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A.1 Proofs

Mutatis mutandis, the proofs of Theorem 1 and 2 follow the arguments in Meinshausen

(2013). There are notable differences, however. These are due to the fact that we

consider a continuous time process.

We introduce some additional notation. Define the oracle estimator boracle to be the

solution of the following minimization problem

min
b�0:bSc=0

⇢
�2

ˆ
T

0

X (t)0 bdN (t) +

ˆ
T

0

�
X (t)0 b

�2
dt

�
. (A.1)

This is an oracle estimator because it assumes knowledge of Sc, the index set of zero

coefficients.

Throughout, all vector equalities and inequalities are meant elementwise. Finally,

we use the symbol . when the left hand side (l.h.s.) is bounded by an absolute constant

times the right hand side.

A.1.1 Preliminary Results

The next two lemmas will be useful in the sequel. For a martingale Z = (Z (t))
t�0 let

�Z (t) = Z (t) � Z (t�) be its jump and hZ,Zi
t

its predictable quadratic variation,

t � 0. We recall a classical Bernstein inequality for martingales (van de Geer, 1995,

Lemma 2.1).
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Lemma 1 Let Z be a real valued locally square integrable martingale such that Z (0) =

0 and that maxtT |�Z (t)|  a. Then for every ✏ > 0 and � > 0,

Pr

 
sup

t2[0,T ]
|Zt| > ✏ and hZ,Zi

T
 �

!
 2 exp

✓
� ✏2

2 (a✏+ �)

◆
.

Let 1B be the indicator function of an arbitrary but measurable set B. Bernstein

inequality implies the following maximal inequality (van der Vaart and Wellner, 2000,

Lemma 2.2.10).

Lemma 2 Let K 2 N and Z1, . . . , ZK be arbitrary real valued random variables. As-

sume that for a measurable set B and some constants a � 0 and � > 0

Pr (|Zi| > ✏ and B)  2 exp

✓
� ✏2

2 (a✏+ �)

◆

for any ✏ > 0 and i = 1, 2, ..., K. Then, we have that

E
✓
max
1iK

|Zi| 1B
◆

. a log (1 +K) +
p
� log (1 +K) .

We find a bound for Emax1iK

���
´

T

0 Xi (t) dM (t)
���, where Xi is the ith entry in X.

Its proof is based on the previous two lemmas.

Lemma 3 Suppose that the Assumptions hold. If log (1 +K) = O
�
T �̄
�
, then

E max
1iK

����
ˆ

T

0

Xi (t) dM (t)

���� = O

✓q
�̄T log (1 +K)

◆
. (A.2)

Proof. The result is proved by an application of Lemma 2. Define the set

B :=

⇢
max
1iK

����
ˆ

T

0

X2
i
(t)�⇤ (t) dt

����  �

�
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where � is a positive constant to be fixed in due course. It is easy to see that B is

measurable. We shall use Lemma 1 to show that

Pr

✓����
ˆ

T

0

Xi (t) dM (t)

���� > ✏ and B

◆
 2 exp

✓
� ✏2

2 (a✏+ �)

◆

for every i = 1, . . . , K, and ✏ > 0, with a = 1 and � = T �̄. From the assumptions we

have made
´

t

0 Xi (s) dM (s) is a locally square integrable martingale. In addition

����
ˆ

t

t�
Xi (s) dM (s)

���� =
ˆ

t

t�
Xi (s) dN (s)  N (t)�N (t�)  1 (A.3)

for every i = 1, . . . , K, because the compensator is continuous and Xi takes values in

[0, 1]. Moreover,

max
1iK

����
ˆ

T

0

X2
i
(t)�⇤ (t) dt

���� 
ˆ

T

0

�⇤ (t) dt  T �̄. (A.4)

The predictable quadratic variation of
´

t

0 Xi (s) dM (s) is
´

t

0 X
2
i
(s)�⇤ (s) ds. Taking

into account (A.3) and (A.4), the hypotheses of Lemma 1 are met and we have that

Pr

✓����
ˆ

T

0

Xi (t) dM (t)

���� > ✏ and B

◆
 2 exp

 
� ✏2

2
�
✏+ T �̄

�
!
.

The above display allows us to apply Lemma 2 and obtain

E
✓
max
1iK

����
ˆ

T

0

Xi (t) dM (t)

���� 1B
◆

. log (1 +K) +
q

T �̄ log (1 +K)

.
q
T �̄ log (1 +K) (A.5)

using the fact that log (1 +K) = O
�
T �̄
�
. By (A.4), the event B has probability one.

Then, the statement of the lemma follows from the above display.
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Next, we show that boracle in (A.1) is close to b⇤. The fact that we cannot rely on

Gaussian distributional assumptions leads to a bound that is ��1/2
min times the equivalent

bound derived in Lemma 4 in Meinshausen (2013).

Proposition 1 Suppose that the Assumptions hold. Then,
��b⇤ � boracle

��
1
= OP

⇣q
s2µT

�2
minT

⌘
,

where µT := 1
T

´
T

0 E�⇤ (t) dt.

Proof. Recall that XS is obtained by selecting the columns of X having index in

S. Define the ordinary least square estimator

bOLS

S
:=

✓ˆ
T

0

XS (t)XS (t)
0 dt

◆�1✓ˆ T

0

XS (t) dN (t)

◆
. (A.6)

This is the solution of

min
b2Rs

⇢
�2

ˆ
T

0

XS (t)
0 bdN (t) +

ˆ
T

0

�
XS (t)

0 b
�2

dt

�
.

By the Eigenvalues Condition, bOLS

S
is well defined. Let �OLS := XS (t)

0 bOLS

S
, then

�oracle := X (t)0 boracle minimizes the following functional

� !
���OLS � �

��2
L2

:=

ˆ
T

0

�
�OLS (t)� � (t)

�2
dt (A.7)

among the functions � = X (t)0 b, where b � 0 and bSc = 0. This follows from the

properties of linear projections. It can also derived directly if we show that the objective

function in (A.1) equals (A.7) except for the term
´

T

0 �OLS (t)2 dt which does not depend

on �. Then, it is sufficient to show that �2
´

T

0 X (t)0 bdN (t) = �2
´

T

0 �OLS (t)� (t) dt.
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To this end, for b such that bSc = 0,

�2

ˆ
T

0

�OLS (t)� (t) dt

= �2

ˆ
T

0

b0
S
XS (t)XS (t)

0 dt

"✓ˆ
T

0

XS (t)XS (t)
0 dt

◆�1 ˆ T

0

XS (t) dN (t)

#

= �2

ˆ
T

0

b0
S
XS (t) dN (t)

where in the first equality we have used the fact that � (t) = X (t)0 b = XS (t)
0 bS, the

definition of �OLS, and (A.6). The above display proves our claim. By these remarks

and using the fact that �⇤ is a feasible vector, we have that

���OLS � �oracle
��2
L2


���OLS � �⇤��2

L2
. (A.8)

Using (A.8) and the triangle inequality, we deduce that

���oracle � �⇤��
L2

 2
���OLS � �⇤��

L2
. (A.9)

By the Doob-Meyer decomposition and (1), dN (t) = XS (t)
0 b⇤

S
dt + dM (t). Recall

that b⇤
S

is the population parameter obtained by deleting the zero entries in b⇤ so that

�⇤ (t) = XS (t)
0 b⇤

S
. Then, using the definition of bOLS

S
in (A.6), we find that

bOLS

S
=

✓ˆ
T

0

XS (t)XS (t)
0 dt

◆�1 ˆ T

0

XS (t)
�
XS (t)

0 b⇤
S
dt+ dM (t)

�

= b⇤
S
+

✓ˆ
T

0

XS (t)XS (t)
0 dt

◆�1 ˆ T

0

XS (t) dM (t) .
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In consequence, we have that
���OLS � �⇤

��2
L2

is equal to

��X 0
S

�
bOLS

S
� b⇤

S

���2
L2

=

✓ˆ
T

0

XS (t)
0 dM (t)

◆✓ˆ
T

0

XS (t)XS (t)
0 dt

◆�1✓ˆ T

0

XS (t) dM (t)

◆
. (A.10)

Here, define Z := 1p
T

´
T

0 XS (t) dM (t). By the Eigenvalues Condition, ⌃̂�1
S

has maximal

eigenvalue bounded by ��1
min, w.p.1. Hence, we deduce that (A.10) is equal to Z 0⌃̂�1

S
Z =

OP

�
��1
minZ

0Z
�
. Then, it is sufficient to bound EZ 0Z. To this end, using the isometry

property of martingales,

EZ 0Z

s
=
1

s

X

i2S

E
✓

1p
T

ˆ
T

0

Xi (t) dM (t)

◆2

=
1

s

X

i2S

E 1

T

ˆ
T

0

X2
i
(t)�⇤ (t) dt  µT ,

where the last inequality follows from the fact that the covariates are in [0, 1] and the

definition of µT . In consequence we can bound (A.10) accordingly and deduce that

���OLS � �⇤��2
L2

= OP

�
sµT�

�1
min

�
. (A.11)

Recall that Assumption 2 implies the Compatibility Condition �2
comp

⇣
⌃̂, 0, S

⌘
� �min

(see the remarks on Assumption 2 in Section 2.3). Since boracle
Sc � b⇤

Sc = 0, by the

aforementioned Compatibility Condition, we find that

���oracle � �⇤��2
L2

=
�
boracle � b⇤

�0
ˆ

T

0

X (t)X (t)0 dt
�
boracle � b⇤

�

� T

s
�min

��boracle � b⇤
��2
1
. (A.12)
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Putting together (A.9), (A.11) and (A.12) we deduce the statement of the proposition.

The next step is to prove that b̂ is close to boracle. Mutatis mutandis, this is equivalent

to Meinshausen (2013, eq.(11)). However, we have the extra factor �̄ because we cannot

rely on a Gaussian distributional assumption.

Proposition 2 Suppose that the Assumptions hold. Then,

���b̂� boracle
���
1
= OP

0

@

s
c (s)

�
µT s2�

�2
min + �̄ log (1 +K)

�

T

1

A

where c (s) := max
n

s
2

�2 ,
1
⌫

o
and µT is as in Proposition 1.

Proof. By definition of b̂, �̂ := b̂� boracle solves

min
�2RK

⇢
�2

ˆ
T

0

X (t)0
�
boracle + �

�
dN (t) +

ˆ
T

0

�
X (t)0

�
boracle + �

��2
dt

�

such that �+boracle � 0. The above display is equivalent to Meinshausen (2013, eq.(9)).

The zero vector is a feasible solution of the above problem. Then, it holds that

�2

ˆ
T

0

X (t)0
⇣
boracle + �̂

⌘
dN (t) +

ˆ
T

0

⇣
X (t)0

⇣
boracle + �̂

⌘⌘2
dt

 �2

ˆ
T

0

X (t)0 boracledN (t) +

ˆ
T

0

�
X (t)0 boracle

�2
dt.

Expanding the square, we have that

� 2

ˆ
T

0

X (t)0
⇣
boracle + �̂

⌘
dN (t)

+

ˆ
T

0

�
X (t)0 boracle

�2
+
⇣
X (t)0 �̂

⌘2
+ 2�̂0X (t)X (t)0 boracle

�
dt

� 2

ˆ
T

0

X (t)0 boracledN (t) +

ˆ
T

0

�
X (t)0 boracle

�2
dt.
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By simple algebra, the above display implies that

�2

ˆ
T

0

X (t)0 �̂dN (t) +

ˆ
T

0

⇣
X (t)0 �̂

⌘2
+ 2�̂0X (t)X (t)0 boracle

�
dt  0.

Adding and subtracting 2
´

T

0 �̂0X (t)X (t)0 b⇤dt, and rearranging the terms, we deduce

that

ˆ
T

0

⇣
X (t)0 �̂

⌘2
dt  2

ˆ
T

0

X (t)0 �̂dM (t)

+2�̂0
ˆ

T

0

X (t)X (t)0
�
b⇤ � boracle

�
dt. (A.13)

We start controlling the r.h.s. of (A.13). For the first term, using Lemma 3, we have

that

ˆ
T

0

X (t)0 �̂dM (t) =
KX

i=1

ˆ
T

0

Xi (t) dM (t) dt�̂i

 max
1iK

����
ˆ

T

0

Xi (t) dM (t) dt

����
����̂
���
1

= OP

✓q
�̄T log (1 +K)

����̂
���
1

◆
(A.14)

while the second term can be bounded as follows

ˆ
T

0

�̂0X (t)X (t)0
�
b⇤ � boracle

�
dt  T

KX

i,j=1

����̂i
���
��b⇤

j
� boracle

j

��

= T
����̂
���
1

��b⇤ � boracle
��
1

(A.15)

because
´

T

0 Xi (t)Xj (t) dt  T .

Hence, inserting (A.14) and (A.15) in (A.13) and using Proposition 1, we deduce
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that

1

T

ˆ
T

0

⇣
X (t)0 �̂

⌘2
dt = OP

 ����̂
���
1

"r
�̄ log (1 +K)

T
+

s
s2µT

�2
minT

#!
. (A.16)

Now, we find a lower bound for the l.h.s. of the above display. Mutatis mutandis,

in the remainder of the proof, we follow Meinshausen (2013, p.1625-1626). Set D :=
n
i  K : �̂i < 0

o
and its complement Dc :=

n
i  K : �̂i � 0

o
. (In Meinshausen, 2013,

these sets are denoted by M and M c, respectively.) By definition D ✓ S and in

consequence Sc ✓ Dc. To see this, note that �̂i < 0 implies 0  b̂i < boracle
i

because

b̂i, boraclei
� 0. We consider the following two complementary cases: ||�̂Dc ||1 � 3p

⌫
||�̂D||1

and ||�̂Dc ||1 < 3p
⌫
||�̂D||1.

Case I: ||�̂Dc ||1 � 3p
⌫
||�̂D||1. We have that

�̂0⌃̂�̂ =
X

i,j2D

�̂i⌃̂ij �̂j +
X

i,j2Dc

�̂i⌃̂ij �̂j + 2
X

i2D,j2Dc

�̂i⌃̂ij �̂j

�
X

i,j2Dc

�̂i⌃̂ij �̂j + 2
X

i2D,j2Dc

�̂i⌃̂ij �̂j

because
P

i,j2D �̂i⌃̂ij �̂j � 0. By the Cauchy–Schwarz inequality

�����
X

i2D,j2Dc

�̂i⌃̂ij �̂j

����� 
 
X

i,j2D

�̂i⌃̂ij �̂j

!1/2 X

i,j2Dc

�̂i⌃̂ij �̂j

!1/2

.


����̂D

���
1

 
X

i,j2Dc

�̂i⌃̂ij �̂j

!1/2
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where we used the fact that ⌃̂ij 2 [0, 1] in the last step. By the above two displays, we

deduce that

�̂0⌃̂�̂ �
X

i,j2Dc

�̂i⌃̂ij �̂j � 2

 
X

i,j2Dc

�̂i⌃̂ij �̂j

!1/2 ����̂D
���
1
. (A.17)

We now use the fact that ||�̂Dc ||1 � 3p
⌫
||�̂D||1 and the Positive Eigenvalue Condition, so

that (A.17) becomes

�̂0⌃̂�̂ � ⌫
����̂Dc

���
2

1
� 2

⌫

3

����̂Dc

���
2

1
� ⌫

3

����̂Dc

���
2

1
.

Multiplying and dividing by
⇣
1 +

p
⌫

3

⌘2
and using the assumed inequality ||�̂Dc ||1 �

3p
⌫
||�̂D||1, we find that

�̂0⌃̂�̂ � ⌫

3
⇣
1 +

p
⌫

3

⌘2

✓✓
1 +

p
⌫

3

◆����̂Dc

���
1

◆2

& ⌫
⇣����̂Dc

���
1
+
����̂D

���
1

⌘2
= ⌫

����̂
���
2

1
.

Note that we can assume ⌫  1. Using the above display, together with (A.16) we

conclude that ||�̂||1 = OP

✓q
�̄ log(1+K)

⌫2T
+
q

s2µT

⌫2�2
minT

◆
.

Case II: ||�̂D||1 >
p
⌫

3 ||�̂Dc ||1. Note that Sc ✓ Dc, so that

||�̂Sc ||1  ||�̂Dc ||1 
3p
⌫
||�̂D||1 

3p
⌫
||�̂S||1.
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Hence, we have shown that �̂ 2 R( 3p
⌫
, S). We apply the Compatibility Condition and

deduce that �̂0⌃̂�̂ � (�/s)||�̂||21. Using again (A.16) we have that

||�̂||1 = OP

0

@
s

s2�̄ log (1 +K)

�2T
+

s
s4µT

�2�2
minT

1

A .

Defining c (s) = max
n

s
2

�2 ,
1
⌫

o
, and using the basic inequality (x+ y)2  2 (x2 + y2) for

any x, y, we deduce the statement of the proposition.

A.1.2 Proof of Theorems 1 and 2

Proof of Theorem 1. By the triangle inequality, we find that

���b̂� b⇤
���
1

���b̂� boracle

���
1
+
��boracle � b⇤

��
1
.

By Propositions 1 and 2, we see that
��b⇤ � boracle

��
1
= oP

⇣���b̂� boracle
���
1

⌘
. Using Propo-

sition 2 we then obtain the bound of the theorem.

Proof of Theorem 2. By a basic inequality

1

T

ˆ
T

0

⇣
X (t)0 b̂�X (t)0 b⇤

⌘2
dt  2

T

ˆ
T

0

⇣
X (t)0 b̂�X (t)0 boracle

⌘2
dt

+
2

T

ˆ
T

0

�
X (t)0 boracle �X (t)0 b⇤

�2
dt. (A.18)

By (A.16), and a basic inequality, we find that

ˆ
T

0

⇣
X (t)0 b̂�X (t)0 boracle

⌘2
dt = Op

0

@

s�
s2µT�

�2
min + �̄ log (1 +K)

�

T

����̂
���
1

1

A .
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Theorem 1 gives a bound for
����̂
���
1

so that the r.h.s. of the above display is bounded

above in probability by a constant multiple of

c1/2 (s)
�
s2µT�

�2
min + �̄ log (1 +K)

�

T
. (A.19)

Given the fact that the covariates take values in [0, 1], and that
��boracle � b⇤

��2
2


��boracle � b⇤
��2
1
, the second term on the r.h.s. of (A.18) is OP

⇣
s
2
µT

�2
minT

⌘
because of Propo-

sition 1. By these remarks, we deduce that the l.h.s. of (A.18) is bounded above by a

quantity of the same order of magnitude as (A.19), and this proves the result.

A.1.2.1 Proof of Corollary 2

Under the conditions of the corollary, the set
n
Ŝ ⇢ S

o
is the same as the set difference

of
n
b̂i = 0 and b⇤

i
>  for at least one i  K

o

and
n
b̂i > 0 and b⇤

i
  for at least one i  K

o
.

This set difference is contained in
n
maxiK

���b̂i � b⇤
i

��� > 
o

. Bounding the maximum by

the sum, the result is proved if Pr
⇣���b̂� b⇤

���
1
> 

⌘
! 0. Noting that µT  �̄, this is

the case by Theorem 1 and the choice of . This shows the inclusion.

Under the conditions on b⇤ and the definition of S✏, the event
n
Ŝ✏ 6= S

o
is contained

in the union of the events

n
b̂i  ✏ and b⇤

i
>  for at least one i  K

o
(A.20)

and
n
b̂i > ✏ and b⇤

i
= 0 for at least one i  K

o
. (A.21)
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By the same argument used in the proof of the first result, the event in (A.20) is

contained in
n���b̂� b⇤

���
1
> � ✏

o
. The probability of this latter event goes to zero if

/✏ ! c > 1 as required, given the conditions on  and ✏. The event in (A.21) is

contained in
n���b̂� b⇤

���
1
> ✏
o

and this also goes to zero under the condition on ✏.

A.1.3 Proof of Theorem 3

We first need a result on convergence in distribution.

Lemma 4 Let N be a point process with predictable intensity �⇤ bounded above by a

constant �̄ > 0. Suppose that Z = (Z (t))
t2[0,T ] is a predictable stochastic process such

that E 1
T

´
T

0 |Z (t)|2 �⇤ (t) dt ! 1 and maxt2[0,T ] |Z (t)|4 is bounded above by a quantity

z4,T := o
�
T/�̄

�
. Then,

1p
T

ˆ
T

0

Z (t) dM (t) ! N (0, 1) ,

in distribution, where N (0, 1) is the standard normal distribution.

Proof. Let �i = ((i� 1) /�̄, i/�̄], i = 1, 2, ..., n for some integer n. To avoid

trivialities suppose that n = �̄T . Then,

1p
T

ˆ
T

0

Z (t) dM (t) =
1p
n

nX

i=1

Yi (A.22)

where Yi := |�i|�1/2 ´
�i

Z (t) dM (t). By construction Ei�1Yi = 0, where Ei�1 is the ex-

pectation conditioning on (Yj)ji�1. By assumption, we have that E
⇣

1p
n

P
n

i=1 Yi

⌘2
! 1

using the standard isometry for square integrable martingales. For the martingale cen-

tral limit theorem to apply to (A.22), it is sufficient that
P

n

i=1 E |Yi/
p
n|2 1 {|Yi/

p
n| > ✏} !

0 for any ✏ > 0. By Holder’s inequality and Markov inequality, this is clearly implied

by
P

n

i=1 E |Yi/
p
n|4 ! 0. By the Burkholder, Davis, Gundy inequality (Kallenberg,

13



1997, Theorem 23.12), E
���
´
�i

Z (t) dM (t)
���
4

. E
⇣´

�i
|Z (t)|2 dN (t)

⌘2
. We also have

that
´
�i

|Z (t)|2 dN (t)  sup
t>0 |Z (t)|2

´
�i

dN (t). These two remarks imply that

E
����
Yip
n

����
4

. z4,T

n2 |�i|2
E
ˆ

�i

dN (t)

�2
.

We use the fact that the intensity is bounded above by �̄. Then, we see that E
h´

�i
dN (t)

i2


|�i| �̄ +
�
|�i| �̄

�2  2, using an upper bound in terms of a Poisson random variable

with intensity |�i| �̄ = 1. By assumption, z4,T = o
�
T/�̄

�
. In consequence the above

display is o (n�1) because by construction, n |�i| = T and n = T �̄. Hence, we have

shown that
P

n

i=1 E |Yi/
p
n|4 = o (1) and the lemma is proved.

Proof of Theorem 3. By Corollary 2, the event
n
Ŝ✏ = S

o
has probability going to

one uniformly in b⇤. We can then derive the result on this set only, with no further men-

tion. Hence, we have that ↵0 �bOLS � b⇤
�
= ↵0

S

�
bOLS

S
� b⇤

S

�
. By the Doob-Meyer decom-

position for N we have that the r.h.s. is equal to ↵S

⇣´
T

0 XS (t)XS (t)
0 dt
⌘�1 ⇣´

T

0 XS (t) dM (t)
⌘
.

By Assumption 5, ⌃̂S converges to E⌃̂S in expected Frobenius norm. Hence, by As-

sumption 2, E⌃̂S has minimum eigenvalue greater than some nonzero constant multiple

of �min. We shall apply Lemma 4 to 1p
T

´
T

0 Z (t) dM (t), where Z (t) := ↵0
S

⇣
E⌃̂S

⌘�1

XS (t) /�↵.

By construction, E 1
T

´
T

0 |Z (t)|2 �⇤ (t) dt = 1. Hence, we only need to check that

maxt2[0,T ] |Z (t)|4 = o
�
T/�̄

�
. To ease notation, define A := ↵S

⇣
E⌃̂S

⌘�1

. By direct

calculation, using the fact that XS (t)  1s elementwise, where 1s is the s-dimensional

column vector of ones,

�4
↵
|Z (t)|4  Trace (A1s1

0
s
A0)2  Trace

⇣
(1s1

0
s
)2
⌘
Trace

⇣
(AA0)2

⌘
,

as the trace of a scalar is equal to the scalar, then using the properties of traces, and

the Cauchy-Schwarz inequality for traces. Clearly, Trace
�
(1s10s)

2� = s2. Given that

14



↵0↵ = 1, AA0 = ↵0
S

⇣
E⌃̂S

⌘�2

↵S is bounded above by the reciprocal of the squared

minimum eigenvalue of E⌃̂S. By this remark, we know that AA0 = O
�
��2
min

�
. Hence,

the r.h.s. of the above display is bounded above by a constant multiple of ��2
mins

2. It

is easy to show that �4
↵
> 0, noting that E⌃̂N

S
� E⌃̂S inft �⇤ (t) elementwise. Then,

�4
↵
& ↵0

S

⇣
E⌃̂S

⌘�1

↵S. By assumption, the r.h.s. is asymptotically bounded away from

zero. By these remarks, we conclude that Z (t)4 . ��2
mins

2. By the constraint on s,

the conditions of Lemma 4 are satisfied so that T�1/2
´

T

0 Z (t) dM (t) converges to a

standard normal random variable. The fact that �̂2
↵
! �2

↵
is probability essentially

follows by Assumption 5.

A.2 Additional Details on Data and Covariates Defi-

nition

Here, we give additional details regarding Section 3. The trades were accurately clas-

sified as buy or sell. During busy times, when many trades are executed, CME might

not send the resulting book update for some time as there is a limit in the size of each

packet being sent through the network. For this reason, if a trade arrives and the book

is not updated, we construct an imputed book. Again this operation is admissible (was

carried out in live trading) and avoids any bias due to lack of synchronicity. Finally,

we also subtract 400 microseconds from trade times in order to account for some delay

on the side of CME when sending trade messages as opposed to order book messages.

We do so to avoid the risk of asynchronicity and consequently spurious relations. This

approach matched closely live trading. To summarize, the data processing and variables

construction is the same as in live trading to ensure that we do not induce any forward

looking bias.

We now provide additional details for the definition of the covariates. A signed
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trade is defined to be the trade size times either one if the trade price is greater than or

equal to the mid price immediately preceding the trade, or minus one otherwise. The

variable TrdImb98 is computed as follows. Let

TrdImb98 (ti) :=

8
>><

>>:

EWMA(signedTradedVolume(ti))
EWMA(tradedVolume(ti))

if ti is a trade update

TrdImb98 (ti�1) otherwise

where the EWMA’s are as in (9) with parameter ↵ = 0.98. Both signed traded volumes

and traded volumes are updated only when a trade is reported. The EWMA is com-

puted and updated only at these event times. When using trade variables as covariates,

we do not adjust their timestamp by 400 microseconds in order to ensure that they can

only be used once received, as in live trading. Note that if ti is not an update for

the trade imbalance, we just report the last available value of the trade imbalance. A

similar approach is applied to the durations.

The duration variables are in nanosecond resolution with nanoseconds as decimals.

Hence to map durations in [0, 1] we cap them at one second.

We compute the spread in ticks and cap it at 4 ticks. We also force the spread to

take the minimum value of one tick. This is because a spread equal to zero is not a

tradable event. We then map this spread into [0, 1] dividing it by the cap, which is 4.

In consequence, the transformed spread variable only takes values in {0.25, .5, 0.75, 1}.

A.3 Finite Sample Analysis via Simulations

We present simulation results to gain further understanding of the procedure in a finite

sample. Recall that b̂ and b⇤ are the estimated parameter and the true parameter,

respectively. The goodness of fit of the estimator is measured via four statistics.
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Relative `2 error (Norm2). The Monte Carlo approximation of the `2 norm of

the relative error:
���b⇤ � b̂

���
2
/ kb⇤k2.

Relative `1 error (Norm1). The Monte Carlo approximation of the `1 norm of the

relative error:
���b⇤ � b̂

���
1
/ kb⇤k1.

Relative `0 error (Norm0). The Monte Carlo approximation of the `0 norm of the

relative error:
���b⇤ � b̂

���
0
/ kb⇤k0. The `0 norm k·k0 is the number of nonzero coefficients.

False Positives (FP). The number of coefficients estimated to be strictly positive

when the true ones are zero, i.e. false positives.

False Negatives (FN). The number of coefficients estimated to be zero when the

true ones are strictly positive, i.e. false negatives.

For FP and FN, a generic entry of the vector b̂, say b̂i, is set equal to zero if b̂i < 10�5.

A.3.1 The True Model

The true model is given by �⇤ (t) = X (t)0 b⇤ where the first s entries of b⇤ are equal

to 10 and zero otherwise. The number of active covariates is s = 10. The covariates

are assumed to be constant between two consecutive jumps of the counting process N .

The covariates process is given by

X (Tj) = ↵X (Tj�1) + (1� ↵)Uj (A.23)

where ↵ is a scalar and Uj is uniformly distributed in [0, 1]K , with Gaussian copula

with scaling parameter R. Each of the entries in the process in (A.23) has expectation

1/2 for any ↵ 2 [0, 1). We set X (T1) = U1.
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To simulate the durations {(Tj � Tj�1) : j = 1, 2, ..., n} of the counting process N ,

we note that for j = 1, 2, ..., n,

ˆ
Tj

Tj�1

� (t) dt =

ˆ
Tj

Tj�1

X (t)0 b⇤dt, (A.24)

are i.i.d. exponential random variable with mean one (Brémaud, 1981, Chapter II,

Theorem 16). In our case (A.24) and (A.23) mean that
⇥
X (Tj�1)

0 b⇤
⇤
(Tj � Tj�1) is an

exponential random variable with mean equal to one.

Monte Carlo approximations are derived using 250 simulations. Table A.1 shows

the results for ↵ 2 {0, 0.9}, n 2 {103, 104, 105}, K = 1000, s = 10 and three different

dependence structures for the covariates. In particular we consider: R = I (uncorrelated

design), R having (i, j) entry equal to ⇢|i�j| (Toeplitz design), and R = I+⇢(1K10K � I)

(equicorrelated design). Here I is the K-dimensional identity matrix, 1K is the K-

dimensional column vector of ones, and ⇢ = 0.9. As we expected, smaller values of

K/n and s/n correspond to smaller errors (Norm2, Norm1, Norm2, FP, FN). In the

uncorrelated case the results are, in general, better than either equicorrelated case or

Toeplitz design, as expected. When the covariates are uncorrelated, it is less difficult

to identify the active covariates. However, given that the first s = 10 covariates are

active, a decaying correlation among the covariates (Toeplitz design) seems beneficial

especially in terms of FN and FP errors. Conversely, the equicorrelated design makes

prediction harder as covariates are confounded. Finally, as expected, an increase in

time series dependence in (A.23) is associated to higher errors.
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Table A.1: Simulation Results. Results for different designs are reported using the
same notation as in the text. The different correlation structures (corr.) are none
for ⇢ = 0, equi for the equicorrelated case, and toep for the Toeplitz structure. The
total number of covariates and the number of active ones are fixed to K = 1000 and
s = 10, respectively. For each design, the first row reports the mean and the second
the standard error.

(corr,↵, n) Norm2 Norm1 Norm0 FP FN
(none, 0.00, 1000) 1.00 1.57 4.60 35.98 4.59

0.01 0.01 0.03 0.35 0.10
(none, 0.00, 10000) 0.14 0.56 5.16 41.58 0.00

0.00 0.01 0.04 0.42 0.00
(none, 0.00, 100000) 0.01 0.17 5.26 42.65 0.00

0.00 0.00 0.05 0.47 0.00
(none, 0.90, 1000) 2.37 1.97 2.28 12.80 9.63

0.03 0.01 0.02 0.19 0.03
(none, 0.90, 10000) 1.29 1.75 4.09 30.86 7.01

0.01 0.01 0.03 0.32 0.09
(none, 0.90, 100000) 0.29 0.83 5.42 44.22 0.08

0.00 0.01 0.05 0.48 0.02
(toep, 0.00, 1000) 0.82 0.83 1.66 6.56 2.55

0.02 0.01 0.02 0.15 0.07
(toep, 0.00, 10000) 0.16 0.34 1.62 6.24 0.08

0.01 0.01 0.02 0.15 0.02
(toep, 0.00, 100000) 0.02 0.11 1.63 6.29 0.00

0.00 0.00 0.02 0.16 0.00
(toep, 0.90, 1000) 2.33 1.65 1.74 7.42 7.79

0.05 0.01 0.02 0.17 0.07
(toep, 0.90, 10000) 1.19 1.12 1.89 8.85 4.39

0.03 0.01 0.02 0.21 0.07
(toep, 0.90, 100000) 0.39 0.58 2.01 10.12 0.90

0.01 0.01 0.02 0.24 0.05
(equi, 0.00, 1000) 1.77 1.92 3.05 20.48 9.04

0.01 0.01 0.02 0.24 0.06
(equi, 0.00, 10000) 0.71 1.30 5.04 40.36 2.32

0.01 0.01 0.04 0.42 0.08
(equi, 0.00, 100000) 0.09 0.44 5.47 44.74 0.00

0.00 0.00 0.05 0.47 0.00
(equi, 0.90, 1000) 4.26 1.99 2.34 13.38 9.84

0.09 0.00 0.56 5.56 0.06
(equi, 0.90, 10000) 2.27 1.96 2.41 14.11 9.65

0.02 0.01 0.02 0.20 0.04
(equi, 0.90, 100000) 1.24 1.72 4.34 33.41 6.63

0.01 0.01 0.03 0.35 0.09

19



A.4 The Effect of Directional Misspecification

Consider the true intensity �⇤ (t) = X (t)0 b⇤ where b⇤ can have negative entries. Given

that the covariates take values in [0, 1], we can ensure that the intensity is positive as

long as there is an intercept whose coefficient is at least as large as the sum of the

negative coefficients (see also the remarks on Condition 1 at the start of Section 2.3).

Assuming a constant limit ⌃ := limT E⌃̂ exists, we can add and subtract b⇤0⌃b⇤ in (3),

use the definition of �⇤, and complete the square. By this remark, we can deduce that

the minimizer of (3) is the solution of

inf
b�0

(b� b⇤)0 ⌃ (b� b⇤) . (A.25)

We denote the solution by b̃. This is not guaranteed to satisfy b̃ib⇤i � 0, i = 1, 2, ..., K.

The latter condition implies that the sign constraint never results in a variable b̃i > 0

when b⇤
i
 0. We carried out a number of numerical examples to see under what

conditions we can expect b̃ib⇤i � 0, i = 1, 2, ..., K. At a high level, for b̃ib⇤i � 0 i =

1, 2, ..., K to be satisfied, we need sparsity in the sense that the cardinality of S is small

relative to K and the number of negative coefficients.

We consider ⌃ = T�1
n

´
Tn

0 X (t)X (t)0 dt. Recall that Tn is the time such that

N (Tn) = n. Note this is just a method to construct the matrix ⌃. Hence, ⌃ is regarded

as a population quantity for the purpose of this section. Here, X is as in (A.23) with

↵ = 0. We are not interested in ancillary quantities such as ↵. We are using X as a

way to construct different designs for ⌃. A small n allows us to assess results when ⌃

is nearly singular. Except for restricting ↵ = 0, X is constructed as in Section A.3.

We use different values for b⇤. Let KN denote the cardinality of {i  K : b⇤
i
< 0}. We

set the first s entries in b⇤ to be positive. Entries s + 1 to s +KN are set to negative

numbers, while the remaining entries are set to zero. The absolute values of the en-
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tries in b⇤ are chosen to satisfy different designs. We consider three designs: random

values equal to the absolute value of standard normal random variables (gauss); fixed

values equal to 1 (equal); fixed values equal to 1 for positive and 10 for negative values

(skewed). We shall refer to these designs with the name given in the parenthesis.

To ensure that X (t)0 b⇤ results in a bona fide intensity for all t � 0, under possibly

negative b⇤ entries, we impose some additional constraints in the construction of X, as

well as b⇤. We let the first entry in X be a constant. This is tantamount to ensuring that

there is an intercept. Given that the first entry in X is a constant and the covariates

take values in the unit interval, we let b⇤1 = 10�5 �
P

s+KN

i=s+1 b
⇤
i
. Recall that b⇤

i
< 0,

i = s+ 1, s+ 2, ..., s+KN . This means that the intensity is uniformly bounded below

by 10�5. This argument follows from the remarks at the start of this section.

Given that ⌃ is randomly generated and for some designs also b⇤, we carry out 1000

simulation for each design. Each time we compute the following statistics.

True discovery rate (TDR). We define this to be |{iK:b⇤i>0 and b̃i>0)}|
|{iK:b⇤i>0}| . Recall that

for a set A, |A| is its cardinality. In population, the true discovery rate is always 1.

However, the effect of the constraint under misspecification can lead to a lower true

discovery rate in population.

Average Sign Coherence (ASC). We define this to be
���
n
i  K : b̃ib⇤i � 0)

o��� /K.

Note that b̃ib⇤i < 0 only if b̃i > 0 and b⇤
i
< 0 because b̃i � 0 due to the constraint. This

is a weaker requirement than TDR. However, it is an important one. We would like

variables that have negative coefficient not to be selected in the population.

The results show that we may expect lower ASC as we increase either s or the number

of misspecified signed variables. Increasing the dependence reduces ASC. Finally, we

also note that when the entries in b⇤ are random, despite the regularity in the entries

of ⌃, it is more likely to obtain an ASC less than one. These remarks apply to the case
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when ⌃ can be nearly singular, i.e. K = n = 100. When n = 1000, the ASC is equal

to one for most designs. Table A.2 reports the results.

A.4.1 Challenges Beyond Numerical Illustration

We look at the Karush-Kuhn-Tucker conditions for (A.25) to improve our understanding

of the problem and relate to the results in Table A.2. With no loss of generality, suppose

that the coefficients in b⇤ are ordered as follows: b⇤ = (b⇤
S

0, b⇤
Sc

0)0. When we allow for

misspecification, Sc := {i  K : b⇤
i
 0}. Then,

⌃ =

0

B@
⌃SS ⌃SSc

⌃ScS ⌃SS

1

CA . (A.26)

To ensure a unique solution, assume that ⌃ is strictly positive definite. By the Karush-

Kuhn-Tucker conditions,

⌃SSc (bSc � b⇤
Sc) + ⌃SS (bS � b⇤

S
) =⌧S (A.27)

⌃ScS (bS � b⇤
S
) + ⌃ScSc (bSc � b⇤

Sc) =⌧Sc (A.28)

where ⌧ = (⌧ 0
S
, ⌧ 0

Sc)
0 is the Lagrange multiplier. The Lagrange multiplier satisfies ⌧ 2

[0,1)K . By strict positive definiteness of ⌃, the constraint is not binding for the ith

variable if and only if ⌧i = 0.

From (A.27), we deduce that

(bS � b⇤
S
) = �⌃�1

SS
⌃SSc (bSc � b⇤

Sc) + ⌃�1
SS
⌧S. (A.29)
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Substituting in (A.28) and rearranging, we have that

�
⌃ScSc � ⌃ScS⌃

�1
SS
⌃SSc

�
(bSc � b⇤

Sc) + ⌃ScS⌃
�1
SS
⌧S = ⌧Sc . (A.30)

We use ⌧̃ to denote the value of the Lagrange multiplier at the constrained optimal

solution.

We ask under what conditions ASC is equal to one, i.e. b̃Sc = 0. Recall that b̃

denotes the unique optimal solution. For the moment suppose that the TDR is also

equal to one, i.e. ⌧̃S = 0, i.e. the constraint is not binding for b̃S. Then, from (A.30)

we must have

�
�
⌃ScSc � ⌃ScS⌃

�1
SS
⌃SSc

�
b⇤
Sc = ⌧Sc (A.31)

where [⌧Sc ]
i
> 0 if

h
b̃Sc

i

i

< 0. We use [⌧Sc ]
i
to denote the ith entry in ⌧Sc and similarly

for
h
b̃Sc

i

i

. Define ⌃ScSc|S :=
�
⌃ScSc � ⌃ScS⌃

�1
SS
⌃SSc

�
. Let

⇥
⌃ScSc|S

⇤
i,j

denote the i, j

entry in ⌃ScSc|S. Using positive definiteness, it is not difficult to show that there is an

✏ > 0 such that

⇥
⌃ScSc|S

⇤
i,i
�
���
⇥
⌃ScSc|S

⇤
i,j

���+ ✏ and
X

j

⇥
⌃ScSc|S

⇤
i,j

� ✏, 8i. (A.32)

From (A.31) and using this notation, [⌧Sc ]
i
> 0 if and only if �

P
j

⇥
⌃ScSc|S

⇤
i,j

h
b̃Sc

i

j

>

0. Using (A.32), this is the case if the entries in b̃Sc are either zero or have the same

negative entries. In Table A.2, this remark applies to the designs “equal” and “skewed”,

but not to “gauss”.

As shown in Table A.2 the assumption that TDR is equal to one is a strong one.

Rewrite (A.29) as

b̃S = b⇤
S
+ ⌃�1

SS
⌃SScb⇤

Sc + ⌃�1
SS
⌧̃S
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under the assumption that the ASC equals one. If the constraint is not binding for b̃S,

i.e. b̃S > 0, we have that ⌧̃S = 0. This happens when the entries in b⇤
S

dominate the ones

in ⌃�1
SS
⌃SScb⇤

Sc . For example, it tends to occur when the entries in b⇤
Sc are mostly zero or

small relatively to b⇤
S
. In Table A.2 this corresponds to the design “gauss” and to some

extent “equal”, but not “skewed”. However, the structure of ⌃ also plays a crucial role.

For the design “equi”, which applies to the construction of ⌃, we find little difference

on whether the coefficients in b⇤ are restricted to “equal” or “skewed”. Finally, the value

of the smallest eigenvalue of ⌃ does matter, as can be seen when we construct a nearly

singular matrix using n = K = 100. In this case, the ✏ in (A.32) can be arbitrarily

close to zero for some of the 1000 simulations of ⌃.
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Table A.2: The Effect of the Sign Constraint under Misspecification. Results for the
solution of (A.25) under different designs are reported using the same notation as in
the text. The different correlation structures (corr.) are none for ⇢ = 0, equi for the
equicorrelated case, and toep for the Toeplitz structure. The total number of covariates
used to generate ⌃ is equal to K = 100. Results are averaged across 1000 different
random designs.

(corr, b⇤, s,KN) TDR ASC TDR ASC
n = 100 n = 10000

(none, gauss, 5, 5) 0.6145 0.9986 0.9920 0.9996
(none, gauss, 5, 50) 0.7278 0.8624 0.9768 0.9830
(none, gauss, 50, 5) 0.8490 0.9954 0.9931 0.9994
(none, gauss, 50, 50) 0.7254 0.8545 0.9750 0.9808
(none, equal, 5, 5) 0.7470 1.0000 1.0000 1.0000
(none, equal, 5, 50) 0.8530 0.8976 1.0000 1.0000
(none, equal, 50, 5) 0.9663 0.9996 1.0000 1.0000
(none, equal, 50, 50) 0.8027 0.8908 1.0000 1.0000
(none, skewed, 5, 5) 0.3003 1.0000 0.9990 1.0000
(none, skewed, 5, 50) 0.6543 0.8984 0.8980 1.0000
(none, skewed, 50, 5) 0.4861 1.0000 0.9993 1.0000
(none, skewed, 50, 50) 0.5471 0.8992 0.8559 1.0000

(toep, gauss, 5, 5) 0.4245 1.0000 0.4228 1.0000
(toep, gauss, 5, 50) 0.3003 0.9998 0.2533 1.0000
(toep, gauss, 50, 5) 0.6697 1.0000 0.9223 1.0000
(toep, gauss, 50, 50) 0.2652 0.9997 0.6712 1.0000
(toep, equal, 5, 5) 0.3423 1.0000 0.2515 1.0000
(toep, equal, 5, 50) 0.2960 0.9998 0.2500 1.0000
(toep, equal, 50, 5) 0.7164 1.0000 0.9412 1.0000
(toep, equal, 50, 50) 0.2711 0.9998 0.7289 1.0000
(toep, skewed, 5, 5) 0.2238 1.0000 0.2500 1.0000
(toep, skewed, 5, 50) 0.2623 0.9999 0.2500 1.0000
(toep, skewed, 50, 5) 0.1856 1.0000 0.5102 1.0000
(toep, skewed, 50, 50) 0.1091 0.9999 0.1815 1.0000

(equi, gauss, 5, 5) 0.3405 1.0000 0.3350 1.0000
(equi, gauss, 5, 50) 0.2500 1.0000 0.2500 1.0000
(equi, gauss, 50, 5) 0.8277 0.9944 0.9604 0.9999
(equi, gauss, 50, 50) 0.0740 0.9972 0.1087 1.0000
(equi, equal, 5, 5) 0.2500 1.0000 0.2500 1.0000
(equi, equal, 5, 50) 0.2500 1.0000 0.2500 1.0000
(equi, equal, 50, 5) 0.9651 0.9979 1.0000 1.0000
(equi, equal, 50, 50) 0.0205 1.0000 0.0204 1.0000
(equi, skewed, 5, 5) 0.2500 1.0000 0.2500 1.0000
(equi, skewed, 5, 50) 0.2500 1.0000 0.2500 1.0000
(equi, skewed, 50, 5) 0.0246 1.0000 0.0204 1.0000
(equi, skewed, 50, 50) 0.0204 1.0000 0.0204 1.0000
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