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This Online Supplement contains three parts. Each of these addresses challenges that arise

from the fact that the flatness degree parameter L is typically unknown in practical work. The

first part proves that the oracle estimator L†n is consistent for L. The second part shows that

the plausible estimator L̂ defined in (3.12) of the main paper could be consistent for L with

appropriately selected bandwidth. That approach is not practically feasible because knowledge

of L is needed to ensure consistency. Some simulations are included to verify the findings. The

third part demonstrates that the adaptive bias estimator B̂(z) that is designed for inference

in the absence of knowledge of L is not consistent for the true bias hL
∗BL(z) in either the

stationary or the nonstationary case. Some further complications with the adaptive approach

to inference are also discussed.

1 Proof that L†n →p L

We use the Taylor series representation β (zt) − β (z) = β(L)(z̃t)
L! (zt − z)L where z̃t lies on the

line segment between zt and z and β(L) (z) 6= 0 by assumption. Taking sample averages of the

magnitudes of the weighted differentials |β(zt)− β(z)|Ktz we have

1

n

n∑
t=1

|β(zt)− β(z)|Ktz =
1

n

n∑
t=1

∣∣∣∣∣β(L) (z̃t)

L!

∣∣∣∣∣ |zt − z|LKtz

∼a
∫ ∣∣∣∣∣β(L) (z̃t)

L!

∣∣∣∣∣ |zt − z|LK
(
zt − z
h

)
f (zt) dzt
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= h

∫ ∣∣∣∣∣β(L) (z + s̃h)

L!

∣∣∣∣∣ |s|L hLK (s) f (z + sh) ds ∼a hL+1f (z)

∣∣∣∣∣β(L) (z)

L!

∣∣∣∣∣
∫
|s|LK (s) ds,

with s̃ on the line segment between s and 0. Further,

1

n

n∑
t=1

Ktz ∼a
∫
K

(
zt − z
h

)
f (zt) dzt = h

∫
K (s) f (z + sh) ds ∼a hf (z) .

Then

log

(
1

n

n∑
t=1

|β(zt)− β(z)|wtz

)
= log

(
1

n

n∑
t=1

|β(zt)− β(z)|Ktz

)
− log

(
1

n

n∑
t=1

Ktz

)

∼a log

(
hL+1f (z)

∣∣∣∣∣β(L) (z)

L!

∣∣∣∣∣
∫
|s|LK (s) ds

)
− log (hf (z))

= (L+ 1) log (h) + log

(∣∣∣∣∣β(L) (z)

L!

∣∣∣∣∣
∫
|s|LK (s) ds

)
− log (h)

= L log (h) + log

(∣∣∣∣∣β(L) (z)

L!

∣∣∣∣∣
∫
|s|LK (s) ds

)
.

It follows that as n→∞ and h→ 0

L†n =
1

log (h)
log

(
n∑
t=1

|β(zt)− β(z)|wtz

)
∼a L+

1

log (h)
log

(∣∣∣∣∣β(L) (z)

L!

∣∣∣∣∣
∫
|s|LK (s) ds

)
→p L,

(1.1)

since βL (z) 6= 0, and thus

log(h)(L†n − L) = log

(∣∣∣∣∣β(L) (z)

L!

∣∣∣∣∣
)

+ log

(∫
|s|LK (s) ds

)
+ op(1), (1.2)

so that the rate of convergence of L†n is O(log(h)) but with a deterministic bias function as

given on the right side of (1.2). �

2 Discussion of the properties of L̂

This section studies the properties of the estimator L̂ given in (3.12) of the main paper. We

begin with the simple case where L = 1. Note that

1

n

n∑
t=1

∣∣∣β̂(zt)− β̂(z)
∣∣∣Ktz ∼a E

[∣∣∣β̂(zt)− β̂(z)
∣∣∣Ktz

]
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=

∫ ∣∣∣β̂(zt)− β̂(z)
∣∣∣Ktzf(zt)dzt

= h

∫ ∣∣∣β̂(z + ph)− β̂(z)
∣∣∣K(p)f(z + ph)dp (2.1)

= h

∫ ∣∣∣∣∣g(1)(z)ph+
g(2)(z)

2
p2h2 + ...

∣∣∣∣∣K(p)f(z + ph)dp. (2.2)

To avoid notational confusion, we denote g(z) = β̂(z), g(1)(z) = ∂β̂(z)/∂z, the first derivative

of the estimator β̂(z), and similarly, g(2)(z) = ∂2β̂(z)/∂z2.

To simplify notation we take the case where xt is a scalar and stationary process, and is

independent of the process zt. Then g(z) =
∑
xtytKtz/

∑
x2tKtz. Let g1(z) =

∑
xtytKtz and

g2(z) =
∑
x2tKtz. It follows that g(1)(z) = [g

(1)
1 (z)g2(z)− g1(z)g(1)2 (z)]/g22(z).

We first examine the property of g(1)(z) in (2.2). We start with g
(1)
1 (z) and g

(1)
2 (z). Note

that ∂Ktz/∂z = ∂K( zt−zh )/∂( zt−zh ) × ∂( zt−zh )/∂z = (− 1
h)Gtz, where Gtz = G((zt − z)/h) and

G(u) = ∂K(u)/∂u. It is not hard to verify that G(u) satisfies:
∫
G(u)du = 0,

∫
uG(u) =

µ1(G) 6= 0,
∫
u2G(u) = 0,

∫
u3G(u) = µ3(G) 6= 0,

∫
G2(u)du = ν0(G) 6= 0. For both the second

order Epanechnikov kernel and the Gaussian kernel it is easy to verify that µ1(G) = −1. With

the help of G(u) we have

g
(1)
1 (z) = ∂g1(z)/∂z =

∑
xtyt∂Ktz/∂z = −1

h

∑
xtytGtz = −1

h

(∑
x2tβ(zt)Gtz +

∑
xtutGtz

)
,

and

g
(1)
2 (z) = ∂g2(z)/∂z =

∑
x2t∂Ktz/∂z = −1

h

∑
x2tGtz.

It follows that

g(1)(z) =
− 1
h

(∑
x2tβ(zt)Gtz +

∑
xtutGtz

)∑
x2tKtz +

(∑
x2tβ(zt)Ktz +

∑
xtutKtz

)
1
h

∑
x2tGtz(∑

x2tKtz

)2
=
− 1
h

∑
x2tβ(zt)Gtz

∑
x2tKtz + 1

h

∑
x2tβ(zt)Ktz

∑
x2tGtz(∑

x2tKtz

)2
+
− 1
h

∑
xtutGtz

∑
x2tKtz + 1

h

∑
xtutKtz

∑
x2tGtz(∑

x2tKtz

)2
≡ Π1(z) + Π2(z), (2.3)

defining Π1(z) and Π2(z). It is easy to see that Π2(z) contributes to the asymptotic distribution

and Π1(z) contributes bias and possibly to the asymptotic distribution.

Π1(z) and Π2(z) are now considered separately, starting with Π1(z). We need the following
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preliminary results, whose proofs are given at the end of the section:

Eβ(zt)Gtz = −h2
[
β(z)f (1)(z) + β(1)(z)f(z)

]
− 3

5
h4
[
β(1)(z)f (2)(z)/2 + β(2)(z)f (1)(z)/2 + β(3)(z)f(z)/6 + β(z)f (3)(z)/6

]
+ o(h4)

≡ µ1(G)h2∆1(z) + µ3(G)h4∆3(z) + o(h4), (2.4)

Eβ2(zt)G2
tz = hβ(z)f(z)

∫
G2(u)du+O(h3) = ν0(G)hβ(z)f(z) +O(h3) = O(h), (2.5)

EGtz = µ1(G)h2f (1)(z) + µ3(G)h4f (3)(z)/6 + o(h4), (2.6)

and

EG2
tz = ν0(G)hf(z) + o(h) = O(h). (2.7)

Combining (2.4) and (2.5) gives∑
x2tβ(zt)Gtz ∼a nEx2tEβ(zt)Gtz +Op(

√
nh) ∼a µ1(G)nh2∆1(z)Ex2t +Op(

√
nh). (2.8)

Combining (2.6) and (2.7) we have∑
x2tGtz ∼a nEx2tEGtz +Op(

√
nh) ∼a µ1(G)nh2f (1)(z)Ex2t +Op(

√
nh). (2.9)

The following results are standard and readily obtained:

EKtz = hf(z) + h3f (2)(z)µ2(K)/2 + o(h3), (2.10)

EK2
tz = hf(z)ν0(K) + o(h) = O(h), (2.11)∑

x2tKtz ∼a nhf(z)Ex2t , (2.12)

Eβ(zt)Ktz = hβ(z)f(z) + h3
[
β(z)f (2)(z)/2 + β(1)(z)f (1)(z) + β(2)(z)f(z)/2

]
µ2(K)

≡ hβ(z)f(z) + h3∆2(z)µ2(K), (2.13)

Eβ2(zt)K2
tz = hβ2(z)f(z)ν0(K) + o(h) = O(h), (2.14)∑

x2tβ(zt)Ktz ∼a nEx2tEβ(zt)Ktz +Op(
√
nh) ∼a nhβ(z)f(z). (2.15)

Combining (2.8), (2.9), (2.12), and (2.15) we have

Π1(z) =
− 1
h

∑
x2tβ(zt)Gtz

∑
x2tKtz + 1

h

∑
x2tβ(zt)Ktz

∑
x2tGtz(∑

x2tKtz

)2
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∼a
− 1
h

[
µ1(G)nh2∆1(z)Ex2t +Op(

√
nh)
]

(nhf(z)Ex2t ) + 1
hnhβ(z)f(z)

[
µ1(G)nh2f (1)(z)Ex2t +Op(

√
nh)
]

[
nhf(z)Ex2t

]2
=
−µ1(G)nh∆1(z)Ex2t (nhf(z)Ex2t ) + µ1(G)nβ(z)f(z)nh2f (1)(z)Ex2t[

nhf(z)Ex2t
]2

+
− 1
hOp(

√
nh)nhf(z)Ex2t + nβ(z)f(z)Op(

√
nh)[

nhf(z)Ex2t
]2

= −µ1(G)∆1(z)/f(z) + µ1(G)β(z)f (1)(z)/f(z) +Op(1/
√
nh3)

= −µ1(G)β(1)(z) +Op(1/
√
nh3), (2.16)

and

Π2(z) =
− 1
h

∑
xtutGtz

∑
x2tKtz + 1

h

∑
xtutKtz

∑
x2tGtz(∑

x2tKtz

)2
=
− 1
hOp(

√
nh)nhf(z)Ex2t + 1

hOp(
√
nh)

[
µ1(G)nh2f (1)(z)Ex2t +Op(

√
nh)
]

[
nhf(z)Ex2t

]2
= Op

(
1/
√
nh3

)
. (2.17)

In view of (2.3), (2.16), and (2.17), we obtain

g(1)(z) = −µ1(G)β(1)(z) +Op

(
1/
√
nh3

)
. (2.18)

Note that µ1(G) = −1 for both second order Epanechnikov and Gaussian kernels. Result (2.18)

suggests that when L = 1 and β(1)(z) 6= 0, g(1)(z) = Op(1) as nh3 → c ∈ (0,∞]. Following

(2.2) we have

1

n

n∑
t=1

∣∣∣β̂(zt)− β̂(z)
∣∣∣Ktz ∼a h

∫ ∣∣∣g(1)(z)ph∣∣∣K(p)f(z + ph)dp

∼a h2
∣∣∣g(1)(z)∣∣∣ f(z)

∫
|p|K(p)dp, (2.19)

and then

L̂ =
1

log(h)
log

(
1

n

n∑
t=1

∣∣∣β̂(zt)− β̂(z)
∣∣∣Ktz

/
1

n

n∑
t=1

Ktz

)

∼a
1

log(h)
log

(
h2
∣∣∣g(1)(z)∣∣∣ f(z)

∫
|p|K(p)dp

/
hf(z)

)
∼a

1

log(h)

[
log(h) + log

(∣∣∣g(1)(z)∣∣∣)+ log

(∫
|p|K(p)dp

)]
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∼a 1 + log
(∣∣∣g(1)(z)∣∣∣)/log(h) + log

(∫
|p|K(p)dp

)
/ log(h)

p−→ 1.

This proves that L̂ is consistent when L = 1 under the condition nh3 → c ∈ (0,∞].

When L > 1 and β(1)(z) = 0, result (2.18) is insufficient. For this situation we need to

consider higher order bias terms of g(1)(z) to determine whether L̂ is consistent. For simplicity,

we consider the case where L = 2. The function β(·) appears only in the numerator of Π1(z).

So the result for Π2(z) given in (2.17) still applies in the case L = 2. We therefore focus on

the numerator of Π1(z), and in particular
∑
x2tβ(zt)Gtz and

∑
x2tβ(zt)Ktz. When β(1)(z) = 0,

result (2.4) becomes

Eβ(zt)Gtz = µ1(G)h2β(z)f (1)(z) + µ3(G)h4
[
β(2)(z)f (1)(z)/2 + β(3)(z)f(z)/6 + β(z)f (3)(z)/6

]
+ ...

≡ µ1(G)h2β(z)f (1)(z) + µ3(G)h4∆∗3(z), (2.20)

and (2.13) becomes

Eβ(zt)Ktz = hβ(z)f(z) + h3
[
β(z)f (2)(z)/2 + β(2)(z)f(z)/2

]
µ2(K) + ... ≡ hβ(z)f(z) + h3∆∗2(z)µ2(K).

(2.21)

For the numerator of Π1(z) we then have

− 1

h

∑
x2tβ(zt)Gtz

∑
x2tKtz +

1

h

∑
x2tβ(zt)Ktz

∑
x2tGtz

∼a −
1

h

[
n
(
µ1(G)h2β(z)f (1)(z) + µ3(G)h4∆∗3(z)

)
Ex2t +Op(

√
nh)
] [
n
(
hf(z) + h3f (2)(z)µ2(K)/2

)
Ex2t

]
+

1

h

[
n
(
hβ(z)f(z) + h3∆∗2(z)µ2(K)

)
Ex2t

] [
n
(
µ1(G)h2f (1)(z) + µ3(G)h4f (3)(z)/6

)
Ex2t +Op(

√
nh)
]

∼a n2h4
[
(µ1(G)µ2(K)− µ3(G)) f(z)f (1)(z)β(2)(z)/2− µ3(G)f2(z)β(3)(z)/6

]
(Ex2t )2 +Op

(
n
√
nh
)
.

It follows that

Π1(z) ∼a
n2h4

[
(µ1(G)µ2(K)− µ3(G))f(z)f (1)(z)β(2)(z)/2− µ3(G)f2(z)β(3)(z)/6

]
(Ex2t )2 +Op

(
n
√
nh
)

(nhf(z)Ex2t )2

∼a h2
[
µ1(G)µ2(K)− µ3(G)

2
f−1(z)f (1)(z)β(2)(z)− µ3(G)

6
β(3)(z)

]
+Op

(
1/
√
nh3

)
.

(2.22)

Note that Π2(z) = Op(1/
√
nh3) in the case L = 2. We have

g(1)(z) ∼a h2
(
µ1(G)µ2(K)− µ3(G)

2
f−1(z)f (1)(z)β(2)(z)− µ3(G)

6
β(3)(z)

)
+Op

(
1/
√
nh3

)
.

(2.23)

6



Following (2.2), we have

1

n

n∑
t=1

∣∣∣β̂(zt)− β̂(z)
∣∣∣Ktz ∼a h

∫ ∣∣∣∣∣g(1)(z)ph+
g(2)(z)

2
p2h2 + ...

∣∣∣∣∣K(p)f(z + ph)dp. (2.24)

Given g(1)(z) = Op(h
2+1/

√
nh3), to determine the order of the RHS of (2.24), we need to study

the order of g(2)(z), which is complicated. Based on the result that g(1)(z) →p −µ1(G)β(1)(z)

in the case of L = 1, we conjecture that g(2)(z) →p const. × β(2)(z) 6= 0 in the case of L = 2.

Then g(2)(z) = Op(1) when L = 2 and from (2.24) we deduce

1

n

n∑
t=1

∣∣∣β̂(zt)− β̂(z)
∣∣∣Ktz ∼a h

[
Op

(
h(h2 + 1/

√
nh3)

)
+Op(h

2)
]

= Op

(
h3 +

√
h/n

)
. (2.25)

Consequently,

L̂ =
1

log(h)
log

(
1

n

n∑
t=1

∣∣∣β̂(zt)− β̂(z)
∣∣∣Ktz

/
1

n

n∑
t=1

Ktz

)

∼a
1

log(h)
log
(
Op

(
h3 +

√
h/n

)/
hf(z)

)
∼a

1

log(h)
log
(
Op

(
h2 + 1/

√
nh
))

→ 2 when nh5 → c ∈ (0,∞]. (2.26)

Result (2.26) implies that with an appropriately chosen bandwidth L̂ can deliver a consistent

estimate in the case L = 2. We expect that for large L results parallel to (2.25) would be very

involved and include n, h and L. Then, similar to (2.26), for carefully chosen h, we expect that

L̂ can deliver a consistent estimate of L. Based on our present findings, we conjecture that

the rate condition nh2L+1 → c ∈ (0,∞] is needed for L̂ to be consistent. This condition is

intuitive, indicating that larger bandwidth orders are needed to achieve consistency the flatter

is the function (i.e., the true L is larger). This intuition is confirmed in the simulations reported

below. But since L itself is unknown, it is impossible to determine the appropriate order of h

before estimation. So L̂ is not a feasible estimator in general.

To corroborate the above analysis we conduct simulations to check the performance of L̂

under different bandwidth orders. The data generating process is: zt ∼ iidN(0, 1), and xt follows

stationary AR(1) process with coefficient 0.5. A second order Epanechnikov kernel is used.

Bandwidth h is determined by h = σ̂zn
γ . Two β functions are considered: β1(z) = z2 + z + 1

and β2(z) = z3 + 1. For β1(z), we have L = 1 at point z = 0.5 and L = 2 at point z = −0.5.

For β2(z) we have L = 3 at point z = 0. Tables 1-3 report the performance of L̂ at those three

points with different bandwidth order γ. For all three tables, the left panel uses ‘too small’

a bandwidth with nh2L+1 → 0. In this case, L̂ is not consistent according to our analysis.
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Table 1: Performance of L̂ at point z = 0.5 with L = 1

γ = −2/5 γ = −1/3 γ = −1/5
n mean var MSE mean var MSE mean var MSE

200 1.0866 0.1171 0.1246 1.2254 0.1394 0.1902 1.3869 0.1170 0.2666
400 1.0525 0.0820 0.0848 1.1915 0.0960 0.1327 1.3061 0.0525 0.1462
800 1.0306 0.0593 0.0603 1.1724 0.0732 0.1029 1.2586 0.0276 0.0945

1600 1.0080 0.0460 0.0461 1.1516 0.0570 0.0800 1.2218 0.0149 0.0641
3200 0.9917 0.0355 0.0356 1.1396 0.0452 0.0646 1.1971 0.0083 0.0471
6400 0.9758 0.0297 0.0303 1.1261 0.0383 0.0542 1.1760 0.0048 0.0358

Table 2: Performance of L̂ at point z = −0.5 with L = 2

γ = −1/3 γ = −1/5 γ = −1/7
n mean var MSE mean var MSE mean var MSE

200 1.5198 0.1507 0.3812 2.8166 0.3491 1.0158 3.8599 0.5702 4.0294
400 1.4652 0.1041 0.3902 2.7092 0.2430 0.7460 3.7024 0.3812 3.2792
800 1.4177 0.0752 0.4142 2.6436 0.1839 0.5981 3.5665 0.2619 2.7157

1600 1.3790 0.0587 0.4443 2.5786 0.1466 0.4815 3.4400 0.1849 2.2586
3200 1.3444 0.0477 0.4776 2.5294 0.1259 0.4062 3.3368 0.1346 1.9216

Bandwidths in the middle and right panels satisfy the consistency condition obtained above.

The middle panel has nh2L+1 → const and the right panel has nh2L+1 → ∞. Results are

obtained with 10,000 replications.

From findings in the three tables we draw the following conclusions: (i) with bandwidth too

small as in the left panel of the three tables, L̂ is evidently inconsistent. Especially in Table

2 and 3, the inconsistency is revealed from the increasing MSE as n becomes very large. In

Table 1, although MSE is decreasing, we can expect that bias will keep growing with n and

this will finally lead to inconsistency. In particular, the ‘mean’ column shows that too small a

bandwidth eventually causes L̂ to underestimate L. (ii) When condition nh2L+1 → c ∈ (0,∞]

is satisfied, the results in the middle and right panels of all three tables show that MSE and

bias are both monotonically decreasing as n increases, corroborating consistency of L̂. When

nh2L+1 → ∞ and a larger bandwidth is used, L̂ has a tendency to overestimate L and suffer

some efficiency loss compared to the middle panel where nh2L+1 → const. The efficiency loss

is more evident in Tables 2 and 3, which suggests that although asymptotic theory indicates

that larger L requires larger bandwidths for consistency, too large a bandwidth will cause some

overestimation and loss of efficiency.

In summary, the simulation findings confirm that consistency of L̂ relies on appropriately

selected bandwidth orders. But without prior information concerning L there is no way to be

clear that the estimate L̂ is consistent. To illustrate: suppose the estimate L̂ is around 2.7 with

γ = −1/5. This outcome could match either the middle panel in Table 2 or the left panel in

Table 3, leading to uncertainty about the true value. Such uncertainty can be expected to be
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Table 3: Performance of L̂ at point z = 0 with L = 3

γ = −1/5 γ = −1/7 γ = −1/9
n mean var MSE mean var MSE mean var MSE

200 2.9180 0.3513 0.3580 4.0793 0.6772 1.8420 4.9752 1.0137 4.9149
400 2.8166 0.2555 0.2891 3.9611 0.4726 1.3962 4.7619 0.6732 3.7775
800 2.7390 0.1952 0.2633 3.8539 0.3619 1.0911 4.5964 0.4908 3.0391

1600 2.6595 0.1496 0.2656 3.7660 0.2815 0.8682 4.4387 0.3648 2.4345
3200 2.6106 0.1253 0.2769 3.6969 0.2327 0.7184 4.3038 0.2785 1.9783

common in applications and hinders practical use of the estimate L̂. Further research is needed

to determine whether this approach can be improved to be better suited for practical work.

Proofs of the preliminary results (2.4), (2.6) and (2.7):

Proof of (2.4):

Eβ(zt)Gtz =

∫
β(zt)G

(
zt − z
h

)
f(zt)dzt

= h

∫
β(z + hu)G(u)f(z + hu)du

= h

∫ [
β(z) + β(1)(z)hu+ ...

]
G(u)

[
f(z) + f (1)(z)hu+ ...

]
du

= h2
[
β(z)f (1)(z) + β(1)(z)f(z)

] ∫
uG(u)du

+ h4
[
β(1)(z)f (2)(z)/2 + β(2)(z)f (1)(z)/2 + β(3)(z)f(z)/6 + β(z)f (3)(z)/6

] ∫
u3G(u)du+ ...

= µ1(G)h2
[
β(z)f (1)(z) + β(1)(z)f(z)

]
+ µ3(G)h4

[
β(1)(z)f (2)(z)/2 + β(2)(z)f (1)(z)/2 + β(3)(z)f(z)/6 + β(z)f (3)(z)/6

]
+ ...

≡ µ1(G)h2∆1(z) + µ3(G)h4∆3(z) + o(h4). (2.27)

Proof of (2.6):

EGtz =

∫
G

(
zt − z
h

)
f(zt)dzt = h

∫
G(u)f(z + hu)du

= h2f (1)(z)

∫
uG(u)du+ h4

f (3)(z)

6

∫
u3G(u)du+ ...

= µ1(G)h2f (1)(z) + µ3(G)h4f (3)(z)/6 + o(h4). (2.28)

Proof of (2.7):

EG2
tz =

∫
G2

(
zt − z
h

)
f(zt)dzt = h

∫
G2(u)f(z + hu)du

9



= hf(z)

∫
G2(u)du+ ... = ν0(G)hf(z) + o(h). (2.29)

Difficulty in the estimation of hL

By Taylor expansion, we have

h(L†n)− h(L) = h(1)(L̃)(L†n − L) = hL̃ log(h)(L† − L) = hL log

(∣∣∣∣∣β(L) (z)

L!

∣∣∣∣∣
∫
|s|LK(s)ds

)
+ op(h

L)

(2.30)

since L̃ is on the line segment between L†n and L and L†n →p L. Then

h(L†n) = h(L)×

(
1 + log

(∣∣∣∣∣β(L) (z)

L!

∣∣∣∣∣
∫
|s|LK(s)ds

))
+ op(h

L),

and h(L†n) = hL
†
n ∼a dLh

L, where dL =
(

1 + log
(∣∣∣β(L)(z)

L!

∣∣∣ ∫ |s|LK(s)ds
))

, so that hL
†
n is

inconsistent. Thus, the slow rate of convergence of L†n interferes with the consistent estimation

of the factor hL needed for bias correction.

3 Failure of the adaptive approach

We provide some details to show that the adaptive approach does not work in cases where

L > 1. More specifically, we will show the adaptive bias estimator B̂(z), which is

B̂(z) = An(z)−1

(
n∑
t=1

xtx
′
t

)(
1

n

n∑
s=1

[β̂(zs)− β̂(z)]K

(
zs − z
h

))
, (3.1)

is not consistent for the true bias hL
∗BL(z) = hL

∗ µL∗ (K)
f(z) CL(z) when L > 1. As before we

examine the stationary and nonstationary xt cases separately.

(i) Stationary xt In an attempt to show B̂(z) ∼a hL
∗ µL∗ (K)

f(z) CL(z) + o(hL
∗
), the critical step

is to obtain the following asymptotic representation

1

n

n∑
t=1

[β̂(zt)− β̂(z)]K

(
zt − z
h

)
∼a Eξβt = hL

∗+1µL∗(K)CL(z) + o(hL
∗+1) (3.2)

with CL(z) = f(z)β(L)(z)
L! 1{L=even}+

[
β(L)(z)
L! f (1) (z) + β(L+1)(z)

(L+1)! f (z)
]

1{L=odd}, and L∗ = L1{L=even}+

(L+ 1)1{L=odd}. However, the asymptotic representation (3.2) does not hold, as we now show.

To begin, we write

1

n

n∑
t=1

[
β̂(zt)− β̂(z)

]
K

(
zt − z
h

)

10



=
1

n

n∑
t=1

{
β(zt)− β(z) + β̂(zt)− β(zt)− [β̂(z)− β(z)]

}
K

(
zt − z
h

)

=
1

n

n∑
t=1

{β(zt)− β(z)}K
(
zt − z
h

)
+

1

n

n∑
t=1

{
β̂(zt)− β(zt)− [β̂(z)− β(z)]

}
K

(
zt − z
h

)
=: Π1n + Π2n. (3.3)

By Assumption 1(i) and standard manipulations, Π1n = 1
n

∑n
t=1 {β(zt)− β(z)}K

(
zt−z
h

)
∼a

Eξβt.
Now consider Π2n. To simplify the derivations, we consider the case where {xt} and {zt}

are independent. Note that

β̂(z)− β(z) =

(
n∑
t=1

xtx
′
tKtz

)−1{ n∑
t=1

xtx
′
t[β(zt)− β(z)]Ktz +

n∑
t=1

xtutKtz

}

∼a (nh)−1Σ−1xx f
−1(z)

{
n∑
s=1

xsx
′
s[β(zs)− β(z)]Ksz +

n∑
s=1

xsusKsz

}
. (3.4)

Then

β̂(zt)− β̂(z) = β̂(zt)− β(zt)− [β̂(z)− β(z)]

∼a (nh)−1Σ−1xx

{
f−1(zt)

(
n∑
s=1

xsx
′
s[β(zs)− β(zt)]Kst +

n∑
s=1

xsusKst

)

−f−1(z)

(
n∑
s=1

xsx
′
s[β(zs)− β(z)]Ksz +

n∑
s=1

xsusKsz

)}

= (nh)−1Σ−1xx

{
f−1(zt)

n∑
s=1

xsx
′
s[β(zs)− β(zt)]Kst − f−1(z)

n∑
s=1

xsx
′
s[β(zs)− β(z)]Ksz

}

+ (nh)−1Σ−1xx

{
f−1(zt)

n∑
s=1

xsusKst − f−1(z)
n∑
s=1

xsusKsz

}
. (3.5)

Hence

Π2n =
1

n

n∑
t=1

{
β̂(zt)− β(zt)− [β̂(z)− β(z)]

}
K

(
zt − z
h

)

∼a (nh)−1Σ−1xx
1

n

n∑
t=1

{
f−1(zt)

n∑
s=1

xsx
′
s[β(zs)− β(zt)]Kst − f−1(z)

n∑
s=1

xsx
′
s[β(zs)− β(z)]Ksz

}
Ktz

+ (nh)−1Σ−1xx
1

n

n∑
t=1

{
f−1(zt)

n∑
s=1

xsusKst − f−1(z)
n∑
s=1

xsusKsz

}
Ktz

= Σ−1xx
1

nh

n∑
t=1

f−1(zt)Ktz
1

n

n∑
s=1

xsx
′
s[β(zs)− β(zt)]Kst − Σ−1xx f

−1(z)
1

nh

∑
t

Ktz
1

n

∑
s

xsx
′
s[β(zs)− β(z)]Ksz

11



+ hΣ−1xx
1

nh

n∑
t=1

f−1(zt)Ktz
1

nh

n∑
s=1

xsusKst − hΣ−1xx f
−1(z)

1

nh

n∑
t=1

Ktz
1

nh

n∑
s=1

xsusKsz

=: Π2n1 −Π2n2 + Π2n3 −Π2n4. (3.6)

Consider the terms Π2ni, i = 1, 2, 3, 4 in turn. Start with Π2n1 and to simplify derivations

in what follows assume that the zt are independent and identically distributed. The weakly

dependent case involves much longer calculations but can be handled under Assumption 1 along

lines such as those used in the proof of Lemma B.2. Following a similar line of argument as

that leading to (B.5) we have, using conditional expectations Ez t given zt,

Π2n1 = Σ−1xx
1

nh

n∑
t=1

f−1(zt)Ktz
1

n

n∑
s=1

xsx
′
s[β(zs)− β(zt)]Kst

= Σ−1xx
1

nh

n∑
t=1

f−1(zt)Ktz
1

n

n∑
s 6=t

xsx
′
s[β(zs)− β(zt)]Kst

∼a Σ−1xx
1

nh

n∑
t=1

f−1(zt)KtzΣxxEz t[β(zs)− β(zt)]Kst

∼a
1

nh

n∑
t=1

f−1(zt)KtzEz t[β(zs)− β(zt)]Kst

∼a
1

nh

n∑
t=1

f−1(zt)Ktz

∫ 1

−1
[β(zs)− β(zt)]K

(
zs − zt
h

)
f(zs)dzs

∼a
1

n

n∑
t=1

f−1(zt)Ktz

∫ 1

−1
[β(zt + ph)− β(zt)]K(p)f(zt + ph)dp

∼a
1

n

n∑
t=1

f−1(zt)Ktz

∫ 1

−1

L+1∑
j=1

1

j!
β(j)(zt)(ph)jK(p)[f(zt) + f (1)(zt)ph]dp

∼a
1

n

n∑
t=1

f−1(zt)Ktz

L+1∑
j=1

1

j!
β(j)(zt)h

j [

∫
pjK(p)dpf(zt) +

∫
pj+1K(p)dpf (1)(zt)h]

∼a
1

n

n∑
t=1

f−1(zt)Ktz

L+1∑
j=1

1

j!
β(j)(zt)h

j [µj(K)f(zt) + µj+1(K)f (1)(zt)h]

∼a
∫
Ktz

L+1∑
j=1

1

j!
β(j)(zt)h

j [µj(K)f(zt) + µj+1(K)f (1)(zt)h]dzt

∼a
L+1∑
j=1

1

j!
hjµj(K)

∫
β(j)(zt)Ktzf(zt)dzt +

L+1∑
j=1

1

j!
hj+1µj+1(K)

∫
β(j)(zt)Ktzf

(1)(zt)dzt

∼a
L+1∑
j=1

1

j!
hj+1µj(K)

∫
β(j)(z + hu)K(u)f(z + hu)du+

L+1∑
j=1

1

j!
hj+2µj+1(K)

∫
β(j)(z + hu)K(u)f (1)(z + hu)du

12



∼a
L+1∑
j=1

1

j!
hj+1µj(K)

∫ L−j+1∑
k=0

1

k!
β(j+k)(z)(hu)kK(u)f(z + hu)du

+

L+1∑
j=1

1

j!
hj+2µj+1(K)

∫ L+1−j∑
k=0

1

k!
β(j+k)(z)(hu)kK(u)f (1)(z + hu)du

∼a
L∑
j=1

1

j!
hj+1µj(K)

1

(L− j)!
β(L)(z)

∫
(hu)L−jK(u)f(z + hu)du

+

L+1∑
j=1

1

j!
hj+1µj(K)

1

(L+ 1− j)!
β(L+1)(z)

∫
(hu)L+1−jK(u)f(z + hu)du

+
L∑
j=1

1

j!
hj+2µj+1(K)

1

(L− j)!
β(L)(z)

∫
(hu)L−jK(u)f (1)(z + hu)du

∼a hL+1
L∑
j=1

1

j!
µj(K)

1

(L− j)!
β(L)(z)µL−j(K)f(z) + hL+2

L∑
j=1

1

j!
µj(K)

1

(L− j)!
β(L)(z)µL+1−j(K)f (1)(z)

+ hL+2
L+1∑
j=1

1

j!
µj(K)

1

(L+ 1− j)!
β(L+1)(z)µL+1−j(K)f(z) + hL+2

L∑
j=1

1

j!
µj+1(K)

1

(L− j)!
β(L)(z)µL−j(K)f (1)(z)

∼a hL+1

f(z)β(L)(z)

L∑
j=1

1

j!
µj(K)

1

(L− j)!
µL−j(K)

× 1{L=even}

+ hL+2

β(L)(z)f (1)(z)
L∑
j=1

1

j!(L− j)!
[µj(K)µL+1−j(K) + µj+1(K)µL−j(K)]

+β(L+1)(z)f(z)
L+1∑
j=1

1

j!(L+ 1− j)!
µj(K)µL+1−j(K)

× 1{L=odd}

=: hL
∗+1DL(z).

The second to last equation is due to the fact that when L = even, µj(K)µL+1−j(K) = 0 and

when L = odd, µj(K)µL−j(K) = 0.

For the term Π2n2 we have

Π2n2 = Σ−1xx f
−1(z)

1

nh

∑
t

Ktz
1

n

∑
s

xsx
′
s[β(zs)− β(z)]Ksz

∼a Σ−1xx f
−1(z)f(z)E(xsx

′
s)E[β(zs)− β(z)]Ksz ∼a Eξβt. (3.7)

So the leading terms of Π1n and Π2n2 are both asymptotically equivalent to Eξβt. Below we

will see Π2n3 − Π2n4 has zero mean and does not contribute to the bias centering expression.

It follows that the leading term of Π1n + Π2n is determined by that of Π2n1, which is very

complicated and involves the unknown value of L. Hence, (3.2) is unlikely to hold. As a result,
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B̂(z) is not a consistent estimate of the bias hL
∗BL(z); and, due to the dependence of the limit

of Π2n1 on unknown L, it is impossible to scale adjust B̂(z) to achieve a consistent bias estimate.

Next, consider the remaining two terms of (3.6) involving the difference

Π2n3−Π2n4 = hΣ−1xx
1

nh

n∑
t=1

f−1(zt)Ktz
1

nh

n∑
s=1

xsusKst−hΣ−1xx f
−1(z)

1

nh

n∑
t=1

Ktz
1

nh

n∑
s=1

xsusKsz,

(3.8)

which has zero mean and therefore does not contribute to the bias centering expression. But,

as in Phillips and Wang (2021), we need to analyze this term’s contribution to the variance of

the limit distribution of the statistic. For ease of presentation and calculation, set g = f−1,

take the scalar xt case and let ut ∼iid

(
0, σ2u

)
and zt be iid, as above. Write (3.8) as

Π2n3 −Π2n4 =
1

n
Σ−1xx

1√
nh

n∑
s=1

xsus

(
1√
nh

n∑
t=1

Ktz [Kstg (zt)−Kszg (z)]

)
, (3.9)

and since xsus is a martingale difference, this expression has mean zero and variance

σ2uΣ−1xx
n2h

E

(
1√
nh

n∑
t=1

Ktz [Kstg (zt)−Kszg (z)]

)2

=
σ2uΣ−1xx
n3h2

E

 n∑
t,r=1

KtzKrz [Kstg (zt)−Kszg (z)] [Ksrg (zr)−Kszg (z)]


=
σ2uΣ−1xx
n2h2

E
(
K2
tz [Kstg (zt)−Kszg (z)]2

)
+
σ2uΣ−1xx
n3h2

n∑
t6=r

E (KtzKrz [Kstg (zt)−Kszg (z)] [Ksrg (zr)−Kszg (z)])

=: D1 +D2. (3.10)

Noting that the particular case where s = t in the dual summation (3.9) is of smaller order and

can therefore be neglected in (3.9), we have

D1 =
σ2uΣ−1xx
n2h2

E
(
K2
tz [Kstg (zt)−Kszg (z)]2

)
=
σ2uΣ−1xx
n2h2

∫ 1

−1

∫ 1

−1
K

(
zt − z
h

)2 [
K

(
zs − zt
h

)
g (zt)−K

(
zs − z
h

)
g (z)

]2
f (zs) f (zt) dzsdzt

=
σ2uΣ−1xx
n2

∫ 1

−1

∫ 1

−1
K (p)2 [K (p− q) g (z + ph)−K (q) g (z)]2 f (z + qh) f (z + ph) dpdq

∼a
σ2uΣ−1xx g (z)2 f (z)2

n2

∫ 1

−1

∫ 1

−1
K (p)2 [K (p− q)−K (q)]2 dpdq

=
σ2uΣ−1xx
n2

∫ 1

−1

∫ 1

−1
K (p)2 [K (p− q)−K (q)]2 dpdq. (3.11)
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Next, again noting that the case where s = t is of smaller order and can be neglected, we have

D2 =
σ2uΣ−1xx
n3h2

n∑
t6=r

E (KtzKrz [Kstg (zt)−Kszg (z)] [Ksrg (zr)−Kszg (z)])

∼a
σ2uΣ−1xx
nh2

E (KtzKrz [Kstg (zt)−Kszg (z)] [Ksrg (zr)−Kszg (z)])

∼a
σ2uΣ−1xx
nh2

∫ ∫ ∫
K

(
zt − z
h

)
K

(
zr − z
h

)[
K

(
zs − zt
h

)
g (zt)−K

(
zs − z
h

)
g (z)

]
×
[
K

(
zs − zr
h

)
g (zr)−K

(
zs − z
h

)
g (z)

]
f (zs) f (zt) f(zr)dzsdztdzr

= h
σ2uΣ−1xx
n

∫ 1

−1

∫ 1

−1

∫ 1

−1
K (p)K(w) [K (p− q) g (z + ph)−K (q) g (z)]

× [K(q − w)g(z + hw)−K(q)g(z)]f (z + qh) f (z + ph) f(z + wh)dpdqdw

∼a h
σ2uΣ−1xx
n

f(z)

∫ 1

−1

∫ 1

−1

∫ 1

−1
K (p)K(w) [K (p− q)−K (q)] [K(q − w)−K(q)]dpdqdw.

(3.12)

It follows that Π2n3−Π2n4 has zero mean and asymptotic variance D1+D2 = O(h/n) in view of

(3.10) - (3.12), so that Π2n3−Π2n4 = Op(
√
h/n). As a result, An(z)−1(

∑
t xtx

′
t)(Π2n3−Π2n4) =

Op(
1
nhn

√
h
n) = Op(1/

√
nh), which is of the same order with the asymptotic variance term in

the stationary case since the convergence rate is
√
nh. Consequently,

B̂(z) = An(z)−1

(∑
t

xtx
′
t

)
[Π1n + Π2n1 −Π2n2 + Π2n3 −Π2n4]

∼a
1

hf(z)

(
hL
∗+1DL(z) + op(h

L∗+1)
)

+An(z)−1

(∑
t

xtx
′
t

)
(Π2n3 −Π2n4)

∼ahL
∗
f−1(z)DL(z) + op(h

L∗) +Op

(
1/
√
nh
)
. (3.13)

This analysis reveals that B̂(z) is not consistent for the true bias hL
∗BL(z). And also, it

retains a random element that is Op(1) after standardization by the convergence rate
√
nh in

the stationary case. So the bias term adjustment B̂(z) affects the limit distribution of the bias

corrected estimation error β̂(z) − β(z) − B̂(z). In effect, the adaptive bias adjustment B̂(z)

introduces an estimation error through the presence of the element β̂(zt)−β̂(z). This estimation

error contributes a random term An(z)−1(
∑

t xtx
′
t)(Π2n3 −Π2n4) to the limit distribution that

has the same order Op(
1√
nh

) as the asymptotic variance term (the last term in (A.8) in the

main paper).

In view of these difficulites, we do not consider the adaptive variance estimators Ω̂n(z) (in

the stationary case) and Ω̂∗n(z) (in the nonstationary case). In short, without an adaptive

consistent bias estimator B̂(z) to adjust estimation error β̂(z)− β(z) even a correctly adjusted
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variance matrix estimator would be unable to produce an asymptotically valid test statistic.

(ii) Nonstationary xt The adaptive approach to constructing a test statistic does not work in

this case either. First, as shown below, the adaptive bias estimator is not consistent for the same

reason as in the stationary case. Moreover, the adaptive bias estimator introduces additional

variation in the limit distribution and this additional variance takes a more complicated form

in the nonstationary case than in the stationary case and depends on the unknown flatness

parameter L and the derivative β(L)(z). Attempts to estimate these variances in an adaptive

way introduces further bias terms in the adaptive variance estimator. These interactions among

bias and variance effects make it difficult to formulate a successful adaptive approach to inference

that is not reliant on knowledge or consistent estimation of the parameter L in the nonstationary

case. Thus, in spite of the apparent simplicity of the adaptive statistic and its formulation

independent of L, the high technical complexity of its asymptotics and interactive bias and

variance effects are serious challenges that are left for subsequent research on adaptation in the

presence of flat function behavior.

We first show the bias estimator B̂(z) is not consistent. The analysis follows lines similar

to those used above while allowing for limiting moment behavior of the nonstationary xt. We

have the same decomposition as in (3.3), viz.,

1

n

n∑
t=1

[β̂(zt)− β̂(z)]K

(
zt − z
h

)
= Π∗1n + Π∗2n. (3.14)

As before, we have Π∗1n = 1
n

∑n
t=1 {β(zt)− β(z)}K

(
zt−z
h

)
∼a Eξβt. Proceeding in the nonsta-

tionary case, we have

Π∗2n =
1

n

n∑
t=1

{
β̂(zt)− β(zt)− [β̂(z)− β(z)]

}
K

(
zt − z
h

)

∼a
1

n2h

(∫
BxB

′
x

)−1 1

n

n∑
t=1

{
f−1(zt)

n∑
s=1

xsx
′
s[β(zs)− β(zt)]Kst − f−1(z)

n∑
s=1

xsx
′
s[β(zs)− β(z)]Ksz

}
Ktz

+
1

n2h

(∫
BxB

′
x

)−1 1

n

n∑
t=1

{
f−1(zt)

n∑
s=1

xsusKst − f−1(z)
n∑
s=1

xsusKsz

}
Ktz

=

(∫
BxB

′
x

)−1 1

n2h

n∑
t=1

f−1(zt)Ktz
1

n

n∑
s=1

xsx
′
s[β(zs)− β(zt)]Kst

−
(∫

BxB
′
x

)−1
f−1(z)

1

n2h

∑
t

Ktz
1

n

∑
s

xsx
′
s[β(zs)− β(z)]Ksz

+ h

(∫
BxB

′
x

)−1 1

n2h

n∑
t=1

f−1(zt)Ktz
1

nh

n∑
s=1

xsusKst

− h
(∫

BxB
′
x

)−1
f−1(z)

1

n2h

n∑
t=1

Ktz
1

nh

n∑
s=1

xsusKsz
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=: Π∗2n1 −Π∗2n2 + Π∗2n3 −Π∗2n4. (3.15)

In analyzing these terms we employ similar arguments to those in the stationary case. For the

first term, using conditional expectations Ez t given zt, we have

Π∗2n1 =

(∫
BxB

′
x

)−1 1

n

n∑
t=1

f−1(zt)Ktz
1

n2h

n∑
s 6=t

xsx
′
s[β(zs)− β(zt)]Kst

=

(∫
BxB

′
x

)−1 1

n

n∑
t=1

f−1(zt)Ktz
1

n2h

n∑
s 6=t

xsx
′
sEz tξβst

+

(∫
BxB

′
x

)−1 1

n

n∑
t=1

f−1(zt)Ktz
1

n2h

n∑
s 6=t

xsx
′
s[ξβst − Ez tξβst]

=: Π∗a2n1 + Π∗b2n1 (3.16)

where ξβst := [β(zs) − β(zt)]Kst. For the first term Π∗a2n1 we have Π∗a2n1 ∼a hL
∗+1DL(z) fol-

lowing the same lines as that of Π2n1 in the stationary case. For the second term Π∗b2n1, first

as in Lemma B.2 we can verify that Ez tξβst = O(hL
∗+1) and Ez tξ2βst = O(h2L+1). As a re-

sult,
∑n

s 6=t xsx
′
s[ξβst − Ez tξβst] = Op(n

√
nh2L+1) ∼a n

√
nh2L+1

∫
BxB

′
xdBξ,zt where Bξ,zt is

dependent on zt. Then we have

Π∗b2n1 =

(∫
BxB

′
x

)−1 1

n

n∑
t=1

f−1(zt)Ktz
1

n2h

n∑
s 6=t

xsx
′
s[ξβst − Ez tξβst]

∼a
(∫

BxB
′
x

)−1
h

1

nh

n∑
t=1

f−1(zt)Ktz
1

n2h
n
√
nh2L+1

∫
BxB

′
xdBξ,zt

= h
1

n2h
n
√
nh2L+1

(∫
BxB

′
x

)−1
f−1(z)f(z)

∫
BxB

′
xdBξ,z

=

√
h2L+1

n

(∫
BxB

′
x

)−1 ∫
BxB

′
xdBξ,z (3.17)

= Op

(√
h2L+1

n

)
, (3.18)

whereBξ,z means localize zt at z inBξ,zt . Note thatAn(z)−1(
∑

t xtx
′
t)Π
∗b
2n1 = Op

(
1
n2h

n2
√

h2L+1

n

)
=

Op

(√
h2L−1

n

)
, which has the same order as the first term in (A.14) in the main paper. There-

fore it may contribute to the limit distribution and should be retained in the bias corrected

expression β̂(z)− β(z)− B̂(z).
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For Π∗2n2 we have

Π∗2n2 =

(∫
BxB

′
x

)−1
f−1(z)

1

nh

n∑
t=1

Ktz
1

n2

∑
s

xsx
′
s[β(zs)− β(z)]Ksz

=

(∫
BxB

′
x

)−1
f−1(z)

1

nh

n∑
t=1

Ktz
1

n2

∑
s

xsx
′
sEξβs

+

(∫
BxB

′
x

)−1
f−1(z)

1

nh

n∑
t=1

Ktz
1

n2

∑
s

xsx
′
s(ξβs − Eξβs)

=: Π∗a2n2 + Π∗b2n2,

where ξβs := [β(zs)− β(z)]Ksz. For the first term Π∗a2n2 we have

Π∗a2n2 =

(∫
BxB

′
x

)−1
f−1(z)

1

nh

n∑
t=1

Ktz
1

n2

∑
s

xsx
′
sEξβs

∼a f−1(z)f(z)E[β(zs)− β(z)]Ksz ∼a Eξβt. (3.19)

For the second term Π∗b2n2, first following Lemma B.2 Eξβs = O(hL
∗+1) and Eξ2βs = O(h2L+1).

Therefore
∑

s xsx
′
s(ξβs − Eξβs) = Op(n

√
nh2L+1) ∼a n

√
nh2L+1

∫
BxB

′
xdBξ. Then we have

Π∗b2n2 =

(∫
BxB

′
x

)−1
f−1(z)

1

nh

n∑
t=1

Ktz
1

n2

∑
s

xsx
′
s(ξβs − Eξβs)

∼a
(∫

BxB
′
x

)−1
f−1(z)f(z)

1

n2
n
√
nh2L+1

∫
BxB

′
xdBξ

=

√
h2L+1

n

(∫
BxB

′
x

)−1 ∫
BxB

′
xdBξ (3.20)

= Op(

√
h2L+1

n
). (3.21)

Note that the leading variation term of Π∗2n1 and Π∗2n2, namely Π∗b2n1 and Π∗b2n2, cannot be

cancelled although they share the same order. So they both should be retained in the bias

corrected expression β̂(z)− β(z)− B̂(z).

The remaining two terms of (3.15) involve the difference

Π∗2n3 −Π∗2n4 = h

(∫
BxB

′
x

)−1 1

n2h

n∑
t=1

f−1(zt)Ktz
1

nh

n∑
s=1

xsusKst

− h
(∫

BxB
′
x

)−1
f−1(z)

1

n2h

n∑
t=1

Ktz
1

nh

n∑
s=1

xsusKsz, (3.22)

which has zero mean and does not contribute to bias centering. As in the stationary xt case,
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we need to examine this term’s contribution to the variance and limit distribution. For ease of

presentation and calculation, we again set g = f−1, take the scalar xt case and let ut ∼iid

(
0, σ2u

)
and zt be iid. Write (3.22) as

Π∗2n3 −Π∗2n4 =
1

n2

(∫
B2
x

)−1 1√
nh

n∑
s=1

xsus

(
1√
nh

n∑
t=1

Ktz [Kstg (zt)−Kszg (z)]

)
, (3.23)

and since xsus is a martingale difference, this expression has mean zero and conditional variance

given Fx

σ2u
n4

(∫
B2
x

)−2 1

nh

n∑
s=1

x2s E

(
1√
nh

n∑
t=1

Ktz [Kstg (zt)−Kszg (z)]

)2

∼a
σ2u
(∫
B2
x

)−2
n3h

(∫
B2
x

)
E

(
1√
nh

n∑
t=1

Ktz [Kstg (zt)−Kszg (z)]

)2

=
σ2u
(∫
B2
x

)−1
n4h2

E

 n∑
t,r=1

KtzKrz [Kstg (zt)−Kszg (z)] [Ksrg (zt)−Kszg (z)]


∼a

σ2u
(∫
B2
x

)−1
n3h2

E
(
K2
tz [Kstg (zt)−Kszg (z)]2

)
+
σ2u
(∫
B2
x

)−1
n2h2

E {KtzKrz [Kstg (zt)−Kszg (z)] [Ksrg (zt)−Kszg (z)]}

=: D∗1 +D∗2. (3.24)

Proceeding in the same way as the argument leading to (3.11) and (3.12), we find that

D∗1 =
σ2u
(∫
B2
x

)−1
n3

∫ 1

−1

∫ 1

−1
K (p)2 [K (p− q)−K (q)]2 dpdq, (3.25)

and

D∗2 =
σ2u
(∫
B2
x

)−1
n2h2

E (KtzKrz [Kstg (zt)−Kszg (z)] [Ksrg (zr)−Kszg (z)])

∼a
σ2u
(∫
B2
x

)−1
n2h2

∫ ∫ ∫
K

(
zt − z
h

)
K

(
zr − z
h

)[
K

(
zs − zt
h

)
g (zt)−K

(
zs − z
h

)
g (z)

]
×
[
K

(
zs − zr
h

)
g (zr)−K

(
zs − z
h

)
g (z)

]
f (zs) f (zt) f(zr)dzsdztdzr

= h
σ2u
(∫
B2
x

)−1
n2

∫ 1

−1

∫ 1

−1

∫ 1

−1
K (p)K(w) [K (p− q) g (z + ph)−K (q) g (z)]

× [K(q − w)g(z + hw)−K(q)g(z)]f (z + qh) f (z + ph) f(z + wh)dpdqdw
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∼a h
σ2u
(∫
B2
x

)−1
n2

f(z)

∫ 1

−1

∫ 1

−1

∫ 1

−1
K (p)K(w) [K (p− q)−K (q)] [K(q − w)−K(q)]dpdqdw.

(3.26)

It follows that Π∗2n3−Π∗2n4 has zero mean and conditional asymptotic variance D∗1+D∗2 = Op(
h
n2 )

in view of (3.24) - (3.26), so that Π∗2n3 −Π∗2n4 = Op(
h1/2

n ). The implication for the bias is that

An(z)−1(
∑

t xtx
′
t)(Π2n3−Π2n4) = Op(

1
n2h

n2
√

h
n2 ) = Op(1/

√
n2h), which is of the same order as

the asymptotic variance term in the nonstationary case. It therefore affects the limit distribution

and should be retained in the bias corrected formula β̂(z)− β(z)− B̂(z).

Letting A∗n,h := 1
n2h

∑n
t=1 xtx

′
tKtz we have the bias corrected estimation error

β̂(z)− β(z)− B̂(z) = A−1n (z)
n∑
t=1

xtx
′
t[β(zt)− β(z)]Ktz +A−1n (z)

n∑
t=1

xtutKtz − B̂(z)

= A−1n (z)

n∑
t=1

xtx
′
t[β(zt)− β(z)]Ktz +A−1n (z)

n∑
t=1

xtutKtz −A−1n (z)

(
n∑
t=1

xtx
′
t

)(
1

n

n∑
s=1

[β̂(zs)− β̂(z)]Ksz

)

= A∗−1n,h

1

n2h

n∑
t=1

xtx
′
t[β(zt)− β(z)]Ktz −A∗−1n,h

1

n2

n∑
t=1

xtx
′
t

(
1

nh

n∑
s=1

[β̂(zs)− β̂(z)]Ksz

)
+A−1n (z)

n∑
t=1

xtutKtz

= A∗−1n,h

1

n2h

n∑
t=1

xtx
′
tEξβt +A∗−1n,h

1

n2h

n∑
t=1

xtx
′
tηβt −A∗−1n,h

1

n2

n∑
t=1

xtx
′
t

(
1

nh

n∑
t=1

{β(zt)− β(z)}Ktz

)

−A∗−1n,h

1

n2

n∑
t=1

xtx
′
t

(
1

nh

n∑
t=1

{
β̂(zt)− β(zt)− [β̂(z)− β(z)]

}
Ktz

)
+A−1n (z)

n∑
t=1

xtutKtz

= o(hL
∗
) +A∗−1n,h

1

n2h

n∑
t=1

xtx
′
tηβt −A∗−1n,h

1

n2

n∑
t=1

xtx
′
t

(
1

h
Π∗2n

)
+A∗−1n,h

1

n2h

n∑
t=1

xtutKtz

= o(hL
∗
) +A∗−1n,h

1

n2h

n∑
t=1

xtx
′
tηβt −A∗−1n,h

1

n2

n∑
t=1

xtx
′
t

1

h

(
Π∗b2n1 −Π∗b2n2

)
−A∗−1n,h

1

n2

n∑
t=1

xtx
′
t

1

h
(Π∗2n3 −Π∗2n4) +A∗−1n,h

1

n2h

n∑
t=1

xtutKtz, (3.27)

where ξβt = [β(zt)− β(z)]Ktz and ηβt = ξβt − Eξβt.
In view of the above analysis, we find that the bias estimator B̂(z) is not consistent. Fur-

thermore, it introduces additional variation that affects the final limit distribution through

Π∗b2n1 − Π∗b2n2 and Π∗2n3 − Π∗2n4. In particular, note that the variance of Π∗b2n1 and Π∗b2n2 depends

on the unknown value of L and β(L)(z), like that of Bη,L(·) in Lemma B.2 (a). So the asymp-

totic variance of β̂(z)−β(z)− B̂(z) includes two parts: one part involves β(L)(z) and L through

the first two terms of (3.27), and the other involves the variation entering through the last

two terms of (3.27). Therefore, use of the inconsistent estimator B̂(z) produces both bias and

variance complications that lead to a non-pivotal limit theory for the adaptive statistic. �
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