi = |va] op(n™"/?). (SB.128)
i=1
By Assumptions SB1(i) and SB3(i), and (SB.53),
77,_1 Z pgﬂ'(ﬁk’g)(p(wl’i) = Op(l). (SB.129)
i=1

Combining the results in (SB.53), (SB.126), (SB.127), (SB.128) and (SB.129), we get

¢ P2 (B1.0) (P2(Br0) Pa(Bro)

n

1 n
> Pyi(Bro)ua,
i=1

/P » s -1 "
- @"PQ(ﬁk’O)(PQ(gk’O) P2(br0)) ;Pz,i(ﬁk,o)uz,i +op(n” 1), (SB.130)

Since n ™' 30| Py i(Bro)uzi = Op(m;/Qn_lﬂ) by the Markov inequality, Assumptions SB1(i) and SB2(iv),

and (SB.75), we can use similar arguments for showing (SB.121) to get

(©n = Pman) P2(Bro) (P2(Br.o) Pa(Bro))~
n

1. n
>~ PailBroyuzi = Op(my*my/*n™) = o, (n™7),
=1

where the second equality is by Assumption SB3(iv). Therefore

¢ P2(Br.0) (P2(Br0) P2 (Bro))~

n

1 n
> Pyi(Bro)ua,

=1

= n_l Z pQ,i(ﬁk,O)/Bgo,mg (ﬁkp)’u,gﬂ' + op(n_l/Q)

=1

=n! Z ug (w1 i) + 0p(n~1?), (SB.131)
i=1

where the second equality is by the Markov inequality, Assumptions SB1(i) and SB3(ii, iv), and (SB.75).
The claim in (SB.125) follows from (SB.130) and (SB.131). Q.E.D.
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Lemma SB10 Under Assumptions SB1, SB2 and SB3, we have
nY g1 (w10) (@(z1,) — B(r1,6)) (V2 — v1igr (wri)
i=1

n
=n! Z M,i91 (Wl,i)(vii — 1,391 (w1,4))
i=1

— Elhy(214)g1.4 (V2.5 — v1491 (W) (B — Bro) + 0p(n~?),
where hl (.1‘1’1') = E[l1ﬂ~|x17i] and ’U;}i = E[kz,i’.l‘l,i] — E[k27i|w1,i] fOT‘j = 1, 2.

PROOF OF LEMMA SB10. Since ¢(x1:) — ¢(21.4) = (Bp — Boumy ) Pr(x14) + Py (214) — ¢(21,5), We can

write

Y g1i(d(m1) — B(r1)) (V2 — v1igr)
i=1

n
= By = Bom)n™" > Pr(1)gri(va; — vi,ig1)
=1

n
A0 g1 (Pmy (T16) — G(a14)) (V2 — v1ig1), (SB.132)
i=1
where g1; = g1(w1,;). By Assumptions SB1(i, iv, vi) and SB2(ii), and the Markov inequality
n
DY 1 Gm (01.0) = 6(21.))) (v = v1g1) = 0p(n~?), (SB.133)
i=1
By Assumptions SB1(i, v, vi) and SB2(i, ii), and the Markov inequality

n
n” Z Pri(214)91,i(v2,i — v1,i91,i) — E[P1(21,1)91,4(v2: — v1i01,4)] = Op(m}/%—l/?)
1=1

which together with the LIE, Assumption SB3(iv) and (SB.42) implies that

A~

n
(Bs = Bom:)n™" > Pr(w1,0)g1,6(vas — v1,491,)

=1
=07 i Pi() Qi E [Pu(wi) g1 (v5, — viigia)]

i1
— (B = B10)E[h1(21,:) Py (21,0) 1@ E [Pr(%1,:)91,: (V2 — v1,i91,4)] + op(n~4?). (SB.134)
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By Assumptions SB1(i, ii, v), SB2(i, ii) and SB3(iii)

2
n
E | n™ m [Pr(e1s) Qi BIP (1) g1i(vs; — vrigri)] — 9ri(vs; — v1ig1.4)]
=1
2
<Cn'E Upl(wl,i)'QfﬁmE[Pl(iﬁl,z')gl,z'(vék,i —v1,i91,0)] — 91,:(v3; — v1,i91,1) } =o(n™")

which together with the Markov inequality implies that

n n
nY maP(@) QA EIPLigri(vs, — viagra)] = n7 Y migni(vs; — viigi) + op(n”?). (SB.135)
i=1 i=1

By Hélder’s inequality, Assumptions SB1(ii, v), SB2(ii) and SB3(iii)

|E [11,iP(21,)'] QuiE [Pr(21,)g1,6(v3; — vi,ig1:)] — Elligni(vs; — vi,ig1)] }2
= |E [l (Pr(21,:) Qi B [Pr(21,0)91,:(vs; — v1,i914)] — 91,:(v55 — v1,i91,))] }2

_ « . 2
<E [l%z] E [(P1 (z1,) m11E [Pl(ﬂfl,i)gl,i(vg’i — vl,igl,i)] —g1i(v3,; — Ul,igl,i)) } =o(1)
which combined with Assumption SB1(iii) implies that

(B1 — Bro)Ell1: 1 (21,0) 1@ E [P1(71,1)91,: (V2 — v1,i91,4))]
= (B — BLo)Ell,i P1(21,) |Qmi E [Pr(21,0)91,i(v5; — v1,i91,0)]
= (6 — Bio)Ell1,i91,i(v3,; — v1,4914)] + op(n~4?)

= (81— Bro)Elh1(x1.4)g1i(v2i — v1.0g1.4)] + 0p(n~1/2). (SB.136)

The claim of the lemma follows from (SB.132), (SB.133), (SB.134), (SB.135) and (SB.136). Q.E.D.

Lemma SB11 Under Assumptions SB1, SB2 and SB3, we have

By(Br) = Byma (Br) = (B — 5k,o)0p(m§m}/2n_l/2) + Op((m}/Q + ma)n~?).

Proor OF LEMMA SB11. Using the decomposition in (SB.52), and applying the results in (SB.58),
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(SB.60) and (SB.64), we have

By(Br) = Bans (Br) = P2(Br) Pa(Bi)) ™ > (Pai(Br) — Poi(Br))uni(Bi) + Op((my/* + ma)n=2).
- (SB.137)
By the second-order expansion, we have for any vy € R™2
n! Z Uy (Pai(Br) — Pa,i(Br))uz,i(Be)
i=1
=n"" Y b0 Poi(Br) (¢i — bi)ua.i(Br)
i=1
n=hY b Pa(@n,4(Br); Bi) (6 — ¢i) 2 (Br), (SB.138)
where @1 4(By) lies between @y ;(B) and wy ;(B). By (SB.55) and the compactness of Oy,
sup [ug,i (Be)| < C + |ya, (SB.139)

BrEOK

Using similar arguments in showing (SB.79), we have

_IZ 2(C + |yzl + [k2,]) = Op(man™)

which together with the Cauchy-Schwarz inequality, the triangle inequality, Assumptions SB2(vi) and
SB3(iv), and (SB.139) implies that

n_l205821&272-(&)1,&&);&)(@5 i) 2u2,i(Br)
=1

< |lval €2,mym 12 2(C + lysal) = vzl op(my*n=1/2). (SB.140)
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Since w2 ;(Br) = u2,; — k2,i(Br — Bro) — (9(w1,i(Br)s Br) — g(wr i), we can write

~ ~

nt Z V0 Pa i (Br) (9i — di)ua,i(Br)
=1
=n! Z V40 Py i (Br) (i — bi)ua,
=1

— (B = Bro)n ™" Y 050" Pai(Br)ka.i(i — i)

=1

=07 050" Pai(Bk) (i — 6i) (9(wii(Br), Br) — g(w1))- (SB.141)

=1

By the Cauchy-Schwarz inequality, the triangle inequality, Assumption SB2(v) and Lemma SB1

0t O Py (B kai (b — 60)| < [zl Op(Ermgmy*n12). (SB.142)
=1

Similarly we can show that

n! Z vh0' Pai(Br) (di — 6i) (9(w1,i(Br), Br) — g(wii))

i=1

< [vall 1Bk — BrolOp(Ermemi*n=1/2). (SB.143)

By the Cauchy-Schwarz inequality, the triangle inequality, Assumption SB3(iv), Lemma SB27 and
(SB.42),

0t 00 Poi(Br) (D — by )uzi| < [lval| Op((my/* +ma)n =12, (SB.144)
=1

Using similar arguments in the proof of Lemma SB27, we can show that

n! Z 81152,i(3k)(¢m1,i - (Z%)UQJ = Op(mg/zn_l)

=1

which together with the Cauchy-Schwarz inequality and Assumption SB3(iv) implies that

01N O P i (Br) (Gmyi — $i)uni| < [lval] Op((my/? +ma)n~1/2), (SB.145)

=1

Collecting the results in (SB.138), (SB.140), (SB.141), (SB.142), (SB.143), (SB.144) and (SB.145), we
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have

0t (Poi(Br) — Poi(Bi)uzi(Br) = (B — Bro) Op(Exmamy *n™2) 4 Op((my/* + ma)n=1/2). (SB.146)
=1

The claim of the lemma follows from (SB.137) and (SB.146).

Lemma SB12 Under Assumptions SB1, SB2 and SB3, we have

n
ntD
=1

Q.E.D.

9i(Br) — g(wi,i(Br); Br) = (B — Br0)20p(&3 pyman™) + Oy ((my +m3)n~") .

PrROOF OF LEMMA SB12. For any B € O we deduce by the Cauchy-Schwarz inequality, Assumption

SB2(iii) and (SB.49) that
D WL NERENCARFRENEY
<207 3Pt (3 — sl )
20703 o) ) — tertA B
< ClIBo(Be) = Byma (B + Cmy ™"

wpal, which together with Assumption SB2(vi) and Lemma SB11 implies that

> [Poi(Be By (Br) = gona(Bu): o)

‘ 2

= (B = B10)20p(&3 ppyman ™) + Op ((ma + m3)n 1) .

(SB.147)

(SB.148)

By the mean value expansion, the Cauchy-Schwarz inequality, Assumptions SB2(v) and SB3(iv), Lemma
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SB1, Lemma SB11 and (SB.51)

2

= Poi(B1)) (By(Br) = Byoma (Be))|
=n"! i:(@ = 00 (0" Balona(30): B0 Byl Br) — BomalBr)))

< €l (50 = B AP 3 -

= (B = Br0)?Op(&] yyman™") + O; ((my +m3)n~1). (SB.149)

— PoilB) Byma (B

<on~! Z ‘(91(@11(30731{) - 91(00171‘(3;6); Bk))’2 + Op(nfl)
i=1
Cn' Y (91— 60 + Op(n™") = Oplman™) (SB.150)
i=1

which together with (SB.149) implies that

" . 2
3| (PaaBe) = Poa(B)) By (Br)|
i=1
= (Bk — 5k,0)20p(§im2m1n_1) + 0, ((m1 + m%)n_l) ) (SB.151)
The claim of the lemma follows from (SB.148) and (SB.151). Q.E.D.

Lemma SB13 Under Assumptions SB1, SB2 and SB3, we have
_1 S A 2
Z‘gu — g1(wr z(/@k)'ﬁk)‘

= (/Bk - Bk’,()) Op(gl,mzmln_l) + Op (gimg (ml + m%)n_l) .

PrOOF OF LEMMA SB13. Since f]Li(Bk) = 31152,1;(50/39(316)7 we can use similar arguments in showing
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(SB.148) to get

‘ 2

nt Z ‘81]3271'(,3143)/39(310 -0 (WLZ'(B]C); Bk)
i—1

= (/Bk: - /Bk,O)QOp(fil,mgmlnil) + OP (5%,m2 (ml + m%)nil) :

Using similar arguments in showing (SB.149) and (SB.150), we can show that

and

2

! 2 (0" Pos(B) = 0" Poi(B1)Y (By(By) = Boma (Bi)

< (Bk - ﬁk,O)201?(5%,17125%,77127”%”72) + Op (é%,mgml(ml + m%)n72)

Tty ‘(81152,z‘(3k) — 0" Pai(Br)) By.ms (Bk)’2 = Op(min™1),

i=1

which implies that

:

n_ljij‘(31f5¢(3k)—-31f5¢(3k)YEE(Bk)
=1

< (Br = Br.0)?Op (&3 €8 mymin™2) + Op (&3, (ma + m3)man ™).

The claim of the lemma follows from Assumption SB3(iv), (SB.152) and (SB.155).

Lemma SB14 Under Assumptions SB1, SB2 and SB3, we have

and

Proor

n kai(kag — kuidni(Br) = Elkoi(kai — k1igr(wia))] + 0p(1)
i=1

n~! Z la,ik1,4(914(Br) — G1.i(Bro) = 0p(1).

i=1

(SB.152)

(SB.153)

(SB.154)

(SB.155)

Q.E.D.

(SB.156)

(SB.157)

OF LEMMA SB14. By the Cauchy-Schwarz inequality, Assumptions SB2(ii, vi) and SB3(iv),
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Lemma SB13 and the consistency of Bk, we have

n! ka ko — k1igri(Br)) =n" ka koi — k1igri(Br)) + op(1)

=1 =1

=—n1 Z koi(k2i — k1,ig1(w1,i)) + 0op(1)
i=1
= E[k‘z,i(ku — kugl (w“))] + Op(l),

where the third equality is by the Markov inequality. This proves the claim in (SB.156). Similarly, by
Assumptions SB2(ii, vi) and SB3(iv), Lemma SB13 and the consistency of By, we have

n !ty ‘QLZ‘(@) = 91,i(Br0) i
=1
<23 [on(nilBe): Be) — 91 (w1 4(Bro): Beo)| +0p()
=1
< C(Bk — Bro)* + op(1) = 0p(1). (SB.158)

By the Markov inequality and Assumption SB2(i), n=1 >, l%lk‘%l = Op(1) which together with (SB.158)
proves the claim in (SB.157). Q.E.D.

Lemma SB15 Let az; = az(wi:). Then under Assumptions SB1, SB2 and SB3, we have
n! Z — Gi(Br,0))(k2,i — k1,i91,i(Br,0))
—(Br — Bro) (El(az; + v1,91.0) (kai — k1,i91.0)] + 0p(1)) + Op((ma +my)n=Y/?2).
ProoF orF LEMMA SB15. First note that
nt Z = Gi(Br0))(k2,i — k1,i91,1(Br.0))

= —n! Z k1, (9:(Be) — §i(Br0))(§1,4(Bro) — 914)
=1

+nt Z(ﬁi(@k) — (w1 (Br); Br) — 6i(Bro) + g(wri)) (ko — k1,i914)
i—1

+n! Z(g(wl,i(ﬁk); Br) — g(w14)) (ki — k1,i91.4)- (SB.159)
i=1
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By the Cauchy-Schwarz inequality, Assumption SB3(iv), Lemma SB12 and (SB.88),

nt Z ki — §31(B10)) (914 (Br0) — 911) = (B — Bro)op(1) + 0p(n ). (SB.160)
Similarly, we can use Lemma SB12 to get
n”! Z 9(@1,i(Br); Br) = 6i(Bro) + 9(w1)) (kai — krigs)
= (Bk = Bro)op(1) + Op((ma +my*)n~112). (SB.161)

Moreover, by Assumptions SB2(ii) and the consistency of Bk

n= (g(wri(Br); Br) — 9(wri(Bro); Bro)) (kzi — k1ig1)

i=1

= (B — Bro)n”! Z Ogler, l;;: Pro) (k2 — k1igra) + (B — Bro)op(1). (SB.162)

Since
09(w1,i(Br,0); Br,o)
0Bk

by Assumptions SB1(i) and SB2(ii), and the Markov inequality,

= _a2(w1,i) - gl(wl,i)vl,ia

_ 99(w1,i(Br,0); Br0)
1 > R . .
E dBs, (]{5271 kl,zgl,z)

=-—n"" Z(az(wl,i) + v1,i91(w1,0)) (ki — k1,i91,4)
i=1
= —E[(az; + v1,i914) (k2,0 — k1,91,5)] + Op(n/?)
which together with (SB.162) implies that
n 1 (g(wri(Br); Br) — 9(w1,i(Bro); Bro)) (kzi — krigri)
i=1

—(Br — Bro) (Bl(azi + v1.i91.4) (k2 — k1.ig14)] + 0p(1)) + 0p(n/2). (SB.163)

The claim of the lemma follows from (SB.159), (SB.160), (SB.161) and (SB.163). Q.E.D.
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Lemma SB16 Under Assumptions SB1, SB2 and SB3, we have
Br. — Bro = Op((my”* + ma)n=1/2). (SB.164)

PrOOF OF LEMMA SB16. Using Assumption SB1(iii), Lemma SB14 and Lemma SB15, we can use

the decomposition in (SA.25) to deduce that

= — (B — Bro) (E[(va; — v1,91,:)%] + 0p(1))

Y gk (31i(B) — 91.4(Br0)) + Op((my? + ma)nV/2). (SB.165)
=1

In view of the first order condition of 3y, (SA.5), (SA.28), (SB.165) and Lemma SA2, the claim of the

lemma follows if one can show that

08 g ki (91,0(Br) — 91.:(Bro)) = (Br — Bro)op(1) + Op((my/? +ma)n~1/2). (SB.166)
=1

We next prove the above claim. By the mean value expansion,

Y usikiaga(Be) =nt Y uzikiid' Paa(Br) By(Be)
=1 i=1
=0 ik 0" Poi(Br) By ()
=1
Y un k(6 — )P Pa(@ris Br)' By (Br), (SB.167)
=1

where @y ; lies between @y ;(8;) and w1 ;(6). By Assumption SB1(i), (SB.75) and the Markov inequality,

nty u k] = 0,(1). (SB.168)
i=1
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By the triangle inequality

n! Z g k1.4 (0 Poi(Br) By (Br) — 91(wri(Br); Bk))‘

i=1

<|nt Z u2,ik1,i(g1(w1:(Br); Br) — 0" Poi(Br) By ms (Bk))‘
i=1

+ |n7! Zu2,ik'1,¢81p2,¢(Bk:)/(Bg(Bk) - Bg,mQ(Bk))‘ : (SB.169)
i=1

By Assumptions SB2(iii, vi) and (SB.168)
nh Y ik (g1 (@i B); Br) — 0 Pos(Bk) Boma (Br)) = Opl(my/* + ma)n'/2). (SB.170)
i=1
By the Cauchy-Schwarz inequality, Assumption SB2(v), Lemma SB11 and Lemma SB26
nt Z ug k10" Pai(Br) (By(Br) — Bams (Br))
i=1

nt Z UQ’ik‘Lialpzi(Bk)
i=1

<

HBg(Bkz) - Bg,mz (Bk:) H

= Bk — Brolop(1) + Op((my* + ma)n=1/2)

which together with (SB.169) and (SB.170) implies that

nt Z U2,ik1,i(aIPZ,i(Bk)/Bg(Bk) — g1 (wl,z’(Bk); Bk))
=1

= 1Bk — Brolop(1) + Op((mi* + mg)n~?). (SB.171)
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Lemma SB1, Lemma SB11 and (SB.168)

nt Z g ik i (i — 0:1)0 Pa(@1.4; Br) By (Br)
i1

<n” Z ’“Zikl,z’(@;i — 1) 0 Pa (01 ; Bk),Bg,mg(Bk)’
=1

+n Yy )ug,ikl,i(@- — 38> Pa (1,43 Br)' (By(Br) — Bgms (Bk))’
=1

< | sup
UJEQCW

= 1Bk — Brolop(1) + Op((my”* + ma)n=1/2) (SB.172)

82]52 (W§ Bk)//ég,mz (ﬁk)‘ + 527m2

By(Br) = Bgms (@k)H) n~! Zn: ‘W,iku((lgi — &)
=1

which together with (SB.167), (SB.171) and (SB.172) proves
Y ik i(Gui(Be) — 91(@1i(Br): B) = (B — Bro)op(1) + Op((my/* + ma)n™%). (SB.173)
i=1
Similarly, we can show that
nhY gk i(914(Bro) — 91(w1i(Bro); Bro)) = Op((my"* + ma)n=1/?)
i=1
which together with (SB.173) implies that
n Y ug ik i(§14(Br) — 91.4(Bro))
i=1

=n"") g ikri(g1(wii(Br); Br) — 91(wri(Bro); Bro))
i=1

+ (B — Bro)op(L) + Op((my”* +ma)n=1/2). (SB.174)

By Assumption SB2(ii), the Markov inequality and the consistency of B,

nY g iki(g1(wii(Be)i Be) — 91(wri(Bro)i Bro)) = (Br — Bro)op(1) + Op((my”* + ma)n~1/2)

=1

which together with (SB.174) proves (SB.166). Q.E.D.
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Lemma SB17 Under Assumptions SB1, SB2 and SB3, we have

(B(ﬁk,O)/)ilB(Bk)/Bg(Bk) - Bg(ﬂk,()) = (Bk - /Bk,O)OP(gl,mQ)'

PROOF OF LEMMA SB17. We define P3(8¢) = (P51 (Br), - - -, P5,(Br)) where P5,(Br) = B(Bro) P2 (@1,i(B))-

Then we can write
(B(Bro)) " B(Br) By (Br) = (P3(Br) P3(51) " P5(B) Y5 (k)
and therefore,

(B(Br0)) " B(Br) By(Br) — By(Bro)
= [P35 P5(B)) ™ = (Pa(Bro) Pa(Bro)) | (B Y5 (B)
+ (P2(Br0) P2(Bro)) " (P5(Br) — Pa(Bro)) Y (Br)

+ (P2(Br,0) P2(B0)) " Pa(Bro) (Y3 (Br) — Y3(Bro))- (SB.175)

By (SB.53), Assumption SB1(i) and the Markov inequality,
H(152(51@,0)/152(51@,0))_1152(5&0)'1(2H2
< min(n " P2(Bro) Pa(Bro))) tn? i k5 = Op(1). (SB.176)
i=1
Since Y3(Br) — Y5(Br0) = —(Br — Br0)Ka, by (SB.176) we get
(Pa(Br0)P2(Br0)) " Pa(Bro) (Y3 (Bk) — Y3(Bro)) = (B — Bro)Op(1). (SB.177)
By the mean value expansion, we have for any vy € R™2,
Oy (Po(@1,i(Br); Bro) — Pa(@1,i(Br0); Bro)) = —vhd' Po(1,:(Br); Bro)k1i(Br — Bro), (SB.178)

where 3}, lies between §; and Br,0. By Assumption SB3(iv) and Lemma SB16, (IJ“(B;C) € Q, (Bro) for

any ¢ = 1,...,n wpal. By the Cauchy-Schwarz inequality and (SB.178)

Vy(P5:(Br) = Poi(Bro))| < llvall €1,ms [K1,:6(Be — Bro) (SB.179)
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wpal. Therefore we have wpal,

Vh(P5(B) — P2(Bro)) (P3(Br) — P2(Bro))ve

= Z(UQ(Pik,i(ﬁAk) — Pyi(Br0))? < lvall* € 1y (Br — Bro)? Z kT ; (SB.180)
=1

i=1

which implies that
IP5(8r) — P2(Bro)lls = 1Bk — BrolOp(E1.myn'’?). (SB.181)

Since y3 ;(Bk) = y3,; — Brk2,i, by the Cauchy-Schwarz inequality we get

n n n
S0 < (07 S 3
i=1 i=1 i=1
which together with the Markov inequality, Assumption SB2(i) and the compactness of O implies that

Y . 2=0,(1). SB.
sup ;(yz,z(ﬂk)) b(1) (SB.182)

By the Cauchy-Schwarz inequality,(SB.53), (SB.181) and (SB.182),
H(f’z(ﬂk,o)lpﬂﬁk,o))_l(155(&) - f’2(5k,0))/Y§(5k)H

< Cumin (0P (B.0) P (B0))) ™07 [P3(Br) = Pa(Bro)ls [ Y3 (50|

= 1Bk — Br.olOp(E1.ms)- (SB.183)

By the definition of Bg(Bk), we can write

[(P5(B) P3(6r) ™ — (P2(Br0)Pa(Bro)) " IP5(5k) Y5 (Br)
= (P2(Br.0)P2(Br0) " (P2(Br0) — P5(Br)) P2(Br) By (Br) (SB.184)
+ (P2(Br.0) P2(Br.0)) " P2(Bro) (Pa(Bro) — Pa(Br) (B(Bro)) B (Br) By(Br)-
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By the Cauchy-Schwarz inequality, Assumption SB2(vi), (SB.53), (SB.65) and (SB.181),

| (P2(B10) P2(810)) ™ (P2(Bro) = P5(B)) Pa(B)By (B
< (Amin(n ™" Pa(Br0) P2(Br0)) "0 P5(Br) — Pa(Bro)lls HP2(BIC)Bg(/3k)H

= 1Bk — Br,0lOp(Ex.ma)- (SB.185)

By the definition of pg(ﬁ]f,o) and f’;(,@’k), and the mean value expansion

H<152<5ko> ~ P30 (B(Bro)) B B()|

= Z By (Br) B(B) (Pa(@1,i(Br0)) — Pa(@1,i(5))))?
= Z(ﬁg(ﬁk)lalpz(d)l,i(gk); Br)k1i(Br — Bro))?

< (Br — Bro)? maX(3 Py(@1,6(Br); Br)' By (Br)) Zk

| (P2(Br0) = P3(B)B(Br0)) " BB By(Br)|| = 1B = BrolOp(n'?). (SB.156)

By (SB.53) and (SB.186)

(P2(Br.0)"P2(Br0) " P2(Bro) (P2(Bro) — P3(Bk))(B(Bro)) " B(Br) By(Br) = (Br — Br.o)Op(1).
(SB.187)
Collecting the results in (SB.184), (SB.185) and (SB.187) we get

[(P3(Br)P3(Br)) ™ — (P2(Br,0) P2(Br0) TP (Be) Y5(Br) = (Br — Br.0) Op(&1.ms)- (SB.188)
The claim of the lemma follows from (SB.175), (SB.177), (SB.183) and (SB.188). Q.E.D.
Lemma SB18 Under Assumptions SB1, SB2 and SB3, we have

nhY ug ik i(91i(Bk) — §14(Br0)) = (Bk = Bro)op(1) + op(n~ /).

i=1

o1



A~

Proor or LEMMA SB18. By the definition of §;,;(8;), we can write

91i(Br) = 0" Pa(1,:(Br); Br) By (Br) = 0 Pa(@1,i(Br); Br.o) v2,e,

~ N ~

where v, = (P5(54)'P5(51)) ' P3(51) Y5(By). Therefore

n~t Z g ik, (91.:(Bk) — 91i(Bro))

i=1
=nt Z u2,ik1,: (8" Pa(@1,:(Br); Bro) — 0" Po(wii(Br0): Bro)) Vo
i=1
= ug ik (0" Pa(@14(Br0); Bro) — 0" Pa(wii(Bro); Bro)) By (Bro)
i=1
Y g ik 10 Po(wri(Bro)i Bro) (V2 — Bg(Bro))- (SB.189)
i=1

Since va. = (B(Bro)) " B(Bk) By(Br), by Assumption SB3(iv), Lemma SB16, Lemma SB17 and (SB.65)

[vai]l = O,(1). (SB.190)

By the second order expansion,

n g ik (0" Pa(@1i(Br); Bro) — 0" Palwri(Bro); Bro)) va.s

i=1
n ~
=n"") g ik i(@14(Br) — w1,6)0” Pai(Br) vae
i=1
n A~ ~
+nt Z ug ik i (@14(Br) — w14)20° Pa(@1,45 Br.0) v2.x, (SB.191)
i=1

~

where (Dl,i lies between (111,1'(,3]6) and Wi4- Since wl,i(,@k) — W1 = (Z)Z — gbz — kl,i(,@k — 5]670),

nY g ik i(@13(Br) — w14)0 Pa(wri(Bro); Bro) vas

i=1

=n"! Z g ik1 (i — ¢i)0* Pai(Bro) vas
i=1

— (B = Bro)n ™" > uzik? ;07 Poi(Bro) V2. (SB.192)
i=1

52



By the Cauchy-Schwarz inequality, Assumptions SB1(i) and SB2(v), (SB.75) and (SB.190),

n! Z u2,ikii32152,i(5k,0)/vz,* nt Z U2,z’]€ii<92152,i(5k,0) = Op(E2.myn ?)

< vz,
i=1 i=1
which together with Assumption SB3(iv) implies that
A~ n ~ ~
Bk — Bro)n™ "> ugiki ;0% Poi(Bro) vas = (Br — Bro)op(1). (SB.193)

=1

By the Cauchy-Schwarz inequality, Assumptions SB1(i, iv, vi), SB2(v) and SB3(iv), (SB.75) and (SB.190),
nY g ik i (Gmy i — 6007 Pa(wii(Br0)i Bro) V2 = Op(€oman ™) = 0p(n~1/?). (SB.194)
i=1

By the Cauchy-Schwarz inequality, Assumptions SB1(i, iv, vi), SB2(v) and SB3(iv), (SB.42), (SB.75)
and (SB.190),

~

(Bs = Bomy)n Z ik, P1(21,) 0% Pa(w1,i(Br,0); Bro) V2 = Op(miamyn™ ") = op(n~"/?)
i=1

which together with (SB.192), (SB.193) and (SB.194) implies that
nTY gk i (@10(Br) — wii)0” Pa(wri(Br0); Bro) Vo = (Br — Bro)op(1) + op(n~ /%), (SB.195)
i=1

Using the similar arguments in showing (SB.79), we can show that
n
'y ‘u27ik17i(¢i — $:)?| = Op(mnY). (SB.196)
i=1

Moreover by the Markov inequality, Assumption SB1(i) and (SB.75)

n_l Z(‘UZ’ik%,i‘ + ’uz,ilﬁﬂ'D = Op(l). (SB.197)

=1
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By the Cauchy-Schwarz inequality, Assumption SB3(iv), Lemma SB16, (SB.196) and (SB.197)
n A
n! Z |ug ikl (@1,6(Bk) — wi4)?
=1
' n R R n
<2ty ‘U2,ik1,i(¢i — 00| +2(Bk — Bro)’n "D |ugiki | = 0p(n”?). (SB.198)
i=1

=1

n
nN ug ik i (@1(Br) — w14)?0° Pa(1,65 Br) V2

=1
< Y ug ik (@1,(Br) — wi4)?0° Pa(@1,65 Br) Bgama (Br)
=1
+ ’I’L_1 Z U2,ik1,i(@1,i(3k) o wl,i)283]52(d;1,i; Bk)/(Bg(Bk) — Bg7m2 (Bk))‘
=1
= (B — Bro)op(1) + 0,(n~1/?) (SB.199)

which together with (SB.191) and (SB.195) implies that
n! ZUQ,ikl,i(31P2(@1,i(Bk); Bro) — 0" P2i(Bro)) V2 = (Be — Bro)op(1) + op(n/2). (SB.200)
i=1
Using similar arguments in proving (SB.200), we can show that
nh ug ik (0" Pa(@14(Br0); Bro) — 0" Pri(Bro)) By (Bro) = op(n™ /). (SB.201)
i=1

By the Cauchy-Schwarz inequality, Assumptions SB1(i), SB2(v) and SB3(iv), Lemma SB17 and (SB.75)

n g ik 0" Pai(Bro) (V2. — Bg(Bro)) H

i=1

< |0t ik 10 P (Bro)|| 020 — Bo(Bro)|| = (B = Bro)op(1); (3B.202)
i=1
The claim of the lemma follows from (SB.189), (SB.200), (SB.201) and (SB.202). Q.E.D.

Lemma SB19 Let Gy, = (§(@1,1(Bk); Br)s - - - 9(@1.0(B1): Br))'s Gn = (9(w11), .-, g(wi,n)) and Us =
(ug,1,...,u2y) . Then under Assumptions SB1, SB2 and SB3, we have
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(i) n~TULP5(Br) — Pa(Br0))Bo(Bro) = (Bk — Bro)op(1) + 0p(n/?);

(i) n~ 'L (P3(Br) — P2(Br0))Bo(Br0) = 0p(1);

(iii) n YKL (P3(6k) — Pa( B 0))@0(5&0) = 0,(1);

(iv) 1= (G — G)' (P5(Br) — P2(81,0)) B¢ (Br0) = (B — Bro)op(1) + op(n="72).

PrROOF OF LEMMA SB19. (i) By the first order expansion,

n” UL (P3(Br) — P2(Br0))(Bo(Br.0) — Boma (Bro)
—(Br — Bro)n Z ugik1,i0" Pa(&1,3; Br.0)' (Be (Br.0) — Bioyma (Br.0))s (SB.203)

i=1

where @1 ; lies between &1 ;(f;) and W1,i(Br,o). By Assumptions SB2(v, vi) and SB3(iv), (SB.112) and
(SB.197),

nt Zuz,ikl,ialpz(@1,i; B81.0) (Bo(Br.0) — Beoms (Br0)) = Op(E1ms (mi/Q + m;/Z)nfl/Q) = 0p(1)

=1

which together with (SB.203) implies that

n~ UL (P3(Br) — P2(Br0) Bo(Bro) — Boms (Bro)) = (Bk — Br.o)op(1). (SB.204)

By Assumptions SB3(i, ii, iv), Lemma SB1, Lemma SB16, (SB.75) and (SB.197)

n~ UL (P3(Br) — P2(Br0))Boms (Bro)
-1 Z g ik i (9(@1,6(Br)) — @(@1,:(Bro0))) + 0p(n~/?)

=n" Z ug k1,691 (@1 (Br,0)) (Br — Bro) + op(n~'/?)

i=1

=n! Z g ik1i01(w1.0) (Br — Bro) + (Br — Bro)op(1) 4 0,(n1/2). (SB.205)

=1

By the Markov inequality, Assumptions SB1(i) and SB3(i), (SB.75).

n~t Z ug ik i1 (wii) = Op(n™?) (SB.206)
i—1
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which together with (SB.205) implies that

nUL(P3(Bk) — Pa(Br0)Beims (Bro) = (Br — Bro)op(1) + op(n~ ). (SB.207)

The first claim of the lemma follows by (SB.204) and (SB.207).

(ii) Using the similar arguments in showing (SB.191), we get

n_lLé(p;(Bk) - PZ(ﬁk,O))(Bsﬂ(/@k,O) - Bap,m2 (5]6,0)) - (Bk — Bk’o)op(l). (SB.QOS)

By the mean value expansion, Assumptions SB3(i, ii, iv), Lemma SB1, the consistency of 3k and the

Markov inequality

n LY (P (Bk) — P2(Br0))Boms (Bro)
212 Zkll Wl'L ﬁk’)) @(wl,i(ﬁk,ﬂ))) +0p(1)

~(Br — Bro)n lez/ﬁ i91(@1,i(Br,0)) + 0p(1) = 0p(1)

=1

which together with (SB.208) finishes the proof.
(iii) The third claim of the lemma can be proved the same way as the second one.

(iv) By the first-order expansion,

(G~ G (P5(Bk) = Pa(Br0))(Be (Bro) = Boms (Bro))
n! Z 9(w1))(Pa(@1,3(Br); Bro) — Poi(Br0)) (B (Bro) — Bems (Bro))

—(Br — Bro)n? Z (Br) — 9(w1.0))0' Pa(@1.43 Br.0) (B (Bro) — Boms Bro))s (SB.209)

where @1 ; lies between &1 ;(;) and @1,i(Br,0). By Assumption SB2(v), Lemma SB12 and (SB.112), we

get

n~! Z 9(@1,))0" Pa(@1,35 B1,0)' (B (Br0) = B (Bro))

=£1,m20p((m}/ + ma)n~ Y20, (m1/? + mi/*)n1/?)
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which together with Assumption SB3(iv) and (SB.209) implies that

G — Gn) (P3(Bk) — P2(Br,0)) (Be(Br0) — Bpna (Bro)) = (Bk — Bro)op(1). (SB.210)

Using Assumptions SB3(i, ii, iv) and Lemma SB12, we get

nYG — Gn) (P3(Br) — P2(Bro))Boms (Bro)
=n"") (Gi(Br) — 9lwr.) (@(@1,4(Br)) — @(@1i(Bro))) + 0p(n~'/?)
=1

= (Bk — Bro)op(1) + 0p(n™1/?)

which together with (SB.210) proves the claim. Q.E.D.

Lemma SB20 Under Assumptions SB1, SB2 and SB3, we have

n! Z(ﬁ(@,z’(ﬁk); Br) = 3(@1:(Br0); Bro)) (ki — k1191, (Br))
i=1

= —(Br — Bro) [Elk1,i91,i(v2, — v1,914)] + E [k2i(az; — a1,,91,4)] + 0p(1)] + op(n_1/2).

ProOOF OF LEMMA SB20. By the definition of §(w; ;(5k); Bk), we can write

9(@01(B); Br) = Poi(Br) By(Br) = Pai(Br) (Pa(Br) Pa(Br)) " Pa(Br) Ya(Br)
= P5,(B1) (P5(84) P53 (Br) " P3(Br) Y5(B)

and therefore

§(@1,6(Br); Br) — §(@1,4(Br.0); Br.o)

= (P5:(Br) — Pai(Br0)) (P5(Br) P5(Br) " P5(5k) Y5 (Br)
+ Poa(Bro) (P38 P3(5i) ™" = (Pa(Bro) Pa(Bro)) ™" | Pa(5) Y3(Br)
+ Poi(Br0) (P2(Br0) Pa(Br0) " (P3(Bk) — P2(Bro)) Y3 (Bk)

+ P2i(Br0) (P2(Br0) P2(Br0)) " Pa(Bro) (Y5 (Br) — Y3(Bro))- (SB.211)
The proof is divided into 4 steps. The claim of the lemma follows from the results in (SB.160), (SB.212),
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(SB.225), (SB.235) and (SB.237).
Step 1. In this step, we show that

n! Z Uy (P53 (Br) — Poi(Bro)) (ki — k1,i91,0)

i=1

—(Br — Bro) (Elk1.ig1:(k2i — k1.491.4)] + 0p(1)) + Op(n_1/2), (SB.212)

where vy, = (P3(B)P5(5k)) " P3(Br) Y3 (Br)-
For any vy € R™2, by the second order expansion,
vh (P5i(Br) = Poi(Bro) = 0" Pai(Bro) (@1,4(Be) = w14(Bro)) )
= 150 Py(@1,43 Br0) (@16 (Br) — w1,i(Br))?, (SB.213)

where (:)171‘ lies between UT)Li(Bk) and o.)l,i(ﬁk’(]). Since (2)171'(314) — Wl,i(ﬁk,o) = (‘%z — (ﬁz) — kl,i(/ék — ,Bho), we

have
n P*(B.) — P ;
n~t Zvé . 2:(0%) A2’ (i) (k2 — k1,91,i)
; =0 P2 i (Br.0)(@1,i(Br) — w1,i(Bro))
< CIleSH;i( HU1232]52((:1171'; 5&0)“ < Z 6k — ,Bk 0 Qn_l Z k ) . (SB.214)

i=1

By the definition of vy ., we can write 057*82]52(@171»;5;670) = Bg(,@k),82p2(@17i;ék) where @1 ; € Qc, (Bk)
for any ¢ < n wpal. By the triangle inequality, Assumptions SB2(iii, v, vi), Lemma SB11 and Lemma
SB16

max Hv§7*62152 (@1,5 Br,0) H
< | By (B1) 0% Pat@n it )| + max | (B (Be) = Byana (Br)) 9 Pa(oras )|

= Op(l) + Op((ma +my )ﬁz,an‘l/Q)- (SB.215)

By the Markov inequality, Assumptions SB1(i) and SB3(iv), Lemma SB1, Lemma SB16, (SB.214) and
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(SB.215), we get

nt Zv’ . 3 48w = P?’i(ﬁkm (k2,i — k1,91,1)
—0'" P2 (Br,0) (@1, (Br) — w1,i(Bro))
= (B — Bro)op(1) + 0p(n~1/?). (SB.216)

Similarly, we can show that

o1 i y Psi(Br0) — Poi(Bro) -1/2)

~ (k2,i — k1,i91,i) = op(n (SB.217)
—0' P2 (Br.0)(@1,i(Br.o) — wi,i(Bro)

Since w“(ﬁk) —w1,i(Bro) = —ku(ﬁk — Bro), using (SB.216) and (SB.217) we get

n! Z Uy (B3 (Br) — Poi(Bro)) (ko — k1,ig1,0)
i—1

— (B — Bro)n Z v 0" Pai(Bro)kv,i(kei — k1914) + (Br — Bro)op(1) +0p(n™ /%), (SB.218)
=1

By the definition of vg ,, we can write
U 0" Pai(Bro) = By(Br) 0" Pa(wri(Br); Br)-
Therefore

n! Z Ué,*alpZi(ﬁk,O)kl,i(kQ,i — k1,491,)

i—1
=Elk1,91.i(va; — v1491.4)] +n Z (g1,ik1i(k2i — k1,i91,) — E[k1491,:(v2,i — v1,i91,4)])
=1
n (By(Br) 0" Pawii(Br); Br) — g1.i)kai(kai — K1igua)- (SB.219)
i—1

By Assumption SB3(iv) and Lemma SB16, w;; € Q., (Bk) for any ¢ < n wpal. Therefore by Assumption
SB2(v),

max
i<n

' Py(w1,i(Bro); Br) H = Op(&1,my)- (SB.220)

By the triangle inequality and the Cauchy-Schwarz inequality, Assumptions SB2(ii, iii, iv) and SB3(iv),
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Lemma SB11 and Lemma SB16, and (SB.220),
nty ‘Bg(ﬁk)'ﬁlpz(wu(ﬁk,o); Br) = g1(w1i(Bro); ﬁk,o))
i=1
<nt Z
i=1

+n Yy ’Bg,mg (Br)'0" Pa(wr,i(Bro); Br) — 91 (wr.i(Bro); 5k)’
i=1

(By(Br) — Bgyms (Br)) 0" Pa(wi,i(Br0); Bk’)’

+n! Z ‘91 (w1,i(Br0); Br) — 91(w1,i(Bro); 5k,0)‘
=1
= O (E1my (mz + 120 "Y2) + Oy (m™9) + (B — o) Op(1) = 0,(1)

which together with Assumptions SB1(i) and SB2(ii) implies that

n”! Z(Bg(ék),alpz(wl,i(ﬁk,o); Br) = gri)k1i(ko; — k1ig1) = 0p(1).

=1

1 (By(Bro) 0" Pa(wr,i(Bro)i Bro) — gri)kri(kai — k1ig1) = op(1).
i=1

By Assumptions SB1(i) and SB2(ii), and the Markov inequality,

n

n~! Z (gr.ik1(kai — k1ig14) — Elk1,i914(v2; — v1,4914)]) = Op(n=1/?)

i=1
which together with (SB.219), (SB.222) and (SB.223) implies that
n ~
- Vg0 12 (Pr0)k1,i(R2,i — K1i91,) = K|k1,91,4(V2,i — v1,i91,4)] + op(l).
n=t Y 050 Poi(Bro)ki(kzi — krigri) = Elkrigua( )]+ 0p(1)
=1

The claim in (SB.212) follows from (SB.218) and (SB.224).
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Step 2. In this step, we show that

vh o [Pa(Bro) Pa(Bro) — Pa(5)P5(Br)] By (Bro)
= (Br — Bro) (Elgrikri(az,; — a1,ig1,0)] + 0p(1))

+n7 b P3(B) (P2(Bro) — P5(Br))Be(Bro) + op(n~/3), (SB.225)

where B,(Bro) = (Pa(Br0)Pa(Br0) ™t o0y Poi(Bro)(kai — k1ig1.)-

Since we can write

Vo |P2(Bro) P2(Bro) — P5(Be)P3(Br) | By (Bro)

=}, (P2(Bro) — P3(Bk)) P2(Br.0)Be(Bro) + v P3(Bk) (P2(Bro) — P5(Br))Be(Bro),

to prove (SB.225) it is sufficient to show that

n ), (Pa(Bro) — P3(Bk)) P2(Br0)Be(Bro) = (B — Bro) (B [g1,ik1,i0:] + 0p(1)) + 0p(n~/?), (SB.226)

where ¢; = az; — a1,91,-

By the Cauchy-Schwarz inequality, Assumption SB3(iv), (SB.53), (SB.112) and (SB.186),

n 7 [vh . (Ba(Bro) — P3(B)) Pa(0) (B (Bro) — Bouma(Br0))|
o (P3(r0) = P3(51)|||[P2(810) (Bo(Br0) = Boama (B10))|

_ |5, (P2(Br0) = P58 || 8o (Bro) = Boms (Bro)|
- (Amax(n =" P(Br0) Pa(Br.0))) /2012
= 1B - B’fvo‘op((m}p +my ) = 1By — Br.olop(1). (SB.227)

<n!

By the Cauchy-Schwarz inequality, Assumptions SB3(i, ii, iv), Lemma SB1, (SB.48) and (SB.186),

nt[vh . (Pa(Bro) = P3(50)) (Pa(Bro) = P(Bro)) Bouma (Bro)|
(P2(Br0) — P5(Br))va,s ‘(PQ(Bk,O) —P2(Br0))Boms (ﬂk,o)HS

= 1B = BrolOp(mi*n=Y2) = |8, — Brolop(1). (SB.228)

<n!
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By (SB.186) and Assumption SB3(ii, iv),

n~! ’UQ,*(P2(5I€,O) —P2(6r)) (P2(Br0) Boms (Bro) — ©n)
<n” H(f’z(ﬁk,o) — P3(Br))va,s < Hf’g(ﬁm)’ﬁ%m (Bro) — ©n

= ’ﬁk - /Bk,O‘ Op(n™?) = | Bk — Brolop(1),

where ¢, = (¢1,...,pn), which together with (SB.227) and (SB.228) implies that

n vl (Pa(Bro) — P3(51)) P2(Br0) B0 (Br0)
= nflvé,*(fb(ﬁk,o) —P3(Br) on + (Br — Bro)op(1).

Since va« = (B(Bro)) "' B(Bk) By(Br), we can write

n

vh . (Pa(Bro) = P5(5r)) on = D By(Br) (Pa(@1,i(Br0); Br) — Po(@1,4(Br); Bi))pi

=1

(SB.229)

(SB.230)

By the first-order expansion, the triangle inequality and the Cauchy-Schwarz inequality, Assumptions

SB1(i) and SB3(i, iv), Lemma SB11 and Lemma SB16, we have

n! Z (B (Br) = By.ma (Br)) (Pa(é1,6(Bro); Br) — Paliri(Br): Br))wi
= (B — Bro)n" ;(@(Bk) — By.ma (Br)) 0" Pa (1.4 By K i
= (B = Buo)Op((my” + ma)n™ )0, (€1,m2) = (B — Bro)oy().
By Assumptions SB1(i), SB2(iii) and SB3(i),
n! Zn;(ﬁg,mz (Br) Pa(@1,i(8r,0); Br) — 9(@1,4(Br.0); B) kv ipi = op(n™7?)
and

n " (Byama (Br) Pa(@n1,4(Br): B) — 9(@1,i(Br); Br)kripi = op(n™'/?)
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which together with (SB.230) and (SB.231) implies that

n~ 0y (Pa(Bro) — P5(Br)) en

=n"") (9(@1,i(Br0)i Br) — 9(@1,6(Bk); Br)Verivs + (B — Bro)op(1) + op(n ™). (SB.232)
i=1
By Assumptions SB1(i), SB2(ii) and SB3(i), Lemma SB1 and Lemma SB16

n"Y k1ioi(91 (@13 (Bro); Br) — 91(w1i(Br0); Bro)) = op(1). (SB.233)

i=1

By Assumptions SB1(i), SB2(ii) and SB3(i), and Lemma SB16
nh Y kiei(9(@1i(Br); Br) — 9(@1i(Br.o); Br) + 91(@1,i(Br,0); Br) (Br = Bro)) = (B — Br.o)op(1)
1=1

which together with (SB.233) implies that

n

n (9(@1,6(Br0)i Br) — 9(@14(Br); Br) ke icpi
=1

= (Br = Bro)n "> grikrivi + (Br — Bro)op(1)

=1

= (B — Bro)Elgrikrivil + (Br — Bro)op(1) + op(n~?), (SB.234)

where the second equality is by the Markov inequality. The claim in (SB.226) now follows from (SB.229),
(SB.232) and (SB.234).
Step 3. In this step, we show that

~ A~ ~

k) = P2(Br)Bg(Br)) (P5(Br) — P2(Br.0)) B (Bro) = (B — Bro)op(1) + 0p(n~"/?).  (SB.235)

S

L
..<
N ¥
=3

By definition Q;(Bk) = U5 — kgy,ﬂAk, we can write
95 (Br) — Pa(Br) By(Br) = 5 — lo.iBr — ka.iBk — §(@14(B); Br)
=i — loi(B1 — Bro) — k2, (B — Bro) — (§(01,:(Br); Br) — g(wi)).
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Therefore,

THY3(Br) — Pa(B1)Be(Br)) (P3(Br) — Pa(Br0))Be (Br.0)
= 0~ UL(P3(Br) — Pa(Br0)) B (Bro)

— (b1 = Bo)n " Lo(P5(Br) — Pa(Br,0))Bp (Br0)

— 0" (B — Bro) K5 (P3(Br) — P2(Br.0)) B (Br.0)

—n"H Gy — Go) (P5(B) — Pa(Br0))Be (Bro)

which combined with Lemma SB19 proves (SB.235).

Step 4. In this step, we show that

Y5 (Be) — Y5(Br,0)) P2(Br0) B (Bro) = — (B — Bro) (Elkzi(az — a1.91,)] + op(1)) -

Since 75 (Bk) — 75 (Bro) = —k2.i(Bk — Br.o), we have
“LY35(B8k) — Y3(B.0)) P2(Br0)Bo(Bro) = =1 (Br — Br.0) KoP2(Br0) B (Bro)

and

n

n T KEP(Br,0)Be (Bro) = Elk,ip(wi )] + 171 (kaip(wn i) — Elkaip(wri)])
=1
_1Zk21 (wi4) — o(@1,i(Brp)))
n! ka (@1(Br0)) — Poi(Br.0) Boums Bro))

+n! Z k2. P2.i(Br.0)' (B (Br0) = Bams (Bro))-
i=1

By Assumptions SB1(i) and SB3(i, ii), and the Markov inequality and Lemma SB1, we have

n! Z(kg,icp(wu) — E[k2ip(w14)]) = 0p(1)

and

n! Z ko, (p(@01,i(Bro)) — PQ,i(ﬁk,O)IBgo,nm (Br,0)) = 0p(1)
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and

! Zkzz (@10) — (@14(Br0))) = 0p(1). (SB.242)

By the Cauchy-Schwarz inequality, (SB.53) and (SB.110)

n~! Z k2.i P i(Br.0) (Bo(Bro) — Bons (5k,0))‘

i=1
< Comax (17 P2(B0) P2(81.0)) || B (Br0) = Bouma (Bro) | = 0n(1). (SB.243)
The claim in (SB.237) follows from (SB.238), (SB.239), (SB.240), (SB.241) and (SB.242). Q.E.D.

SB.4 Auxiliary Results for the Standard Error Estimation

Assumption SB4 (i) There exists 1, fori=1,...,n such that n=t 31 (é1;—¢e1,:)* = 0p(1); (i) there
exist > 1 and By, € R™ such that sup,ey |hm () — h(z)| = O(m™"™) where hy,(x) = Py ()’ Bum and
Eo,mim ™" = o(1); (i) Q> 0.

The following lemma is useful to show the consistency of the estimator of the asymptotic variance.

Lemma SB21 Under Assumptions SB1, SB2 and SB3, we have

(i) 07 Py(Be) Pa(Br) — n ' Pa(Br0) Pa(Bro) = Op(€1men™/?);

1) 0 1/2y _
(i) main |91,5 = 91,0] = Op(E1ma (maz +my*)n=1/2);

(iii) =t Y0 (G — vai +v1ig14)" = Op (Mg + m3)EL 1,68 men ) 5
(i) n=' 30 (G2 — u2)* = Op((mf + m3)&g ,,n~2);
(1)) maX;<n ‘iLZ - hz‘ = Op(l).

PrOOF OF LEMMA SB21. (i) For any vy € R™2, by Assumption SB2(v) and (SA.7) in Theorem SA1

V5 (Pa(Br) — Pa(Bro)) (P2(Br) — Pa(Bro))ve
= Z (V((Po,i(Br) — Poi(Bro)))?

= (B = Br0)® Y (vhOPa(&1,:(Br); Br) /9Br)” = l|vall” Op (€3 g ™)
=1

which implies that
HPZ(Bk) - PQ(ﬁk,o)HS = Op(E1myn ). (SB.244)
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By the triangle inequality and the Cauchy-Schwarz inequality, Assumption SB3(iv), (SB.53) and (SB.244)

n || P28 Pa(Bi) — Pa(Bo) Pa(Bro)

< 17| (Pa(Br) = Pa(Br0)) Pa(Bro) |
+n! Hf’z(ﬂk,o)'(lsﬂﬁk) - P2(6k’0))HS

7 [[(P2(B) — Pa(Bo)) (Ba(Be) = Pa(Bro) |, = Op(rman/2) (SB.245)

which proves the claim.

(ii) Using the similar arguments in deriving (SB.152), we can show that

max [0 Poi(Be) By (Br) — on 1B )|
< max ' Py i(Br) By(Br) — grma (wi.i(Br); Bk)‘

+ max ‘91,m2 (wi,i(Br); Br) — g1(wri(Br); Bk)‘

< 261.ma 189 () — Bg.ma (B[ + Cmy "
which together with (SA.7) and Lemma SB11 implies that

0" Pai(Br) By(Br) — g1(wi(Br); Bk)‘ — Op(E1my (ma +my*)n=112). (SB.246)

max
i<n

Using similar arguments in showing (SB.155), we get

max ‘(51152,1'(51@) — O Py(wri(Br); Bk)),Bg(Bk)‘

i<n
< max| (0 Poi(Bi) — 0 Palwr,a(Bu)s 1)) Byma (55|
o max (9 Pai(Be) — 0" Pa(wr (81 81)) (By (Br) = Boms (5i)|

~

< max ’91(@1,z‘(3k); Br) — g1(wii(Br); 5k)‘ + Op(€2,m2§1,m1m1/2(m2 + miﬂ)n_l)

= Op(E1my (2 +my)n1/2). (SB.247)

By Assumption SB2(ii) and (SA.7), we have
1?<a;< 91(W1,i(3k);3k) - 91(w1,,~(ﬂk70); 5k’0) — Op(n—l/z)
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which together with (SB.246) and (SB.247) proves the second claim of the lemma.
(iii) Define ¢; = Py i(B4)'By(Bk) for i < n, where

Bo(Br) = (Pa(Br) Pa(B Z )(kai — k14614 (Br))-

Let Akgﬂ‘ = kgﬂ‘—]ﬂ’igl,i and A/%gﬂ‘ = k27i—k17¢g17i(3k). Since V2 —V1,i91,5 = Akg,i—goi and fl = Al%zz‘—@i,

we have
nil Z(fl —v2i+ 1)171'9171‘)4 < Cnil Z(AI%QJ — Ak27i)4 + Cnfl Z(@Z — (pi)4. (SB.248)

i=1 i=1 i=1

By Assumption SB3(ii), Lemma SB13, Lemma SB21(ii) and (SA.7),

_IZ (Ako; — Aky ) = lzkuglz Br) = 91(w1,i(Br0); Bro))’

=1

_12 G1.:(Br) = 91(w1i(Bro); Bro))’

= Op((my +m?)&l yn2). (SB.249)

Similarly we can show that
I (A — Akg)? = Op(& 1y (m3 +ma)n ). (SB.250)
=1
By the definition of ¢;, we can write
Gi — i = Poi(Br) (P2(Br) Pa(Br)) ' P2(Br) (AKs — AKD)

+ Poi(Br) (Pa(Br) Pa(Br) " (Pa(Br) — Pa(Bro)) AKo

+ Poi(Br) [(Pa(Br) Pa(Br) " — (P2(Br0) Pa(Bro)) 1P2(Bro) AKs

+ (Poi(Br) — Poi(Bro)) (Pa(Bro) Pa(Bro) " Pa(Bro) AKy

+ P2i(B10) (P2(Br.0) Pa(Br0)) " Pa(Bro) AK2 — i, (SB.251)

where AKy = (AIAfQ’]_, .. ,Al;‘gm)/ and AKy = (Aka1,...,Aksy). By Assumption SB2(v), (SB.53) and
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(SB.250),

nTUY (Pri(Br) (Pa(Br) PaBr) ™ Pa(Br) (AKy — AKs))*
i—1

< 8, | (P2 Pa(30) Pa(Bi)(AKs — AK)||

x0T (Poi(Br) (P2(Bk) Pa(Br)) "' Pa(Br) (AK, — AK;))?
i1

IN

n 2
()\min(n_lf)2(3k)/p2(Bk))>_1£g,m2 <TL_1 Z(AI%Q,Z - Ak2,i)2>

i=1

= Op ((m3 +m)E 10, &8 man ™) - (SB.252)

By the first order expansion, the triangle inequality and the Cauchy-Schwarz inequality,

n 'y )pQ,ka)'(Pz(Bk)'Pg(3,{))*1(152(3,4) — Py(Bro)) AK2’4
=1

n 4

= (Br = Bro)'n ">

i=1

Poi(Br) (P2(Br) Pa(Br)) Zalpz D133 B0 ki Ak
i=1

2

< (/Bk - ﬂk,0)4§§,m2

1y
=1

(Br = Br,0)* & mp&t s
B ()\rnln( 1P2(5k’)/P2 (ﬁk

(P2(Br) P2(Br)) " Zalfb 1,45 Br,0)k1,iAka;

=1
2

Poi(Br) (P2(Br) Pa(Br)) lzalPQ (@155 B0 ki Aka

=1

2

*1219 (Akg,)?

)

where @1 ; lies between d}ll(ﬁk) and @1 ,(Bk0), which together with Assumptions SB1(i) and SB2(ii),
(SA.7) and (SB.53) implies that

n 'y ‘152,z‘(Bk)'(f’2(3k)'f’2(3k))_l(f’z(@k) — P3(Bro0)) AK, o Op (&1 1y &8 man ™) (SB.253)
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By Assumptions SB2(iv, vi) and SB3(i, ii) and (SB.112),

HBgo(ﬁk,o)H < HB«p,mg (5k,0)H + H/&p(ﬁk,o) — Bopms (ﬁk,o)”
< nin Qo (B.0))) ™ E @ [l + Op((my”* + my/*)n=1/2)

< CE [[ems lly + CE [lomy — @(wii)lly + 0p(1) = Op(1). (SB.254)

By the Cauchy-Schwarz inequality, Lemma SB21(i), (SB.65) and (SB.254),

nty ‘PQ,i(Bk)/[(PZ(Bk)/PQ(Bk))il - (PQ(ﬂk,O)/PQ(ﬁk,O))il}P2(,Bk,O)AKQ‘4
i=1
n R . . . R R . N R R . . R 4
=n'y ’PQ,z'(ﬁk;)/(P2(ﬁk)'P2(5k))_1[Pz(ﬂk)/Pz(ﬁk) - P2(ﬁk,o)'Pz(ﬂk,o)]Bw(ﬁk,o))
i=1

2

(P2(Br)P2(Br)) " [P2(Br) Pa(Br) — 132(/Bk,o)lls2(/3k,0)mgo(5kz,0)H

2
S EO,mQ
’2

xn Y ‘PQ,i(Bk:)/(p2(Bk)IPZ(Bk))_l[p2(Bk)/P2(Bk) — P2(B1.0) Pa(B.0)1 80 (Br.0)
i=1

) Y
< o oGy oA |7 T Patde) ~ ™ Palo Pt
= Op(&ms€lman ™). (SB.255)

By the first order expansion, (SA.7) in Theorem SA1, Assumption SB3(ii) and (SB.254),

n

n~! Z((Pz,i(/;k) - pQ,i(/Bk70))/Bgo(ﬁk,0))4

=1

= (Br — Bro)'n ™" > _(0Pa(@14(Br); Br)/0Bk) Bo(Br0))*

i=1

< (B~ B10) €y BBl | = Oyl ™). (SB.256)

69



By Assumptions SB2(v) and SB3(i, iv), Lemma SB1, (SB.49), (SB.112), and (SB.254)

n~! Z(PQ,i(Bk,O)/(P2(/Bk,o)/f’2(/Bk,o))_lp2(,3k,0)AK2 — ;)"
<Cn! Z((pz,i(ﬁk,o) — P2i(Br0)) B (Bro0))’
Y (Poi(Br0) (Bo(Bro) — Boums(Bro)))*

i=1

cnt Z(Pli(ﬁk,O),Bga,mg (Br0) — i)

<C “Bw(ﬁk,o)“45%,m2”_l En:(ﬂgz -

€ A (07 Po(B10) Pa640)) ||Bo B0 — Brams ()| + Olmz™™)

= Op((E1mo&8ma™1 + &L mym3)n ™). (SB.257)
Collecting the results in (SB.251), (SB.252), (SB.253), (SB.255), (SB.256) and (SB.257), we get
Y (@i =9t = Op ((m + M 1y man ™)
i=1

which together with (SB.248), (SB.249) and (SB.251) proves the third claim of the lemma.

(iv) By the definition of 4g;, we can write

Qg — ug; = —l2,; (B — Bro) — k2i(Bk — Bro) — (4 (Br) — 9(wri(Bro); Bro))

which implies that

12“21 uz)' < Ol - /3104’121 +cﬂk—5ko4*12k21
n! Z (w14 (Bro): Bro))*

n~t Z 9(w1.i(Br0); Bro))* + Op(n™2), (SB.258)

where the equality is by Assumptions SB1(i, iii) and SB2(i, ii), and Lemma SB16. Using similar arguments
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in showing Lemma SB12, we can show that

max |§i(Br) — 9(wii(Bro); Bro) i

i<n

= & mal1Bg (Br) = Byana ()| + Opl(my ™™ +n71) = Opl(ma + m3)EG, ,n ™)
which together with (SA.7) and Lemma SB12 shows that
n! Z(Qz‘(@k) — 9(w1i(Bro): Bro))t = Op((mi + m3)&S ,n™2). (SB.259)
i=1

The claim of the lemma follows from (SB.258) and (SB.259).
(v) Let B, = (P/Py)~" Yo Pi(zi)li;. By Assumptions SB1 and SBA4(ii), we can use similar

arguments in showing (SB.42) to get
Bn — Bhm = 010(777&/271171/2 + mfrhl ). (SB.260)

Therefore by the triangle inequality, Assumption SB1(vi) and (SB.260),

max |h; — i < Eomy |8 — 5h,mH +max [hpy (71,:) — byl
i<n i<n

= Op(éo,fm m1/2n171/2 + €O,m1 m;"hl) = Op(1)7

where the second equality is by Assumptions SB1(vi) and SB4(ii). Q.E.D.

Lemma SB22 Under Assumptions SB1, SB2, SB3 and SB4, we have
(i) T = T = 0y(1);
(ii) T — T = 0,(1);
(iii) S — Q = 0,(1).

PRrROOF OF LEMMA SB24. (i) By Assumptions SB1(i) and SB2(ii), and the Markov inequality
nY (vgi = v1ig10) =T+ Op(n=12) = 0p(1) (SB.261)
i=1

which together with Assumption SB4(iv) and Lemma SB21(iii) proves the first claim of the lemma.
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(11) Let fn = Z?:l(lli - hl,igl,i)(vlz' - vl,iglyi). Then by Assumptions SBl(l, 11, 111) and SB2(1, 11),

and the Slutsky Theorem, we have
n~t Zs“ = ] + Op(n17?) (SB.262)
and

n! Z(ZQ,i — h1g13) (V25 — v1ig1d) = E[(log — h1,i91.6) (vai — v1.591.4)] + Op(n~1/2), (SB.263)
i=1

which implies that
T, =T+ 0,(n~'?). (SB.264)

By the definition of I',,, we can write
I, -T,=n" Z [ (i — hign.i) (D2i — D14d1.) — (loi — higri)(vai — v1ig1.4)

—n~! Z(ﬁifh,i — hig1,i) (02 — 01,401, — V2, + V1,i91,1)

n
— 07" (higri — higri) (v2; — v1i91,4)
i—1
-1 Z (lo; — hig1i)(V2,i — 01,301, — V2, + V1,i91,4)- (SB.265)

(iti) Since A1 = i — li(B — Bro) — (¢ — b1), by Assumptions SB1(ii, iii) and SB3(iv), the Markov

inequality and Lemma SB1

IZ i —m,i)* < C(Bi = Bro)*n 1lez+max —¢)’n Y (di—
i=1

= 0p(172) + Op(€2 ym2n~2) = Op(€,ymin=2) = 0(1). (SB.266)
By Assumptions SB2(ii) and SB3(iv), and Lemma SB21(ii)

max §ji i < C’max(91 i 9171)4 + Crlg<a;( gii = 0p(1). (SB.267)

i<n
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By Assumptions SB1(i, ii) and SB3(iv), Lemma SB21(ii, iv), (SB.266) and (SB.267), we get

-1 . L 4
n E (U2 — MiG1i — w2, + M1,i91,i)

i=1
n n
<COn7'Y (g —uga)t + ¢ max gtan™ D (i — )
i=1 = i=1
n
+ Cmax(g1; — g14)*n " Z 77%,1‘ = op(1), (SB.268)
i<n =1

which together with Lemma SB21(iii), Assumptions SB1(i, ii), SB2(i, ii) and SB3(iv) implies that

2
n Qo i — Py et Mo s — B 28 s
1 Z ( 2,4 771,291,1)( 2,0 1,191,1) _ Op(l). (SB269)
im1 \ —(u2i —n1ig14) (V2 —v1,i91.4)
By Assumptions SB1(i, ii, iii) and SB4, and (SB.266), we have
n
n~t Zel i EnTY it = 0,(1), (SB.270)
=1

which combined with Lemma SB22(ii), (SB.266) and Assumption SB4 implies that

n

nt Y (Tnérii — Term)® < C(T, —T)? Zéf it
=1

+Cr?n! Z(él,i - 61,1:)277%,1'
i=1

+CT%n Y e} (i — ma)® = op(1). (SB.271)
=1

Let Q, =n 'S ((u2i — mig1.)(vaq — viig1.4) — Derimig)?. Then by Assumptions SB1(i) and SB2(ii),
and the Markov inequality
Qn = Q+0,(n?). (SB.272)

By the definition of €2, and Qn, the triangle inequality and the Cauchy-Schwarz inequality, (SB.269),
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(SB.271) and (SB.272), we get

’Qn _Qn

<Ol i (G2, = 11,691,1) (02,6 — 01,916
=1

—(u2,5 — M,i91,i) (V2,5 — V1,i91,i)

n
. 2
+Cnt E (Fnél,iﬁl,i - FEl,ﬂh,i)
i=1

92\ 1/2
Lol [ zn: (2, — M1,191,4) (D2, — 01,i01.,4)
i=1 \ —(u2; — M1,91,6)(v2,i — v1,i91,0)
n 1/2
+ O,/ <n_1 > (Curifni — F&?l,i??l,i)z) = op(1)
i=1
which together with (SB.272) proves the third claim of the Lemma. Q.E.D.

SB.5 Preliminary Results

Lemma SB23 (Matrix Bernstein) Consider a finite sequence {d;} of independent, random matrices

with dimension mi X meo. Assume that
Eld;] =0 and ||di| s <&,

where & is a finite constant. Introduce the random matriz Dy, = Y | d;. Compute the variance parameter

02:max{ }
s

2
P (| Dalls = 1) < (mi1 +m2) exp (‘a:/;/?) |

S E [di]
=1

SO [did]
=1

)
S

Then for anyt >0

The proof of the above lemma can be found in Tropp (2012).

Lemma SB24 Let SQJ‘(,Bk) = PQJ(B]JPQJ(B[Q’ where pgﬂ‘ (,Bk) = ]Sz(wl7i(ﬂk),/8k) fO?" any ,Bk (S @k Then
under Assumptions SB1(i) and SB2(iv, v, vi), we have

sup

= Op((log(n))"2 € myn/?).
BrE€OK

S

n Y S9i(Bk) — E [S2i(Br)]
i=1
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PROOF OF LEMMA SB24. For any f3j € Oy, by the triangle inequality and Assumptions SB2(iv, v),

1192, (Bk) = E [S2,i(Be)llg < 152, (Br) | g + I1E [S2,i(Br)llg < CEF s (SB.273)

By Assumptions SB1(i) and SB2(iv, v),

D E [(Sz,i(ﬁk) ~-E [Sz,i(ﬁk)])ﬂ <n (||E[(S2.:(8:))%] || ¢ + ||(B [S2:(B))?[| ) < CnEGpmy- (SB.274)
=1

S

Therefore we can use Lemma SB23 to deduce that

2
P ( > t) < 2my exp ( ! M) (SB.275)
S

O, (14 4/3)
for any 8 € O and any t > 0.

nt Z S2.i(Br) — E [S2,i(Br)]
i=1

Since ki; has bounded support, there exists a finite constant Cj such that |k;;| < Cj for any i.

Consider any S 1, Ok2 € Ok and any v € R™? with ||| = 1. By the triangle inequality,

152,i (Br,1) — S2,i(Br2)llg < HSzz‘(ﬁk,l) - pQ,i(ﬁk,z)p2,i(/3k,1)/"S

+ |[Poi(Br) PraBa) = SaalBro)| - (SB.276)

By the mean value expansion and the Cauchy-Schwarz inequality, and Assumption SB2(v)

(P (B0 PG — Pos(Be2) Pos(B.1)) |

= HPQ,i(/Bk,l)W ‘7'(]5271‘(&,“) — ]5271.(5&2))‘2
= HPQ,Z‘(/Bk,I)HQ ‘7’8P2 (w17i(ﬁ~k’12);ﬁ~k’12> /OB

2
<NV €8 gt ms (B — Br2)?,

(Bra — Br2)?

‘ 2

where Bk,12 lies between fj 1 and fj 2, which together with Assumption SB2(vi) implies that

Hsz,z‘(ﬁk,l) — 152,i(5k,2)152,i(5k,1)/HS < Om3 |Bra — Bral- (SB.277)

The same upper bound can be established for the second term in the right hand side of the inequality of
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(SB.276). Therefore,

152, (Br,1) — S2.i(Br.2)llg < Cmi |Br2 — (SB.278)
Similarly, we can show that
IE [S2,i (Bk,1)] — E[S2,i(Br2)]llg < Cmi B2 — Bral - (SB.279)
Combining the results in (SB.278) and (SB.279), and applying the triangle inequality, we get
Y (92, (Br) — E[S2,:(Br1)])
S ’ < Csm3 |Br2 = Bral - (SB.280)

—n Y (52,i(Br2) — E[S2,i(Br2)])

S

where Cy is a finite fixed constant. Since the parameter space Oy is compact, there exist {8y (1) }i=1,.. K,
such that for any S € Oy

min B = Fp(D)] < (Csmin'/?)~, (SB.281)

where K,, < 2Csm3n'/2. For any i € O, by (SB.280) and (SB.281)

+n712 (SB.282)
S

n! Zsm 54) — E [S2,(60) 12521 Be®) ~ B [52:(8D)

‘< max

_17 3] 'n.

Therefore for any B > 1,

n- 2521 (Be) — E[52,i(Bk)]

sup > B(fg,mQ log(n)nil)l/z
BrE€Ok
<P ( max
1, Kn
S|
=1

B log(n)
< 9K, 2 , SB.283
= mo eXp ( C 1 + (£g7m2 10g<n>n—1)1/2> ( )

S

12521@ — E[Sa.:(Bx(1))] 2<B—1)(58,m210g(n>n‘1>1/2>

S

> (B = 1)(&3 m, 10g(n)n_1)1/2)

nt Zl Sg,l(ﬁk(l)) —E [SQ,Z(/Bk(l))]

S

where the last inequality is by (SB.275). The claim of the theorem follows from (SB.283) and Assumption
SB2(vi). Q.E.D.

Lemma SB25 Let us,(8k) = y3,; — k2,iBk — 9(w1,i(Bk), B). Then under Assumptions SB1 and SB2(ii,
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iit, v, vi), we have

sup = Op(mgn_l/Z).

Br€EOk

nt Z Po(w1,:(Bk), Br)uz,i(Br)
=1

PROOF OF LEMMA SB25. Define 7,(8x) = n /231", Pa(w1,i(Bk), Br)uzi(Bk). For any B € Oy, by
Assumption SB2(i) and (SB.55),

E [ (uz,i(81)*| w1,i(Br)] < CE [(y5.)* + k3 ;| wr,i(Br)] + C lg(wri(Br); Be)|* < C. (SB.284)

For any B 1, Bk2 € Ok, by the i.i.d. assumption and the Cauchy-Schwarz inequality

E [Jima(B.1) = n(Br2) ]
=E I:HP2(W1,Z'(BIC,1>7 Br1)u2,i(Bea) — Po(wii(Br2), 6k,2)U2,i(,8k72)H2]

<2E [(UQ,i(ﬁk,Q))Q HPQ(Wl,i(ﬁk,l)ka,l) - PZ(UJl,i(ﬂkQ)aﬁk,z)HQ]

. 2
+2E [HPQ(Wl,z’(/Bk,l)uﬁk,l)H (u2,i(Br,2) — uzﬂ-(/@’k,l))ﬂ ) (SB.285)

Consider any v € R™2. By the mean value expansion and Assumption SB2(v)

[ (Bo(eon(Be0). ) — Polen (Bea). Bv2))||
OBy (w13(F12): Berz) 1084] (Ben — B2 < 1P & (B — B2)”.

where Bk712 lies between ;1 and B 2, which implies that

"152(601,2‘(5&1)751@,1) - 152(w1,i(5k,2),5k,2)H2 < &8y (Brg — Br2)*- (SB.286)

Therefore, by (SB.284) and (SB.286),

E |:(u2,i(5k,2))2 Hp2(wl,z‘(5k,1), Br1) — Pa(w1i(Br2), 5k,2)H1 < CE& 1y (Br2 — Brp)?. (SB.287)

By the definition of ug;(5), we can write

u1,i(Br2) — v1,i(Br1) = 9(wi,i(Br1)s Bea) — 9(wii(Br2), Br,2) + k2,i(Br2 — Br1)-

77



Therefore, by Assumptions SB2(ii, iv), and the assumption that ks ; has bounded support, we have

E |:Hp2(wl,i(5k,l)a 5k,1)H2 (u1:(Br2) — u1i(Be1))?| < Cma(Bra — Br1)? (SB.288)

which together with Assumption SB2(vi), (SB.285) and (SB.287) implies that
170 (Br1) = Tn(Be2)lllly < Cm3 |Br2 — Bl (SB.289)

for any By 1, Br2 € Ok.

We next use the chaining technique to prove the theorem. The proof follows similar arguments of
proving Theorem 2.2.4 in van der Vaart and Wellner (1996). Construct nested sets O 1 C Oy C --- C Oy
such that Oy ; is a maximal set of points in the sense that for every fy ;, ﬂ,’w- € Oy ; thereis ‘Bk,j — ﬁ,’c’j) >
27J. Since Oy is a compact set, the number of the points in O, is less than C27. Link every point
Bk,j+1 € O j+1 to a unique fj ; € O ; such that |8y j4+1 — Bi ;| < 277, Let J, = min{j : 277 < Cmgl}.
Consider any positive integer J > J,,. Obtain for every 8y 41 a chain 8y ji1,..., Bk, that connects it

to a point B, s, in Oy, j,. For arbitrary points Sy ji1, 5}, J4+1 10 O y11, by the triangle inequality

|7n (Br.7+1) = Tn(Br.a,) — [T (Bregi1) — Tn(Brg)] ||

J J
=D ma(Brjr) = ma(Bey)l = D [FalBrji1) — mn(Bh )]
Jj=Jn j=Jn
J
<2 ) max||mn(Brit1) — mn(Bes)ll (SB.290)
Jj=Jn

where for fixed j the maximum is taken over all links (8 j+1, %) from O ;11 to O ;. Thus the jth
maximum is taken over at most C2/*! many links. By Assumption SB2(vi), (SB.289), (SB.290), the
triangle inequality and the finite maximum inequality,

Hmax HTrn(,Bk,JH) — Tn(Br,Jn) — [WN(BIIC,J-&-I) - Wn(ﬂllﬁ,Jn)] H H2

J
<2 Z [max |75 (Br,j+1) — mn(Brg) 5

J=Jn
<0 Y 2P max|[mn(Buj1) — mn(Bu)lly < Cmd Y 279/% < Cmy, (SB.291)
Jj=Jn Jj=Jn

where Sy s, and [, 7, are the endpoints of the chains starting at Sk 41 and B 41 respectively. Since
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the set ©y, s, has at most C'mo many elements, by the finite maximum inequality, the triangle inequality,

(SB.284) and Assumption SB2(iv)
e |17 (Br.1,) = 7 (B s )l < Cmy’ max [l (B, ), < Cmsz. (SB.292)

Therefore, by the triangle inequality, (SB.291) and (SB.292),

|max || 7 (Be,111) = T (B, 1),
< Hmax H7Tn(ﬁk,J+1) - Wn(»Bk;,Jn) - [WH(BI;,JH) - Wn(ﬁllmJn)] H H2

+ Hmax Hwn(ﬁkﬂ]n) - ﬂn(BIfC,Jn)H}E < Cme. (SB.293)

Let J go to infinity, by (SB.293) we deduce that

sup || (Br) — ma (BR[| < Cma. (SB.294)
Br:B;, €Ok 9
By (SB.292), (SB.294) and the triangle inequality,
sup [[mn(Be)ll|| < || sup 7 (B) — mn(Bro)ll|| + llll7n(Beo)llly, < Cma (SB.295)
BrEOK 9 kEOK 9
which finishes the proof. Q.E.D.

Lemma SB26 Under Assumptions SB1 and SB2(ii, iii, v, vi), we have

sup = Op(mg/2n_1/2).

Br€OL

n~! Z ug k1,0 Py (wy i (Br), Br)

i=1

PROOF OF LEMMA SB26. For ease of notations, we define 7, () = n=1/2 Yo u27ik17i81]52 (w1,i(Br), Br)
for any (B € ©. By Assumptions SB1(i) and (SB.75), E [u%zki[wlz} < C. Therefore for any S and

Br,2, we can use similar arguments in showing (SB.287) to obtain

170 (Br,1) = mn(Br2)lllly < C&2ma [Br1 — Br2

. (SB.296)

Construct nested sets © 1 C Opo C --- C Oy such that Oy ; is a maximal set of points in the sense

that for every B ;, B;’j € Oy ; there is ‘Bk,j — B;’j’ > 277, Since Oy, is a compact set, the number of
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the points in Oy ; is less than C2J. Link every point Br,j+1 € Ok j+1 to a unique By ; € Oy ; such that
|Br.j+1 — Brjl <277, Let J, = min{j : 277 < Cmgl}. Consider any positive integer J > J,. Obtain
for every B j+1 a chain By ji1,..., Bk, that connects it to a point i s, in ©y ;. For arbitrary points

Bk, J+1, ’Bllﬂ,J-l—l in ©, y+1, by the triangle inequality and (SB.296)

Hmax Hﬂn(ﬁk,J—H) - ﬂ'n(ﬁk,Jn) - [ﬂ-n(/Bl/c,J—i—l) - Wn(ﬁl/f,Jn)] H Hg

J
<2 ) |lmax||m(Brjr1) = ma(Br )l

Jj=Jn

J
<O Y PP max|||ma(Brjr1) = ma(Br )l
Jj=Jdn

S fZ,mg Z 2_j/2 S Cf2,m2m2_1a (SB297)
Jj=Jn

where (3, j, and B,’C, 7, are the endpoints of the chains starting at 8y j+1 and 61’6, 741 respectively. Since
the set ©y, j, has at most C'my many elements, by the finite maximum inequality, the triangle inequality,

(SB.284) and Assumption SB2(iii)
/ 1/2 5/2
Jmax [ (Br ) — 7(Bg) |l < Oy’ max (Bl < O (SB.298)

Then the claim of the lemma follows by applying the chaining arguments in the proof of Lemma SB25.
Q.E.D.

Lemma SB27 Under Assumptions SB1 and SB2(ii, iii, v, vi), we have

n
n=tY un k1,0 Pai(Br) Pi(w)'
=1

sup
Br€Ok

\ Y T

PRrROOF OF LEMMA SB27. For ease of notations, we define n=! > u27ik1,i81f~’2,i(ﬁk)P1(xu)’ for any
Br € ©k. By Assumptions SB1(i) and (SB.75), E [uglkfzpzu} < C. Therefore for any By 1 and By 2, we

can use similar arguments in showing (SB.287) to obtain

7 (Bi) = T (Be2)llly < Cmy*€ams 1Brr — Bral (SB.299)

Construct nested sets © 1 C O C --- C O such that O ; is a maximal set of points in the sense
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that for every B ;, Bé,j € Oy ; there is ‘Bk,j — Bé,j’ > 277, Since O}, is a compact set, the number of
the points in ©y, ; is less than C27. Link every point Bkj+1 € Ok j+1 to a unique [ ; € Oy ; such that
|Br,j+1 — Br,j| < 277, Let J, = min{j : 277 < C’mgl}. Consider any positive integer J > J,. Obtain
for every B 7+1 a chain By jy1,..., Bk s, that connects it to a point B s, in ©y ;. For arbitrary points

Br,J+15 By, 711 In O s41, by the triangle inequality and (SB.296)

|[masx || (Br,511) — T (Brs) = [0 (Bhssr) = Tu(Bhs) ||y < Clomemy*my L. (SB.300)

Since the set ©y ;, has at most Cmgy many elements, by the finite maximum inequality, the triangle

inequality, (SB.284) and Assumption SB2(iii)

[ |7 (B, = 7 (B s )|l < Cmy’ ma [l (B )y < C€umamy®my. (SB.301)

Then the claim of the lemma follows by applying the chaining arguments in the proof of Lemma SB25.
Q.E.D.
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