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This Online Supplement contains three parts. Each of these addresses challenges that arise
from the fact that the flatness degree parameter L is typically unknown in practical work. The
first part proves that the oracle estimator L;Q is consistent for L. The second part shows that
the plausible estimator L defined in (3.12) of the main paper could be consistent for L with
appropriately selected bandwidth. That approach is not practically feasible because knowledge
of L is needed to ensure consistency. Some simulations are included to verify the findings. The
third part demonstrates that the adaptive bias estimator E(z) that is designed for inference
in the absence of knowledge of L is not consistent for the true bias A% B (z) in either the
stationary or the nonstationary case. Some further complications with the adaptive approach

to inference are also discussed.
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We use the Taylor series representation [ (z;) — 5 (z) = % (2 — z)" where % lies on the
line segment between z and z and §&) (z) # 0 by assumption. Taking sample averages of the

magnitudes of the weighted differentials |3(z;) — 5(2)| K¢, we have
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with § on the line segment between s and 0. Further,

iémz NQ/K<Zt;Z>f(zt)dzt:h/K(s)f(z+sh)ds~a h(2).
Then
(-] () o)
~ log (hmf | EAC /|| K (s >log(hf(z))
= (L + 1)log (h) + log ( ﬁ(LL)! ?) /|S|LK(5) ds) ~log (h)
= Llog (h) + log <|5(LL)!(2)'/|5|LK(S)CZS>.

It follows that as n — oo and h — 0

Lf = (Z 8(2t) \wtz> ~q L+ logl(h) log (

(L) (2
& L,( )'/|5|LK(s)ds) —p L,

(1.1)

since 8L (2) # 0, and thus

(L)
log(h)(L], — L) = log (‘ﬂ |) + log </| K (s > +0p(1), (1.2)

so that the rate of convergence of L}, is O(log(h)) but with a deterministic bias function as
given on the right side of (1.2). W

2 Discussion of the properties of L

This section studies the properties of the estimator L given in (3.12) of the main paper. We
begin with the simple case where L = 1. Note that

’Ktz ~g E Hﬂ 2t) ﬁ(z)‘ Ktz:|



- / () = ()| e f (1)

= [[|3e -+ ph) = )| K+ ph)ip (2.1)
= h/ g (2)ph + 9(2)2(2);)%2 + ‘ K(p)f(z + ph)dp. (2.2)

To avoid notational confusion, we denote g(z) = 5(z), ¢gM(z) = 85(2)/dz, the first derivative
of the estimator 3(z), and similarly, ¢ (z) = 923(z)/922.

To simplify notation we take the case where x; is a scalar and stationary process, and is
independent of the process z;. Then g(z) = Y. wy K./ Y. 22Ky, Let g1(2) = Y. 2y Ky, and
g2(2) = Y 22Ky, Tt follows that ¢ (2) = [g1" (2)ga(2) — g1(2)g8" (2)]/63(2).

We first examine the property of ¢ (z) in (2.2). We start with gil)(z) and gél)(z). Note
that 0Ky /0z = OK(2:2)/0(22) x 9(272)/0z = (—1)G4z, where Gy, = G((2 — 2)/h) and
G(u) = OK(u)/Ou. It is not hard to verify that G(u) satisfies: [ G(u)du = 0, [uG(u) =
w(G) # 0, [u?G(u) =0, [udG(u) = u3(G) # 0, [ G*(u)du = vo(G) # 0. For both the second
order Epanechnikov kernel and the Gaussian kernel it is easy to verify that u;(G) = —1. With
the help of G(u) we have

1 1
951)(2) = 091(2)/0z = Z iy 0Ky [0z = 1 Z 21y Gz = 7 (Z 27 B8(2) G + Z xtuthz>

and

1 1
gg )(z) = 0¢2(2)/0z = fo@f(tz/ﬁz =-3 Zx%GtZ.
It follows that

*% (Z 27B(2)Grz + > $tUthz) S aiKy + (Z 23B(z) Kz + ﬂftUthz) % Y aiGy,
(Y a?Ke.)”
— 3 a}B(2)Ge: Y i Kp + 3 Y. 21 B(2) K. Y- 03 Gy
(L a?ke.)”
—% Yo xuGe Y x%Ktz + % S Ky Y thGtz
(L a?Ki.)”
I1; (2) + Ha(2), (2.3)

g(z) =

_l’_

defining IT; (z) and IIy(2). It is easy to see that IIs(z) contributes to the asymptotic distribution
and IT; (z) contributes bias and possibly to the asymptotic distribution.
I1;(2) and II3(z) are now considered separately, starting with II;(z). We need the following



preliminary results, whose proofs are given at the end of the section:

EB(2)Gis = —h? [B(2) D (2) + BV()£(2)]

- §h4 [6(1)(Z)f(2)(2)/2 + 8@ (2) fV(2)/2 + B (2)f(2)/6 + B(2) f¥) (Z)/G} +o(h*)
= 1 (G)h? A1 (2) + pa(G)h* Az (2) + o(h?), (2.4)

Ef%(2)GE. = hB(2)f(2) / G*(u)du + O(h°) = vy(G)hB(2) f(2) + O(h®) = O(h), ~ (2.5)

EGy. = j(G)W*fD(2) + na(G)h* fP) (2) /6 + o(h*), (2.6)
and
EG%, = v(G)hf(z) +o(h) = O(h). (2.7)
Combining (2.4) and (2.5) gives
> a?B(2)Grz ~a nEa7EB(2) Gz + Op(Vnh) ~a 11 (G)nh® Ay (2)Ba? + Op(Vnh).  (2.8)
Combining (2.6) and (2.7) we have
> 257Gz ~a nBaTEGy, + Op(Vnh) ~q i (G)nh® fU) (2)Ea} + Op(Vnh). (2.9)
The following results are standard and readily obtained:

EEK;. = hf(2) + 17 fP(2)pa(K) /2 + o(h?), (

EKZ = hf(2)vo(K) + o(h) = O(h), (2.11)
Z a:?Ktz ~q nhf(z)Emf, (
EB(21)Kiz = hB(2)f(2) + h* | B(2) fP(2)/2 + BV (2) F V) (2) + 5<2><z>f<z>/2] pa(K)

= hB(2)f(2) + 1 Da(2)pa(K), (2.13)
EB%(z) K7, = h3(2) f(2)vo(K) + o(h) = O(h), (2.14)
> 2?B(2) Kz ~a nEaiEB(z) Ky + Op(Vnh) ~a nhf(2) f(2). (2.15)

Combining (2.8), (2.9), (2.12), and (2.15) we have

— _% > B(2)Grs 3w Kis + 3 S a7 B(2) Kie 307G

I (2) (Z $§Ktz)2




— L L (G)nh2 Ay (2)Ea? + op(\/m] (nhf(2)Ex?) + LnhB(2)f(2) [,ul(G)nhZ FO(2)Ea? + op(\/%)]

~v

‘ [nhf(z)Ea;?]Q
_ —m(G)nhA(2)Eaf (nhf (2)Eaf) + pa (G)nf(2) f (2)nh? fM) (2)Ea}
[nhf(z)E:Eﬂ 2
N —4O0p(Vnh)nhf(2)Exf + nf(2) f(2)Op(v/nh)
[nhf(z)E:v%] 2
= (@A) + (G)BE) D)/ F(2) + Op(1/Vh)
= 1 (G)BD(=) + Op(1/Vhd), (2.16)
and

. —% > Gy Ex?Ktz + % S xpu Ky thzGtz

IIy(2) = 5
(Z x%KtZ)
L (V)] (2)Ea} + LO,(VR) [1n(@)nh2 0 (B + O(Vinh)
B [nhf(z)Ex?] 2
-0, (1/@) . (2.17)

In view of (2.3), (2.16), and (2.17), we obtain
g (2) = (&) 8D (2) + 0, (1 /\/nh3) . (2.18)
Note that 11 (G) = —1 for both second order Epanechnikov and Gaussian kernels. Result (2.18)

suggests that when L = 1 and S()(z) # 0, ¢gM(2) = O,(1) as nh> — ¢ € (0,00]. Following
(2.2) we have

*Z ’5 (2t) Ktz ~a h/ ’g ph’ K(p)f(z +ph)dp
~ hQ‘g ’f /\pIK (2.19)

and then

L= 10g1(h) log (Tll Y ‘B(zt) ‘Ktz/ ZKtz>
o 8 (#]99)| £6) [ WK /05

“ Tog(h) [log(h) + log (‘g(l)(z)D + log (/ ]p\K(p)dpﬂ




~a 1+ log (‘g(”(Z)D/log(h) +log (/ !le(p)dp> /log(h) & 1.

This proves that L is consistent when L = 1 under the condition nh® — ¢ € (0, 00].

When L > 1 and M) (z) = 0, result (2.18) is insufficient. For this situation we need to
consider higher order bias terms of g(l)(z) to determine whether L is consistent. For simplicity,
we consider the case where L = 2. The function 5(-) appears only in the numerator of II;(z).
So the result for Ilz(z) given in (2.17) still applies in the case L = 2. We therefore focus on
the numerator of IT;(z), and in particular 3 276(2;)Gy. and 3 27 6(2) Ki.. When ) (z) = 0,
result (2.4) becomes
EB(z0)Grez = m(GIN?B(2) [ (2) + s (GO [82(2) 1V (2)/2 + BD (2 ()/6 + B() [P (2) /6] + .

= 1 (G)2(2) V(=) + s (GYR* A3 (2), (2.20)

and (2.13) becomes

EB(2)Ki: = hB(2)f(2) + h* |B(2)FP(2)/2+ BP () f()/2] pa(K) + .. = hB()f () + 125 () K).
(2.21)

For the numerator of II; (z) we then have
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~ —% [n (ul(G)h2B(z) FO() + ug(G)h4A§(z)) Eo? + Op(\/%)} [n (h F(2) + B3O () pa () /2) Exf}
+ 3 [0 (W) 1) + B85 () Ba?] [ (i (@R FD(2) + 5O 1O (2)/6) Ba? + Op(vrah)]

~a 120 (11 (G)pia(K) = () F(2) 1D (2)8P(2)/2 = (G £2(2)89(2) /6] ()2 + Oy (mv/mh)

It follows that

n2 (G iz (K) = pa(G)) F(2) f D (2)8D(2) /2 = pa(G) ()89 (2) /6] (Ea})? + O, (/)

I (2) ~a (nhf(z)Exf)?
T {m(G)m(fzf) = 13(G) (1) ) ()52 %é%@(z)] +0, (1/Vnh?) .

(2.22)

Note that Is(z) = Op(1/vnh3) in the case L = 2. We have

g(l)(z) "y h2 <N1(G)M2(I;) - M3<G) f_l(z)f(l)(z)ﬁ@)(z) N /BéG)B(S)(Z)> + Op (1/W> _

(2.23)



Following (2.2), we have

’KtzN h/

Given g (2) = O, (h%+1/v/nh3), to determine the order of the RHS of (2.24), we need to study
the order of ¢(®)(z), which is complicated. Based on the result that gt (2) —, —u1(G)BM (2)
in the case of L = 1, we conjecture that ¢(®(2) —, const. x B3)(z) # 0 in the case of L = 2.
Then ¢g®(2) = O,(1) when L = 2 and from (2.24) we deduce

o ph+ L2 |K<p)f<z+ph>dp. (2:24)

‘Ktzw h[O ( (12 +1/Vah?)) + 0, (h2)] =0, (K +/fn). (2.25)

Consequently,

b s (3 e e /130 )

1

~a mlog (Op (h3 + h/n)/hf(z)>
1
~a mlog (Op <h2+1/\/%))

— 2 when nh® — ¢ € (0, c0]. (2.26)

Result (2.26) implies that with an appropriately chosen bandwidth L can deliver a consistent
estimate in the case L = 2. We expect that for large L results parallel to (2.25) would be very
involved and include n, h and L. Then, similar to (2.26), for carefully chosen h, we expect that
L can deliver a consistent estimate of L. Based on our present findings, we conjecture that
the rate condition nh?:+1 — ¢ € (0,00] is needed for L to be consistent. This condition is
intuitive, indicating that larger bandwidth orders are needed to achieve consistency the flatter
is the function (i.e., the true L is larger). This intuition is confirmed in the simulations reported
below. But since L itself is unknown, it is impossible to determine the appropriate order of h
before estimation. So L is not a feasible estimator in general.

To corroborate the above analysis we conduct simulations to check the performance of L
under different bandwidth orders. The data generating processis: z; ~ iidN (0, 1), and z; follows
stationary AR(1) process with coefficient 0.5. A second order Epanechnikov kernel is used.
Bandwidth A is determined by h = &.n7. Two 3 functions are considered: (1(z) = 2% + 2z + 1
and B2(z) = 23 + 1. For B1(z), we have L = 1 at point z = 0.5 and L = 2 at point z = —0.5.
For f3(z) we have L = 3 at point z = 0. Tables 1-3 report the performance of L at those three
points with different bandwidth order . For all three tables, the left panel uses ‘too small’

a bandwidth with nh2ltt — 0. In this case, L is not consistent according to our analysis.



Table 1: Performance of L at point z = 0.5 with L =1

v=-2/5 v=-1/3 v=-1/5

n  mean var MSE mean var MSE mean var MSE
200 1.0866 0.1171 0.1246 1.2254 0.1394 0.1902 1.3869 0.1170 0.2666
400 1.0525 0.0820 0.0848 1.1915 0.0960 0.1327 1.3061 0.0525 0.1462
800 1.0306 0.0593 0.0603 1.1724 0.0732 0.1029 1.2586 0.0276 0.0945
1600 1.0080 0.0460 0.0461 1.1516 0.0570 0.0800 1.2218 0.0149 0.0641
3200 0.9917 0.0355 0.0356 1.1396 0.0452 0.0646 1.1971 0.0083 0.0471
6400 0.9758 0.0297 0.0303 1.1261 0.0383 0.0542 1.1760 0.0048 0.0358

Table 2: Performance of L at point z = —0.5 with L =2

v=-1/3 v=-1/5 v=-1/7
n  mean var MSE mean var MSE mean var MSE
200 1.5198 0.1507 0.3812 2.8166 0.3491 1.0158 3.8599 0.5702 4.0294
400 1.4652 0.1041 0.3902 2.7092 0.2430 0.7460 3.7024 0.3812 3.2792
800 1.4177 0.0752 0.4142 2.6436 0.1839 0.5981 3.5665 0.2619 2.7157
1600 1.3790 0.0587 0.4443 2.5786 0.1466 0.4815 3.4400 0.1849 2.2586
3200 1.3444 0.0477 0.4776 2.5294 0.1259 0.4062 3.3368 0.1346 1.9216

Bandwidths in the middle and right panels satisfy the consistency condition obtained above.
The middle panel has nh?“*t! — const and the right panel has nh?/t1 — oco. Results are
obtained with 10,000 replications.

From findings in the three tables we draw the following conclusions: (i) with bandwidth too
small as in the left panel of the three tables, L is evidently inconsistent. Especially in Table
2 and 3, the inconsistency is revealed from the increasing MSE as n becomes very large. In
Table 1, although MSE is decreasing, we can expect that bias will keep growing with n and
this will finally lead to inconsistency. In particular, the ‘mean’ column shows that too small a
bandwidth eventually causes L to underestimate L. (i) When condition nh2tt — ¢ € (0, o]
is satisfied, the results in the middle and right panels of all three tables show that MSE and
bias are both monotonically decreasing as n increases, corroborating consistency of L. When
nh?!*tl — 0o and a larger bandwidth is used, L has a tendency to overestimate L and suffer
some efficiency loss compared to the middle panel where nh*/+1 — const. The efficiency loss
is more evident in Tables 2 and 3, which suggests that although asymptotic theory indicates
that larger L requires larger bandwidths for consistency, too large a bandwidth will cause some
overestimation and loss of efficiency.

In summary, the simulation findings confirm that consistency of L relies on appropriately
selected bandwidth orders. But without prior information concerning L there is no way to be
clear that the estimate L is consistent. To illustrate: suppose the estimate L is around 2.7 with
v = —1/5. This outcome could match either the middle panel in Table 2 or the left panel in

Table 3, leading to uncertainty about the true value. Such uncertainty can be expected to be



Table 3: Performance of L at point z =0 with L =3

v=-1/5 v=-1/7 v=-1/9
n  mean var MSE mean var MSE mean var MSE
200 2.9180 0.3513 0.3580 4.0793 0.6772 1.8420 4.9752 1.0137 4.9149
400 2.8166 0.2555 0.2891 3.9611 0.4726 1.3962 47619 0.6732 3.7775
800 2.7390 0.1952 0.2633 3.8539 0.3619 1.0911 4.5964 0.4908 3.0391
1600 2.6595 0.1496 0.2656 3.7660 0.2815 0.8682 4.4387 0.3648 2.4345
3200 2.6106 0.1253 0.2769 3.6969 0.2327 0.7184 4.3038 0.2785 1.9783

common in applications and hinders practical use of the estimate L. Further research is needed

to determine whether this approach can be improved to be better suited for practical work.

Proofs of the preliminary results (2.4), (2.6) and (2.7):
Proof of (2.4):

8()Ge = [ Bl (2

= h/ﬂ(z—i—hu)G(u)f(z—i—hu)du

) F(z)dz

—h/ 2) + B )hu+...] G(u) [f(z)+f(1>(z)hu+...] du

=[5V ) + B0 1)) [uGda

+ 1t [0 () 1D (2) 2+ BO () f V(=) 2+ BO ()1 (2)/6 + B(2) ) (2) /6] / G(u)du + ..
iGN [B(2) D (2) + BV () f(2)]

(GOt [BD(2)FD(2)/2 + BO() 1D () /2 + O (2)£(2)/6 + B) D (2) /6] + .
(YR (2) + i3 (G Bg ) + oY) (2.27)

_|_

Proof of (2.6):

= h2fW(z) /uG(u)du + h4fG(Z) /u3G(u)du + ...
= (G FN(2) + pa(G)P* fO)(2) /6 + o(h*). (2.28)

Proof of (2.7):

EG2, = / G2 <Zt;”z> F(z)dz = h / G2(u) £ (z + hu)du



z)/G2(u)du + ... = w(G)hf(z) + o(h). (2.29)

Difficulty in the estimation of h”

By Taylor expansion, we have

; ~ B (2)
h(L!) — h(L) = KD (L)L — L) = h¥log(h) (L' — L) = hllog —

S|LK(8)dS> + op(h*)

(2.30)

since L is on the line segment between LL and L and L;Q —p L. Then

h(L!) = h(L) x (1 + log (‘5(2'@)| / \3|LK(s)ds>> + 0, (A1),

and h(L}) = hEh ~, dph®, where d; = (1+10g (‘6( « s|FK(s)d >>’ so that hln is

inconsistent. Thus, the slow rate of convergence of LL interferes with the consistent estimation
of the factor h’ needed for bias correction.
3 Failure of the adaptive approach

We provide some details to show that the adaptive approach does not work in cases where

L > 1. More specifically, we will show the adaptive bias estimator B (z), which is

B(z) = An(2) ! (Z m;) (i S 1B(z) — B(2) K (’Z; Z)) , (3.1)

s=1

is not consistent for the true bias h™ Br(z) = hY" “L*(() )C'L( ) when L > 1. As before we

examine the stationary and nonstationary x; cases separately.

(i) Stationary z; In an attempt to show B(z) ~q hL*%i)K)CL(Z) +o(h™"), the critical step

is to obtain the following asymptotic representation

fz 30) = BN (255 ) o B = 1 s (K)CL) 4 o) (32)

. 2)BE) (2 (L) (2 (L+1) (4 «
with CL(Z) = wl{L:even}"i_ |:ﬁ Ll( )f(l) (Z) + 5(T1)(') (z)j| 1{L:0dd}7 and L* = Ll{L:even}+

(L +1)1{1—pqq}- However, the asymptotic representation (3.2) does not hold, as we now show.

To begin, we write

53 [0 - pea)] e (252

t=1

10



By Assumption 1(i) and standard manipulations, IIy,, = £ > {B(z) — B(2)} K (%2

E&g:.
Now consider ITa,. To simplify the derivations, we consider the case where {z;} and {z}

are independent. Note that

n -1 n n
B(z) —B(2) = (Z :L‘tm:fKtz> {Z xﬂ;[ﬁ(zt) — B(2)| K¢ + ZfﬂtUthz}
t=1

~g (nh) ol {sz z6) — B(2)]| K. + quK} (3.4)
s=1

Then
B(z) — B(2) = B(z) — B(z) — [B(2) — B(2)]

~a (nh) 7Y, {f‘l(z» (il ws2y[B(2s) — Blzt)| Kot + 22 qut>
“1(2) (Z 2,2 [B(2) — B(2)) Koz + Z qu> }
= (nh)'s;} { (2 Z:rs z5) — B(2)] Kot — sz z5) — z)]KSZ}
+ (nh)7's;) {f‘l(Zt) z_; wsus Ko — f7(2) z_; qu} . (3.5)

Hence
o = =3 {B(e) — Bl ~ [B() - BN} K ( )
t=1
~a (nh)_lzm_a:l% Z {f 1 (2t Z Tswg[B(2s) — B(2e)| Kst — f_l(z) Z 25 [B(25) — B(Z)]KSZ} Ky
t=1 s=1
+ (nh)ilz);ml% Zn: {fl(zt) Z xsusKst - fﬁl(z) Z xsusKsz} Ktz
t=1 s=1

— ;! 1h2f () Ko~ Z:cs Bl K — S5 hZ = sz B()K.

11



n

+hY) Z (=) Ktz szUsKst -y} 1(2)% Z Ktz% Z rsusKs,
s:l t=1 s=1
=: Hap1 — Iona + Ilong — Lapa. (3.6)

Consider the terms Ilo,;, ¢ = 1,2,3,4 in turn. Start with Il,; and to simplify derivations
in what follows assume that the z; are independent and identically distributed. The weakly
dependent case involves much longer calculations but can be handled under Assumption 1 along
lines such as those used in the proof of Lemma B.2. Following a similar line of argument as

that leading to (B.5) we have, using conditional expectations E, ; given z,
Mo = S 30 10K L S el 8(e0) - Bl
2nl T nh v t tzn st sLg S t st

- E;;% S K 3wl [Bz) — Az K
t=1

s#t

Z (20 Ke:SarBa 18 (25) — B(20) Kt
o S £ ) KiBeal3le) - Bl
t=1

Zs T 2t

o 2R 180~ A0l (255 s

1

e —Zf (eie [ (81 +h) = B0K () + ph)dp

1

n

1 1 L+1
o 2 K / D () (ph) K (p)f (2e) + FO (z0)ph]dp

n
1 n L+1
~ag2f1thtZZ L0 zthﬁ/pr ipf )+ [ K (p)ps D ()1

L+1

M) KtzZ =589 () g () £ (2) + g2 (K) ) (20) )]

L+1
o [ Kew 32 S8 g ) r) + g a (KD ()
!
L+l ]A L+l A
~ ﬁh]p]( ) / BYD (2) Ko f (2) dzt—l—z h g () / BY) (z) Ky f 1) (20)d e
— j! < j
i+1 " L+1 1
~y Z h”l,uj /ﬁ(J (z 4+ hu)K (u) f(z + hu) du—i—Z h3+2uj+1 /5 (z 4 hu) K (u) fY (z + hu)du

Jj= 1
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L+1 L—j+1

o 3 LR () / S L5002 (hu) K () £z + has)du
= ! — k!

Ll Ltl—j |
# 3 g a ) [ 32 o K e+
j= =0

L1 . 1 .
a3y ) A ) / ()" K () f (= + hut)edu
j=1

L+1 1 ) |
+ ; ﬁh]Jrl“j(K)mB(LJrl)('z) /(hu)L+1jK(u)f(Z + hu)du

Loy 1 .
30 g () s B 2) [ (IR )0z + b
j=1
RS L . RS N S . (1)
Nah Z]':U‘](K) (L—])'ﬁ (Z)ML*](K)f(Z)+h’ Z]'M](K) (L—])'ﬁ (Z)IU’L+1*J(K)f (Z)
j=1 J=1

L+1 L
RS 1) D @ UOF(2) + 2 3 Sy () =y 80 Gy () )
j=1 j=1

1
0 M5 (K) mﬂL—j (K) } X l{L:even}

=
S|

Il
—

J

~q hET {f(zw(”(z)

L
+ pEt2 {ﬁ(L)(z)f(l)(Z) Z j!(Ll_j)![Nj(K)MLHj(K) + pj1 (K)pr—j(K)]

L+1
+BED(2) f(2) Y j!(LJrllj)!Hj(K)NHlj(K)} X {L=odd)

j=1
= WD (2).
The second to last equation is due to the fact that when L = even, u;j(K)ur4+1—j(K) = 0 and

when L = Odd, ,uj(K)uL_j(K) =0.
For the term Ilg,2 we have

Moz = S0 () 3 Ko Y sl [B(2) - B)IKes
~o SEH TS Bl EIB(z) - B Kes ~a Béar (.1)

So the leading terms of IIy, and Ilz,2 are both asymptotically equivalent to E&g;. Below we
will see Ils,3 — Ils,4 has zero mean and does not contribute to the bias centering expression.
It follows that the leading term of IIj,, + Ils, is determined by that of Ils,;, which is very

complicated and involves the unknown value of L. Hence, (3.2) is unlikely to hold. As a result,
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B(z) is not a consistent estimate of the bias h™" B (z); and, due to the dependence of the limit
of Ils,1 on unknown L, it is impossible to scale adjust E(z) to achieve a consistent bias estimate.

Next, consider the remaining two terms of (3.6) involving the difference

1
Iop3 —12ps = Z 1 Zf Zt Ktz hzxsus st — hzgmgf hZKtZ hzxsus 529
(3-8)

which has zero mean and therefore does not contribute to the bias centering expression. But,
as in Phillips and Wang (2021), we need to analyze this term’s contribution to the variance of
the limit distribution of the statistic. For ease of presentation and calculation, set g = f~!,

take the scalar z; case and let u; ~jiq (0,02) and 2 be iid, as above. Write (3.8) as

1, 1 &
II5,3 — Iops = Ezmlﬁ sz:; TslUg ( Z Ktz stg Zt — K9 (Z)]> ) (3-9)

and since xsus is a martingale difference, this expression has mean zero and variance

o2y 1 ?
u“zx § :K - K
n2h E tz stg zt sz9 (Z)]

L
= n3h2 Z KtZKT’Z [KStg (zt) - Kszg (Z)] [KSTg (ZT) - Kszg (Z)]
t,r=1
o2y-1 9 o2an-1 n
= ;:2}:; E (K tz [Kstg (Zt) - Kszg (Z)} ) + ugifj; E (KtZKrz {Kstg (Zt) - Kszg (Z)] [Ksrg (Zr) - Kszg (Z)])
t#r
. Dy + Dy, (3.10)

Noting that the particular case where s = ¢ in the dual summation (3.9) is of smaller order and

can therefore be neglected in (3.9), we have

22 1
Dy = 2 B (KE [Kag () = Koo (2)]°)

- nh// <Zt_z>2[K(ZS;“)W»—K(zjz)g<z>]2f<zs>f<zt>dzsdzt

oy / / K (p ~q)9(z+ph) = K (q) g (2)]° f (2 + qh) f (= + ph) dpdg
~ ng / / K (1) [K (0 — q) - K ()] dpdg

_ o, acx/ / K(p —q) — K (¢)]? dpdg. (3.11)
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Next, again noting that the case where s = ¢ is of smaller order and can be neglected, we have

2 1 n
Dy = ;232;562:6 ZE Ki Ky [KStg (Zt) Kg.g (Z)] [Ksrg (Zr) — K9 (Z)D
t#r
2 1
~a uzzx E (KtzKTZ [Kstg( ) — Ks.g (Z)] [Ksrg (zr) — Ks.g (Z)])

- ;;hff/// () (o) e (oo -5 (7)ot

<[r (252 ) o - & (3252) 02| 1 ) £ o) slondadns,

0.2 —1 1 1 1
:huzm// K (p) K(w) [K (p—q) g (= +ph) — K (q) 9 ()]

—1J-1J-1
x [K(q—w)g(z + hw) — K(q)g9(2)|f (z + qh) f (z + ph) f(z + wh)dpdqdw
2 1
~q hUZTE “Z” f(z / / / K (p) K(w) [K (p — q) — K ()] [K (g — w) — K(q)]dpdgdw.

(3.12)

It follows that I13,,3 — 12,4 has zero mean and asymptotic variance D1+ Dy = O(h/n) in view of
(3.10) - (3.12), so that Ilop3 —Ilans = Op(y/h/n). As atesult, A, (2) 13, zea}) (Haps —Haopg) =
Op(%n\/%) = Op,(1/v/nh), which is of the same order with the asymptotic variance term in

the stationary case since the convergence rate is vnh. Consequently,

B(z) = An(2)”" (Z 33th> (1, + T2p1 — Tlong + Tlaps — Mapa]
t

hfl( ) (hL*—’_lDL( )+ Op(hL*+1)) + An(z)_l (; IEti‘é) (Hgng — H2n4)
~ah fTH)DL(2) + 0p(hE) + Oy (1/VnR) . (3.13)

This analysis reveals that B(z) is not consistent for the true bias hY"Br(z). And also, it
retains a random element that is O,(1) after standardization by the convergence rate Vnh in
the stationary case. So the bias term adjustment B (z) affects the limit distribution of the bias
corrected estimation error 3(z) — B(z) — B(z). In effect, the adaptive bias adjustment B(z)
introduces an estimation error through the presence of the element 3(z;) — 3(z). This estimation
error contributes a random term A, (2)"* (>, z12}) (Haps — Il2,4) to the limit distribution that
has the same order Op(\/%) as the asymptotic variance term (the last term in (A.8) in the
main paper).

In view of these difficulites, we do not consider the adaptive variance estimators ,(z) (in
the stationary case) and € (z) (in the nonstationary case). In short, without an adaptive

consistent bias estimator B(z) to adjust estimation error 3(z) — 3(z) even a correctly adjusted
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variance matrix estimator would be unable to produce an asymptotically valid test statistic.

(ii) Nonstationary x; The adaptive approach to constructing a test statistic does not work in
this case either. First, as shown below, the adaptive bias estimator is not consistent for the same
reason as in the stationary case. Moreover, the adaptive bias estimator introduces additional
variation in the limit distribution and this additional variance takes a more complicated form
in the nonstationary case than in the stationary case and depends on the unknown flatness
parameter L and the derivative 6(L)(z). Attempts to estimate these variances in an adaptive
way introduces further bias terms in the adaptive variance estimator. These interactions among
bias and variance effects make it difficult to formulate a successful adaptive approach to inference
that is not reliant on knowledge or consistent estimation of the parameter L in the nonstationary
case. Thus, in spite of the apparent simplicity of the adaptive statistic and its formulation
independent of L, the high technical complexity of its asymptotics and interactive bias and
variance effects are serious challenges that are left for subsequent research on adaptation in the
presence of flat function behavior.

We first show the bias estimator B (z) is not consistent. The analysis follows lines similar
to those used above while allowing for limiting moment behavior of the nonstationary x;. We

have the same decomposition as in (3.3), viz.,

1 Z 1B(z¢) — B(2) (Zt;2> = 1T}, +113,,. (3.14)

As before, we have II}, = L 3% {B(2) — B(2)} K (22) ~q E€s. Proceeding in the nonsta-

tionary case, we have

30 = iz {Bz) = Bz) = 1B(z) = B)] } K ( b )

=1

-1 n
~a nTlh </ BZB;> % Z {f_l(zt) ;xsx;[ﬁ(%) - B(Zt)] st — Zl’s Zs) — 5(2)][(3,2} K,



=: 15, — 15,0 + 115,35 — I15,,4. (3.15)

In analyzing these terms we employ similar arguments to those in the stationary case. For the

first term, using conditional expectations E, ; given z;, we have

—1 n n
H;nl = (/ BQTB:/C> % tzl f_l(zt>Ktz% szx;[ﬁ(zs) - /B(Zt)]Kst

s#t
-1 1 n 1 n
= </ BmB;> ﬁ Z f_l(zt)Ktzm Z xsx;Ez,tgﬁst
t=1 s#t
-1 1 n 1 n
+ (/ BxB;,,;> ﬁ Z f_l(zt)Ktzm szm;[gﬂst - Ez,tfﬁst]
t=1 s#t
T, I, (3.16)

where &gst := [B(25) — B(21)] K. For the first term IT3%, we have 1132, ~, hl" 1Dy (2) fol-
lowing the same lines as that of Ily,; in the stationary case. For the second term I3, first
as in Lemma B.2 we can verify that E, ;&g = O(h"*1) and E. &5y = O(R?E+1). As a re-
sult, Y0, e (st — Baibpat] = Op(nVnh?LHl) ~y nv/nh?L+1 [ B,BldB,., where Be, is
dependent on z;. Then we have

—1 n n
¥ 1 _ 1
Hzfn = (/ BxB;) . Zf 1(Zt)KtZTh Zfﬁsxls[fﬁst - Ez,tfﬁst]
n t=1 n s;ét
—1 n
1 1 1
~a (/ BIB;> hnh;f (Zt)KtzmnV nh2L+1 /BIB;dBf,zt
1 -t
= hﬁn\/nh%“ </ BmBgc) f 1(z)f(z)/BzB’de§7z
h2L+1 -1
= </ BxB:’E> /BxB;ng,z (3.17)

n

=0, ( thH) , (3.18)

n

where B¢, means localize 2; at z in Be ,,. Note that A, (2) 1Y, z) 2, = O, <n%hn2\/ h22+1>

Oy < h2hol ), which has the same order as the first term in (A.14) in the main paper. There-

n

fore it may contribute to the limit distribution and should be retained in the bias corrected
expression 3(z) — B(z) — B(2).
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*
For II5, 5 we have

t=1 s

ANFETRE IR :
HVEZI IPRCR O MR RIS

. TT*a *b
=: Igpo + Il5p9,

where &g5 := [B(zs) — B(2)] Ks,. For the first term II5%, we have

n

*Q / ! —1 1 - ]- /
2n2 — </ BxBx) / (Z)% ZKtZﬁ Z%%Efgs
t=1 s
~a fﬁl(z)f(z)E[B(Zs) - B(Z)]Ksz ~a Egﬂt' (319)

For the second term I3, first following Lemma B.2 Eég, = O(h"" 1) and €3, = O(h*!H1).
Therefore Y, zs2) (s — E€gs) = Op(nVnh?Lt1) ~y nv/nh?L+1 [ B, B! dBe. Then we have

—1 n
1 1
H*b - BzB/ -1 — Kzi S/ S_E s
= ([ BBL) 5700 Ky et~ s

-1
o ([Ba8L) £ ) i [ B,

h2L+1 -1
= - </ BIB;> /BxB;ng (3.20)

h2L+1

= 0,(\/ — (3.21)

Note that the leading variation term of II%,; and II} ., namely I3, and II2,, cannot be
cancelled although they share the same order. So they both should be retained in the bias
corrected expression 3(z) — 8(z) — B(z).

The remaining two terms of (3.15) involve the difference

-1 n n
o3 = Moy = </ Bch;:> 2h > f 1(zt)KtZ% > wsusky
t=1 s=1

—1 n n
1 1
— B,B’ 1) — § Ky, — § us Ky, .22
h (/ a:> f (Z)th v t nh = TsU ) (3 )

which has zero mean and does not contribute to bias centering. As in the stationary xz; case,
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we need to examine this term’s contribution to the variance and limit distribution. For ease of

presentation and calculation, we again set g = f~!, take the scalar x; case and let u; ~jiq (O ag)
and z; be iid. Write (3.22) as

-1 n n
b =1 ([ 32) g S (jTh > KisFag 20)  Ko <z>}> . (329

and since zsug is a martingale difference, this expression has mean zero and conditional variance

given F,
-2 1 n 1 n 2
B2 — 2E | — ) K. [K, — Ky,
(/=) mx (mz i [Kag () g<z>1)

(B

R

n4h2 Zl KiK. [Kqg (Zt) K.g (Z)] [Ksrg (Zt) — Ks.g (Z)}
o2 2\—1
~a WE (KtQZ [Kstg (2t) — Kszg (Z)}Q)

o ([ B

+ TE {Ktz rz [Kstg (Zt) - Kszg (Z)] [Ksrg (Zt) - Kszg (Z)]}

—: D} + D3, (3.24)
Proceeding in the same way as the argument leading to (3.11) and (3.12), we find that
b - AUE) [ ] K0P - K @ s (3.25)
and
D; = WE (Kt Ky [Ksrg (2t) — Ks29 (2)] [Korg (2r) — Ks29 (2)])
S LR () (e (45

)g ( T Z) 9(2)} f (z5) f (2t) f (2r)dzsdrdz,

= f ///K w) [K (p—q)g(z+ph) — K (q) g (2)]

x [K(q — w) (2 + hw) — K(q)g(2)|f (2 + qh) f (2 + ph) f(2 + wh)dpdgdw
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2 -1
o B IB / / / K (p) K(w) [K (p — q) — K (¢)] [K(q — w) — K(q)]dpdgdw.
(3.26)

It follows that II35, ; —II3, , has zero mean and conditional asymptotic variance D} +D3 = Op(n%)
in view of (3.24) - (3.26), so that II3, 4 — I3, , = Op(h1/2) The implication for the bias is that
An(2)71(, mex)) (Taps — Mopg) = Op(n%—hn2 \/H—E) = 0,(1/v/n2h), which is of the same order as
the asymptotic variance term in the nonstationary case. It therefore affects the limit distribution
and should be retained in the bias corrected formula 5(z) — 8(z) — B(z).

. * o 1 n / . 4 .
Letting An,h = > i1 vexi Ky, we have the bias corrected estimation error

B(z) — B(z) — B(z Zwt (z) — B(2)]| Ky + A thuthZ—B( )
t=1
(2 D malB(z) — ) Kz + A, (2) thuthZ — A (2) (Z wtfc?) (vlz B(zs) —
t=1 = t=1 s=1

s=1

- A7 D mei[B(z) — () Krs — Al 2 ( 7 2 [B(z0) - B(z)]Ksz) +4;(2)

n

*— 1 *— 1 g *—
= An’hlm Z xtxéEfﬁt + An’hlm Zl xtl";:ﬁ,ﬁt A Z xtxt ( {B(21) — B(2)} Ktz)
t=

t=1
n

A Y ] (Tfh >~ {B) - Bz) - B - BN} K) T A1) Y K

t=1

. I _ a1
=o(h") + A;hlﬁ Z Ty — A* 3 Z A < H2n> + A:;hlm Z zrug K,
t=1
= O(hL*) A;‘; hl 2h Z Itl‘tnﬁt A;kl_h 2 Z $t$th (Han H2n2)
*— 1 *—
— A 1 Z (Iftﬂft n H2n3 H2n4) An,hlm Z xtuthZ, (327)
t=1

where £g; = [B(2) — B(2)] K. and ng, = &g — E;.

In view of the above analysis, we find that the bias estimator B (z) is not consistent. Fur-
thermore, it introduces additional variation that affects the final limit distribution through
b, — 130, and I13,5 — IT5,,,. In particular, note that the variance of 1152, and I3, depends
on the unknown value of L and B()(2), like that of B, 1,(-) in Lemma B.2 (a). So the asymp-
totic variance of 3(z) — 8(z) — B(z) includes two parts: one part involves (") (z) and L through
the first two terms of (3.27), and the other involves the variation entering through the last
two terms of (3.27). Therefore, use of the inconsistent estimator B(z) produces both bias and

variance complications that lead to a non-pivotal limit theory for the adaptive statistic. l
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