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Abstract

We consider high-frequency observations from a one-dimensional time-homogeneous diffusion pro-
cess Y. We assume that the diffusion coefficient ¢ is continuously differentiable in y, but with a jump
discontinuity at some level y, say y = 0. We first study sign-constrained kernel estimators of functions
of the left and right limits of o at 0. These functions intricately depend on both limits. We propose
a method to extricate these functions by searching for bandwidths where the kernel estimators are
stable by iteration. We finally provide an estimator of the discontinuity jump size. We prove its
convergence in probability and discuss its rate of convergence. A Monte Carlo study shows the finite

sample properties of this estimator.
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In this Online Appendix we provide the proofs of Propositions 3 and 8, and a discussion that explains
why it is possible to study the asymptotic properties of estimators with the same methodology as if there

were no jumps.
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Proof of Proposition 3

To prove the stable convergence in law of Z™, we use the same ideas as those introduced in Section 5
and 6 in Jacod (1998). Note that, by polarization, it is enough to prove the proposition when h is a

1-dimensional function such that Ag(Hp ;) = 0, which we assume in the sequel. Let

fin =h (VX i1y /m V0 (Xifn — X—1y/m)) (1)

so that
1 [nt]

n n 1
Zi = WU(h)t = W;fi,n-

Let us first introduce some notation and provide two lemmas. For a Lebesgue-integrable function f,

we have

-Wﬂ@=/m@%@ﬂ@@=3ﬂ@+ﬂﬂﬁvﬁﬂ—Bﬁﬂﬂ)

where fi(z) = f(z)l{z>0), f-(7) = f(2)l{zcqy, and P = PY is the Brownian semi-group defined by
Pif (x) = [p(t,y —x) f(y)dy. Note that

Ao(f) = A(f) + 0 (A(f+) = A(f-))-
We also define

B5(f) = By () + 161 (By (f+) + By (£-))
and therefore, ﬁz (f) <28, (f).

Remark 1 Since PYf () may be written as a linear combination of Pif (-), Pify (—||) and Pef— (|-]),
and since N\g(f) may be also written as a linear combination of A(f), AN(fy+) and A(f-) with the same
coefficients, all inequalities in Lemmas 3.1, 3.2 and 3.3 in Jacod (1998) hold with P; replaced by P?, \(f)

replaced by Ag(f) and B+ (f) replaced by ﬁz (f) or 2B, (f).

For a Lebesgue-integrable function f such that Ag(f) =0, let

Fonl(f)() =S PYf ()

Jj=0

where w, = [n%], B € (0,1/2) and [z] denotes the integer part of a real z.

Lemma 1 i) Assume that f is a bounded Borel function on R such that N\g(f) = 0 and p1 (f) < 0.



Then
|[Fpn(f) ()] < K logn.

ii) Assume that f is a bounded Borel function on R such that \g(f) = 0 and, for some v > 0,
ﬁl+7 (f) < o0, then

1 1
Fy. < K1
Foa @) < 1) + Koz 5o + 1537 )
and
TEA OIS <l (M ——
wn+1 — 1+|$n75/2’7 1_|_|gj|'7 )

It follows that sup,cp |P£n+1f(:n)| < Kn=" and if, for some v > 1 such that B14~ (f) < 0o, that

NPy, 1 f1) < Kn~P/2.

Proof.

i) By Remark 1, the inequality is derived in the same way as Eq. (5.8) in Jacod (1998) with 6 = 0
and a = 1/2 (using Lemma 3.1 in Jacod (1998)). Note that the condition Ag(f) = 0 is essential here.

ii) By Remark 1, the first inequality is derived in the same way as Eq. (5.7) in Jacod (1998) with
0 =0 and o = 1/2 (using Lemma 3.1 in Jacod (1998)). For the second inequality, use Eq. (5.9) in
Jacod (1998) with § = 0 and a = 1/2. It is important to note that Ag(PY ., f(x)) = 0 because g is the

invariant measure of the semi-group (Pte) >0

Lemma 2 Assume that g is a bounded Borel function on R such that 8¢ (g) < oo.

Ifp>1,

1SK@£mmmwmwﬂ.

If p is an even integer,

su X 4 ogn
1vww1gxégmmwummwrﬁ(‘%M“”+@@”g-HM@Q.
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The proof follows the same lines as in the proof of Lemma 1 in Jacod (2000) using Remark 1. Just note
that the second inequality in Jacod (2000) is given for E Un‘l/zV(g)? ‘p} instead of E? [supte[o,l] ‘n_l/QV(g);gZ ‘p} ,
but the extension is obvious with the method used in Jacod (2000).

We can now begin the proof of Proposition 3.

Step 1: Let
) (ot
Z7 =n"YNS " (fim — Hon(VnX—1y/n) + gin)

i=1

where f; , is given in Eq. (1)

Gim (E9 [Hon(VnX (it jym)| Fin) — B [Hon(VnX(ivjym)] f(z’—l)/n])

I
e 5 g
1M

= > (B [firsennl Fim] —E [farisnnl Fanym]) -

.
o

Note that Z” is a locally square-integrable martingale with respect to the filtration (]: nt) /n) >0 Since

Ee[f%n

VX _1ym =) = /Pa (Lz,y) h(z,y —x)dy = Hy pp ().

Let us prove that
sup |z — 7" 5o,

te(0,1]
Note that
Wn, wp+1
> B [Hon(WnXisjy )| Firn] = Fon(Hon)(VnXim) = > B [ firsnl Fin]
j=0 J=1
and
> B’ [Hon(VnX it /n)| Fiim1)n]
=0
= Fyu(Hopn) (VX i-1ym) + E? [Hon(V1X (i) n)| Fli1)/n) — Hon (VX i1y /n)
wp+1
= > E[ficrrinl Ficym] + B [funtrinl Fictym) = B [finl Ficiym) -
j=1



It follows that

gin = Fou(Hopn)(VnXis) — Fon(Hppn) (VX i-1ym) — B [Hon(VX (ivwn) /)| Flio1y/n) + Hopn(VnXi—1y/n)

wnp+1 wn+1
= Z E? [ firsnl Fijn] — Z E? [ fic14jmnl Fli1yyn] — E? [ (i—1y/n) +E° [ finl Fiz1)/n)
j=1

and therefore
[nt]

Zp =0 VY (fin = Hopn(VnX o1y jm) + Gim) + Hue + Tn
=1

where

Hn,t = FO,n(HO,h)(\/ﬁXO) - FO,n(HH,h)(\/ﬁXLntj/n)
[nt]
Ly = ZEG [ Hon (V10X (i) /)| Fli-1)/n)
=1
|nt]
= Z 1 Hon(VnX(i_1ym) = V<P1?)n+1H9,h)?'

Since Hpy, (z) = EY [h(x, X1 — )] and h satisfies Condition 4 with EY [ea‘Xl_“] < 00, we have

By (Hop) = / || Hop () |da < K/ 2llh (2) |de = KBy (B) < o,
By Lemma 1 i), we have
n= V4 Fy o (Hop)(2)| < Kn~Y*logn — 0

and then

n~ Y4 sup |Hp,l 5o
t€(0,1]

We have
By (Pg;n—i-lH@,h) <28 (Pg;n—i—lHG,h) = 2/ |=||PS, 1 Hpp (2) |dz.

Since A\g(Hyp,p) = 0, by Lemma 1 ii), we deduce that, for some v > 2,

1 1
Hyp| < K ;
t w1 Honl " (1—|—|;vn5/2|7 + 1+|:1;|'7)




and

/ 2l|PY,  Hop (2) |da

0Pl 2]
<K—5/2/’" K—ﬁ/ < K.
< Kn T+ [en=r dr + Kn T4 |2 dz <

By Lemma 2 (with p =2 and g = P£n+1H97h)v we have

1
%V(PgnHHe,h)?

n Vn

E? sup
t€[0,1]

2 _
] < K(n_5+n_ﬂ/2) <n 5—|—logn> < Kn_B/QIOgn

since )\g(Pzn +1Hop) = 0 (because A\g(Hpp) = 0 and Mg is the invariant measure of the semi-group
(PF) 10)-

Therefore,

EG

n~Y% sup 2, < Kn=?2logn — 0,
te[0,1]

and then

n~ Y sup || Lo
te[0,1]

Step 2: By Theorem 3.2 in Jacod (1997), it is now sufficient to prove that

[nt]
ny P
s ;Ee [Aiz‘f(H) /n} 2,
i) ) 7
ZE9 (A?Z)2‘]-“(,-_1)/n} B No(Hy g2 + 2Hp o, ) Lt
i=1 -

[nt] )
Z E’ | (A7Z)? Lianz)>e)
=1 B

[nt] )
SE _A;LZA?W‘f(i_l)/n] L)
=1

Fie) /n} L)

iy
SB[ ArZAIM| F | B0,
=1

for any bounded (F}") >o-martingale M such that, for all s € [0, 1], the cross variation satisfies P ((M,Y) = 0)

1.



The first condition is clearly satisfied since Z" is a locally square-integrable martingale with respect

to the filtration (.7-" |t /n) >0 and will not be discussed.

i) Let us first study
[nt]
E’ [(A?Z)Zl }—(i—l)/n} :
i=1

Note that
~ wnp+1 wp+1
nYAARZ = fin+ Z R’ [ fitjnl Fijn) — Z EY [ fi- Fli—1)/n] ~E%] _1)/n)
Jj=1 J=1
= fi,n + E,n - -Fi—l,n - Ee [fwn-&-l,n’ Jr(zfl)/n]
with
wn+1
Fi,n = Z EG [fz+],n|]:z/n] .
j=1
Since
1 |nt| [nt|
1/4 (i— 1)/n - 1/4 Z n+1H9h sz 1)/n) =n 14 Int
=1
we only consider
Min = fi,n +Fi,n - Fi—l,n
and study
[nt]
ZEG [ 0] Fim1)/m)
[nt]
= ZEO[ fzn+an_ i— ln ‘]:1 1)/n}
=1
[nt]
= Y B [f2+ (Fin— Ficin)® + 2fin(Fin — Ficvn)| Flaz1ym) -
We have



wp+1
B [finFinl Fovym] = E” | fin 3 Ba [firsal Fipnl| Forym
=1
_wn+1
= E9 Z Eg [fi,nfi+j,n|ﬂ/n] "r(z—l)/n
=
Wn+1
- Z E’ [ fimFitinl Fi-1)/n) »
j=1
b)
wp+1
E’ [ finFi-tnl Fa-rym] = B | fin Y B [firjotml Famrym] | Fi-1y/m
7j=1
= Fifl,nEe [fi,n| ]:(2_1)/”] ,
¢)
]E9 [-Fi,nFi—l,n| f(zfl)/n] = -Fi—l,nE(9 [E,n‘ f(lfl)/n]
= Fioin (_]E6 [fl’n‘ }—(i_n/”} +Fioin + E [fwn+1+i,n| ]:(z‘—l)/n]) )
d)

E° [(Fip — Fi1n)?| Fiz1y/n]
= E [an‘ Fli—1ym] + Fiz—l,n —2Fn (_Ee [finl Fi-1)/n] + Fican + B [fuwntrial }—(i_l)/”])
= E°[F| Favyml = Flam + 2F- 10’ [finl Faorypn] = 2Fi-10E” [ funsivinl Fimry/m) -



Hence we have (assuming without loss of generality that ¢t = 1)

> B [m ] Fio1ym]
=1

= 02N B[ SR Flicym)
=1

+n 12 Z {EG [ F20| Fliciyn] — Fvn + 2Fic1nB? [ finl Fziyn] — 2Fim10E [ fun14iml f(ifl)/n]]
i=1

Jr271-1/22 [E‘9 [finFinl Fio1y/m] — Fy_1 K [ finl ]'"(i—l)/nﬂ

i=1

= 07 2Y B [ SR Famaym] 42072 Y B [ finFinl Fiimiy/m)

i=1 i=1

+n 12 Z [EG [F7| Fz1ym) — F¢271,n} —2onH? ZFi—1,nE9 [ fwnt14inl Fli—1y/n] -
i=1 i=1

Let us consider
nTVEN B[R] Facym) = n 7D B (B2 (VX -1y VI (X — Xi—ym)) | Fli-1y/m] -
i=1 =1

Note that h? satisfies Condition 2, i.e. h? is a Borel function on R? such that the functions Hg p2, Hy pa
satisfy Condition 1, i.e. Hp 2, Hpps are bounded functions and Bo(Hyj2) < oo and fa(Hgpa) < oo.

Indeed, since h satisfies Condition 4, we have

Hyp;2(x) = E [h2(x,X1—:z:)}§

)

Hppa(x) = E [h4(:v,X1—x)}§

)

and

Bo(Hype) = /nyHg,hg (2) dz < K/ 2|2R2 (2) da < K/ 22 () dz < K Ba(B) < o0

Bo(Hgpa) = /|:c|2]H97h4 (z) |dx < K/ lz|2ht (z) dz < K/ |22 (x) dx < K fa(h) < oo.

We deduce by Proposition 2 that

nTYV2N B [£2,] Faciym) > Ao(Hy )L
=1



Let us now consider

n71/2 Z Eo [fi,nFi,n| f(zfl)/n] .

i=1

We have

n V2N "B [ i Finl Faoy )

=1

= n /2 ZEQ [h (VX 1) n, VI (Xipn — X(i21)/n)) Fon(Hon) (vVnXipm)| Fiz1)/n)
i=1

= 02N B [ho (VX -1y ms VI (Xijn = X(im1)/n)) | Flim1y/m)

=1

+n 2N B [h (VX o1y o Vi (Xign = Xi-1)/m)) (Fon(Hop) (VXim) = Fo(Hop) (VnXisn)) | Fiio1ym]
=1
where

ho (z,y) = h (z,y) Fo(Hop) (x + ).

Note that hg satisfies Condition 2, i.e. hg is a Borel function on R? such that the functions Hy p,, H(,,h(z)
satisfy Condition 1, i.e. Hop,, Hyyz are bounded functions and S3(Hgp,) < oo and fa(Hppz2) < oo.
Indeed, by Remark 1 and Eq. (3.3) in Lemma 3.1 in Jacod (1998), we have

[Fo(Hopn) (x) | < K (1 + |z])
since f2(Hp ) < oo. Since h satisfies Condition 4, we also have
[ho(a,y)| < k(@) e (1+ [2] + |y])
and then

[Hono ()| = |EG [ho(w, X1 —2)]| < K|z|h (z) < K
Hy j2 () = EY [h%(ﬂ?7X1 —x)] < K2?h? (2) < K

and

Bo(Hong) — /|:E|2H97h0 () d < K/ 2R () da < K Bs(h) < oo

ﬁQ(HQ,h(z)) = /]az\QIHahg () |dx < K/ |2[*h? (z) dx < K/ 23R (x) dz < KB3(h) < oco.

10



We deduce by Proposition 2 that
n=/2 ZEQ (VX (i—1) /> VI (Xijn = X(i—1)/n)) Fo(Hon) (VnXipn) | Fiz1ym]

= 2 ZE9 [ho (VX (1) /s VU (Xign = X(i1ym) )| Fli-1)/n)
=1
B No(Hp po) L1 = No(Hopo,)L1.

By Remark 1 and Eq. (3.3) in Lemma 3.1 in Jacod (1998), we have

B o) (@)~ FoHn) @) €30 Koz (14 Ja]) < K (14 2],
i=wn+1

It follows in the same way that
_ P
I/ZZEG (VX -1y ms VI (Xifn = Xii—1ym)) [Fon(Hon) — Fo(Ho )] (VnXisn) | Fio1y/m] = 0.

We finally deduce that

_ - P =
n 1/2 Z Ee [fi,nFi,n| ]:(z'—l)/n] — )‘9(H97h7<1>h)L1'
=1

Let us now consider

_I/QZFz 1n fwn+1+zn|]:z 1)/71] :

We have

Fioin = Fopn(Hon)(VnXi—1y/m)

E? [ i-1/n] = Po i 1Hon(VnX(1ym)

and therefore
_WZFL 1 —v/n] =172 Fon(Hon) (VX (i1 /n) P Ho n(vV X i1y /m)-
i=1
By Lemma 1 i) and ii)
|Fo.n(Hop) (2) | < Klog(n)
and 1 1
-8
P n+1H6 n(x)] < Kn <1 + |zn=B/2| + 1+ |;L»|'y> '

11



By Remark 1 and Theorem 4.1 a) in Jacod (1998), we therefore deduce that

n~ /2 Z Fiq,E [ fwnt1+in] Fim1)/n) Zo.
i=1

Let us now consider

n
n V23 B [F2| Fuonyn] = Fiaa) -
i=1
First note that

Fi{1,n = Fg,n(He,h)(\/ﬁX(ifl)/n)
B [F2| Ficvym] = B [Fo(Hon)(VnXim)| Fiziym)
= PfFGZ,n(HQ,h)(\/ﬁX(ifl)/n)

and

n V2N B [F2| Fioayn] = Fiaa] =072 |(PIFS(Hon) = FRu(Hop) ) (VAXG-1ym)| -
i1 i=1
Let
gn = P{F},(Hyp) — Fj,(Hpp).

We have \g(gn) = 0 since Ny is the invariant measure of the semi-group (Pte) By Lemma 1 ii), we

t>0°
have

_ 1 1
2 2 2
Fy(Hyp)(x) < 2h7 (x) + K(logn) <1 ¥ [an-B22y 1T |x\27>

and it is easily deduced that (see e.g. Lemma 3.2 in Jacod (1998)),

_ 1 1
0 2 0,2 2
Py Fy,(Hop)(z) < 2P1h7 (2) + K (logn) (1 T Jen—RE T T |:g|2v> '

Then, with v > 1, sup, |gn (z)| < K(logn)?, X(|lgn|) < K(logn)*nf/2, Xg(92) < K(logn)*n® and
B1(gn) < K(logn)?n®. By choosing 8 < 1/3, we deduce from Remark 1 and Theorem 4.1 in Jacod (1998)
that

n—1/2 Z <P19F02,n(H97h) — Fg,n(He,h)> (\/EX(z—l)/n) £> 0.
=1

Finally we can conclude that

> Ef [(A?Z)z‘ f(i—l)/n} L No(Hg p2 + 2Hp po, ) L1.
i1

12



ii) We have to prove that

[nt]
> E’ [(A?Z)z Lianz)>e)
=1

P
F(ifl)/ni| = 0.
By Condition 4, we have
|A?Z|6 < Kn—3/2e0VnlX;n—X(i—1)/nl

and
B [|A7Z°| Fionym] < Kn™2

and
E° {(A?Z)Qﬂ{mzps}

f(i—l)/n:| < Ke *n=3/2,

The result easily follows.

iii) We have to prove that
[nt]
Y E [A?ZA?W‘ }'(i_l)/n} £o.
i=1
First note that
E? [A?ZA?W’ ]:(i—l)/n] =n V4B [(fin + Fin) APW| Fioty/n)

since E? [ ATW| f(i,l)/n] = 0. We have

B [ Fyn AFW| Fi—1)/m)

= E’[Fyu(Hop)(VXijm) (APX — OATL)| Fi1)/m)
1
N %Ea [Fon(Hon)(VnXipm) (VRAIX = O3/nATL) | Fio1)jn] -

Note that, for some v > 0, B14~ (Hp,n) < 00 since

Buis (Hon) = [ lal' | Hop o) do < K [ Jaf b () ldo = Kran (1) < o0,

13



Therefore, we have by Lemma 1

| Fon(Hon)(VnX,n) (VRATX — 63/nATL)|
< |Hon(VnX(io1ym + VAP X)| (VAT X] + 16 vrAT L)

L+ |[VnAPX|" 1+ |V/nArX[
+K1 i : ATX| +|0] /aATL
e <1+ VX (i1ymn PR 14 VX 1yl (WVraiX]+ 10l VnaiL)
since
1 1+ [nArX|Y
< K (4
1+ ’\/ﬁ)(i/nn_ﬁm|’Y N 14 |\/ﬁX(i71)/nn_/3/2|’Y
I S O V72
L+ [VnXim? 7~ L+ |vVnX_1yml?
Let
S1 (VX (1) ns VRAT X, VnATL) = |Hpn(VnX(i—1y/m + vVRALX)| (VAP X | + |0] vVRAT L)

1 ATX|T 1 AP XY
Fom (VX 121y jn VR X, /DAT L) ( + [VnATX]| L L lynArX| )

L+ X1y mn P27 1+ VX 1yl
x (|VnAPX| + |6] VRATL) .

We have, by Holder inequality that, for p > 1 and ¢ > 1, such that p~! + ¢~ =1,

B [ fr (VX (1) jns VIAF X, VRATL) || Fizty ]

1/ 1/
<E0 [[Hop (VX (i—1)m + VRAFX)|] f(z'_l)/nD ! (Ee [([VnA}PX]| + 16| vVnA}FL)"| f(z-1)/n]) ’

IN

IN

1/q
K (EG [[Hon(vVnX (1) + VRAFX)|| f(i—l)/n])
by Eq. (4). Note that
E? [[Ho (VX -1y n + VAT X)) Fiz1yyn) = PP IHopl" (VnX(i1)m) -

By Remark 1 and Eq. (3.2) of Lemma 3.1 in Jacod (1998),

Hopl9) Mo (|H,
KﬁHv(’ é),hl)jL o ([Hon
1+ |z|Y V2r
< K51+~/(’H9,h’q)
1+ |z|Y

q) e—x2/2

PY|Hpp|" (z) <

with
ﬁwmwmm—/mwme%wMSK/mﬁwmmm—Kmﬂw»

Moreover, since Hy, is a bounded function (h satisfies Condition 4), this is also the case for [Hg |?

14



and we can conclude that PY|Hp|? is also bounded. Therefore (P{’\H@yh\q)l/ ? satisfies Condition 1 if
Bo((PY|Ho,p|?) 1/q) < 00, but this is the case, since we can choose v > 3, ¢ > 1 such that

1/q 1
0 q 2 _
B <<P1‘H0,h‘ ) ) SK/:L’ 1+|x’7/qd:6<00.

Lnt)
1 1/ 1/
N > (Pf|H9,h|q) (VX oym) B Ae((P19|He,h|q) "L

i=1

It follows that

Let
Gogi (VnXinm) = E°[fi (VEX 1) ms VRATX,VRATL)| Fiimay)
= E° [|Hon(VnXi—1)m + VRALX)| ([VRATX | + 10| VRATL) | Fiz1ym) -

Note that Gy, f, satisfies Condition 1 since Gy, is bounded (Hy,j, is bounded) and 32 (G, 1, ) < K2 (Hp,) <
oo. By Proposition 2 i), we deduce that
1 [nt] P
7 Z Go,p, (VnX(i—1)/n) = Mo(Go,p, )Ly
i=1

and it follows that

Lt
1
77,71/4% ZEG [fl (\/ﬁX(zfl)/TN \/EA?X7 \/EA?L) ‘ f(lfl)/”] £> 0.
i=1

Note now that

E? [ fo (VX (i-1) /s VRAFX, V/RATL) | Flio1y /]

1 1
< K + .
- (1 + VX 1y mn R 1+ !\/ﬁX(zn/nW)

g () = /4 ( ! ! ) .

+
1+ |zn=B2y ~ 1+ |x|Y

Let

We have

1 1
_ o —1/4 < KnB/2-1/4
Ao (gn) =1 / <1 +|zn=h2r 1+ ]:):h) do < Ken 0

and, as n — oo,

gn (/1)

———= —=0.

vn
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It follows from Remark 1 and Theorem 4.1 in Jacod (1998) that

Lnt]
1
n_1/4% ZEQ [fo (VnX(i-1)n> VRAF X, V/nAFL)| Fi1y /] Lo.
i1

Let
S3 (VX i1y jns VRAT X, V/0AT L) = h (VX 21y n, VRATX) (VRATX — 0y/nATL) .
We have

E? [ fin AW Fli—1)/n]
= E°[fin (A}X — 0ATL)| Fli1y/n]

1

= ﬁnz? (B (VnX(i—1)jn, VRATX) (VRATX = 05/RATL) | Fli1y /]
1

= %EG [ f3 (VnX(i—1)jn, VRAF X, V/RATL)| Fii_1ym)

where f3 satisfies Condition 3, i.e. f3 is a Borel function on R? such that the functions Go.f5, Gy, 72 satisfy
Condition 1, i.e. Gy,f,, Gy, 2 are bounded functions and 82(Gy,z,) < 00 and B2(Gy 2) < 0. Indeed, since
h satisfies Condition 4, we have

Gogs (@) = |EL [fa(z, X1 — 2, L1)]| < Kh(z)
Gy, 2 (x) = E [f??(a:,Xl —z,L)] < Kh? (z)

IN

K
K

IN

and
52(Gog) = [ 1olGagy (@) do <K [ |oPh(o)do < Kpa(h) < o0
Ba(Gypz2) = /|x|2]G97f§ (x) |dz < K/ |z|2h? (z) de < K/ |22 (x) drx < K Ba(h) < oco.

By Proposition 2 iii), we deduce that

Lnt]

ZEG [ fin ATW | Fli1y/m) L Xo(Gogy) L
=1

and it follows that

Lnt]
1
n_1/4% ZEO [fg (\/ﬁX(Z_l)/n, \/EA?X, \/ﬁA?L) ‘ f(’b—l)/n] £> 0
=1

16



Therefore, we can conclude that

%Ee {A?ZA?W‘ ]:(i—l)/n} Lo.
i=1

iv) We finally have to prove that
Lnt) R »
SR [A;LZA;LM‘ Fi-1) /n] 20
i=1
where M is a bounded (.7-"tW )
P((M)Y), =0)=1.

>o-martingale such that, for all s € [0,1], the cross variation satisfies

If M is a square integrable (F}V) sefo]”
P((M,Y), =0) =1, then M is constant. Indeed, since M is a square integrable (F}V)

by the martingale representation theorem, we have

martingale such that for all s € [0, 1] the cross variation satisfies

te[oyl]—martingale,

t
M; = My —|—/ 77de5
0
where 7 is a (}}W) . 6[071]-pr0gressively measurable process such that P( fol n2ds < 0o) = 1. The condition

that, for all s, P ((M,Y), = 0) = 1 writes P([; nuo (Y,) du = 0) = 1. Since o is positive, it implies that
P(fo1 Ly >0yds = 0) = 1. We can therefore conclude that R? [A?ZA?M‘ ]-'(i_l)/n} =0 a.s.

Proof of Proposition 8

Let

fin(c) = L/ vm<X i1y m<0,Xi/n<0} {(Vn|X;m — Xi-1y/n| — 0-0(0)}
= he (VnX_1) sV (Xifn — Xi—1y/m))

with
he (3?, y) - ]I{—c<ac<0,y+x<0} {’y‘ —¥-9 (C)}

17



and

Z" () = # Z; fim(c).

Let 0 < C < co. We want to prove that, for any n > 0,

1 P
—_ AL — 0.
n1/20(log n)+n C:[%PC] 12" ()]

It will follow that, for 0 < C < C' < o0,

nl/5
sup |B™ (c) — g (c)| £ 0,

(logn)1t7 o [C,C]

and then

nl/5 b

———— sup |A% (¢) — Ay _(c)| = 0.
(log )7 ce1c ¢ | |

Since ¢ LS cp,— and 0,, L 0, we will deduce that

1/5
n R P
" —o_| =0.

A2 g n) T

And in the same way, we will have

nl/5

6’1-0’+‘£0

ng& (]og n)1+77

and therefore
lim —
ngrolo (log n)1+77

o o] £o.
We first begin with a lemma.

Lemma 3 i) Let us assume that for some constants 0 < ¢ < d such that |d — c| < 1,

’gc,d (.’IJ)‘ <K (H{—d<x<—c} + H{—c<x<0} |d - C’) )

then

1 ? |d — | 2>
sup EY | [ —=V n <K +ld—c|”|.
s, [( Vel ] (7 1a-
ii) Let us assume that for some constants 0 < ¢ < d such that |d —c| <1 and vy >1

|hc,d(x’y)’ <K (]I{—d<m<—c} (1 + |y|7) + H{—c<x<0} |d - C’)

18



and that Hyp, ,(z) =0 for all z, then

<nll/4U(hc,d)?)4] <K <ld\/ﬁc| +ld— c\2> .

sup E?
0<t<1

Proof.

i) By Eq. (3.10) in Jacod (1998), we have

B2 [ vilgeat] < & (B0 )
< K (W +|d — c|>

and therefore, for large n,

1 n
E’ [\/ﬁv(gc,d‘)t:| < K|d—d.

Moreover
1 21 /1 2
<\/5V(gc,d)?) =7 (\/ﬁ (V(gf,d)?)> + Z 9ed (VX i1y /m) 9e.d (VX (j—1)/n)
1<i<j<|nt]
and
9 @) < K (acoce) +Lcacocep [ — el + I ecocny 1d — cf?)
< K (H{fd<x<fc} =+ ]I{fc<:p<0} ‘d - C|) .

By the Markov property, we deduce that

1 2
E@ n
(\/ﬁv(gad)t)]
o o K | [ LS g (Vi) [ gy
> \/ﬁ c \/ﬁizl Ye,d NA(i-1)/n \/’E c
K K )
< —|d- - |d — Kld -
< \/ﬁ]d c\—&-\/ﬁ\d cl+ K|d— ¢

|d — ¢ 2
< K d—
B ( vn +ld=d

and the result follows.

ii) M™ = n=Y4U (h4)} is a martingale with respect to the filtration (Flnt) /), since Hyp,,(z) =0,

t>0

19



with optional and predictable brackets given by

MM = U2 (M) = =V(Hyy )"
Note that 1

N = (MM = (M M) = Uy~ Hyge )"
is also a martingale with respect to the filtration (]—" Int] /n) 0"

By the Burkholder-Davis-Gundy inequality, we have

E? [sup |Mt”|4] < KE? [M™, M"]3].

0<t<1
Moreover
M M <2 ((ND)? + (M7, M7}
Since
Hypz, @) = [ 0(1,2,0) By~ 2)dy
and

h%,d(xvy) <K (]I{fd<:r<fc} (1 + ‘y|27) + H{fc<x<0} ’d - C|2 + H{*d<{l‘<76} (1 + ’yp) ‘d - C’)

it follows that
He,hid () <K (H{—d<a:<—c} + I —c<a<oy |d — C|) :

By i), we have

o [<M”,M”>ﬂ — g

L”V(H‘”‘?,d)n Tex |d_nc’+!d—c\2 .
v 7

Doob’s inequality yields

E? { sup |Mt”|2] < AR [(M™, M™)],
0<t<1

and by using the same arguments as in the beginning of the proof of i), we have

E? [ sup |Mt”|2] < Kl|d—cl.
0<t<1

20



Since

IN

’hz,d(% y) — H@,hg,d($)|
K (H{7d<x<fc} (1 + |y’27) + ]I{fc<:r<0} |d - 6’2 + ]I{fd<:r<fc} (1 + |y|7) |d - C‘)
+K (]I{fd<x<fc} + H{fc<z<0} ’d - C|)

< K (H{fd<x<fc} (1 + ’y‘Q'y) + ]I{fc<m<0} |d - C‘) )

we deduce in

the same way that

V/nE? [Sup \Nm?] <Kl|d—¢|.

0<t<1

It follows that

sup E?
0<t<1

1 4 |d — ¢
—U(hea)?) | <E’ MY < K d—cl*).
<n1/4U( c,d)t) ] = |:OS§1;21| t‘:|_ < \/ﬁ —|-| C‘)

The proof is complete.

Step 1: An upper bound for E?[(Z,(d) — Z,(c))*].

Recall that

with

Define

and

1 n
Z"(c) = 7 Z; fin(c)

Fin(€) = o) ymex s vy m<0.Xm<0} AV Xin = Xii1ym| — -0 ()}

= E9 [fz,n (C)’ \/EX(zfl)/n - .Z']
= I ccacoy { [ElZ|l{z<—0}] = OB[|Z — 22[I 7z 0y]] — p—0 (c) [® (—2) — 0@ (2)]}
9in (@) = 3 (B [he(VnX(oapym)| Fign] =B [kelvXitgyja)| Famryn])
j=0
= (Ee [firirm (O] Fipn] =B [farjrnn (@] F (i—l)/n])
=0
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with w, = [n’] and B8 € (0,1/2). Note that k.(z) = Hpy, (r) where hy is defined in the proof of

Proposition 7. Therefore A\g (kc) = Ag (Hg,p,) = 0.

We have

—n*1/42fm =Y"(c) + W (¢) +n Y Hp(e) + n 4L (c)
where

Y'(e) = *1/42 fin(€) = ke(vVnX(i—1)m))]

W"(e) = ‘1/4ng

Hy (c) = Fen( )(on) Fyn(ke)(VnX1)

In(e) = ZEQ (VX (iwn) /)| Fiimty/n]

= Z ke (VX i) = V(P k)T

with

wnp+1

FB,n( sz/n ZEG fX(z+])/n {fz/n Z E f1+]n |~Fz/n] :

Let, for ¢ < d,
kea(x) = kq(z) — ke(z) and  fin(c,d) = fin(d) — fin(c).
Then, since @y is Lipschitz on (Q, C_') for any 0 < C < C < oo, we have

|kc,d(x)| < K (H{—d<x<—c} + H{—c<m<0} |d - C|)
/81 (kc,d) < K ‘d - C|
Bris (hea) < K (Jd=cl+|d—c7) < Kd—o.

We now study each part of

ZM(d) 2" (e) = (Y"(d)—Y" () + (W™ (d) — W" (c))
VA (Hy(d) = Ha(e)) + 0 (L (d) = T(c)-

22



A) By Remark 1, Lemma 3.1 and Eq. (3.2) in Jacod (1998) (noting that A\g (k.q) = 0), we have

|F9,n(k6,d) ()]

IN

/81 (kc d) B1+’y (kc d)
+ K1 : :
ke ()] s (1 + ‘xn—ﬁ/ZP 1+ |x|”

< kea(z) |+ Klogn|d—cl.
Then
|Hy,(d) = Hu(c)| < |kea (Vnao)| + |kea (VnX1)| + Klogn|d — ¢

and
|Hp(d) — Hp(c)|* < K (‘kc,d (Vzo)|* + [keq (VaX1)[* + (logn)*|d — C’4> :
Moreover by Lemma 3.1 in Jacod (1998)

o

RO [‘kc,d (\/ﬁXl)ﬂ < K)‘9 E/Zjd) < K|d\/_ﬁc"

It follows that

w B (@)~ H(011) < K (155 4 el gyt

B) By Remark 1, Lemma 3.1 and Eq. (3.2) in Jacod (1998) (noting that Ag (PJ , kcq) = 0), we

have

Pg)nﬂ(kc,d) (z)

IN

~ B (ke,a) By (Ke,a)
K B8 ) 2 5
" <1+‘$n—5/2‘W 14 [af”

IN

1 1
KnPld—-c + .
| | (1 + |zn=B2|7 1+ |x|7>

Let
Gn,C,d (z) = szn—i-l(kc,d) ().

Note that Ag (Gp c.d) = Ao (Pgn +1(kc,d)) = Ag(kc,q) = 0 since \g is the invariant measure of the semi-group
(P?) >0+ We also have (since 7 may be chosen larger than 2)

HGn,adH Kn_ﬁ |d - C|

AG(‘Gn,C,dD =~ Kn_6/2|d—0’
B1(Grea) < Kld—cf.

IN

A

Since

W VA (L(d) — Tn(c)) = n1/4\/15V (Crea)"
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and by Lemma 2, we have

E9[<jﬁvamqw?>f

. 1 -8
K [d—cff (n~ + n~99/%) (,d _ Ogn+n>

IN

n

< K|d—C’4 n—3ﬁ/2—1/2

and it follows that
E’ [n7H1(d) — I, (c)|!] < K |d — c|* (log n)n=38/2+1/2,

C) Let
wn+1
Fe,n( sz/n Z Ee \/>X (i+5)/n |]:z/n]
such that
gin(c) = (Ee [ke(VnX (i1 /m)| Fisn] =B [ke(VnX (i1 /m)| F (z’—l)/n])
§=0

= Fpn(k )(sz/n) an( )(\/>‘X(Z 1)/”)'

By Remark 1, Lemma 3.1 and Eq. (3.2) in Jacod (1998) (noting that A (kcq) = 0), we have

. b1 (ke,a) Bity (kea)
Fyn(ke,a) (96)‘ < Klogn (1 Flen B T 14 2]

< Klogn|d—c|.

Let
hed(®,y) = Foplked) (@ +y) — Fpnkea) ()
Hyps,, @) = [ 0oLy culer i)y
— [ 50 12) B ) (4 9) dy = B ) (@),
Then

Wi, =n"1/* Z (9in(d) — gin(c))
=1

is a square integrable martingale with respect to the filtration (f It /n) >0 with optional and predictable

brackets given by

n n ]' n n
[ c,d> c,d]:%U(hi,c,d)v < ¢, d> d> H9h2
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Since
‘kc,d(m)‘ <K (H{fd<z<fc} =+ ]I{fc<:r<0} ‘d - C|) )

we have, by Eq. (2),

/ po (L, 2,y) F (ko) (z + y) dy

2
1
< KPr(Xi+wz€(—d,—c)+KPr(Xi+z€(—c0)|d—c|+ K (logn)’|d — c|* | ———=
1+ |zn=5/2|

using also Remark 1 and Lemma 3.2 in Jacod (1998). Then (since v may be chosen larger than 2)

HHW ) ‘ < K|d—c|+ K (logn)?|d — c|?

Nol[Hype )< K|d—cl + K (logn)®|d — cf> n??

(\}EV(HG,}LEMJ)TL) 2]

< K (|d — e+ (logn)*|d - c|4nﬂ) :

and by Lemma 2, we have

B (e Wea)y| = B

The Burkholder-Davis-Gundy inequality provides

E? [[Wry|!] < KE? [| > ng]Q] .

C,

—1/4. The martingale

The jumps of W; are bounded by Klogn|d —c|n
cg=WE, W2l — (Wi, W2y

has n jumps, all bounded by K (logn)® |d — ¢[*n~Y/2. It follows that [M7,, M?]* < K (logn)*|d — c[*

and

B [|Wyl*]

IN

K(E9 (M2, M%) + E° [< gd’W3d>ﬂ>

K (|d — ¢)* + (logn)* |d — c|4nﬁ) .

IN

The choice for 3 that lets the upper bounds of B) and C) be equivalent is 8 = —35/2+1/2,i.e. 8 = 1/5.

D) Let
hc,d(xv y) = fc,d(x7 y) - kc,d(x)
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where

fc,d(xv y) = ]I{—d<a:<—c,y+ac<0} |y| - H{—d<x<—c,y+m<0}$0—0 (d)

“—ecacoyta<oy (P (d) = -0 (c)) .

We have
YD) V(@) = n Y [fonlerd) — hua(VX gory)]
i=1
= n Zn: hed(VnX (-1 s VU (Xijn = X(i1)m))-
=1
Note that

’kc,d(‘r)’ <K (H{fd<z<fc} + ]I{fc<x<0} ‘d - C|)

and that for some v > 1

|hC,d(x7y)‘ <K (H{—d<x<—c} (1 + ’y"y) + H{—c<x<0} |d - C‘) :
Let us now remark that Hyp,_, (x) =0 for all . As in Proposition 7, let us consider

he(@,y) = heo— (2,y) = g (c) hes— (2,9)

= ]I{fc<x<0,y+x<0}‘y| —P-0 (C) H{fc<36<0,y+:b<0}'
It is important to note that k.(x) = Hg, (). We have
hd (l‘, y) - hc (l‘, y)

= H{fd<x<fc,y+:r<0} ‘y| — -0 (d) H{fd<z<0,y+:]c<0} +¥—9 (c) ]I{fc<x<0,y+x<0}

= H{70l<9c<fc,y+:fc<0} ‘y| - ]I{fd<x<fc,y+z<0}90—9 (d) - I[{fc<z<0,y+90<0} (90—9 (d) —P-0 (C))

= fc,d(xvy)

and it follows that
Hop,, (%) = Hop, (x) — Hop, (¥) — (ka(x) — ke(2)) = 0.

By Lemma 3 and since Hgp, , () = 0 for all z, we have

(@U(hqmﬂ <x (1 ja-cp).

EQ
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E) Putting A, B, C, D together, we have
E” (Zn(d) - Za(e))"]

|d — ¢
< Ko5n

+K(|d—c|2+(1ogn)4|d—c|4n1/5) +K<|df 4o )

+ Kld—c*n~ " (logn)* + K |d — ¢[*n'®logn

and then
B’ |(Zu(d) ~ Zu(e))*]

d—
K (’ \/ﬁd +|d - ¢|* + (logn)* |d — c\4n1/5>

d— ¢ 4 2, 1/5
< K 1 —
< ( NG + (logn)™ |d —¢|"n

or equivalently

Step 2: We have
fin(€) =hiin(c) = hain(c)

with
hiin (€)= T e/ymeXs)m<0.X,m<0} V1| Xisn — Xiim1y/m|
Both functions are positive and A1, is increasing with respect to c¢. For 0 < ¢ < d, we have
fin(c) = hiin(c) = hain(c)
d) = ha,in ()

( (hg in (C) - h?,i,n (d))
< finld) + hoin (d)

IN
=
—
.
3
~— ~— T~

and

3

Z fin(c) <) fin(d) + Z h2,in (d)
i=1 ' i=1
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and

Z fin(c) < )|+ Z h2,in (d)
i=1 1=1
Moreover
- Z fi,n < Z h2 ,i,m + Z h2,i,n (d) \ h2,i,n (C)
i=1 i=1
since

—fim(c) = hoin (c) —hiin (c) < hgin(c) < hgin(d)V hain(c),

and therefore

> fimle)| <
i=1

Using the same type of arguments, we have, for (j — 1)p < ¢ < jp,
Zfi,n Zfzn ]_1 Zfl,n((]
i=1 i=1
+ Z (ho,in (JP) = h2,in (5 — 1)p)) V (h2,in (€) — h2,in (7 — 1)p))
i=1
> finl(j
i=1

+Y° sup [ (hgin (€) = hain (G = 1)p)) |-
i—1 c€((i—1)p.jp]

) + Z h2,i,n (d) V h2,i,n (C) .
=1

We deduce that

Zfzn Jp)

< 3max
j<m

=1

sup
0<c<mp

xS o[ (nin ()~ hain (G~ 1P
ST e€((G—1)p.gp)

hain (¢) = hoin ((7 —1)p)

H{—c/\/ﬁ<X(i,1)/n<—(j—1)p/\/ﬁ,X¢/n<0}90*9 (C) + I[{—(j—l)p/\/E<X(i,1)/n<0,Xi/n<0} ((p,g (C) —¥-0 ((] - 1)p))

and

|ha,im (€) — hoin (5 —1)p) [ < ! s[lé% ] g (c)] L jp/vm<X vy m<—Gi-vp/vay T EPL o/ vmaxi ) <o}
ce|0,
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and it follows

n

max Sup | (h2’i’n (C) - h2,i,n ((.] - 1)p)) |
j<m ; ce((j=1)p,jp]

= [ eS[I(l)pC] p—0 (C)] rflf}ﬁ Z I[{—J'JD/\/77<X<¢71)/n<—(J'—1)P/\/ﬁ} +K Zpﬂ{—c/\/ﬁ<X(¢71>/n<0}'
cel™ =1 i=1

Using Proposition 2, we have

1 & P
NG Z H{*C/\/H<X(i_1)/n<0} = (1-6)CL;.
=1

Moreover if we assume that p — 0 as n — oo such that /np — oo, then, using the same arguments as in
the proof of Theorem 1.1 in Jacod (1998), we get

1

3 P
N Engafn(; CapVR<X oy G-vprvm) = (1= 0) sup Ly

where L{ is the symmetric local time of X at level c.

Therefore

SWee(o.€] -0 (€) MXj<m it ooy i< X ooy j<—ti=0/v} T 2zt Ploc/vacXny<o} P

0
Vnplogn ’

and it follows

P ( sup | Z"(c)| < 3max|Z"(jp)| + pn'/* logn> — 1.
0<c<mp j<m

Step 3:

If0<e<1and

_f <ld—,
n7/10 (log n)* ~ | |

we get from Step 1

o log ) [(Zo(d) ~ Za())"] < 2 Ja— o,
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Assume that p is a number such that en~7/19/ (log n)4 < p. Consider the random variables

1

W(Z (ip) — Z" ((i —1)p)), i=1,..,m.

By Theorem 12.2 in Billingsley (1968), we have

1 mn (; K 2. 2
P(%%W’Z “p””)%xxmp'
Let

A, = { sup |2"(c)] < 3max|Z"(jp)| +pn1/4logn}.
0<c<mp Jj<m

From Step 2, we have P (A,) — 1 if \/np — co. Then

P (1 sup |Z" (¢)| > 46)

nl/20logn g<c<mp

1
Pl o= sup [Z"(c)| >4e, Ay | + P (A).
nl/20logn g<c<mp
If
€ logn €
1S 95 SPS 5
n/10 (logn) n n
then
Pl— wp |2°() > 4e,4,) < P(—n ax |Z"(jp)| > ¢
—— su c , < ——————— max
nl/20logn Ogcg:np " nl/20]ogn j<m P
K 54
< 5—5m b
Let n > 0, we get
P _ sup |Z" (c)| > 4¢’' (logn)", A, | < K
nl/10gn Ogcgprnp &N1)"»An | = 75 (log )"
where mp < C or equivalently
P ! 20 (0] > e A | <
——————  su c £, < ——.
1720 log(n) 140 OSCSI:np n & (logn)”"
Therefore if mp — C' as n — oo, then
o L — Z7(¢) > <) =0
———————— su c)| >«
n1/20 log(n)1+” OSCEC

and the result follows.
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Some comments on the one-dimensional time-homogeneous diffusion

with finite activity jumps case

Let us assume that process Y is the solution of the one-dimensional time-homogeneous stochastic differ-

ential equation defined by Eq. (1) with

b(y) = %0’(1/)0@)11{#0}-

Let us denote by N; = f(f f‘x|>1 N (dt, dz) the number of jumps of Y occurring between time 0 and ¢.

The local time at level 0 of the semi-martingale Y is defined as
¢
Ly (Y) = Y] - [yo] - /0 sgn(Ya )Y, — 57 {[%] = [Yao| — sgn(¥, ) AY;}
0<s<t

where AY; = Yy — Ys_ (see e.g. Definition p. 216 in Protter (2005)). Note that, since Y is a one-

dimensional time-homogeneous diffusion with finite activity jumps,

1t .
Ly (Y) =a.s. lﬁlﬁ’)l%/o H{\Ys\gs}d[y]s

by Corollaries 2 and 3 in p. 229-230 of Protter (2005).

By the Ito-Tanaka-Meyer formula for semi-martingales, we have

500 = S() + Wit 3 (- ) L)+ 3 As)

2 \o o_
+ 0<s<t

where

S(y) = / ’ U(l)d yeR\{0}, S(0)=0,

can be written as the difference of two convex functions. By definition of the local time of S(Y") at level

0, we also have

1SV = [S(yo)l +/0 sgn(S(Ys-))dS(Ys) + Y {AIS(Y)| = sgn(S(Ys-))AS (Ya)} + L (S(Y)) -
0<s<t
Since sgn(S(Ys—)) = sgn(Ys—), we deduce that
SOD] = I8G0)| + [ sgn(V)aWs+ 3 AISO0)|+ L (S(Y)).
0<s<t

Now, if we consider the function y — |S(y)| (which can also be written as the difference of two convex
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functions), we derive by the Ito-Tanaka-Meyer formula that

5001 = 5G|+ [ son(Vi)aw.+ 35 Alswl+ 5 (4 1) 2w,

R + R
g o_
0<s<t +

We therefore conclude that . .
Li(SY)==(—+— ) LY
(s =3 (4 ) )
(as in the case where the finite activity jump component of Y does not exist, see the proof of Proposition
1) and that

S(Y:) = S(yo) + Wi + 0L (S(Y)) + Y AS(Ys).

0<s<t

Let X; = S(Y1), we get

Xe=mo+ Wi+ 0L (X)+ ) AX,.
0<s<t

We can derive from the Markov property of () (and (X;)) that, if N;/,,—N(i—1y/n = 0, (X(i—1)/n (Xi/n — X(i—1)/n))
has the same distribution as (X(;_1)/n, Xl/n — X(i—1)/n) Where (X,) is an SBM with parameter 6 such
that X, = 0 and that is independent of X(i-1)/n-

Let us now consider the estimators

Z?:l H{S(—c/\/ﬁ)<X(i,1)/n<0,Xi/n<0,|S*1(Xi/n)—S*1(X(i,l)/n)lgun}\/ﬁ ‘S_l (XZ/TL) - S_l (X(Z_l)/n)’

AZ (e un) = Z?ﬂH{s(fc/\/ﬁ)<X(i_1)/n<o,xi/n<0,\3*1(Xz-/n)*S*I(Xu—l)/n)\éun} ’

e - zyzlH{0<X(i_l)/n<séc/ﬁ),Xi/n>o,|s1(Xi/n)sl(X(,-_l)/n)|Sun}x/ﬁ\S—1 (Xijm) =571 (X(u)/n)l'
dic H{0<X(i,1)/n<S(c/x/ﬁ)7Xi/n>0»|S‘1(Xi/n)*s_l(X(ifl)/nﬂgun}

Since

151 (X ) =51 (X)) [ Sun
- H{N'i/n_N(ifl)/n:O} T ]I{|571(Xi/n)_571(X(ifl)/n)|§u7bvNi/n_N(i71)/n>0}
_H{‘571(Xi/n)_571(X(ifl)/n)‘>un7Ni/n_N(i71)/n:0}7

we deduce from the discussion given in Section 2 that, for all n large enough, A" (c,u,) and A"} (c,uy)

are respectively equal to

A" () = Z:‘L:l H{S(—c/\/ﬁ)<X(l-,1)/n<0,Xz-/n<0,Ni/n—N(Z-,l)/n:O}\/ﬁ }S_l (Xi/n) —-57! (X(i—l)/n)‘

n
2im1 H{S(*C/\/ﬁ)<X(i—1)/n<0,Xi/n<0,Ni/n*N(i—1)/n=0}

A () = 2ic1 H{O<X(i_1)/n<S(c/\/E),Xi/n>0,Ni/n—N(i_1)/n=0}\/ﬁ ‘S_l (Xi/n) -5 (X(ifl)/n){
i =

n
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with probability approaching 1. The number of intervals ((i —1)/n,i/n] for which N;, — N_1)/,, > 0 is
a.s. finite. We can therefore study the asymptotic properties of our estimators by assuming that the finite
activity jump component of Y in Eq. (1) of the paper does not exist. Note however that the presence of

jumps changes the path of (X;) and (L; (X)) and so the values of the estimators are different.
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