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This appendix provides the proofs for the main results in this paper. Section A provides the proofs
of theorems in Sections 2 to 4. Section B provides the proofs of technical lemmas. Section C provides
additional results. Throughout the appendix, we let
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denote the true CF of Y; for ¢t € [T}, +1,T}],
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denote the ECF of Y, for ¢ € [Tj_1 + 1,T}],
1 il
0 . -u/n
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denote the ECF of Y; for ¢ € [T;{l +1, TJQ]7 and
1 %
bilw) = e Y T
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=Tj_1+1

denote the feasible ECF of Y; for ¢t € [Tj,l +1, T]] We use C € (0, 00) to denote a generic positive constant
that may vary from case to case.

We first state some technical lemmas.

Lemma A.1 Suppose Assumptions A.1-A.3 hold. Then for any partition {T) }jle and any specified number
of breaks M,
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foreachj=1,.... M.



Lemma A.2 Suppose Assumptions A.1-A.5 hold. Then

_ 2
T]('J—1+U7UT2J

sup/ vp Z e(u)| Wu)du = Op(1),

n€l0,C] /R t=T0 | +1
for each j =1,..,M° + 1, where vy = O(T~%) with a € (0,1/2).
Lemma A.3 Suppose Assumptions A.1-A.3 hold, and let dy(u) = ¥y (u) — YI(u) fort e [Th1 4 1,Tx] N

[Tjo,l + l,T]Q] with k,j = 1,2,..., MY + 1 denote the difference between the feasible ECF and the true CF.
Then

l/ iRe e (w)dy (w)*] W (u)du = OP(Tfl/z).
T Jre (o

Lemma A.4 Suppose Assumptions A.1-A.3 hold, and limp_, 7j # r ) for some j =1,..., M. Let di(u) =

U (u u) — ¢ (u) fort e [Ty 41,k N (T) ) +1,T7] with k,j = 1,2 ...,M0 +1 denote the diﬁerence between
the feasible ECF and the true CF. Then for any O <co <1, there exists a § > 0, such that

1 T
P <T /Rdtz_;wt(u)QW(u)du > 6/Rd W?( ]+1 ’ W du) > cp.

Lemma A.5 Suppose that there are M° structural breaks in the distribution of {Y;}. If the model is under-
specified, i.e., the estimated break points M < MY, then we have that the estimated break fractions {fy 2,
are consistent for M breaks contained in the collection true break fractions {1" ,1, such that

for any k =1,...,M and some corresponding j =1, ..., M°.

Lemma A.6 Suppose that the number of breaks M is bounded from above by a finite integer My ax, and
Assumptions A.1-A.4 hold. Then, as T — oo,

~2 2000V ] —1
MOSI]B%XMMX}G (M) —6*(M°)| = Op(T™1),

where 62(M) = T~'SSGRus (71, ..., Par) and {7;}3L, is the collection of estimated break fractions.

A Proofs of Theorems

Proof of Theorem 2.1 Following the notations in the paper, for j = 1,..., M? + 1, let
er(u) = ¥ — 1 (u), for t € [T}, +1,T7),
E(u) = Y — O(u), for t € [TP_; +1,T7],

ét(u) = ei“ Vi _ ’l/)j(u), for t € [Tj—l + 1,Tj}.



Since {Tl, e TMO} minimize the objective function in (2.2) for any partition {7 }jj\/iol, it holds that

i T
%/Rd ; |ét(u)|2 W (u)du < %/}Rd ; \E}(u)|2 W () du. A1)

By the definition of €;(u) and &;(u), it follows
7
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= Et(u) — W Z Et(u)
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for t € [T}, + 1,T}]. Let Z2u) = [E1(u), & (), .. ér(w)], Eu) = [e1(u),e2(u), ...,er(u)]’, and Z°0 =
diag(lTlo7 170 70, ..., Ip_70 0), where 1,, denotes an n x 1 vector with each element being 1. We have the
M

following matrix representation

E(u) = Z(u) — Z2°(2Y2%) 1 Z2YZ(u),

Therefore,
1 . 2 1 = =
T /Rd ; |E¢(uw)|” W(u)du = T y {: u) (u)} W (u)du
- % » [E(u)*E(u)] W (u)du — % } [E(u)* 2°(2 %) ZYZ(u)] W (u)du.

Let P° = Z9(Z¥29)=1Z% then it is straightforward to show that P° is an T x T block-diagonal matrix
with M° + 1 diagonally partitions PJO = (TJQ - Tgofl)il1(TJ°7T;),1)X(T]°7T,‘-11)a where L0710 )x(To-10_,) 18
a (TJO — TJO_1) X (Tjo — Tjo_l) square matrix with all entries being 1, for j = 1,2,..., M? + 1. Then it follows

1 from) * — —_
T Ji [E(u)*2°(2"2°) 7 2YE(u)] W (u)du
| MO 1 70 2
= = Z 0770/ Z gr(u)| W(u)du
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= OP(Til)v
by Lemma A.1. Then (A.1) implies
1 ) 1 T
T/RdZIét(u)\QW(u)du < T/Rd > ler(w)* W(u)du — Op(T71). (A2)
t=1 t=1

Let dy(u) = hp(u) — Y9(u) for t € [Th1+1,T%] N [T7_, +1,T}] with k,j = 1,2,..., M° + 1 denote the



difference between the feasible ECF and the true CF. By the fact that &;(u) = e;(u) — d¢(u), then

/RZ|Et W (u)du

7/ Z'Et WP W (u du—i——/ Zldt )W (u —*/RdZRGEt )di(u)*] W (u)du.

Based on Lemmas A.3 and A.4, we know that if some break fraction r? is not consistently estimated,
then the following inequality holds.

T T
P L e Wz g [ STl wlduces [ 100 420 WG+ on()

with probability no less than some 0 < ¢g < 1. This is contradictory to the inequality in (A.2), which holds
with probability 1 for all 7. Hence, all breaks are consistently estimated. ll

Proof of Theorem 2.2 The proof is quite similar to the proof of Proposition 2 in Bai and Perron (1998).
Hence we omit it. W

Proof of Theorem 2.3 Without loss of generality, we assume Tj_l < T](Ll < Tj[-) < Tj Then, it follows
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= C; [D1(u) + Da(u) + D3(u)], say.

By Theorem 2.2, it follows that C; = 1+ op(1). By the triangle inequality

T,
g 01001 < | e 3 [ -4
2(T7_, Tj—l)
where the last equality is by the fact that
Y= g0(w)| < e+ ()] < 2,




Given P(|Tj — TP| > 6) <, then

P<TJQ_1_le > 0 ><n
\/T(r? - 7“?,1) \/T(r? -9 ) ’

J

for any n > 0 and 7T sufficiently large. Thus, we have sup, cga | D1(u)| = Op(T~/?). Analogously, it follows
that sup,ega |Ds(u)| = Op(T~1/2). At last, we consider Da(u).
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\/T - iu’
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J I=l =10 41
T
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= (-1 — > a

0 _ 70
I7 = T30 =10 41

= (1) - r?fl)_l/QB(j)(u, 1),

by Assumption A.4. W

Proof of Theorem 2.4 We assume the magnitude of shifts depends on T’ i.e., Aq j(u) = 99, (u) =99 (u) =
vrAj(u). Let SSGRypo(T) + |nvr?]) and SSGR 0 (T7) denote the sum of squared generalized residuals
based on partition {77, ..., T} + lnvr2], ..., T90} and the true break dates {T,..., 7%}, respectively. We
consider the process SSGRo (T} + |nvp?]) — SSGR 0 (T7) indexed by 7, where 7 is a real number such
that n € [-C,C]. For notational simplicity, in the rest of this proof, we suppress the subscript M°, and
write them as SSGR(T? + [nv;*]) and SSGR(TY).
By the definition of zﬁ? (u), it follows
1 i
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Tj o ijl

gt(u)a (A3)

t:T]FLl +1

P (u) =) () =

forall j = 1,..,M° + 1. Let T; = Tj(n) = TJQ + Lm}}ﬂ. For notational simplicity, we suppress the
dependence of T; on 7. Given vy =T~* with a € (0,1/2), it follows

sup T;/T = 7’? + o(1).
ne(-C.C]

Furthermore, we let
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denote the ECFs for the j-th and (j + 1)-th regimes under the partition {T7, ..., T]Q + mv;ﬂ, e T}



When 7 > 0, it follows T]Q_1 < T0 <T; < TJO_|r1 Then it is straightforward to show

T, - 70 1 = o
’(/)( ) ¢§)( ) W[ ]+1( ) 1/)0( )] W 5t(U)+ Z 8t(u) )
J j—1 t=T9_ +1 t=T)+1
and
1 T541
~ 0
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Then
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= IUYt_i 2— e _ g0 2:|VV d
2 Ll oo oo
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J+1 ~ 2 . 2
n Z / |: 1uYf,_wj+1(u)’ _ WY _ ?_"_1( )‘ }W(u)du
t=T,+1

= S1(n) + Sa(n) + S3(n).

Consider S1(n). By (A.3) and (A.4), and 9, (u) — ¢9(u) = vrA;(u),

Si(n) = Z / U% | = |00 — 2Re {e [ (u) - i?(u)}}*} W (u)du
t=T9_ +1" &
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+ 3(T} T]_l)/Rd -1, t_%:+let(u) W (u)du

= S11(n) + S12(n) + S13(n), say.
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Given Assumption A.5(i) and Tj = T} + |nug?]

3T - 1Ty v
sup [Su(ml = sup |2 >0(L" r / 1A, W (u)du = O(Tog?),
n€(0,C) n€l0,C] (T; = Tj
By Lemma A.1,
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By Lemma A.2,
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sup |S13(n)] sup / vr ge(u)| W(u)du| = Op(T " v;?).
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Hence, sup, c(o,c1151(n)| = Op(T~ Lvz?) = op(1) given vy = T~ with a € (0, 3).
Next, we show sup, c(o 1 [93(1)| = op(1) can be established analogously. By (A.3) and (A.5),
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By the triangle inequality,
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= Op(T ;") + Op(T 1ug?).



Now, we consider Sy(n). Note that for 77 +1 < ¢ < T}, ev'Ye = 1 (u) + &¢(u). Then

S2(n) = i /Rd:ei"’“&j(mf
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= 521(n) + S22(n).
By (A.3), (A.4), and the fact that 9, (u) — 99 (u) = vrA;(u),

T .
S = Y 2 /]R Re{ei(w) [9050(w) =& ()] | W (w)du

t:T7Q+1
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/]R et | S al| | D al)| W
t=T9+1 |t T t=T9+1
T. 7] *
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= S211(n) 4+ S212(n) — S213(n), say.

By the Cauchy-Schwarz inequality, Lemmas A.1 and A.2,
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and

T; 79
J 1 J
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WG[O,C] WG[OA,C] R4 f:TjOJ'_l J - ] t= TO 1+1
1 & i
+2 sup 7/ ee(u)| Wu)du
UG[O’C] Tj - T]Q_l R4 t:TZQJ’_l
J
s 2 1/2 2
2% —1T1/2 T3+ vy 1 7
< sup ————— / vr Z ee(u)| Wu)du —/ Z er(u)| Wu)du
nefo,c) T — T R t=T0+1 T Jra t=T9_,+1
2,0—2 T]Q+an;2J ?
+ sup 7T/ vr Z et(u)| Wu)du
nelo.c) j = 17 t=T0+1

= Op(T'2u:") + 0p(T ug?).

For S312(n), consider the limiting behavior of 2 [, Re{ [ Zt ;OLZ_ZT t(u)} [Aj(u)]*} W(u)du. By As-

sumption A.5(ii) and the continuous mapping theorem,

T+ Lvr? )
* (4) *
Z/URe uT t_;ﬂ er(u) | [Aj(u)] W(u)du:2/{URe {Ql (u,n)Aj(u) }W(u)du7

for any compact subset U of R?. It remains to show that 2 [;;, Re { {vT Zt ;OLET ! t(u)] [A](u)]*} W (u)du

is asymptotically negligible. Note that for each fixed 7, and constant ¢ > 0, there exists U° small enough
such that

O+ vz ’ it |
* 2
E 2/ Re{ |vr E er(w)| [A;(w)]” p W(u)du < 4F vr E er(w)| |Aj(w)]” W(u)du
‘ t=TO+1 e t=T0+1

< C | Wudu <.,
UL’

where the second to last inequality holds due to Assumption A.5(i) and the mixing condition in Assumption
A.1. For tightness, let 0 < n; < 19 < C, and some q > 2,
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Ue 2
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_o1q/2
< 2%fC [(772 — nl)sz](I/ sup |Aj(u)]? W(u)du < C(nz —m )4,

UC

by Theorem 2 of Yokoyama (1980) given Ele¢(u)] = 0 and sup,, |e:(u)| < C. By Theorem 15.6 of Billingsley

(1968),

Q/Rdﬁe{

T+ |nvgp?)

v Z g¢(u)
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Then it follows

Spa(n) = Q/RdRe{

T Lz’ r0 — 0 -
vr Y Et(U)] [To L Aj(u)] }W(U)du

_ 20 —1|po=2
=T I T o Al KV

= 2/11@1 Re{ggj)(u, n)Aj(u)*}W(u)du.

Now, we consider S22(n). By (A.3) and (A.4)

Sa2(n)

o) [ {500 = st = [0 = s Wi

R'i
79, 2
B ~ 2 1 J+1
7] P (u) = ()| = [9F41(u) — 5 (u)] 5 Y. (W] | W(u)du
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70 0 1 T} 1 T; 2
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j—1 J
1 T4 ?
—2
— vz » T]O_H* ]0 Z ee(u)| Wu)du
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TO _TO 1 TJQ 2
) [ e et Weadu+ i) [ o 3D ) W
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j—1
T; 2 T} ’
7] S S aw)| Wdu— nvp?) Y )| wwd
Nz A= er(u w)du — [nug 770 ee(u u)du
S I=1 4=1041 R +1 I 4=T0+1

(70, — 719 17 s )
Folnu? / Re{ | =21 "2, A(u) a@| Swwdu
Y Ty =T ’ IR T t_;-‘rl
L J
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0
1 TJ T;

s2lmi?) [ Red oo 30w | 3 ati| oW

1, —710_, Jj—1 t=T9+1
= S221(n) 4+ S222(n) + S223(n) — S224(n) + S225(n) + Sa26(n) + S227(7n).

It is straightforward to see that
(17 —
Som(n) = th [ 1850l W

= /|Au|W)

By Lemma A.1,
2
=2 70 0 7
) T —T7 1
sup [Sa2a(n)| = sup o TTJ( jTo 321)/ > e(w)| Wu)du
nel0,0] n€[0,C] ( J T j—l) R4 TJO_T;L1 =T +1
= Op(T 'vp?),
and
2
-2 T4
1
sup [Sma(m)| = sup TL”“TJT /. S )| W(u)du
n€[0,C] n€(0,C] £ 541 T]Q+1*Tj0 (=10 41
= OP(T_I’U;«Q).
By Lemma A.2,
vr vz’ T 2
sup |Soas(n)] = sup LTI / o Y ew)| Wwdu
n€l0,C] neloo) (TG = T30) Jea | 450
= Op(T ).
Furthermore, by the Cauchy-Schwarz inequality, Lemmas A.1, and A.2,
TO TO 2 1 77 2
|Sazs(n)| < 2[nvp?] / W’UTA( w)| W(u)du / W Z et(u)| W(u)du,
Re J-t e I A At R R
1
_TO 2 1 T 2
2 —1
Saa(m] < 2wzl [ 7 e vri)| W /. Wt;;let(u) W (u)du,
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and

0 2 2
Tt T
1 J 1 !
Saar()| < 2[mw2] / _ er(w)| Wwdu / _ er(w)| W (w)du.
' we| L =T L= I;H re |1 =15 t=§+1

—1/2

Hence, sup,¢(o,c) [S225(n)| = Op(T v, SUp,eo,c 15226 ()| = Op(T~'v;?), and Sup, o, [S227(n)| =

Op(T~3/%v;?). Therefore, we have

S(n) = n/IA )2 W (u)du

Combining So1(n) and S22(n), we have

Sa(n) = 2 / Re {G17 (w.m)a; ()" | W(u)du+ 7 / 18 ()W (u)du
As a result, for 0 < n < C, we have shown
SSGR(TY + |nvz2]) — SSGR(TY)
= 2/W Re {G7 (u,m) A (w)* W (w)du + n/Rd | (u)[* W (u)du
Following analogous steps, we can show that
SSGR(T} + [nvz2]) — SSGR(TQ)
:>—2/RdRe{g(])(u ) ()" } W )~ / A, () [2 W () du
when 1 < 0. Combing the obtained results, we have
SSGR(TY) — SSGR(TY + [nvy?]) = AY) (n),

where

AO () = 2 [pa Re {GY) (u,n)A } W (w)du — |n] fa |A;(w)]> W (u)du, if n < 0;
~2 [ Re {GU) (u, ) A (w)* } W (w)du — 1] fpu |8;(w))* W(u)du, — if > 0

By the continuous mapping theorem for an argmax function (see Kim and Pollard, 1990), we have

v3(Ty — T} )%argmaxA(J (n).
7

|
Proof of Theorem 3.1 Under Hy : ¢;(u) = ¢°(u), it follows

m Yy _ ¢0( )"‘&(U),
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forall t =1,...,T. We let

1< 1 &
= TZEIU Yi = ¢O(U) + fZé‘t(u)
t=1

denote the ECF under the restricted model and let

T; T;

7(U) 1 in'Y, 0
e et =" (u) +
A s i DN

denote the ECF of j-th regime under the unrestricted model, where {T} }Jle is the collection of break dates
under H 4. By definition,

FT(Tl,...,TM) = SSGRo—SSGRN[(Tl,...,TM)
M+1

:zz/

j=1 t= TJ 1+1

2
Y g ()|

o eiu/Yt _ 1;(U)(u)

M+1

> Z / “‘”(R) ‘¢§U)(U)’2—2Re{ei“’%(m(u)*}+2Re{eiU’Yt1L§.U>(u)*

j= ltT 1+1
M+1

~ 2 - 2 - - *
= Y@= [ ]+ [ ] = 2Re [ @i 0] W
=1
M+1 . )
= Y@= [ 30 - 5] Wds
=1
Under Hj, we have
M+1 1 T 1 T 2
Fr(ri,...rm) = (Tj—Tj,l)/ T Z st(u)—TZSt(u) W (u)du
j=1 e A A t=1
M+1 T 1 T 2

1 1
= ;(Tj—rj—l)/Rd Y11 Z ﬁ ;at(u) —ﬁggt(u) W (u)d

= . (L1 (u,rj) = Lo(u,rj-1)] — (rj — rj-1) L (u, D W(u)du,

1 ’f’j —’f’j,1 Rd

where we let Lp(u,r;) = T71/? ZtTi1 e¢(u). Define the following

M+1

-AI,T(TL ceey ’I“M) = Z ﬁ /U H,CT(U,TJ') — ET(U, T‘j_l)] — (’I“j — rj_l)/.’,T(u, 1)|2 W(u)du,
o
Ao (11, .smpyr) = Z _ [[Lr(u,r;) — Lr(u,rj-1)] — (r; —1j-1)Lr(u, 1)|2 W (u)du,

= Ty —Tj—1 Jye

13

u

}] W (u)du



Al(Tl,...

AQ(T‘l,...

arM)

aTM)

M+1 1
Z P—— /U [B(u, ) = Bu,r5-1)] = (rj = rj-1) B(u, D|* W (u)du,
0
> ——— [ Bu,ry) = Blu,rj1)] = (rj = rj—1) B(u, )[* W (u)du,

= Ty —Tj—1 Jue

where U is any compact subset of R% and U¢ is its complement set. Obviously, Frp(r1, ..., 7)) = Ay (1, mar)F
Ao 7(r1,...;rar). Furthermore, we denote F(rq,...,mar) = A1(r1, ..., rar) +A2(r1, ..., 7ar). Now, we show that
d
Sup{rl,.,,,rM} FT(TL (X33} TM) — Sup{rhm’rM} F(Tl, ceny TM).
Note that for any fixed constant ¢ > 0, and fixed collection of breaks {r1,...,ras} € I, there exists a
compact subset U that depend on ¢, such that

E [AQ’T(T17

7TM)]

IN

IN

1

Ty —Tj-1

WE

/( E[Lr(u,r;) — Ly(u,rj1)] = (rj — rj—1) Lo (u, 1) W (u)du
- :
M

1
> ry—1o0) / 2F Lo (u,r;) = Lo(u,mi-1)* + 2B |(r; — rj_1) Lo (u, 1)* W (u)du
=1 -

<

<.

2 2

1 T
Nii > ei(u)

M LT(rj—rj—1)]
W (u)du

1
QZ /UC E T‘(r— Z Et(u) + (’I"j — ’I"j_l)E

= i —Ti-1) o

2MC | W(u)du < ¢,
UC

where the last equality is by the stationarity condition in Assumption A.4*, and the second to last inequality
is by the mixing condition in Assumption A.1, the fact that |r; —r;_1| < 1 for all j, and the boundedness of
e¢(u). An analogous result holds for E [Ay(r1,...,7ar)]. Under Assumption A.4*, T=Y/2L(u,r;) = B(u,r;)
on U x [0, 1] for any compact subset U of R?. Thus, by the continuous mapping theorem, Air(r, . rm) =
Al(T‘l, ceey 7’1\/[).

Hence, for each fixed {ry,...,7asr},

d
FT(le ...,TM) — F(rl, ...,T‘]\J).

Now, we show tightness. Without loss generality, we consider M = 1. Let 0 < r; < s3 <1, and q¢ > 2,

it follows

E|FPr(s1) = Fr(r)l"

= F

42171 [(

1

81(]. - 81) Rd
2¢-1

s(1—s1)9

B| [ {1entus) = siLr 1) = 12rtr) = L)} W

|Lr(u,s1) — s1Lp(u, 1)|* W (u)du —

q
- - o 1 2
ri(1—ry) RdwT(“’”) 1L (u, D)[” W (u)du
q

q

S1 — 7”1)(81 +7r — 1) a
et e

/Rd \Lr(u, 1) — 11 Lo (u, 1)]? W (uw)du

= Zi(s1,m1) + Za2(s1,71), say.

14



Consider Z;(s1,71). By the Cauchy-Schwarz inequality,

[ {iertus) = s1Lot )P = () = ne(u 1)} W

/Rd Re {[Lr(u,s1) — Lr(u,m1) — (s1 — 1) Lo (u, V)] [Lr(u, s1) + Lo(u, 1) — (s1 +71)Lr(u, 1)]"} W(w)du

|:/]Rd L (u, 51) — Lo (u,m1) — (s1 — 1) Lo(u, 1) W(u)du] h

IA

1/2
xU |£T(u,31)+£T(u,r1)—(sl+r1)£T(u,1)|2W(u)du] .
Rd

Then, it follows

24-1

Zi(s1,71) < )qE{ {/Rd L (u,81) — Lop(u,r1) — (51— r1)Lp(u, 1)) W(u)du] "

si(1—s

q/2
x[ |£T(u,51)+£T(u,r1)—(81+7“1)£T(u,1)2W(u)du} }
]Rd

1/2

2q_1 - u, — (81— u 2 u)au !
< o (B[ [ 1ertus) - rtun) = - mertu D woad )
an 1/2
X (E { - |Lo(u,s1) + Lo (u,m1) — (51 +r1)£T(u,1)|2W(u)du] )
2q9—1 1/2
: u-)(E Rd£T<u781>—£T<W1>—<sl—n)ﬁT(u,l)r“qW(u)d“)

1/2
* (E /R L (u,51) + Lo (u,r1) = (s1+ 1) Lr(u, 1)[* W(u)du)

24—1
= ———T11(81,71)Z12(81,71),
ST(1—s1)0 11(s1,71)T12(s1,71)
where the second inequality is by the Cauchy-Schwarz inequality, and the last inequality is by Jensen’s
inequality. By stationarity,

B[ \Lr(u, s1) — Lo(u,r1) — (s1 — r1) Lp(u, 1) W (w)du
R

[T(s1-m1)] T “

= T—q/ E ee(u) — (s1 —Tl)zft(u) W (u)du
R4 t=1 t=1
[Ts—r)) [ T “

< 92a-1lp—q / E et (u) W(u)du+/ E|(s1 —Tl)ZEt(U) W (u)du

Rd t=1 R t=1
< 2%LIPC [T (sy — 1)]9 + 2297190 (s, — 1) 2T
< C(s1—m)Y,

where the second to last inequality is by Theorem 2 of Yokoyama (1980) and Assumption A.2. Hence,
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T11(s1,71) < C(s1—71)%2. By analogous arguments, given 0 < r; < s; < 1, we have sup;, ., Z12(s1,7m1) < C.
Finally, for Zs(s1,71), we have

q
E| | 1Lr(u,r) —riLru, )P Ww)du| < E|Lr(u,r1) — r1 Lo (u, 1)[* W (u)du
Rd R
< 22q—1/ E|£T(U,7"1)|2q W(u)du—|—22q_1rfq/ E‘ﬁT(u,l)Pq W(’u,)du
Ré Re
< 9%amlpTag(Try)T 4 229 Lp2epmaca
< C,

given 0 < r; < 1. Besides, given 0 < r; < s1 <1,

(s1—r)(s1+m —1
317‘1(1 — 51)(1 - 7’1)

)1
:| S C(Sl - Tl)q.
Combining the results, we have
E |FT(81) — FT(T1)|q < C(Sl — Tl)q/z.

By Theorem 15.6 of Billingsley (1968),
sup Fr(ry) 4 sup F(r1),
1 T1

when M = 1. When M > 1,

d
sup  Fr(ri,...rm) =  sup  F(ri,..ram),

{7‘1;~-77'1\/1} {T17...,T1\4}
where
M+1
1 2
F(ri,..,rym) = Z ﬁ/ \[B(u,r;) — B(u,rj-1)] — (r; —rj—1)B(u, 1)|” W(u)du

j=1 1 Jj—1 JR4

M+1 1

= Y [ 1Bt~ B P W
=1 ’I“] 7“]_1 R4

where B(u,r) = B(u,r) — rB(u, 1) is a generalized Brownian bridge. B

Proof of Theorem 3.2 Let {Tj}jyil be the specified collection of break dates under H,. By proof of
Theorem 3.1,

~ (7 - 2
Fr(ri,...tm) = (T; —Tj-1) /Rd ‘1/)]( )(u) - w(R)(u)’ W (u)du
j=1
M+1 1 1 T} r T 1 Tj-1 - T 2
_ iu'Y; J iu'Y; iu'Y; j—1 iu'Y;
= — ——= D) e - e W (u)du
j=1 TJ_TJl/Rd th—; th:; ﬁ; \/th:;

Let {T} ﬂ/fzol denote the collection of true breaks. Under Ha(ar) : ¥9(u) = ¢°(u) + arbi(u) for the k-th
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regime, k= 1,..., M° 4+ 1, then
Y = ¢0u) + arbi(u) + i (u),

fort =T | +1,..,T2, and k = 1,..., M® + 1. Given ap = T~'/2, it follows

S

l T

WYe TJ ! a u) +e¢(u — a u) + e (u
= 5 T;t z;ﬂ[ 70k (u) + €0(u)] + t_%jﬂ[ 10131 (1) + & (u)

8-

l

D ) =)o )0k( )+(7"j—7"?)95+1(u)]

k=1

= rj\/Tgbo )+

0 Ty 0 T

l _ 0o _
Tk Tk—1 Tip1 — 1

+ 1D - > St(u)+7o - Y ew)|,
k=1 \/Tk TP 1 o= =Ty _,+1 \/Tl+1 T4 =T+

0 0
where 77 <r; <r/,, and

T MO+1 MO+1 /1"2 —rd_, Ty
AT = VTP 3 (gt by 3 Sme e 3 )
t=1 k=1 k=1 T, =Ty, t=TQ_,+1
By Assumption A.4,
T} T
TZ!uth Z “YtéGurj)JrF(urJ)
where
l re.— T‘O M0+1
G(u,7;) lz — 1) PBW (u, 1) + (), —))/2BEY (u oj_loﬂ —ry | > (= )PBW(u, 1)
k=1 "N k=1
and
l MO+1
L(u,r;) [Z h = Th—1)0k(w) + (1 —T?)9l+1(u)] =i | D0 0 =)o )0k(w)
k=1 k=1

Note that I'(u,r;) is continuous for r; and [, |I‘(u,rj)\2W(u)du < oo for each j. Given Assumptions
A.1-A .4, by analogous arguments to those in the proof of Theorem 3.1,

sup Fr(ri,...,rm) 4 sup FA(rl,...,rM)7
{7’17---77‘1&[}61_[5 {T17...,T1\/[}EHE
where
M+1 1
FAGy o) = Y ———— | |G (u,ry) = Gu,rj—1) + T(u,r5) = D(u,mi—1) [P W (u)du.

= Ty —Tj—1 Jrd
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Proof of Theorem 3.3 Let the reconstructed sample obtained via the moving block bootstrap be {Y7*, Y5, ..., Y/},
where Y;* =Y}, for some 1 <t¢; <T. Under Hy of no structural breaks,

YT = o (u) 4 &7 (u),

where ¢o(u) = E(e™Y*) is the time-invariant CF of Y; for all ¢. It implies that resampling Y; is equivalent
to resampling the generalized error function e;(u) under Hy. Consider the following joint test statistic based
on the bootstrap sample

Fr(ri,...,ma) = SSGRy — SSGR},
2
B ST MY NN R AR
j=1 e | T = Tjm s=T; 141 T s=1
M+1 1 T 1 L 2
_ L X * _ *
= > @-T) [ X s - 5 e Wadn
j=1 s=T; _1+1 s=1
where
T 1 I 2
SSGR; > / Y = N YT W (u)du,
t=1 7/ R? T
and
2
an . 1 L
SSGRY, = 3 z / B S| Wu)du,
J=1 t=T;_1+1 e e
By analogous steps as in the proof of Theorem 3.1, we have
M41 1 1 T; - T 1 Tj-1 r T 2
Fr(riy.,ra) = 7/ — Y gu)— L) |- |—= ef(u) — 2= ef(u)|| W(u)du.

Let E*[¢*(u)] = E*[T~! EZ;I g7 (u)] be the expectation of the sample average of £} (u) conditioning on the
observable sample, we have

1 Tj * = 1 Tj * * [ = Tj = * * [ =%
ﬁé%( Tz:: - T g7 (u) — E* [ (u)]] — 7;[&5 (u) = E*[" (u)]]
= £T(u’ TJ) T‘j‘CT(% 1>7
where
1 &
L (u,75) VT 2 [e7 (u) — E*[E"(u)]]

18



Then, it follows
MA+1
* 1 * * * * 2
Fi(ri, ) = ) — Rd|[5T(u,Tj)*7‘jﬁT(u,1)]*[ET(u,T’j—l)*Tj—lﬁT(le)H W (u)du.
j=1 J J—

Note that proof of Theorem 3.1 implies

M+1
1
FT(Tl, ...,TM) = E 77“- P . |[£T(u,7“j) - erT(u, 1)] - [ﬁT(u, ’I“j_l) - Tj_l,CT(u, 1)“2 W(u)du,
j=1 J—ti= R

where

Lp(u,r;) T_l/QZ u) = B(u,r;j)

under Assumption A.4*. To show the validity of the bootstrap test statistic, it suffices to show that
L3 (u,r5) = B(u,rj),

in probability over U x [0, 1]. We first establish (a) the convergence of L%(u,r;) for each fixed u € U and
then show that (b) £7(u,r;) is stochastically equicontinuous in U.

We use Theorem 2 of Calhoun (2018) to establish (a). By Assumption A.1(ii) and sup,, [¢®* Y| = 1,
for each fixed u € U, &,(u) = Y — ¢g(u) is Lo Near-Epoch-Dependent process of size —1/2 since the
process {Y;} is strong mixing with mixing coefficient a(s) = O(s~72) for some ¢ > 2. Hence, condition 1
in Theorem 2 of Calhoun (2018) is satisfied. Note that E[e;(u)] = 0, and &,(u) is uniformly L, bounded.
Besides,

VT

— Q(u,u)l/Q,

1 T
T;&(U)

under Assumption A.4*. Then, conditions 2 and 3 in Theorem 2 of Calhoun (2018) are satisfied. Finally,
condition 4 in Theorem 2 of Calhoun (2018) holds under Assumption A.6. Furthermore,

T, Ty
ZZ cov [g¢(u), es(u)] = m;Q(u, u)

under Assumption A.4*. Then, by Theorem 2 of Calhoun (2018),

’ﬂ \

‘C}(uarj) =" B(uvrj)v

for each fixed u € U.
Now, we show (b). Note that

T —1
PEW = >~ gy 2 (1 - ZT) lex(u) + er—pen ()]

= Z u) + Op(IrT 7).
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Then Ly (u,ry) = T2 Y2 e (u) — 1T~V 0L &4(u) + Op(IrT—172).
Let D, s be an open ball in U centered at u such that |jv —u|| < ¢ for all v € D,, 5. By the mean value
theorem,

T T
D) =g ()] = L@ (u—v)
t=1 t=1
for some @ lying in between u and v, where
d * s ! * s ! *
Tt(u) _ Eé(u) —i {Y—t*elu Y _ B <Y;*61u Y, )}
]

We note that u can depend on j. Then

T
1 J
lim limsup P [sup sup |— » [ef(u) —e;(v)]| > €
=0 70 u€UveED,, s T i—1
- o
= limlimsup P |sup sup |—= » Tu(@)(u—v)| >e€
=0 7o u€UveED,, s T =1
- .
< limlimsup P |sup ||—= T (a)|| >¢€/d
=0 T—oo ael \/th::l o(®) /

= O’

for any € > 0, where the last equality holds since

T T;
1 J B 1 J . ia Y . Y
sup ||— » Y (a)|| =sup||—= [Y et —E(Y e t)} = 0p(1),
aeU || VT ; aev |[VT ; ! !

under the mixing condition and moment restriction in Assumptions A.1(ii) and A.6(ii). Analogous results
can be obtained for ro_l/Q EtT:l g¢(u). Then, it follows T_l/QE}(u,rj) =* B(u,r;), in probability for
each j. Given U x [0, 1] is a compact set, by the continuous mapping theorem, and analogous arguments in
the proof of Theorem 3.1,

F%(?“l, ...,rM) :>* F(rl, ...77“]\/]),

in probability.

Next, we show that the proposed MBB is asymptotically valid under H,. Let ¢¢(u) = E(ei“/Y‘) denote
the true time-varying CF and ¢} (u) = E(ei*’Y?") be the CF of Y;* based on the bootstrap sample. Given
Y = ¥ (u) + e (u) under H,, we have

Fji(r1,...tia) = SSGR{ — SSGR},
M+1 1 Tj 1 T 2
= P - W'Yy 4 i/ Y
— Z (T; TJ—1)/Rd T, Z e - Ze W (u)du
Jj=1 S:Tj71+1 s=1
M+1 1 T; ) T 2
< 2 Z (Tj — Tj-1) /R P S er(u) - - S ex(u)| W(u)du
j=1 s=T;j_1+1 s=1

20



M+1

TA
2O -T) [ 3 e - 3 26t W

T s=Tj_1+1 s=1
= 27?,1(7“17...77‘]%)+2R2(7‘17...77‘]V[), say.

By the mixing condition in Assumption A.1(ii) and the analogous proof in Lemma A.1l, we can show
SUp,, .y [R1(r15 - 7ar)| = Op(1). We consider Ra(ry, ..., 7ar). By analogous steps, we have

2

M+1 T T
1 " 1 .
Ralrsseearss) = 30 (T = T5m) e X e -5 Y eiw)] W
j=1 s=T; _1+1 s=1
M+1 T T Tj—1 T 2
- — [ - LS| - | 7= 3 et - 2 st | Wiadu
° T; —Tj—1 JRrd T — g T = t \/T — t T = t
j=1 t=1 t=1 t=1 t=1
2

M+1 1 T; r; T

IA
o
=
<
5|
.
|
—
%\
a

M+1 1 1 T 1 ry T
+2 ; p—— /]R NP2 {7 (u) — E*[¢*(w)]} — T ;{@ (u) = E*[p* ()]} || W(u)du
M+1 1
=2y — INT(u rj) = N (u, 1) W (w)du
= Ty —Tj-1
M+1
+2 Z W;(u,rj_l) — i NG (u, )P W (w)du,
Ty —Tj-1

where E*[¢*(u)] = E*[T~! Zthl ¢¥(u)] be the expectation of the sample average of ¢} (u) conditioning
on the observable sample, and Nj(u,r;) = T-Y23°/7, {¢7(u) — E*[¢*(u)]}. Let X;(u) = ¢(u) +--- +
®itip—1(u) for the i-th block, i = 1,..., N, and A} (u) = ¢?k71)lT+1( u)+- -+ ¢y, (u) for the k-th resampled
block, £ = 1,...,K. Conditioning on the data, X7 (u), X3 (u), ..., X% (u) are independent and identically
distributed. Given T' = Ip K, and N =T — lp + 1, then it follows

llrKr;] IrK
1
B Wilur)] = VTE | g ¢:<u>] VEE | Dbl ]
7 LK

JJ \f
TJ * *
E E*[x7(
IrK

N \/77"1 1 N
Z O IrK ZNZXZ

k=1 i=1
\/Tr] N VT &
= O7
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for all {rj}jM:TI. And

2 -

* 1 Tj * * [ * o * ]' Tj *
E ﬁ;{ét(U)*E [0*(W]}| = var 7;@(@
[K7r;] ]
= pvar’ > X ()
k=1

= Op(ly).

Hence, N (u,r;) = Op+ (l;/ %) for all u and r;. The uniform results can be established in a similar way as in
the proof of Theorem 3.1. Then, we have that under H 4, the bootstrap joint test statistic sup £} = Op+(I7).
Note that Theorem 3.2 implies that our test statistic

SupFT(Tl,...,TM) = SSGRO—SSGRM(fl,,f’M)
= OP(TG%)a

under H4(ar). Hence, if Ta?l;' — co, we have that P*(sup F > sup F*) — 1 as T — occ. B

Proof of Theorem 4.1 Under the null hypothesis of M breaks, we let D(T},T)) be the SSGR using the
data within the segment specified by [T; + 1,Tj] for 0 < j < k < M + 1. Then it is obvious that

M+1
SSGRu(TY, ... Tay) = > D(TY_y, T),
k=1
and
j—1 M+1
SSGRurg1 (T0, ., T, 715, Thy) = > D(TR_, TY) + D(T)_,7) + D(r, T)) + Y D(TY_,,T}),
k=1 k=j+1

for some 1 < 7 < M. We note that

SSGRar41 (17, ... Ty, 7TV, ., TSy) = SSGRusgr (1,17, ..., Ty
M+1

= D(]-vT) +D(Ta Tlo) + Z D(Tlelleg)a
k=2

when j =1, and

SSGRar41 (17, - T}y, 7 T3, Ty SSGRar41 (17, ..., T3y, 7)

M
= ZD(TIS—DTI?)+D(T1(\)/17T)+D(TvT)7
k=1
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when j = M. Let

FR(M +1|M) = SSGRy (T7,...Tf) — i, ol SSGRup, (T, o, Ty, 7, IO, . TS
Ry [SSGRuys (TP, ..., Tf;) — SSGRurg1 (TY, - TPy, 7, TP, Ty )]
= s DT - DT - DT

where

A = {r e T+ (T~ T e <7< TP — [(TP) — TP 1)el},

for some arbitrarily small € > 0. It is straightforward to see that

Slll\lg [D(T]Q—lv T_]O) - D(T]Q—h T) - D(T7 TJO)]
TEAS
is equivalent to the sup-F' test statistic in Theorem 3.1 in a subsample specified by [TJQ_l, TJO] with M =1

in the alternative hypothesis.
It follows

D(TjoflvTjO) - D(T](')fla T) - D(Tv TJO)

0
T; -

1 1
= (T — T]Q_l) /d 110_70 Z €t(u) - j Z Et(u) W(u)du
RO I=l4=10_ 11 i1 o701
70 0 2
1 ! 1 g
0
+HT7 = 7) /Rd W Z er(u) — T+ Z er(uw)| W(u)du.

t=T7 ,+1 J t=7+1

—T9 _ _
Let r = ;-(3777{811 Given Assumption A.4, we have for ¢t € [TJQ_l, TJQ],
J J—

T+ (19 -T0_,)r)

; Z er(u) = ; Z et(u) = B(j)(u,r).

0 _ 70 0 _ 70
17 =T 1 =1y 11 7 =T =1+

T 2 ’
1 T—=T7 4 J T
T T -10 /d oo O, al= D e(w)] Wudu
ji—1 JR 7 Jj—1 t:TJ[.LlJ,-l t:TJ@LlJ,-l
2
1 T — 7 Z7 7
J
+T]0—T/Rd T, S aw) = Y e(w)| W(u)du
t:TJQ_1+1 t=7+1
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0 2

1 / J T
= 77070 | T Z ei(u) — Z ge(u)| Wu)du
\_T(Tj Tj—1)J Rd =T 41 =T +1
1 Tj i TJO T 2
+ (1= ")(T0 —T° )] /d (1=r) Z er(u) — Z e¢(u) — Z ee(u) || W(u)du
J Jj—1 R =T | +1 [t=T2_,+1 =T, +1
TO i 2
1
- / er(u) - —F—— Z e(u)| Wiu)du
e \/ﬁt T0 1+ \/ﬁt:@{ﬁﬂ
TO 2
1 T
/ () - ——— 3 eyw)| W(wdu
1 — 7 JRrd ] e TO 41 TJQ — TJQ_l =19 41

, , 2
B(J)(u,r) —rBY(u, 1)‘ W (u)du.

~ 7’(11— = /R

It follows that

|BY (u,r) — rBY (u, 1)’2
r(l—r)

d
sup [D(TO 17T]0) - D((T]Q—DT) - D(Ta 11]0)] — sup /]Rd

7—6./\?_’6 e<r<l—e

W (u)du.

Hence, we have

FA(M +1|M) = e 8111\1? [D(T 17TJ0) D(T}_y,7) — D(r,T))]
€

B9 (u,r 2
%4 max sup / MW(u)du,
1<GSMAL c<p<1—¢ JRd 7”(1 — 7‘)

where BY)(u,7) = BU (u,r) — rBY(u,1) is a generalized Brownian bridge under the j-th subsample,
j=1,..,M 4 1. Under the null hypothesis, Theorem 2.2 indicates that #; = 79 + Op(T~"). Based on
this result, we know the above equation also holds with 7} ; and T} replaced by Tj_1 and Tj, respectively.
Hence, the limiting distribution of Fr(M + 1|M) is the same as F2(M + 1|M). B

Proof of Theorem 4.2 Let M = {1,2,..., Mi,ax}. We divide M into three subsets: Mg = {M € M :
M=MY} M_={MeM:M<M} and My ={M € M: M > M°}. Mo, M_, and M, denote the
subsets of M which correctly estimate, under-estimate, and over-estimate the true number of breaks. We
prove the theorem by showing that neither the under-fitted model nor the over-fitted model can minimize
the information criterion function, i.e., P(minyepm_umy) IC(M) > IC(M°)) — 1 as T — oo, where

IC(M) = [62(M)] + pr(M +1),

with 62(M) = T~1SSGRs (71, ..., Far)-
By Theorems 2.1-2.3, under Assumption A.7, it immediately follows that

IC(M°) =In [62(M")] + pr(M° + 1)
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_1 K 'y 2 2 ]
W[5 5 [esol

_1 MoJrl Tgl') 2 T
=1In 7 Z ‘/Rd RUSE —qp?(u)‘ W(u)du| 4+ op(1)

L j— m

1 & )
I T;/R ey ()2 W () dus

W(u)du| + o(1)

+ Op(l),

where e;(u) is as defined in the proof of Theorem 2.1. We now consider the cases of under- and over-fitted
models separately.

When the model is under-fitted, i.e., M < M°, Lemma A.5 implies that the estimated break fractions
{71, ...,7p} are consistent for M breaks in the collection of true break fractions {r? j]‘/iol. Then there must
exist M? — M break fractions in {r? j]‘/iol that cannot be identified.

Without loss of generality, we assume the j-th break 7’9 is not consistently estimated. Then with some
positive probability 0 < ¢y < 1 there exists an x > 0 such that no estimated break fraction falls in the interval

[T(r9 — k), T(r9 + £)]. Suppose this interval is classified into the k-th regime, i.e., Ty < T — |kT|+1 <

TjO + |KT| < Tj. Then, following the proof of Lemma A.4, we have
1 a 1 a 2
. 2 2 0 0
T/Rd;h(”)' W (u)du > T/Rd;"“'““)' Wdu 6 |08 = 0 (0] W(du+ op(),
for any M < M°, where § = %H. It follows

min [C(M)—IC (M°) min
MeM_ MeM_

[ 2 ) d M
n T/Rd;kt(uﬂ W(u)du | + pr(M + 1)

[ 2 3 2 d MO
n T/}R Z|z—:t(u)| W (u)du | + pr(M° + 1) 4+ op(1)

S

0 Jra W’?(U) - ?+1(u)|2 W (u)du
L fea Sty lee @) W (u)du

Therefore, for any positive probability 0 < ¢y < 1, there exists a kK = 26 such that

v

In |1+ +op(1)

P( min IC’(M)—IC(MO)>A> = ¢,

MeM_

. . 8 fua |90 (w) =40, (w)| W (w)du
for T sufficiently large, where 0 < A < lim7_,4 In {1 + T ST e (@) P W (a)da

] . Then by Assumption
A.7 and Slutsky Lemma, we have

: 0
P(Mrgﬂi IC(M) > IC(M")) — 1,

as T — oo.
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When the model is over-fitted, by Assumption A.7 and Lemma A.6, we have

P( min IC(M) > IC(MO)>

MeMy

= P( min [In(6°
MeMy

—1lasT — oo,

given M > M. Therefore, we have proved that

min
MeM_ UM+

B Proofs of Technical Lemmas

(M) /5% + Tpr(01 = 31%)] > 0

IC(M) > IC(M0)> —lasT — <.

Proof of Lemma A.1 Given M is a finite number, without loss of generality, we let j = 1. By the definition

of e4(u), we have

T
) > ei(u)

W (u)du

The second inequality is due to the Davydov’s inequality and the fact that ry

holds since

IN

IA

<

<

(q 2)/a W (u)du

T, Ty
[ 3303 Re (Blewtwe "]} Wa)du
Rd s=1t=1
59 o) NCERED

W'Y, 'Y, ‘
— cov (e Tt e W (u)du
T = Jra
™ T
iu'Y:

s (s, 1) T 22

8 N@—2)/a W(w)d
1 lgooa() e (u)du

C.

sup max |e™ Yt|q =1
weRrd 1S<T

Rd

=T, /T. The second inequality

for any ¢ > 2. And the last inequality holds due to Assumption A.1(ii) and Assumption A.2. Hence, by the

Markov inequality,

du—Op( )

Proof of Lemma A.2 Without loss of generality, we consider j = 1. Let

Kr(n)

vr ZWJT J eru )‘2 W(u)du} v ,

= [
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we want to show that sup,co ¢ [K7(n)])? = Op(1). Given [0,C] is compact set, it suffices to show (i)
Kr(n) = Op(1) for each fixed n; and (ii) Kr(n) is asymptotically tight.

For (i), by the definition of &;(u), for each n € [0, C],
2t [

B = o [ B S alw| Wds

t=1

\.U'UT J |.77'UT ]

= d [0S Re(Blawe ) Wy

s=1 t=1

[nvz?] [nvz?] _

< v Z Z / cov Y el Y)‘W(u)du
o] vz

< 8 su max elu'Ye *lv (s —1t) (a=2)/q W(u)du
< s s u) D [ W
< 8y ) e [ W (u)du

l=—0c0 R4
< C,

by analogous arguments in the proof of Lemma A.1. Hence, by the Markov inequality,

[ () = Op(1),

for any fixed 7.
Now, we show (ii). Without loss of generality, consider 0 < 177 < 12 < C. By the Minkowski inequality,

1/2
lnavg?] 2

|Kr(n2) — Kr(m)| < /Rd vp Z ec(u)| W(u)du

t=|mvg?|+1

Let g > 2, for any € > 0,

2
Ln2vy?] ? g

P(|Kr(n2) — Kr(m)| >¢) < P / v E ee(u)| Wu)du > el
R4 —2
t:LnlvT J+1
L( vp?] 2
UTZ 772 "71 T t(u)‘

eq

W(u)du} "

B fu

<

b

where the last equality is by stationarity and the Markov inequality. By Jensen’s inequality,

/2
(2 —m)v7?] ? ! 72 —m)v7] ‘

E /]Rd v Z et(w)| W(uw)du < vﬁ}/RdE Z et(u)| W(u)du

t=1 t=1
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_ 2
< 1€ [ — m)vp?]Y
= Clnp2 —m|"?,

where the last equality is by Theorem 2 of Yokoyama (1980) given the mixing condition in Assumption
A1(ii), sup,cpa [e¢(u)| < C, and the integrability of W (u) in Assumption A.2. Hence, by Theorem 15.6 of
Billingsley (1968), Kr(n) is tight. Thus, (ii) is established. It follows

sup Kr(n) = Op(1).
n€l0,C]

That completes the proof. B

Proof of Lemma A.3 By the definition of dy(u) = ¥y (u) — P9(u), for t € [Th_1 4 1,T%] N [T)_, +1,T7]
with k,j=1,2,...,M° +1,

, Re {at(u)ﬁk(u)*} W(u)du

¢ M°+1 T
W RO DY O |

A R
k=1 =Ty_,+1

| Mo g’: /
—= Re [g¢(u)h) (u)*] W (u)du
T J=1 =79 | +1 Re t
= @1 Q2

Consider Q;. By the definition of ¥y (u),

11v1°+1 Ty 1 Tk
@ = 7> > [ redaw o X @@ra)| W

N R4
k=1 ¢=Tp_1+1

MO+1 Ty 1 T

1 0
= T Z ‘/Rd Re Z Et(u) m Z ¢t (U) W(U)du
k=1 t=Th_1+1 t=Tk_1+1
R 2
1 MO+1 1 Ty
+ > o / > aw)| W(w)du
k=1 Tk o Tk_l Re t:Tk,1+1
= Qu + Qi
where ¢9(u) = E(e'*'Y*). By the Cauchy-Schwarz inequality,
R 5 1/2 R 5 1/2
1 M°+1 T 1 T
< = - 0
Qul < 73 [ 3w W] | [ e 3 6] W
k=1 t=Th_1+1 t=Th_1+1
5 1/2 A 5 1/2
1 MO+1 1 T 1 Ty
< =3 L] Y aw| W] | [ e 3 (]| W
k=1 R t=Tk_1+1 R ke kol t=Ty_1+1
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where the last equality holds by Lemma A.1 and the fact that

1 T 1 T
B — (ZSO u S S — E €iu,Yt =1.
Ty — Ty 4 Z |67 () Ty —Thu Z
t=Tk_1+1 t=Tk_1+1

Analogously, Q12 = Op(T~!) by Lemma A.1. Hence, Q, = Op(T~/?). Consider Qs.

0
MO+1 T

Qr = %Z 3 /]R e [eu(w)y ()] W ()

J=1 4=TP | +1

| Mo+ 1 T3

= — Z / Re{ |— Z er(u) | 99 (u)* 3 W(u)du
VT j=1 JR¢ ﬁt:TJ{lH

= Op(TY?),

by Assumption A.4. Hence, we establish the desired result. H

Proof of Lemma A .4 If there exists a break, say 7"?, which is not consistently estimated, then for some
positive probability 0 < ¢y < 1, there exists a 7 > 0 such that no estimated break dates fall into the interval
[TY — |KT| 4+ 1,T) + |£T]] for a subsequence of T'. Suppose this interval is classified into the k-th regime,

ie, Th_1 < TJQ —|kT]+1< T]Q + |kT| < T}, then

0y () () — P9 (u), fort € [TY — |sT| + 1,TJQ] ;
t(u) = . .
Vp(u) =9 (u), forte [T +1,T) + |sT]].

By the definition of dy,

T
o DI ICIRGO

t=1
0
T+ | kT

= D S IR

—70
t=T9— KT |+1

1 77 L Tl
=7 e (w)]* W () + 5 s ()] W (w)du

T /Rd tTJQsz:iTJ+1 T /Rd t%;ﬂ

) T? A ) ) IO+ KT ) ,
[ X |- W g [ Y i - o] W

t=T70 kT |+1 t=T0+1
. 2 . 9

- T/Rd UW(U) - ¢.?(u)’ - ‘1/Jk(u) - qu?ﬂ(u)‘ ] W (u)du

1
> o [ 8t = 8000 W

by the triangle inequality. Define § = %77, we then get the desired result. B

Proof of Lemma A.5 Without loss of generality, we assume that the true number of breaks is M°? = 2
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and the corresponding break fractions are 7 and r3, such that r{ < r9. Suppose (2.2) is solved by setting
the number of breaks at M = 1. Denoting the estimated break fractions by 7, we want to show that 7 is
consistent for r{ or r9. Let r € (¢,1 — ¢), consider the following process

Sr(r) = ZSSGRGT)

T
;;AﬁWMWWMm

where & (u,r) = Yt — ¢y (u,r) for with ¢y (u,r) = P s Tk - Zt T 141 ¢i“'Y+ being the ECF for t €
[Tk—1,Ty], k = 1,2. Following the convention that Ty = 0 and Ty = T, we note that T} = |1'r].

Let dy(u,r) = g (u,r) — 99 (u) for t € [Ty—1 + 1, Te] N [T}, + l,T]O] with k= 1,2 and j = 1,2,3. Then
it follows

2
W (u)du

ee(u) — Jt(u, T)

T
s = 72

= TZ;/ les(w)|> W (uw)du + — Z/Rd (u, )| W(u)du
5 I
_T;/Rd Re [Q( Vg (u, ) } W (u)du
Ly 2 (1) 2
= 23 [l Weadu + 500) - 2580),
where
S}l) =7 Z/Rd (u,r)| W(u)du,
and

5(2) Z/ Re w)dy (u, r)* } W (u)du.
Rd

Apparently, the first term thl Jga |e(w)|* W (u)du does not dependent on 7. Then, it suffices to
consider S(Tl)(r) and S(TQ)(T).
We first show that SFSFQ) (r)=op(1) for all r € (¢,1 —¢).

SOy = li Re [e(u)ds ()] W (u)du
T R

= *Z Z/Re ee(u @/}kur)}W(u)du

k=1t=T}_

ZZ/M&WH<>

Jj=lt=1) |

= Qi(r) + Qq, say.
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Following analogous treatment in the proof of Lemma A.3, we have Q1 (r) = Op(T‘l/Q) forall r € (e,1—¢)
and Q2 = Op(T~'/?). Thus, 5(2)( )=op(1) for all r € (¢,1 —¢).
0 ~
Now, we consider S( ( ) When r = 79, we have ¢ (u,79) = ¢{(u) + 5 ST ei(u), and o (u, r?) =
1

T W/ 7T .
%ﬂ Zt=T{)+1 elu'Y: T TU 1/12( )+ T_Ti) V9(u) + m Zt:T{)-s-l g¢(u). Then, it follows

T
Sél)(r(l)) ?Z/ (u,7?) ’2 W (u)du
- L[ \wlun) W) +<T2°—TP)Wz(u,r?)—w3<u>12+<T—T§>Mzw,r?)—wg(u)ﬂ W (u)du
2 2

0 T

_ /{ Tlozgt #0378 | T3 [ - vdw) Z
T 2
+<1—r3>€3 2L [vs) - w&m]w%ﬂ Y aw }Ww)du
t=TP+1

- LD ) — v -+ on(),

where the last equality is due to Assumption A.4(ii). Analogously, when r = 9, we can show that

TO ’I"O _ ,,,0
$909) = L [ o) - 0§ PW ()du + on(1),

r

Without loss of generality, we assume
0

(828 ) — w ] < 2 o) — . (B.1)

1—7“1 Ty

That implies that r{ is the asymptotic minimizer for St (r) relatively to 7J. Now we divide the set (e, 1 —¢)
into three subsets (e,9], (r{,73), and [r§,1 —¢).

When r € (e,79], Ty < T?. Tt follows ¥y (u, ) = w?(u)—&—% EtTél e¢(u), and ¢y (u, ) = e T1 Zt - elu'Yy _
O(u) + oI (u) + 22y (u) + T ZtT=T1+1 e¢(u). Then, we have

Sr(r) — Sr(r})
= 570 =57 09) + op(1)

_ %/R [n [ (,7) —wg)(u)fﬂT{)—Tl) [, ) = ()

‘ 2

g \zz?zm,r) - w8<u>\2 7 =19 [iatier) = (]| Wi

= / [69() — () PW (u)du + 0p(1)
Ty 0 T 2
- /. lew (=1 ffp Lt + Z - Tygw+ T Tyga + T_lTlt_;ft(u)
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0 0 0 T
08 =) |t + L ) + ) + g 3 el
Lo | =T, T9 — T1 1 d ’ S
-9 | Bty + BT + B Tpy 4 1o 3 ] | W
_(1_7'8)(T(2)_7'(1)) 0/, N\ _ 2 w4 o
AT [ ) — g W () du + op(1)
70 r0 2
-/, [(r?—r) I () — 9] + 2 [9d(u) — 03]
0 —r —7r9 2
08— o) | ) — v80)] + -2 [uw) — wB(w)]
’I"O T 7‘0*7’ 2
= P Bt - ] + 7 00 - ]| wia
=D ) — 300 wdu + o (1)
B 1 —=rH(rd —r) (1 ) (rd 2
= [ AR ot - g+ R g - ug)
7"0—7" —TO
2T o) - )] () - )] }W<u>du
N (rd —r?) 9
e / [0 (u) — U)W () + 0p(1)
e LB :
7"0—7'
20T o)~y [ue — )] } W (w)du + op(1)
2 s [ =Dt — u8] + (0 - 8 - sl Wdu 2 0

for distinct (), ¥9(u), 9§ (u) and nonnegative W (u).
For r € [r9,1 — €), by symmetry, we have limp_,o [S7(r) — S7(r9)] > 0 by analogous derviations as
above. Then, by (B.1),

Thﬁn})o [ST(T) —ST(rl)} = hm [ST( ) — ST(T2)} + hm [ST(rg) —ST(r?)]
>0,

for all r € [r3,1 —¢).
For r € (r?,79), by tedious but analogous derivation,

7"0 2 7“0 -Tr _7"0 2
Sr(r) — Sr(r) = / d [1( D ) - uha)* + (1)# U (u) — v ()| W ()
1 — T2 7“2 7"1 / |,(/}2 ( )du + Op(l)
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)1 —r5)°
)

) (r —rf) 2 (r—rf )
:/Rd [17«1|¢?<“>—w3<“>| Rl e |w8<u>—w§<u>1]w<u)du+oP<1)

(1—r7)
= oD 2 ) - e - U ) — w80l | Wwdu-+op)
L IEN R = bt M
G _:((1)1)?(7“19)_ 3) {1 _ :&;j?}ﬂ /R |02 (1s) — () W (w)du + 0p (1)
RO Bt ) = o0 W wda+ o)
» (1= E)ﬁlrz)ﬁ)gﬂ%)— r) /Rd 09w — () |> W (w)du > 0,

where the first inequality is by (B.1) and the last one is by r € (r{,r9). Therefore, we have shown that Sz ()
has a unique asymptotic global minimum at 7 under (B.1). Besides, glven 7 is the global minimizer for
St(r), we have Sy () < ST(rl) for all T. Thus, and the consistency of # = 11 /T 5 r? holds. Analogously,
we can show that 7 = Ty /T % rJ if we assume that rJ is an asymptotic minimizer for Sp(r) relatively to
r9. We note that the proof for M > 2 and M > 1 is virtually quite similar, but much more tedious. For
space, we neglect it. l

Proof of Lemma A.6 When M > MY, following the proof of Theorem 2.1, we can show that the collection
{fk}i”:l contains at least MY distinct estimated break fractions, say 7y, < -+ < Pk, Such that 7y, — 7"? =
Op(T71) for j =1,2,..., M°, where {kj}jMzgl is a subset of {k}1L,.

Let 62(M) = T='SSGR; (1, ..., Par), then

M+1 Ty

CDIDY

k=1 4= _1+1 R
M+1
S st
k=1
where )y, (u) = o 1jjk—1 Z;f:ki“k,l-u e is the feasible ECF of V; for t € [Ty_; + 1,T}] and
1
~2 _ lu 'Yz
san=1 3 [l = o] wiwa (B2

t=T)_1+1

Consider the break fractions 7, < --- < #,,, such that 7, —r) = Op(T~") for j = 1,2,..., M°. Note
that they divide the sample into M° + 1 segments, the j-th of which is [Tkrl +1, Tkj], forj=1,..,M°+1.
Here, we let kg = 0, and kppoy; = M + 1. Following the convention, it follows Tko =T, = 0, and
TkMO+1 Ty =T.

It is obvious that each interval [T}, , 4 1,7};] can contain L; sub-intervals specified by 7, , <
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Tyj_y+1° < Tg;—1 < Tk, where L; > 1. Then, we have

such that kj_; + L; = kj for L; > land j =1,..,M°+1
Now, consider the SSGR under MY breaks.

G2(M°) = lSSGR(MO)
MO+1
= Z > Y —ahy(u)| W (u)du,
=1 t T 1+1/Rd ‘

where {T;}2] is the collection of estimated breaks and v (u) is the feasible ECF given {7;}*. Denote

RS [ e =] wia (B.3)
]Rd
t=T;_1+1
Then
MO+1 L; i
(M) — 6> (M) = Y |F(Mo) =Y 67 (M)
j=1 =1 ]
MO41 [ L; ]
= > ¢ Z&J (M| +0p(T7h,
i=1 | =1 |

where ¢?(Mj) and 6,%7_1+I(M) are defined as (B.2) and (B.3) with each Tk and Tj replaced by the cor-
responding true break date T]Q for j = 1,..., MY . The last equality holds since T, — r = Op(T™ 1) for
the estimated break fractions {7y, };Viol under M breaks and 7; — r) = Op(T~") for the estimated break
fractions {7; }jj‘/iol under MY breaks.

Now, it remains to show

2357ﬁl =O0p(T7Y).

Consider the j-th segment specified by the true break dates [Tjo_l + 1, T]Q], then

5?(M0)=% Z /Rd

t=T) | +1

iu'Yy wO ) () u,

Given

Ve = g(u) + 24(u),

for t € [Tjoq + 1,T]Q]. Obviously, TGJZ(MO) is equivalent to the SSGR for a sample with no breaks, and
T ZILZJ 1 5,2%_71 41 is equivalent to the SSGR by setting the number of breaks at L7 for that sample. Following
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analogous arguments in the proof of Theorem 3.1, T §J-2(Mo) -T Ele’l &,%j_l 41 is equivalent to the sup-F test
in Theorem 3.1. Thus,

Lj
G (Mo) =) 6%, =Op(T7),
1=1
for all j =1, ..., M°. Therefore,
5%(Mo) — 6*(M) = Op(T™),

for all M? < M < M,,ax, where My, . is a finite integer. W

C Additional Results

As mentioned in the paper, the trimodality phenomenon in the finite sample theory exists in our estimation
for break fractions. When the considered DGPs have a small signal-to-noise ratio, Figure C.1 provides the
histograms of estimated break fractions under DGPs.P1 and P2. We decrease the break size from 1 to 0.5
in mean under DGP.P1 and the break size from 2 to 1.5 in variance under DGP.P2, and the trimodality
appears corresponding histograms when the sample size is small.

Table C.1 shows the effect of the penalty coefficients on the performance of our IC. We provide the
results of our IC with the penalty coefficient ¢, = 1,1.5, and 2, under DGPs.P1-P5. Tables C.2 and C3
evaluate the impact of weighting functions on the finite sample power of our test. We report the empirical
rejection rates of our test under DGPs.P1-P5 with different values ¢ for the uniform weighting function
U(—c, c) and different values b for the normal weighting function N (0, ) in Tables C.2 and C3, respectively.

4:, P1,T=100

3r P2,T=100

0.2 04 0.2 0.4
10.0 7
L P2, T=200
P1,T=2 '
75 PL 00
L 501~
501~
a5l 25
0.2 0.4 0.6 0.8 0.2 0.4 0.6 08
2C p1,T=500 15 P2.T=500
F 10~
10F L
5
| L L L L I I AN L L
0.2 0.4 06 0.8 02 0.4 0.6 08

Figure C.1: Histograms of estimated break fractions under DGPs.P1 and P2 with small break size
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Table C.1 Performance of our IC with different penalty coefficients

DGP T cp=1 cp =15 cp =2

Num Perc Num Perc Num Perc

P1 100 1.254 79.4 0.925 88.9 0.732 72.8
200 1.140 88.9 1.003 99.3 0.982 98.2

500 1.072 94.0 1.004 99.6 1.000 100

P2 100 0.842 66.4 0.358 35.6 0.105 10.5
200 1.014 92.3 0.734 73.4 0.422 42.2

500 1.025 97.7 1.00 100 0.991 99.1

P3 100 0.980 61.0 0.415 39.3 0.179 17.9
200 1.070 87.1 0.769 75.6 0.526 52.6

500 1.039 96.5 1.004 99.4 0.992 99.0

P4 100 1.093 91.1 0.583 57.1 0.107 10.7
200 1.081 92.2 1.004 99.6 0.955 95.5

500 1.048 95.7 1.001 99.9 1.00 100

P5 100 1.774 68.1 1.032 3.10 0.948 1.0
200 2.062 94.1 1.912 90.8 1.081 8.0

500 2.034 96.6 2.002 99.8 2.000 100

Notes: (i) The main entries report the results based on 1000 replications. (i) “Num” and “Perc” denote
the “average number of breaks” and the “percentage of correct selection”.

Table C.2: Power of tests under DGPs.P1-P5 with uniform weighting function

U, 1 Uy,2 U, 1 Us,2 Us, 1 Us, 2 Uro, 1 Uro, 2

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Pl 7 =100 95.8 99.0 79.1 92.0 85.6 93.8 65.4 80.8 51.6 69.4 39.2 58.4 33.2 51.8 26.8 44.8
T =200 100 100 96.0 99.4 98.2 100 88.6 98.2 91.6 97.4 76.8 89.2 72.8 88.4 57.0 75.8

T =500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
P2 T =100 74.8 83.4 60.4 76.2 66.2 77.0 55.6 69.6 33.6 50.2 31.2 44.8 23.4 36.6 19.8 34.6
T =200 98.8 99.6 95.4 98.4 944 97.6 89.8 94.4 72.0 82.4 62.4 75.4 50.2 65.4 40.6 52.8

T =500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
P3 T =100 342 452 23.6 36.8 78.2 86.4 67.0 78.6 90.6 95.6 85.0 93.4 90.4 95.4 84.0 90.2
T =200 59.8 70.8 44.8 58.2 97.4 98.8 95.0 97.6 99.6 99.6 99.2 99.4 99.8 100 99.4 100

T =500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
P4 T =100 69.8 88.0 62.4 82.4 99.0 99.8 952 99.8 100 100 98.6 100 98.6 99.8 94.0 98.2
T =200 97.4 99.2 90.0 97.8 100 100 99.4 100 100 100 99.8 100 100 100 99.8 100

T =500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
P5 T =100 84.4 93.8 78.6 98.2 97.6 100 97.8 100 58.2 93.6 99.8 100 65.0 92.8 92.0 98.4
T =200 982 99.8 97.4 99.8 99.6 100 100 100 93.8 99.6 100 100 97.8 100 100 100

T =500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Notes: U., M denotes our joint test with uniform(—c, ) weighting function for the alternative hypothesis
of M breaks. The main entries report the percentage of rejections..
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Table C.3: Power of tests under DGPs.P1-P5 with normal weighting function

N(0,1),1 N(0,1),2 N(0,2),1 N(0,2),2 N(0,5),1 N(0,5),2 N(0,10),1 N(0,10),2

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 7 =100 88.6 96.6 65.2 85.1 81.7 93.9 57.3 78.6 69.8 85.6 48.0 67.6 55.5 76.6 348 53.6
T =200 99.7 100 84.6 97.9 98.3 99.9 84.4 97.2 96.4 99.8 78.2 938 928 98.9 71.9 91.0

T =500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
P2 T =100 67.9 81.1 55.7 71.3 62.6 77.8 498 64.1 53.7 68.9 42.1 56.0 39.5 57.1 28.7 43.7
T =200 98.0 99.3 91.7 96.3 95.7 98.2 90.3 953 92.4 952 83.4 90.4 849 92.0 745 85.9

T =500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
P3 T =100 63.7 77.1 49.3 64.3 81.9 90.6 67.9 81.7 89.0 95.6 79.4 89.9 91.7 965 82.6 915
T =200 955 97.4 89.8 94.8 99.3 99.8 97.9 99.1 99.8 99.8 98.9 99.5 99.9 100 99.2 99.8

T =500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
P4 T =100 90.7 98.3 76.3 944 96.3 99.8 88.9 98.9 97.8 100 925 99.6 97.9 100 92.1 99.7
T =200 100 100 98.6 100 99.9 100 99.4 100 100 100 99.8 100 100 100 99.6 100

T =500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
P5 T =100 86.0 99.0 86.2 99.1 88.6 99.7 95.9 100 79.8 99.5 98.2 100 56.3 954 97.9 100
T =200 99.5 100 99.9 100 99.5 100 100 100 99.4 100 100 100 98.7 99.9 100 100

T =500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Notes: N(0,b), M denotes our joint test with normal weighting function with variance b in each dimension
for the alternative hypothesis of M breaks. The main entries report the percentage of rejections.
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