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This appendix provides the proofs for the main results in this paper. Section A provides the proofs
of theorems in Sections 2 to 4. Section B provides the proofs of technical lemmas. Section C provides
additional results. Throughout the appendix, we let

ψ0
j (u) = E(eiu

′Yt)

denote the true CF of Yt for t ∈ [T 0
j−1 + 1, T 0

j ],

ψ̃j(u) =
1

Tj − Tj−1

Tj∑
t=Tj−1+1

eiu
′Yt

denote the ECF of Yt for t ∈ [Tj−1 + 1, Tj ],

ψ̃0
j (u) =

1

T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

eiu
′Yt

denote the ECF of Yt for t ∈ [T 0
j−1 + 1, T 0

j ], and

ψ̂j(u) =
1

T̂j − T̂j−1

T̂j∑
t=T̂j−1+1

eiu
′Yt

denote the feasible ECF of Yt for t ∈ [T̂j−1+1, T̂j ]. We use C ∈ (0,∞) to denote a generic positive constant
that may vary from case to case.

We first state some technical lemmas.

Lemma A.1 Suppose Assumptions A.1-A.3 hold. Then for any partition {Tj}Mj=1 and any specified number
of breaks M ,

1

T

∫
Rd

∣∣∣∣∣∣
Tj∑

t=Tj−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du = OP (1),

for each j = 1, ...,M .
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Lemma A.2 Suppose Assumptions A.1-A.5 hold. Then

sup
η∈[0,C]

∫
Rd

∣∣∣∣∣∣vT
T 0
j−1+⌊ηv−2

T ⌋∑
t=T 0

j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du = OP (1),

for each j = 1, ...,M0 + 1, where vT = O(T−a) with a ∈ (0, 1/2).

Lemma A.3 Suppose Assumptions A.1-A.3 hold, and let dt(u) = ψ̂k(u) − ψ0
j (u) for t ∈ [T̂k−1 + 1, T̂k] ∩

[T 0
j−1 + 1, T 0

j ] with k, j = 1, 2, ...,M0 + 1 denote the difference between the feasible ECF and the true CF.
Then

1

T

∫
Rd

T∑
t=1

Re [εt(u)dt(u)
∗]W (u)du = OP (T

−1/2).

Lemma A.4 Suppose Assumptions A.1-A.3 hold, and limT→∞ r̂j ̸= r0j for some j = 1, ...,M0. Let dt(u) =
ψ̂k(u)−ψ0

j (u) for t ∈ [T̂k−1 +1, T̂k]∩ [T 0
j−1 +1, T 0

j ] with k, j = 1, 2, ...,M0 +1 denote the difference between
the feasible ECF and the true CF. Then for any 0 < c0 < 1, there exists a δ > 0, such that

P

(
1

T

∫
Rd

T∑
t=1

|dt(u)|2W (u)du > δ

∫
Rd

∣∣ψ0
j (u)− ψ0

j+1(u)
∣∣2W (u)du

)
> c0.

Lemma A.5 Suppose that there are M0 structural breaks in the distribution of {Yt}. If the model is under-
specified, i.e., the estimated break points M < M0, then we have that the estimated break fractions {r̂k}Mk=1

are consistent for M breaks contained in the collection true break fractions {r0j}M
0

j=1, such that

r̂k
p→ r0j ,

for any k = 1, ...,M and some corresponding j = 1, ...,M0.

Lemma A.6 Suppose that the number of breaks M is bounded from above by a finite integer Mmax, and
Assumptions A.1-A.4 hold. Then, as T → ∞,

max
M0≤M≤Mmax

∣∣σ̂2(M)− σ̂2(M0)
∣∣ = OP (T

−1),

where σ̂2(M) = T−1SSGRM (r̂1, ..., r̂M ) and {r̂j}Mj=1 is the collection of estimated break fractions.

A Proofs of Theorems
Proof of Theorem 2.1 Following the notations in the paper, for j = 1, ...,M0 + 1, let

εt(u) = eiu
′Yt − ψ0

j (u), for t ∈ [T 0
j−1 + 1, T 0

j ],

ε̃t(u) = eiu
′Yt − ψ̃0

j (u), for t ∈ [T 0
j−1 + 1, T 0

j ],

ε̂t(u) = eiu
′Yt − ψ̂j(u), for t ∈ [T̂j−1 + 1, T̂j ].
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Since {T̂1, ..., T̂M0} minimize the objective function in (2.2) for any partition {Tj}M
0

j=1, it holds that

1

T

∫
Rd

T∑
t=1

|ε̂t(u)|2W (u)du ≤ 1

T

∫
Rd

T∑
t=1

|ε̃t(u)|2W (u)du. (A.1)

By the definition of εt(u) and ε̃t(u), it follows

ε̃t(u) = eiu
′Yt − 1

T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

eiu
′Yt

= εt(u)−
1

T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

εt(u)

for t ∈ [T 0
j−1 + 1, T 0

j ]. Let Ξ̃(u) = [ε̃1(u), ε̃2(u), ..., ε̃T (u)]
′, Ξ(u) = [ε1(u), ε2(u), ..., εT (u)]

′, and Z0 =
diag(1T 0

1
,1T 0

2 −T 0
1
, ...,1T−T 0

M0
), where 1n denotes an n × 1 vector with each element being 1. We have the

following matrix representation

Ξ̃(u) = Ξ(u)−Z0(Z0′Z0)−1Z0′Ξ(u),

Therefore,

1

T

∫
Rd

T∑
t=1

|ε̃t(u)|2W (u)du =
1

T

∫
Rd

[
Ξ̃(u)∗Ξ̃(u)

]
W (u)du

=
1

T

∫
Rd

[Ξ(u)∗Ξ(u)]W (u)du− 1

T

∫
Rd

[
Ξ(u)∗Z0(Z0′Z0)−1Z0′Ξ(u)

]
W (u)du.

Let P 0 = Z0(Z0′Z0)−1Z0′, then it is straightforward to show that P 0 is an T × T block-diagonal matrix
with M0 + 1 diagonally partitions P 0

j = (T 0
j − T 0

j−1)
−11(T 0

j −T 0
j−1)×(T 0

j −T 0
j−1)

, where 1(T 0
j −T 0

j−1)×(T 0
j −T 0

j−1)
is

a (T 0
j − T 0

j−1)× (T 0
j − T 0

j−1) square matrix with all entries being 1, for j = 1, 2, ...,M0 + 1. Then it follows

1

T

∫
Rd

[
Ξ(u)∗Z0(Z0′Z0)−1Z0′Ξ(u)

]
W (u)du

=
1

T

M0+1∑
j=1

1

T 0
j − T 0

j−1

∫
Rd

∣∣∣∣∣∣
T 0
j∑

t=T 0
j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

= OP (T
−1),

by Lemma A.1. Then (A.1) implies

1

T

∫
Rd

T∑
t=1

|ε̂t(u)|2W (u)du ≤ 1

T

∫
Rd

T∑
t=1

|εt(u)|2W (u)du−OP (T
−1). (A.2)

Let dt(u) = ψ̂k(u) − ψ0
j (u) for t ∈ [T̂k−1 + 1, T̂k] ∩ [T 0

j−1 + 1, T 0
j ] with k, j = 1, 2, ...,M0 + 1 denote the
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difference between the feasible ECF and the true CF. By the fact that ε̂t(u) = εt(u)− dt(u), then

1

T

∫
Rd

T∑
t=1

|ε̂t(u)|2W (u)du

=
1

T

∫
Rd

T∑
t=1

|εt(u)|2W (u)du+
1

T

∫
Rd

T∑
t=1

|dt(u)|2W (u)du− 2

T

∫
Rd

T∑
t=1

Re [εt(u)dt(u)∗]W (u)du.

Based on Lemmas A.3 and A.4, we know that if some break fraction r0j is not consistently estimated,
then the following inequality holds.

1

T

∫
Rd

T∑
t=1

|ε̂t(u)|2W (u)du ≥ 1

T

∫
Rd

T∑
t=1

|εt(u)|2W (u)du+ δ

∫
Rd

∣∣ψ0
j (u)− ψ0

j+1(u)
∣∣2W (u)du+ oP (1)

with probability no less than some 0 < c0 < 1. This is contradictory to the inequality in (A.2), which holds
with probability 1 for all T . Hence, all breaks are consistently estimated. ■
Proof of Theorem 2.2 The proof is quite similar to the proof of Proposition 2 in Bai and Perron (1998).
Hence we omit it. ■
Proof of Theorem 2.3 Without loss of generality, we assume T̂j−1 < T 0

j−1 < T 0
j < T̂j . Then, it follows

√
T
[
ψ̂j(u)− ψ0

j (u)
]
=

√
T

T̂j − T̂j−1

T̂j∑
t=T̂j−1+1

[
eiu

′Yt − ψ0
j (u)

]

=
T 0
j − T 0

j−1

T̂j − T̂j−1


√
T

T 0
j − T 0

j−1

T 0
j−1∑

t=T̂j−1+1

[
eiu

′Yt − ψ0
j (u)

]
+

√
T

T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

[
eiu

′Yt − ψ0
j (u)

]

+

√
T

T 0
j − T 0

j−1

T̂j∑
t=T 0

j +1

[
eiu

′Yt − ψ0
j (u)

] 
= Cj [D1(u) +D2(u) +D3(u)] , say.

By Theorem 2.2, it follows that Cj = 1 + oP (1). By the triangle inequality

sup
u∈Rd

|D1(u)| ≤ sup
u∈Rd

 √
T

T 0
j − T 0

j−1

T 0
j−1∑

t=T̂j−1+1

∣∣∣eiu′Yt − ψ0
j (u)

∣∣∣


≤
2(T 0

j−1 − T̂j−1)√
T (r0j − r0j−1)

,

where the last equality is by the fact that∣∣∣eiu′Yt − ψ0
j (u)

∣∣∣ ≤ ∣∣∣eiu′Yt

∣∣∣+ ∣∣ψ0
j (u)

∣∣ ≤ 2.
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Given P (|T̂j − T 0
j | > δ) < η, then

P

(
T 0
j−1 − T̂j−1√
T (r0j − r0j−1)

>
δ√

T (r0j − r0j−1)

)
< η,

for any η > 0 and T sufficiently large. Thus, we have supu∈Rd |D1(u)| = OP (T
−1/2). Analogously, it follows

that supu∈Rd |D3(u)| = OP (T
−1/2). At last, we consider D2(u).

D2(u) =

√
T

T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

[
eiu

′Yt − ψ0
j (u)

]

= (r0j − r0j−1)
−1/2

 1√
T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

εt(u)


⇒ (r0j − r0j−1)

−1/2B(j)(u, 1),

by Assumption A.4. ■
Proof of Theorem 2.4We assume the magnitude of shifts depends on T , i.e., ∆T,j(u) = ψ0

j+1(u)−ψ0
j (u) =

vT∆j(u). Let SSGRM0(T 0
j + ⌊ηv−2

T ⌋) and SSGRM0(T 0
j ) denote the sum of squared generalized residuals

based on partition {T 0
1 , ..., T

0
j + ⌊ηv−2

T ⌋, ..., T 0
M0} and the true break dates {T 0

1 , ..., T
0
M0}, respectively. We

consider the process SSGRM0(T 0
j + ⌊ηv−2

T ⌋) − SSGRM0(T 0
j ) indexed by η, where η is a real number such

that η ∈ [−C,C]. For notational simplicity, in the rest of this proof, we suppress the subscript M0, and
write them as SSGR(T 0

j + ⌊ηv−2
T ⌋) and SSGR(T 0

j ).
By the definition of ψ̃0

j (u), it follows

ψ̃0
j (u)− ψ0

j (u) =
1

T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

εt(u), (A.3)

for all j = 1, ...,M0 + 1. Let Tj ≡ Tj(η) = T 0
j + ⌊ηv−2

T ⌋. For notational simplicity, we suppress the
dependence of Tj on η. Given vT = T−a with a ∈ (0, 1/2), it follows

sup
η∈[−C,C]

Tj/T = r0j + o(1).

Furthermore, we let

ψ̃j(u) =
1

Tj − T 0
j−1

Tj∑
t=T 0

j−1+1

eiu
′Yt ,

ψ̃j+1(u) =
1

T 0
j+1 − Tj

T 0
j+1∑

t=Tj+1

eiu
′Yt ,

denote the ECFs for the j-th and (j + 1)-th regimes under the partition {T 0
1 , ..., T

0
j + ⌊ηv−2

T ⌋, ..., T 0
M0}.

5



When η > 0, it follows T 0
j−1 < T 0

j < Tj < T 0
j+1. Then it is straightforward to show

ψ̃j(u)− ψ0
j (u) =

Tj − T 0
j

Tj − T 0
j−1

[
ψ0
j+1(u)− ψ0

j (u)
]
+

1

Tj − T 0
j−1

 T 0
j∑

t=T 0
j−1+1

εt(u) +

Tj∑
t=T 0

j +1

εt(u)

 , (A.4)

and

ψ̃j+1(u)− ψ0
j+1(u) =

1

T 0
j+1 − Tj

T 0
j+1∑

t=Tj+1

εt(u). (A.5)

Then

SSGR(T 0
j + ⌊ηv−2

T ⌋)− SSGR(T 0
j )

=

T 0
j∑

t=T 0
j−1+1

∫
Rd

[∣∣∣eiu′Yt − ψ̃j(u)
∣∣∣2 − ∣∣∣eiu′Yt − ψ̃0

j (u)
∣∣∣2]W (u)du

+

Tj∑
t=T 0

j +1

∫
Rd

[∣∣∣eiu′Yt − ψ̃j(u)
∣∣∣2 − ∣∣∣eiu′Yt − ψ̃0

j+1(u)
∣∣∣2]W (u)du

+

T 0
j+1∑

t=Tj+1

∫
Rd

[∣∣∣eiu′Yt − ψ̃j+1(u)
∣∣∣2 − ∣∣∣eiu′Yt − ψ̃0

j+1(u)
∣∣∣2]W (u)du

= S1(η) + S2(η) + S3(η).

Consider S1(η). By (A.3) and (A.4), and ψ0
j+1(u)− ψ0

j (u) = vT∆j(u),

S1(η) =

T 0
j∑

t=T 0
j−1+1

∫
Rd

[∣∣∣ψ̃j(u)∣∣∣2 − ∣∣∣ψ̃0
j (u)

∣∣∣2 − 2Re
{
eiu

′Yt

[
ψ̃j(u)− ψ̃0

j (u)
]}∗

]
W (u)du

= (T 0
j − T 0

j−1)

∫
Rd

∣∣∣[ψ̃j(u)− ψ0
j (u)

]
−
[
ψ̃0
j (u)− ψ0

j (u)
]∣∣∣2W (u)du

= (T 0
j − T 0

j−1)

∫
Rd

∣∣∣∣∣∣ Tj − T 0
j

Tj − T 0
j−1

vT∆j(u) +
T 0
j − Tj

(T 0
j − T 0

j−1)(Tj − T 0
j−1)

T 0
j∑

t=T 0
j−1+1

εt(u) +
1

Tj − T 0
j−1

Tj∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du

≤ 3(T 0
j − T 0

j−1)

∫
Rd

∣∣∣∣∣ Tj − T 0
j

Tj − T 0
j−1

vT∆j(u)

∣∣∣∣∣
2

W (u)du

+ 3(T 0
j − T 0

j−1)

∫
Rd

∣∣∣∣∣∣ T 0
j − Tj

(T 0
j − T 0

j−1)(Tj − T 0
j−1)

T 0
j∑

t=T 0
j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

+ 3(T 0
j − T 0

j−1)

∫
Rd

∣∣∣∣∣∣ 1

Tj − T 0
j−1

Tj∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du

= S11(η) + S12(η) + S13(η), say.
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Given Assumption A.5(i) and Tj = T 0
j + ⌊ηv−2

T ⌋

sup
η∈[0,C]

|S11(η)| = sup
η∈[0,C]

∣∣∣∣∣3(T 0
j − T 0

j−1)
(
⌊ηv−1

T ⌋
)2

(Tj − T 0
j−1)

2

∣∣∣∣∣
∫
Rd

|∆j(u)|2W (u)du = O(T−1v−2
T ).

By Lemma A.1,

sup
η∈[0,C]

|S12(η)| = sup
η∈[0,C]

∣∣∣∣∣ 3(⌊ηv−2
T ⌋)2

(r0j − r0j−1)(Tj − T 0
j−1)

2

∣∣∣∣∣
 1

T

∫
Rd

∣∣∣∣∣∣
T 0
j∑

t=T 0
j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

 = OP (T
−2v−4

T ).

By Lemma A.2,

sup
η∈[0,C]

|S13(η)| = sup
η∈[0,C]

∣∣∣∣∣ 3(T 0
j − T 0

j−1)v
−2
T

(T 0
j + ⌊ηv−2

T ⌋ − T 0
j−1)

2

∣∣∣∣∣
∫

Rd

∣∣∣∣∣∣vT
T 0
j +⌊ηv−2

T ⌋∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du

 = OP (T
−1v−2

T ).

Hence, supη∈[0,C] |S1(η)| = OP (T
−1v−2

T ) = oP (1) given vT = T−a with a ∈ (0, 12 ).
Next, we show supη∈[0,C] |S3(η)| = oP (1) can be established analogously. By (A.3) and (A.5),

S3(η) =

T 0
j+1∑

t=Tj+1

∫
Rd

{∣∣∣ψ̃j+1(u)
∣∣∣2 − ∣∣∣ψ̃0

j+1(u)
∣∣∣2 − 2Re

{
eiu

′Yt

[
ψ̃j+1(u)− ψ̃0

j+1(u)
]∗}}

W (u)du

= −(T 0
j+1 − Tj)

∫
Rd

∣∣∣[ψ̃j+1(u)− ψ0
j+1(u)

]
−
[
ψ̃0
j+1(u)− ψ0

j+1(u)
]∣∣∣2W (u)du

= −(T 0
j+1 − Tj)

∫
Rd

∣∣∣∣∣∣ 1

T 0
j+1 − Tj

T 0
j+1∑

t=Tj+1

εt(u)−
1

T 0
j+1 − T 0

j

T 0
j+1∑

t=T 0
j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du

= −(T 0
j+1 − Tj)

∫
Rd

∣∣∣∣∣∣ 1

T 0
j+1 − Tj

 T 0
j+1∑

t=T 0
j +1

εt(u)−
Tj∑

t=T 0
j +1

εt(u)

− 1

T 0
j+1 − T 0

j

T 0
j+1∑

t=T 0
j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du

= −(T 0
j+1 − Tj)

∫
Rd

∣∣∣∣∣∣ Tj − T 0
j

(T 0
j+1 − Tj)(T 0

j+1 − T 0
j )

T 0
j+1∑

t=T 0
j +1

εt(u)−
1

T 0
j+1 − Tj

Tj∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du.

By the triangle inequality,

sup
η∈[0,C]

|S3(η)| ≤ sup
η∈[0,C]

∣∣∣∣∣ 2T−1(⌊ηv−2
T ⌋)2

(T 0
j+1 − Tj)(r0j+1 − r0j )

2

∣∣∣∣∣
 1

T

∫
Rd

∣∣∣∣∣∣
T 0
j+1∑

t=T 0
j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du


+ sup
η∈[0,C]

∣∣∣∣∣ 2v−2
T

(T 0
j+1 − Tj)

∣∣∣∣∣
∫
Rd

∣∣∣∣∣∣vT
T 0
j +⌊ηv−2

T ⌋∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du

= OP (T
−2v−4

T ) +OP (T
−1v−2

T ).
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Now, we consider S2(η). Note that for T 0
j + 1 ≤ t ≤ Tj , eiu

′Yt = ψ0
j+1(u) + εt(u). Then

S2(η) =

Tj∑
t=T 0

j +1

∫
Rd

[∣∣∣eiu′Yt − ψ̃j(u)
∣∣∣2 − ∣∣∣eiu′Yt − ψ̃0

j+1(u)
∣∣∣2]W (u)du

=

Tj∑
t=T 0

j +1

∫
Rd

[∣∣∣ψ̃j(u)∣∣∣2 − ∣∣∣ψ̃0
j+1(u)

∣∣∣2 − 2Re
{
eiu

′Yt

[
ψ̃j(u)− ψ̃0

j+1(u)
]∗}]

W (u)du

=

Tj∑
t=T 0

j +1

∫
Rd

[∣∣∣ψ̃j(u)∣∣∣2 − ∣∣∣ψ̃0
j+1(u)

∣∣∣2 − 2Re
{[
ψ0
j+1(u) + εt(u)

] [
ψ̃j(u)− ψ̃0

j+1(u)
]∗}]

W (u)du

=

Tj∑
t=T 0

j +1

2

∫
Rd

Re
{
εt(u)

[
ψ̃0
j+1(u)− ψ̃j(u)

]∗}
W (u)du

+ ⌊ηv−2
T ⌋

∫
Rd

[∣∣∣ψ̃j(u)− ψ0
j+1(u)

∣∣∣2 − ∣∣∣ψ̃0
j+1(u)− ψ0

j+1(u)
∣∣∣2]W (u)du

= S21(η) + S22(η).

By (A.3), (A.4), and the fact that ψ0
j+1(u)− ψ0

j (u) = vT∆j(u),

S21(η) =

Tj∑
t=T 0

j +1

2

∫
Rd

Re
{
εt(u)

[
ψ̃0
j+1(u)− ψ̃j(u)

]∗}
W (u)du

=

Tj∑
t=T 0

j +1

2

∫
Rd

Re
{
εt(u)

[{
ψ̃0
j+1(u)− ψ0

j+1(u)
}
−
{
ψ̃j(u)− ψ0

j (u)
}
+
{
ψ0
j+1(u)− ψ0

j (u)
}]∗}

W (u)du

= 2

∫
Rd

Re


 Tj∑
t=T 0

j +1

εt(u)

 1

T 0
j+1 − T 0

j

T 0
j+1∑

t=T 0
j +1

εt(u)

∗W (u)du

+ 2

∫
Rd

Re


 Tj∑
t=T 0

j +1

εt(u)

[T 0
j − T 0

j−1

Tj − T 0
j−1

vT∆j(u)

]∗W (u)du

− 2

∫
Rd

Re


 Tj∑
t=T 0

j +1

εt(u)

 1

Tj − T 0
j−1

 T 0
j∑

t=T 0
j−1+1

εt(u) +

Tj∑
t=T 0

j +1

εt(u)

∗W (u)du

= S211(η) + S212(η)− S213(η), say.

By the Cauchy-Schwarz inequality, Lemmas A.1 and A.2,

sup
η∈[0,C]

|S211(η)| ≤
2v−1
T T−1/2

r0j+1 − r0j
sup

η∈[0,C]

∫
Rd

∣∣∣∣∣∣vT
T 0
j +⌊ηv−2

T ⌋∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du


1/2 1

T

∫
Rd

∣∣∣∣∣∣
T 0
j+1∑

t=T 0
j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du


1/2

= OP (T
−1/2v−1

T ),
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and

sup
η∈[0,C]

|S213(η)| ≤ 2 sup
η∈[0,C]

∣∣∣∣∣∣∣
∫
Rd

Re


 Tj∑
t=T 0

j +1

εt(u)

 1

Tj − T 0
j−1

T 0
j∑

t=T 0
j−1+1

εt(u)

∗W (u)du

∣∣∣∣∣∣∣
+2 sup

η∈[0,C]

 1

Tj − T 0
j−1

∫
Rd

∣∣∣∣∣∣
Tj∑

t=T 0
j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du



≤ sup
η∈[0,C]

2v−1
T T 1/2

Tj − T 0
j−1

∫
Rd

∣∣∣∣∣∣vT
T 0
j +⌊ηv−2

T ⌋∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du


1/2 1

T

∫
Rd

∣∣∣∣∣∣
T 0
j∑

t=T 0
j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du


1/2

+ sup
η∈[0,C]

2v−2
T

Tj − T 0
j−1

∫
Rd

∣∣∣∣∣∣vT
T 0
j +⌊ηv−2

T ⌋∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du

= OP (T
−1/2v−1

T ) +OP (T
−1v−2

T ).

For S212(η), consider the limiting behavior of 2
∫
Rd Re

{[
vT
∑T 0

j +⌊ηv−2
T ⌋

t=T 0
j +1

εt(u)

]
[∆j(u)]

∗
}
W (u)du. By As-

sumption A.5(ii) and the continuous mapping theorem,

2

∫
U
Re


vT T 0

j +⌊ηv−2
T ⌋∑

t=T 0
j +1

εt(u)

 [∆j(u)]
∗

W (u)du⇒ 2

∫
U
Re
{
G(j)
1 (u, η)∆j(u)

∗
}
W (u)du,

for any compact subset U of Rd. It remains to show that 2
∫
Uc Re

{[
vT
∑T 0

j +⌊ηv−2
T ⌋

t=T 0
j +1

εt(u)

]
[∆j(u)]

∗
}
W (u)du

is asymptotically negligible. Note that for each fixed η, and constant ι > 0, there exists Uc small enough
such that

E

2 ∫
Uc

Re


vT T 0

j +⌊ηv−2
T ⌋∑

t=T 0
j +1

εt(u)

 [∆j(u)]
∗

W (u)du

2

≤ 4E

∫
Uc

∣∣∣∣∣∣vT
T 0
j +⌊ηv−2

T ⌋∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

|∆j(u)|2W (u)du

≤ C
∫
Uc

W (u)du < ι,

where the second to last inequality holds due to Assumption A.5(i) and the mixing condition in Assumption
A.1. For tightness, let 0 < η1 < η2 < C, and some q > 2,

E

∣∣∣∣∣∣2
∫
Uc

Re


vT T 0

j +⌊η2v−2
T ⌋∑

t=T 0
j +1

εt(u)

 [∆j(u)]
∗

W (u)du− 2

∫
Uc

Re


vT T 0

j +⌊η1v−2
T ⌋∑

t=T 0
j +1

εt(u)

 [∆j(u)]
∗

W (u)du

∣∣∣∣∣∣
q

≤ 2qE

∫
Uc

∣∣∣∣∣∣∣vT
T 0
j +⌊η2v−2

T ⌋∑
t=T 0

j +⌊η1v−2
T ⌋

εt(u)

∣∣∣∣∣∣∣
q

|∆j(u)|qW (u)du
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≤ 2qvqTC
[
(η2 − η1)v

−2
T

]q/2
sup
u

|∆j(u)|q
∫
Uc

W (u)du < C(η2 − η1)
q,

by Theorem 2 of Yokoyama (1980) given E[εt(u)] = 0 and supu |εt(u)| < C. By Theorem 15.6 of Billingsley
(1968),

2

∫
Rd

Re


vT T 0

j +⌊ηv−2
T ⌋∑

t=T 0
j +1

εt(u)

 [∆j(u)]
∗

W (u)du⇒ 2

∫
Rd

Re
{
G(j)
1 (u, η)∆j(u)

∗
}
W (u)du.

Then it follows

S212(η) = 2

∫
Rd

Re


vT T 0

j +⌊ηv−2
T ⌋∑

t=T 0
j +1

εt(u)

[ r0j − r0j−1

r0j − r0j−1 + T−1⌊ηv−2
T ⌋

∆j(u)

]∗W (u)du

⇒ 2

∫
Rd

Re
{
G(j)
1 (u, η)∆j(u)

∗
}
W (u)du.

Now, we consider S22(η). By (A.3) and (A.4)

S22(η) = ⌊ηv−2
T ⌋

∫
Rd

[∣∣∣ψ̃j(u)− ψ0
j+1(u)

∣∣∣2 − ∣∣∣ψ̃0
j+1(u)− ψ0

j+1(u)
∣∣∣2]W (u)du

= ⌊ηv−2
T ⌋

∫
Rd

∣∣∣[ψ̃j(u)− ψ0
j (u)

]
−
[
ψ0
j+1(u)− ψ0

j (u)
]∣∣∣2 −

∣∣∣∣∣∣ 1

T 0
j+1 − T 0

j

T 0
j+1∑

t=T 0
j +1

εt(u)

∣∣∣∣∣∣
2
W (u)du

= ⌊ηv−2
T ⌋

∫
Rd

∣∣∣∣∣∣T
0
j−1 − T 0

j

Tj − T 0
j−1

vT∆j(u) +
1

Tj − T 0
j−1

T 0
j∑

t=T 0
j−1+1

εt(u) +
1

Tj − T 0
j−1

Tj∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du

−⌊ηv−2
T ⌋

∫
Rd

∣∣∣∣∣∣ 1

T 0
j+1 − T 0

j

T 0
j+1∑

t=T 0
j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du

= ⌊ηv−2
T ⌋

∫
Rd

∣∣∣∣∣T 0
j−1 − T 0

j

Tj − T 0
j−1

vT∆j(u)

∣∣∣∣∣
2

W (u)du+ ⌊ηv−2
T ⌋

∫
Rd

∣∣∣∣∣∣ 1

Tj − T 0
j−1

T 0
j∑

t=T 0
j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

+⌊ηv−2
T ⌋

∫
Rd

∣∣∣∣∣∣ 1

Tj − T 0
j−1

Tj∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du− ⌊ηv−2
T ⌋

∫
Rd

∣∣∣∣∣∣ 1

T 0
j+1 − T 0

j

T 0
j+1∑

t=T 0
j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du

+2⌊ηv−2
T ⌋

∫
Rd

Re


[
T 0
j−1 − T 0

j

Tj − T 0
j−1

vT∆j(u)

] 1

Tj − T 0
j−1

T 0
j∑

t=T 0
j−1+1

εt(u)

∗W (u)du

+2⌊ηv−2
T ⌋

∫
Rd

Re


[
T 0
j−1 − T 0

j

Tj − T 0
j−1

vT∆j(u)

] 1

Tj − T 0
j−1

Tj∑
t=T 0

j +1

εt(u)

∗W (u)du
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+2⌊ηv−2
T ⌋

∫
Rd

Re


 1

Tj − T 0
j−1

T 0
j∑

t=T 0
j−1

εt(u)

 1

Tj − T 0
j−1

Tj∑
t=T 0

j +1

εt(u)

∗W (u)du

= S221(η) + S222(η) + S223(η)− S224(η) + S225(η) + S226(η) + S227(η).

It is straightforward to see that

S221(η) =
(T 0
j − T 0

j−1)
2

(Tj − T 0
j−1)

2
⌊η⌋

∫
Rd

|∆j(u)|2W (u)du

⇒ η

∫
Rd

|∆j(u)|2W (u)du.

By Lemma A.1,

sup
η∈[0,C]

|S222(η)| = sup
η∈[0,C]

⌊ηv−2
T ⌋(T 0

j − T 0
j−1)

(Tj − T 0
j−1)

2

∫
Rd

∣∣∣∣∣∣ 1√
T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

= OP (T
−1v−2

T ),

and

sup
η∈[0,C]

|S224(η)| = sup
η∈[0,C]

⌊ηv−2
T ⌋

T 0
j+1 − T 0

j

∫
Rd

∣∣∣∣∣∣ 1√
T 0
j+1 − T 0

j

T 0
j+1∑

t=T 0
j1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

= OP (T
−1v−2

T ).

By Lemma A.2,

sup
η∈[0,C]

|S223(η)| = sup
η∈[0,C]

v−2
T ⌊ηv−2

T ⌋
(Tj − T 0

j−1)
2

∫
Rd

∣∣∣∣∣∣vT
T 0
j +⌊ηv−2

T ⌋∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du

= OP (T
−2v−4

T ).

Furthermore, by the Cauchy-Schwarz inequality, Lemmas A.1, and A.2,

|S225(η)| ≤ 2⌊ηv−2
T ⌋

√√√√∫
Rd

∣∣∣∣∣T 0
j−1 − T 0

j

Tj − T 0
j−1

vT∆j(u)

∣∣∣∣∣
2

W (u)du

√√√√√√∫
Rd

∣∣∣∣∣∣ 1

Tj − T 0
j−1

T 0
j∑

t=T 0
j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du,

|S226(η)| ≤ 2⌊ηv−2
T ⌋

√√√√∫
Rd

∣∣∣∣∣T 0
j−1 − T 0

j

Tj − T 0
j−1

vT∆j(u)

∣∣∣∣∣
2

W (u)du

√√√√√∫
Rd

∣∣∣∣∣∣ 1

Tj − T 0
j−1

Tj∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du,
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and

|S227(η)| ≤ 2⌊ηv−2
T ⌋

√√√√√√∫
Rd

∣∣∣∣∣∣ 1

Tj − T 0
j−1

T 0
j∑

t=T 0
j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

√√√√√∫
Rd

∣∣∣∣∣∣ 1

Tj − T 0
j−1

Tj∑
t=T 0

j +1

εt(u)

∣∣∣∣∣∣
2

W (u)du.

Hence, supη∈[0,C] |S225(η)| = OP (T
−1/2v−1

T ), supη∈[0,C] |S226(η)| = OP (T
−1v−2

T ), and supη∈[0,C] |S227(η)| =
OP (T

−3/2v−3
T ). Therefore, we have

S22(η) ⇒ η

∫
Rd

|∆j(u)|2W (u)du.

Combining S21(η) and S22(η), we have

S2(η) ⇒ 2

∫
Rd

Re
{
G(j)
1 (u, η)∆j(u)

∗
}
W (u)du+ η

∫
Rd

|∆j(u)|2W (u)du.

As a result, for 0 < η < C, we have shown

SSGR(T 0
j + ⌊ηv−2

T ⌋)− SSGR(T 0
j )

⇒ 2

∫
Rd

Re
{
G(j)
1 (u, η)∆j(u)

∗
}
W (u)du+ η

∫
Rd

|∆j(u)|2W (u)du.

Following analogous steps, we can show that

SSGR(T 0
j + ⌊ηv−2

T ⌋)− SSGR(T 0
j )

⇒ −2

∫
Rd

Re
{
G(j)
2 (u,−η)∆j(u)

∗
}
W (u)du− η

∫
Rd

|∆j(u)|2W (u)du,

when η < 0. Combing the obtained results, we have

SSGR(T 0
j )− SSGR(T 0

j + ⌊ηv−2
T ⌋) ⇒ Λ(j)(η),

where

Λ(j)(η) =

 2
∫
Rd Re

{
G(j)(u, η)∆j(u)

∗}W (u)du− |η|
∫
Rd |∆j(u)|2W (u)du, if η < 0;

−2
∫
Rd Re

{
G(j)(u, η)∆j(u)

∗}W (u)du− |η|
∫
Rd |∆j(u)|2W (u)du, if η > 0;

By the continuous mapping theorem for an argmax function (see Kim and Pollard, 1990), we have

v2T (T̂j − T 0
j )

d→ argmax
η

Λ(j)(η).

■
Proof of Theorem 3.1 Under H0 : ϕt(u) = ϕ0(u), it follows

eiu
′Yt = ϕ0(u) + εt(u),
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for all t = 1, ..., T. We let

ψ̃(R)(u) =
1

T

T∑
t=1

eiu
′Yt = ϕ0(u) +

1

T

T∑
t=1

εt(u)

denote the ECF under the restricted model and let

ψ̃
(U)
j (u) =

1

Tj − Tj−1

Tj∑
t=Tj−1+1

eiu
′Yt = ϕ0(u) +

1

Tj − Tj−1

Tj∑
t=Tj−1+1

εt(u)

denote the ECF of j-th regime under the unrestricted model, where {Tj}Mj=1 is the collection of break dates
under HA. By definition,

FT (r1, ..., rM ) = SSGR0 − SSGRM (r1, ..., rM )

=

M+1∑
j=1

Tj∑
t=Tj−1+1

∫
Rd

∣∣∣eiu′Yt − ψ̃(R)(u)
∣∣∣2 − ∣∣∣eiu′Yt − ψ̃

(U)
j (u)

∣∣∣2W (u)du

=

M+1∑
j=1

Tj∑
t=Tj−1+1

∫
Rd

[∣∣∣ψ̃(R)(u)
∣∣∣2 − ∣∣∣ψ̃(U)

j (u)
∣∣∣2 − 2Re

{
eiu

′Yt ψ̃(R)(u)∗
}
+ 2Re

{
eiu

′Yt ψ̃
(U)
j (u)∗

}]
W (u)du

=

M+1∑
j=1

(Tj − Tj−1)

∫
Rd

∣∣∣ψ̃(R)(u)
∣∣∣2 + ∣∣∣ψ̃(U)

j (u)
∣∣∣2 − 2Re

[
ψ̃
(U)
j (u)ψ̃(R)(u)

]∗
W (u)du

=

M+1∑
j=1

(Tj − Tj−1)

∫
Rd

∣∣∣ψ̃(U)
j (u)− ψ̃(R)(u)

∣∣∣2W (u)du.

Under H0, we have

FT (r1, ..., rM ) =

M+1∑
j=1

(Tj − Tj−1)

∫
Rd

∣∣∣∣∣∣ 1

Tj − Tj−1

Tj∑
t=Tj−1+1

εt(u)−
1

T

T∑
t=1

εt(u)

∣∣∣∣∣∣
2

W (u)du

=

M+1∑
j=1

(rj − rj−1)

∫
Rd

∣∣∣∣∣∣ 1

rj − rj−1

 1√
T

Tj∑
t=1

εt(u)−
1√
T

Tj−1∑
t=1

εt(u)

− 1√
T

T∑
t=1

εt(u)

∣∣∣∣∣∣
2

W (u)du

=

M+1∑
j=1

1

rj − rj−1

∫
Rd

|[LT (u, rj)− LT (u, rj−1)]− (rj − rj−1)LT (u, 1)|2W (u)du,

where we let LT (u, rj) ≡ T−1/2
∑Tj

t=1 εt(u). Define the following

A1,T (r1, ..., rM ) =

M+1∑
j=1

1

rj − rj−1

∫
U
|[LT (u, rj)− LT (u, rj−1)]− (rj − rj−1)LT (u, 1)|2W (u)du,

A2,T (r1, ..., rM ) =

M+1∑
j=1

1

rj − rj−1

∫
Uc

|[LT (u, rj)− LT (u, rj−1)]− (rj − rj−1)LT (u, 1)|2W (u)du,

13



A1(r1, ..., rM ) =

M+1∑
j=1

1

rj − rj−1

∫
U
|[B(u, rj)−B(u, rj−1)]− (rj − rj−1)B(u, 1)|2W (u)du,

A2(r1, ..., rM ) =

M+1∑
j=1

1

rj − rj−1

∫
Uc

|[B(u, rj)−B(u, rj−1)]− (rj − rj−1)B(u, 1)|2W (u)du,

where U is any compact subset of Rd and Uc is its complement set. Obviously, FT (r1, ..., rM ) = A1,T (r1, ..., rM )+
A2,T (r1, ..., rM ). Furthermore, we denote F (r1, ..., rM ) ≡ A1(r1, ..., rM )+A2(r1, ..., rM ). Now, we show that
sup{r1,...,rM} FT (r1, ..., rM )

d→ sup{r1,...,rM} F (r1, ..., rM ).
Note that for any fixed constant ι > 0, and fixed collection of breaks {r1, ..., rM} ∈ Πϵ, there exists a

compact subset U that depend on ι, such that

E [A2,T (r1, ..., rM )] =

M∑
j=1

1

rj − rj−1

∫
Uc

E |[LT (u, rj)− LT (u, rj−1)]− (rj − rj−1)LT (u, 1)|2W (u)du

≤
M∑
j=1

1

(rj − rj−1)

∫
Uc

2E |LT (u, rj)− LT (u, rj−1)|2 + 2E |(rj − rj−1)LT (u, 1)|2W (u)du

= 2

M∑
j=1

∫
Uc

E

∣∣∣∣∣∣ 1√
T (rj − rj−1)

⌊T (rj−rj−1)⌋∑
t=1

εt(u)

∣∣∣∣∣∣
2

+ (rj − rj−1)E

∣∣∣∣∣ 1√
T

T∑
t=1

εt(u)

∣∣∣∣∣
2
W (u)du

≤ 2MC
∫
Uc

W (u)du < ι,

where the last equality is by the stationarity condition in Assumption A.4*, and the second to last inequality
is by the mixing condition in Assumption A.1, the fact that |rj− rj−1| < 1 for all j, and the boundedness of
εt(u). An analogous result holds for E [A2(r1, ..., rM )]. Under Assumption A.4*, T−1/2L(u, rj) ⇒ B(u, rj)
on U× [0, 1] for any compact subset U of Rd. Thus, by the continuous mapping theorem, A1,T (r1, ..., rM ) ⇒
A1(r1, ..., rM ).

Hence, for each fixed {r1, ..., rM},

FT (r1, ..., rM )
d→ F (r1, ..., rM ).

Now, we show tightness. Without loss generality, we consider M = 1. Let 0 < r1 < s1 < 1, and q > 2,
it follows

E |FT (s1)− FT (r1)|q

= E

∣∣∣∣ 1

s1(1− s1)

∫
Rd

|LT (u, s1)− s1LT (u, 1)|2W (u)du− 1

r1(1− r1)

∫
Rd

|LT (u, r1)− r1LT (u, 1)|2W (u)du

∣∣∣∣q
≤ 2q−1

sq1(1− s1)q
E

∣∣∣∣∫
Rd

{
|LT (u, s1)− s1LT (u, 1)|2 − |LT (u, r1)− r1LT (u, 1)|2

}
W (u)du

∣∣∣∣q
+2q−1

[
(s1 − r1)(s1 + r1 − 1)

s1r1(1− s1)(1− r1)

]q
E

∣∣∣∣∫
Rd

|LT (u, r1)− r1LT (u, 1)|2W (u)du

∣∣∣∣q
= I1(s1, r1) + I2(s1, r1), say.

14



Consider I1(s1, r1). By the Cauchy-Schwarz inequality,∣∣∣∣∫
Rd

{
|LT (u, s1)− s1LT (u, 1)|2 − |LT (u, r1)− r1LT (u, 1)|2

}
W (u)du

∣∣∣∣
=

∣∣∣∣∫
Rd

Re
{
[LT (u, s1)− LT (u, r1)− (s1 − r1)LT (u, 1)] [LT (u, s1) + LT (u, r1)− (s1 + r1)LT (u, 1)]∗

}
W (u)du

∣∣∣∣
≤

[∫
Rd

|LT (u, s1)− LT (u, r1)− (s1 − r1)LT (u, 1)|2W (u)du

]1/2
×
[∫

Rd

|LT (u, s1) + LT (u, r1)− (s1 + r1)LT (u, 1)|2W (u)du

]1/2
.

Then, it follows

I1(s1, r1) ≤ 2q−1

sq1(1− s1)q
E

{[∫
Rd

|LT (u, s1)− LT (u, r1)− (s1 − r1)LT (u, 1)|2W (u)du

]q/2
×
[∫

Rd

|LT (u, s1) + LT (u, r1)− (s1 + r1)LT (u, 1)|2W (u)du

]q/2}

≤ 2q−1

sq1(1− s1)q

(
E

[∫
Rd

|LT (u, s1)− LT (u, r1)− (s1 − r1)LT (u, 1)|2W (u)du

]q)1/2

×
(
E

[∫
Rd

|LT (u, s1) + LT (u, r1)− (s1 + r1)LT (u, 1)|2W (u)du

]q)1/2

≤ 2q−1

sq1(1− s1)q

(
E

∫
Rd

|LT (u, s1)− LT (u, r1)− (s1 − r1)LT (u, 1)|2qW (u)du

)1/2

×
(
E

∫
Rd

|LT (u, s1) + LT (u, r1)− (s1 + r1)LT (u, 1)|2qW (u)du

)1/2

=
2q−1

sq1(1− s1)q
I11(s1, r1)I12(s1, r1),

where the second inequality is by the Cauchy-Schwarz inequality, and the last inequality is by Jensen’s
inequality. By stationarity,

E

∫
Rd

|LT (u, s1)− LT (u, r1)− (s1 − r1)LT (u, 1)|2qW (u)du

= T−q
∫
Rd

E

∣∣∣∣∣∣
⌊T (s1−r1)⌋∑

t=1

εt(u)− (s1 − r1)

T∑
t=1

εt(u)

∣∣∣∣∣∣
2q

W (u)du

≤ 22q−1T−q

∫
Rd

E

∣∣∣∣∣∣
⌊T (s1−r1)⌋∑

t=1

εt(u)

∣∣∣∣∣∣
2q

W (u)du+

∫
Rd

E

∣∣∣∣∣(s1 − r1)

T∑
t=1

εt(u)

∣∣∣∣∣
2q

W (u)du


≤ 22q−1T−qC [T (s1 − r1)]

q
+ 22q−1T−qC(s1 − r1)

2qT q

≤ C(s1 − r1)
q,

where the second to last inequality is by Theorem 2 of Yokoyama (1980) and Assumption A.2. Hence,
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I11(s1, r1) ≤ C(s1−r1)q/2. By analogous arguments, given 0 < r1 < s1 < 1, we have sups1,r1 I12(s1, r1) ≤ C.
Finally, for I2(s1, r1), we have

E

∣∣∣∣∫
Rd

|LT (u, r1)− r1LT (u, 1)|2W (u)du

∣∣∣∣q ≤
∫
Rd

E |LT (u, r1)− r1LT (u, 1)|2qW (u)du

≤ 22q−1

∫
Rd

E |LT (u, r1)|2qW (u)du+ 22q−1r2q1

∫
Rd

E |LT (u, 1)|2qW (u)du

≤ 22q−1T−qC(Tr1)q + 22q−1r2q1 T
−qCT q

≤ C,

given 0 < r1 < 1. Besides, given 0 < r1 < s1 < 1,[
(s1 − r1)(s1 + r1 − 1)

s1r1(1− s1)(1− r1)

]q
≤ C(s1 − r1)

q.

Combining the results, we have

E |FT (s1)− FT (r1)|q ≤ C(s1 − r1)
q/2.

By Theorem 15.6 of Billingsley (1968),

sup
r1

FT (r1)
d→ sup

r1

F (r1),

when M = 1. When M > 1,

sup
{r1,...,rM}

FT (r1, ..., rM )
d→ sup

{r1,...,rM}
F (r1, ..., rM ),

where

F (r1, ..., rM ) =

M+1∑
j=1

1

rj − rj−1

∫
Rd

|[B(u, rj)−B(u, rj−1)]− (rj − rj−1)B(u, 1)|2W (u)du

=

M+1∑
j=1

1

rj − rj−1

∫
Rd

|B(u, rj)− B(u, rj−1)|2W (u)du,

where B(u, r) ≡ B(u, r)− rB(u, 1) is a generalized Brownian bridge. ■

Proof of Theorem 3.2 Let {Tj}Mj=1 be the specified collection of break dates under HA. By proof of
Theorem 3.1,

FT (r1, ..., rM ) =

M+1∑
j=1

(Tj − Tj−1)

∫
Rd

∣∣∣ψ̃(U)
j (u)− ψ̃(R)(u)

∣∣∣2W (u)du

=

M+1∑
j=1

1

rj − rj−1

∫
Rd

∣∣∣∣∣∣
 1√

T

Tj∑
t=1

eiu
′Yt − rj√

T

T∑
t=1

eiu
′Yt

−

 1√
T

Tj−1∑
t=1

eiu
′Yt − rj−1√

T

T∑
t=1

eiu
′Yt

∣∣∣∣∣∣
2

W (u)du.

Let {T 0
k }M

0

k=1 denote the collection of true breaks. Under HA(aT ) : ψ0
k(u) = ϕ0(u) + aT θk(u) for the k-th
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regime, k = 1, ...,M0 + 1, then

eiu
′Yt = ϕ0(u) + aT θk(u) + εt(u),

for t = T 0
k−1 + 1, ..., T 0

k , and k = 1, ...,M0 + 1. Given aT = T−1/2, it follows

1√
T

Tj∑
t=1

eiu
′Yt =

Tj√
T
ϕ0(u) +

1√
T

l∑
k=1

T 0
k∑

t=T 0
k−1+1

[aT θk(u) + εt(u)] +
1√
T

Tj∑
t=T 0

l +1

[aT θl+1(u) + εt(u)]

= rj
√
Tϕ0(u) +

[
l∑

k=1

(r0k − r0k−1)θk(u) + (rj − r0l )θl+1(u)

]

+

 l∑
k=1

√
r0k − r0k−1√
T 0
k − T 0

k−1

T 0
k∑

t=T 0
k−1+1

εt(u) +

√
r0l+1 − r0l√
T 0
l+1 − T 0

l

Tj∑
t=T 0

l +1

εt(u)

 ,
where r0l < rj < r0l+1, and

rj√
T

T∑
t=1

eiu
′Yt = rj

√
Tϕ0(u) + rj

M0+1∑
k=1

(r0k − r0k−1)θk(u) + rj

M0+1∑
k=1

√
r0k − r0k−1√
T 0
k − T 0

k−1

T 0
k∑

t=T 0
k−1+1

εt(u).

By Assumption A.4,

1√
T

Tj∑
t=1

eiu
′Yt − rj√

T

T∑
t=1

eiu
′Yt ⇒ G(u, rj) + Γ(u, rj),

where

G(u, rj) =

[
l∑

k=1

(r0k − r0k−1)
1/2B(k)(u, 1) + (r0l+1 − r0l )

1/2B(l+1)

(
u,

rj − r0l
r0l+1 − r0l

)]
− rj

M0+1∑
k=1

(r0k − r0k−1)
1/2B(k)(u, 1)

 ,
and

Γ(u, rj) =

[
l∑

k=1

(r0k − r0k−1)θk(u) + (rj − r0l )θl+1(u)

]
− rj

M0+1∑
k=1

(r0k − r0k−1)θk(u)

 .
Note that Γ(u, rj) is continuous for rj and

∫
Rd |Γ(u, rj)|2W (u)du < ∞ for each j. Given Assumptions

A.1-A.4, by analogous arguments to those in the proof of Theorem 3.1,

sup
{r1,...,rM}∈Πϵ

FT (r1, ..., rM )
d→ sup

{r1,...,rM}∈Πϵ

FA(r1, ..., rM ),

where

FA(r1, ..., rM ) =

M+1∑
j=1

1

rj − rj−1

∫
Rd

|G(u, rj)−G(u, rj−1) + Γ(u, rj)− Γ(u, rj−1)|2W (u)du.
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■

Proof of Theorem 3.3 Let the reconstructed sample obtained via the moving block bootstrap be {Y ⋆1 , Y ⋆2 , ..., Y ⋆T },
where Y ⋆t = Yti for some 1 ≤ ti ≤ T . Under H0 of no structural breaks,

eiu
′Y ⋆

t = ϕ0(u) + ε⋆t (u),

where ϕ0(u) = E(eiu
′Yt) is the time-invariant CF of Yt for all t. It implies that resampling Yt is equivalent

to resampling the generalized error function εt(u) under H0. Consider the following joint test statistic based
on the bootstrap sample

F ⋆T (r1, ..., rM ) = SSGR⋆0 − SSGR⋆M

=

M+1∑
j=1

(Tj − Tj−1)

∫
Rd

∣∣∣∣∣∣ 1

Tj − Tj−1

Tj∑
s=Tj−1+1

eiu
′Y ⋆

s − 1

T

T∑
s=1

eiu
′Y ⋆

s

∣∣∣∣∣∣
2

W (u)du

=

M+1∑
j=1

(Tj − Tj−1)

∫
Rd

∣∣∣∣∣∣ 1

Tj − Tj−1

Tj∑
s=Tj−1+1

ε⋆s(u)−
1

T

T∑
s=1

ε⋆s(u)

∣∣∣∣∣∣
2

W (u)du,

where

SSGR⋆0 =

T∑
t=1

∫
Rd

∣∣∣∣∣eiu′Y ⋆
t − 1

T

T∑
s=1

eiu
′Y ⋆

s

∣∣∣∣∣
2

W (u)du,

and

SSGR⋆M =

M+1∑
j=1

Tj∑
t=Tj−1+1

∫
Rd

∣∣∣∣∣∣eiu′Y ⋆
t − 1

Tj − Tj−1

Tj∑
s=Tj−1+1

eiu
′Y ⋆

s

∣∣∣∣∣∣
2

W (u)du.

By analogous steps as in the proof of Theorem 3.1, we have

F ⋆T (r1, ..., rM ) =

M+1∑
j=1

1

rj − rj−1

∫
Rd

∣∣∣∣∣∣
 1√

T

Tj∑
t=1

ε⋆t (u)−
rj√
T

T∑
t=1

ε⋆t (u)

−

 1√
T

Tj−1∑
t=1

ε⋆t (u)−
rj−1√
T

T∑
t=1

ε⋆t (u)

∣∣∣∣∣∣
2

W (u)du.

Let E⋆[ε̄⋆(u)] ≡ E⋆[T−1
∑T
t=1 ε

⋆
t (u)] be the expectation of the sample average of ε⋆t (u) conditioning on the

observable sample, we have

1√
T

Tj∑
t=1

ε⋆t (u)−
rj√
T

T∑
t=1

ε⋆t (u) =
1√
T

Tj∑
t=1

[ε⋆t (u)− E⋆[ε̄⋆(u)]]− rj√
T

T∑
t=1

[ε⋆t (u)− E⋆[ε̄⋆(u)]]

= L⋆T (u, rj)− rjL⋆T (u, 1),

where

L⋆T (u, rj) =
1√
T

Tj∑
t=1

[ε⋆t (u)− E⋆[ε̄⋆(u)]] .
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Then, it follows

F ⋆T (r1, ..., rM ) =

M+1∑
j=1

1

rj − rj−1

∫
Rd

|[L⋆T (u, rj)− rjL⋆T (u, 1)]− [L⋆T (u, rj−1)− rj−1L⋆T (u, 1)]|
2
W (u)du.

Note that proof of Theorem 3.1 implies

FT (r1, ..., rM ) =

M+1∑
j=1

1

rj − rj−1

∫
Rd

|[LT (u, rj)− rjLT (u, 1)]− [LT (u, rj−1)− rj−1LT (u, 1)]|2W (u)du,

where

LT (u, rj) = T−1/2

Tj∑
t=1

εt(u) ⇒ B(u, rj)

under Assumption A.4*. To show the validity of the bootstrap test statistic, it suffices to show that

L⋆T (u, rj) ⇒⋆ B(u, rj),

in probability over U × [0, 1]. We first establish (a) the convergence of L⋆T (u, rj) for each fixed u ∈ U and
then show that (b) L⋆T (u, rj) is stochastically equicontinuous in U.

We use Theorem 2 of Calhoun (2018) to establish (a). By Assumption A.1(ii) and supu |eiu
′Yt | = 1,

for each fixed u ∈ U, εt(u) = eiu
′Yt − ϕ0(u) is L2 Near-Epoch-Dependent process of size −1/2 since the

process {Yt} is strong mixing with mixing coefficient α(s) = O(s−
q

q−2 ) for some q > 2. Hence, condition 1
in Theorem 2 of Calhoun (2018) is satisfied. Note that E[εt(u)] = 0, and εt(u) is uniformly Lq bounded.
Besides,

√
T

∣∣∣∣∣ 1T
T∑
t=1

εt(u)

∣∣∣∣∣→ Ω(u, u)1/2,

under Assumption A.4*. Then, conditions 2 and 3 in Theorem 2 of Calhoun (2018) are satisfied. Finally,
condition 4 in Theorem 2 of Calhoun (2018) holds under Assumption A.6. Furthermore,

1

T

Tj∑
s=1

Tj∑
t=1

cov [εt(u), εs(u)] → rjΩ(u, u)

under Assumption A.4*. Then, by Theorem 2 of Calhoun (2018),

L⋆T (u, rj) ⇒⋆ B(u, rj),

for each fixed u ∈ U.
Now, we show (b). Note that

E⋆[ε̄⋆(u)] =
1

T − lT + 1

T∑
t=1

εt(u)−
1

T − lT + 1

lT−1∑
k=1

(
1− k

lT

)
[εk(u) + εT−k+1(u)]

=
1

T

T∑
t=1

εt(u) +OP (lTT
−1).
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Then L⋆T (u, rj) = T−1/2
∑Tj

t=1 ε
⋆
t (u)− rjT

−1/2
∑T
t=1 εt(u) +OP (lTT

−1/2).
Let Du,δ be an open ball in U centered at u such that ∥v − u∥ < δ for all v ∈ Du,δ. By the mean value

theorem,
Tj∑
t=1

[ε⋆t (u)− ε⋆t (v)] =

Tj∑
t=1

Υt(ũ)
′(u− v)

for some ũ lying in between u and v, where

Υt(u) =
dε⋆t (u)

du
= i
[
Y ⋆t e

iu′Y ⋆
t − E

(
Y ⋆t e

iu′Y ⋆
t

)]
We note that ũ can depend on j. Then

lim
δ→0

lim sup
T→∞

P

sup
u∈U

sup
v∈Du,δ

∣∣∣∣∣∣ 1√
T

Tj∑
t=1

[ε⋆t (u)− ε⋆t (v)]

∣∣∣∣∣∣ > ϵ


= lim

δ→0
lim sup
T→∞

P

sup
u∈U

sup
v∈Du,δ

∣∣∣∣∣∣ 1√
T

Tj∑
t=1

Υt(ũ)
′(u− v)

∣∣∣∣∣∣ > ϵ


≤ lim

δ→0
lim sup
T→∞

P

sup
ū∈U

∥∥∥∥∥∥ 1√
T

Tj∑
t=1

Υt(ũ)

∥∥∥∥∥∥ > ϵ/δ


= 0,

for any ϵ > 0, where the last equality holds since

sup
ū∈U

∥∥∥∥∥∥ 1√
T

Tj∑
t=1

Υt(ũ)

∥∥∥∥∥∥ = sup
ū∈U

∥∥∥∥∥∥ 1√
T

Tj∑
t=1

[
Y ⋆t e

iũ′Y ⋆
t − E

(
Y ⋆t e

iũ′Y ⋆
t

)]∥∥∥∥∥∥ = OP (1),

under the mixing condition and moment restriction in Assumptions A.1(ii) and A.6(ii). Analogous results
can be obtained for rjT−1/2

∑T
t=1 εt(u). Then, it follows T−1/2L⋆T (u, rj) ⇒⋆ B(u, rj), in probability for

each j. Given U× [0, 1] is a compact set, by the continuous mapping theorem, and analogous arguments in
the proof of Theorem 3.1,

F ⋆T (r1, ..., rM ) ⇒⋆ F (r1, ..., rM ),

in probability.
Next, we show that the proposed MBB is asymptotically valid under HA. Let ϕt(u) ≡ E(eiu

′Yt) denote
the true time-varying CF and ϕ⋆t (u) ≡ E(eiu

′Y ⋆
t ) be the CF of Y ⋆t based on the bootstrap sample. Given

eiu
′Y ⋆

t = ϕ⋆t (u) + ε⋆t (u) under HA, we have

F ⋆T (r1, ..., rM ) = SSGR⋆0 − SSGR⋆M

=

M+1∑
j=1

(Tj − Tj−1)

∫
Rd

∣∣∣∣∣∣ 1

Tj − Tj−1

Tj∑
s=Tj−1+1

eiu
′Y ⋆

s − 1

T

T∑
s=1

eiu
′Y ⋆

s

∣∣∣∣∣∣
2

W (u)du

≤ 2

M+1∑
j=1

(Tj − Tj−1)

∫
Rd

∣∣∣∣∣∣ 1

Tj − Tj−1

Tj∑
s=Tj−1+1

ε⋆s(u)−
1

T

T∑
s=1

ε⋆s(u)

∣∣∣∣∣∣
2

W (u)du
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+2
M+1∑
j=1

(Tj − Tj−1)

∫
Rd

∣∣∣∣∣∣ 1

Tj − Tj−1

Tj∑
s=Tj−1+1

ϕ⋆s(u)−
1

T

T∑
s=1

ϕ⋆s(u)

∣∣∣∣∣∣
2

W (u)du

= 2R1(r1, ..., rM ) + 2R2(r1, ..., rM ), say.

By the mixing condition in Assumption A.1(ii) and the analogous proof in Lemma A.1, we can show
supr1,...,rM |R1(r1, ..., rM )| = OP (1). We consider R2(r1, ..., rM ). By analogous steps, we have

R2(r1, ..., rM ) =

M+1∑
j=1

(Tj − Tj−1)

∫
Rd

∣∣∣∣∣∣ 1

Tj − Tj−1

Tj∑
s=Tj−1+1

ϕ⋆s(u)−
1

T

T∑
s=1

ϕ⋆s(u)

∣∣∣∣∣∣
2

W (u)du

=

M+1∑
j=1

1

rj − rj−1

∫
Rd

∣∣∣∣∣∣
 1√

T

Tj∑
t=1

ϕ⋆t (u)−
rj√
T

T∑
t=1

ϕ⋆t (u)

−

 1√
T

Tj−1∑
t=1

ϕ⋆t (u)−
rj−1√
T

T∑
t=1

ϕ⋆t (u)

∣∣∣∣∣∣
2

W (u)du

≤ 2

M+1∑
j=1

1

rj − rj−1

∫
Rd

∣∣∣∣∣∣
 1√

T

Tj∑
t=1

{
ϕ⋆t (u)− E⋆[ϕ̄⋆(u)]

}
− rj√

T

T∑
t=1

{
ϕ⋆t (u)− E⋆[ϕ̄⋆(u)]

}∣∣∣∣∣∣
2

W (u)du

+2

M+1∑
j=1

1

rj − rj−1

∫
Rd

∣∣∣∣∣∣
 1√

T

Tj−1∑
t=1

{
ϕ⋆t (u)− E⋆[ϕ̄⋆(u)]

}
− rj−1√

T

T∑
t=1

{
ϕ⋆t (u)− E⋆[ϕ̄⋆(u)]

}∣∣∣∣∣∣
2

W (u)du

= 2

M+1∑
j=1

1

rj − rj−1

∫
Rd

|N ⋆
T (u, rj)− rjN ⋆

T (u, 1)|
2
W (u)du

+2

M+1∑
j=1

1

rj − rj−1

∫
Rd

|N ⋆
T (u, rj−1)− rj−1N ⋆

T (u, 1)|
2
W (u)du,

where E⋆[ϕ̄⋆(u)] ≡ E⋆[T−1
∑T
t=1 ϕ

⋆
t (u)] be the expectation of the sample average of ϕ⋆t (u) conditioning

on the observable sample, and N ⋆
T (u, rj) ≡ T−1/2

∑Tj

t=1

{
ϕ⋆t (u)− E⋆[ϕ̄⋆(u)]

}
. Let Xi(u) = ϕi(u) + · · · +

ϕi+lT−1(u) for the i-th block, i = 1, ..., N , and X ⋆
k (u) = ϕ⋆(k−1)lT+1(u)+ · · ·+ϕ⋆klT (u) for the k-th resampled

block, k = 1, ...,K. Conditioning on the data, X ⋆
1 (u),X ⋆

2 (u), ...,X ⋆
K(u) are independent and identically

distributed. Given T = lTK, and N = T − lT + 1, then it follows

E⋆ [N ⋆
T (u, rj)] =

√
TE⋆

 1

lTK

⌊lTKrj⌋∑
t=1

ϕ⋆t (u)

−
√
TrjE

⋆

[
1

lTK

lTK∑
t=1

ϕ⋆t (u)

]

=

√
T

lTK

⌊Krj⌋∑
k=1

E⋆ [X ⋆
i (u)]−

√
Trj
lTK

K∑
k=1

E⋆ [X ⋆
i (u)]

=

√
T

lTK

⌊Krj⌋∑
k=1

1

N

N∑
i=1

Xi(u)−
√
Trj
lTK

K∑
k=1

1

N

N∑
i=1

Xi(u)

=

√
Trj
NlT

N∑
i=1

Xi(u)−
√
Trj
NlT

N∑
i=1

Xi(u)

= 0,
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for all {rj}M+1
j=1 . And

E⋆

 1√
T

Tj∑
t=1

{
ϕ⋆t (u)− E⋆[ϕ̄⋆(u)]

}2

= var⋆
 1√

T

Tj∑
t=1

ϕ⋆t (u)


=

1

T
var⋆

⌊Krj⌋∑
k=1

X ⋆
k (u)


=

Krj
T

var⋆ [X ⋆
k (u)]

=
Krj
T

1

N

N∑
i=1

|Xi(u)|2 −
Krj
T

∣∣∣∣∣ 1N
N∑
i=1

Xi(u)

∣∣∣∣∣
2

= OP (lT ).

Hence, N ⋆
T (u, rj) = OP⋆(l

1/2
T ) for all u and rj . The uniform results can be established in a similar way as in

the proof of Theorem 3.1. Then, we have that under HA, the bootstrap joint test statistic supF ⋆T = OP⋆(lT ).
Note that Theorem 3.2 implies that our test statistic

supFT (r1, ..., rM ) = SSGR0 − SSGRM (r̂1, ..., r̂M )

= OP (Ta
2
T ),

under HA(aT ). Hence, if Ta2T l−1
T → ∞, we have that P ⋆(supF > supF ⋆) → 1 as T → ∞. ■

Proof of Theorem 4.1 Under the null hypothesis of M breaks, we let D(Tj , Tk) be the SSGR using the
data within the segment specified by [Tj + 1, Tk] for 0 ≤ j < k ≤M + 1. Then it is obvious that

SSGRM (T 0
1 , ..., T

0
M ) =

M+1∑
k=1

D(T 0
k−1, T

0
k ),

and

SSGRM+1

(
T 0
1 , ..., T

0
j−1, τ, T

0
j , ..., T

0
M

)
=

j−1∑
k=1

D(T 0
k−1, T

0
k ) +D(T 0

j−1, τ) +D(τ, T 0
j ) +

M+1∑
k=j+1

D(T 0
k−1, T

0
k ),

for some 1 < j < M . We note that

SSGRM+1

(
T 0
1 , ..., T

0
j−1, τ, T

0
j , ..., T

0
M

)
≡ SSGRM+1

(
τ, T 0

1 , ..., T
0
M

)
= D(1, τ) +D(τ, T 0

1 ) +

M+1∑
k=2

D(T 0
k−1, T

0
k ),

when j = 1, and

SSGRM+1

(
T 0
1 , ..., T

0
j−1, τ, T

0
j , ..., T

0
M

)
≡ SSGRM+1

(
T 0
1 , ..., T

0
M , τ

)
=

M∑
k=1

D(T 0
k−1, T

0
k ) +D(T 0

M , τ) +D(τ, T ),
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when j =M . Let

F 0
T (M + 1|M) = SSGRM

(
T 0
1 , ..., T

0
M

)
− min

1≤j≤M+1
inf

τ∈Λ0
j,ϵ

SSGRM+1

(
T 0
1 , ..., T

0
j−1, τ, T

0
j , ..., T

0
M

)
= max

1≤j≤M+1
sup
τ∈Λ0

j,ϵ

[
SSGRM

(
T 0
1 , ..., T

0
M

)
− SSGRM+1

(
T 0
1 , ..., T

0
j−1, τ, T

0
j , ..., T

0
M

)]
= max

1≤j≤M+1
sup
τ∈Λ0

j,ϵ

[
D(T 0

j−1, T
0
j )−D(T 0

j−1, τ)−D(τ, T 0
j )
]
,

where

Λ0
j,ϵ =

{
τ : T 0

j−1 + ⌊(T 0
j − T 0

j−1)ϵ⌋ ≤ τ ≤ T 0
j − ⌊(T 0

j − T 0
j−1)ϵ⌋

}
,

for some arbitrarily small ϵ > 0. It is straightforward to see that

sup
τ∈Λ0

j,ϵ

[
D(T 0

j−1, T
0
j )−D(T 0

j−1, τ)−D(τ, T 0
j )
]

is equivalent to the sup-F test statistic in Theorem 3.1 in a subsample specified by [T 0
j−1, T

0
j ] with M = 1

in the alternative hypothesis.
It follows

D(T 0
j−1, T

0
j )−D(T 0

j−1, τ)−D(τ, T 0
j )

= (τ − T 0
j−1)

∫
Rd

∣∣∣∣∣∣ 1

T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

εt(u)−
1

τ − T 0
j−1

τ∑
t=T 0

j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

+(T 0
j − τ)

∫
Rd

∣∣∣∣∣∣ 1

T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

εt(u)−
1

T 0
j − τ

T 0
j∑

t=τ+1

εt(u)

∣∣∣∣∣∣
2

W (u)du.

Let r = τ−T 0
j−1

T 0
j −T 0

j−1
. Given Assumption A.4, we have for t ∈ [T 0

j−1, T
0
j ],

1√
T 0
j − T 0

j−1

τ∑
t=T 0

j−1+1

εt(u) =
1√

T 0
j − T 0

j−1

T 0
j−1+⌊(T 0

j −T
0
j−1)r⌋∑

t=T 0
j−1+1

εt(u) ⇒ B(j)(u, r).

Hence,

D(T 0
j−1, T

0
j )−D(T 0

j−1, τ)−D(τ, T 0
j )

=
1

τ − T 0
j−1

∫
Rd

∣∣∣∣∣∣ τ − T 0
j−1

T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

εt(u)−
τ∑

t=T 0
j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

+
1

T 0
j − τ

∫
Rd

∣∣∣∣∣∣ T 0
j − τ

T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

εt(u)−
T 0
j∑

t=τ+1

εt(u)

∣∣∣∣∣∣
2

W (u)du
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=
1

⌊r(T 0
j − T 0

j−1)⌋

∫
Rd

∣∣∣∣∣∣r
T 0
j∑

t=T 0
j−1+1

εt(u)−
τ∑

t=T 0
j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

+
1

⌊(1− r)(T 0
j − T 0

j−1)⌋

∫
Rd

∣∣∣∣∣∣(1− r)

T 0
j∑

t=T 0
j−1+1

εt(u)−

 T 0
j∑

t=T 0
j−1+1

εt(u)−
τ∑

t=T 0
j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

=
1

r

∫
Rd

∣∣∣∣∣∣r 1√
T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

εt(u)−
1√

T 0
j − T 0

j−1

τ∑
t=T 0

j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

+
1

1− r

∫
Rd

∣∣∣∣∣∣r 1√
T 0
j − T 0

j−1

T 0
j∑

t=T 0
j−1+1

εt(u)−
1√

T 0
j − T 0

j−1

τ∑
t=T 0

j−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

⇒ 1

r(1− r)

∫
Rd

∣∣∣B(j)(u, r)− rB(j)(u, 1)
∣∣∣2W (u)du.

It follows that

sup
τ∈Λ0

j,ϵ

[
D(T 0

j−1, T
0
j )−D((T 0

j−1, τ)−D(τ, T 0
j )
] d→ sup

ϵ≤r≤1−ϵ

∫
Rd

∣∣B(j)(u, r)− rB(j)(u, 1)
∣∣2

r(1− r)
W (u)du.

Hence, we have

F 0
T (M + 1|M) = max

1≤j≤M+1
sup
τ∈Λ0

j,ϵ

[
D(T 0

j−1, T
0
j )−D(T 0

j−1, τ)−D(τ, T 0
j )
]

d→ max
1≤j≤M+1

sup
ϵ≤r≤1−ϵ

∫
Rd

∣∣B(j)(u, r)
∣∣2

r(1− r)
W (u)du,

where B(j)(u, r) ≡ B(j)(u, r) − rB(j)(u, 1) is a generalized Brownian bridge under the j-th subsample,
j = 1, ...,M + 1. Under the null hypothesis, Theorem 2.2 indicates that r̂j = r0j + OP (T

−1). Based on
this result, we know the above equation also holds with T 0

j−1 and T 0
j replaced by T̂j−1 and T̂j , respectively.

Hence, the limiting distribution of FT (M + 1|M) is the same as F 0
T (M + 1|M). ■

Proof of Theorem 4.2 Let M = {1, 2, ...,Mmax}. We divide M into three subsets: M0 = {M ∈ M :
M =M0}, M− = {M ∈ M :M < M0}, and M+ = {M ∈ M :M > M0}. M0,M−, and M+ denote the
subsets of M which correctly estimate, under-estimate, and over-estimate the true number of breaks. We
prove the theorem by showing that neither the under-fitted model nor the over-fitted model can minimize
the information criterion function, i.e., P (minM∈(M−∪M+) IC(M) > IC(M0)) → 1 as T → ∞, where

IC(M) ≡ ln
[
σ̂2(M)

]
+ ρT (M + 1),

with σ̂2(M) = T−1SSGRM (r̂1, ..., r̂M ).
By Theorems 2.1-2.3, under Assumption A.7, it immediately follows that

IC(M0) = ln
[
σ̂2(M0)

]
+ ρT (M

0 + 1)
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= ln

 1

T

M0+1∑
j=1

T̂j∑
t=T̂j−1+1

∫
Rd

∣∣∣eiu′Yt − ψ̂j(u)
∣∣∣2W (u)du

+ o(1)

= ln

 1

T

M0+1∑
j=1

T 0
j∑

t=T 0
j−1+1

∫
Rd

∣∣∣eiu′Yt − ψ0
j (u)

∣∣∣2W (u)du

+ oP (1)

= ln

[
1

T

T∑
t=1

∫
Rd

|εt(u)|2W (u)du

]
+ oP (1),

where εt(u) is as defined in the proof of Theorem 2.1. We now consider the cases of under- and over-fitted
models separately.

When the model is under-fitted, i.e., M < M0, Lemma A.5 implies that the estimated break fractions
{r̂1, ..., r̂M} are consistent for M breaks in the collection of true break fractions {r0j}M

0

j=1. Then there must
exist M0 −M break fractions in {r0j}M

0

j=1 that cannot be identified.
Without loss of generality, we assume the j-th break r0j is not consistently estimated. Then with some

positive probability 0 < c0 < 1 there exists an κ > 0 such that no estimated break fraction falls in the interval
[T (r0j − κ), T (r0j + κ)]. Suppose this interval is classified into the k-th regime, i.e., T̂k−1 ≤ T 0

j − ⌊κT ⌋+ 1 <

T 0
j + ⌊κT ⌋ ≤ T̂k. Then, following the proof of Lemma A.4, we have

1

T

∫
Rd

T∑
t=1

|ε̂t(u)|2W (u)du ≥ 1

T

∫
Rd

T∑
t=1

|εt(u)|2W (u)du+ δ

∫
Rd

∣∣ψ0
j (u)− ψ0

j+1(u)
∣∣2W (u)du+ oP (1),

for any M < M0, where δ = 1
2κ. It follows

min
M∈M−

IC(M)− IC
(
M0
)

= min
M∈M−

[
ln

(
1

T

∫
Rd

T∑
t=1

|ε̂t(u)|2W (u)du

)
+ ρT (M + 1)

]

−

[
ln

(
1

T

∫
Rd

T∑
t=1

|εt(u)|2W (u)du

)
+ ρT (M

0 + 1) + oP (1)

]

≥ ln

[
1 +

δ
∫
Rd

∣∣ψ0
j (u)− ψ0

j+1(u)
∣∣2W (u)du

1
T

∫
Rd

∑T
t=1 |εt(u)|

2
W (u)du

]
+ oP (1)

Therefore, for any positive probability 0 < c0 < 1, there exists a κ = 2δ such that

P

(
min

M∈M−
IC(M)− IC (M0) > ∆

)
= c0,

for T sufficiently large, where 0 < ∆ < limT→∞ ln

[
1 +

δ
∫
Rd |ψ0

j (u)−ψ
0
j+1(u)|2W (u)du

1
T

∫
Rd

∑T
t=1|εt(u)|

2W (u)du

]
. Then by Assumption

A.7 and Slutsky Lemma, we have

P ( min
M∈M−

IC(M) > IC(M0)) → 1,

as T → ∞.
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When the model is over-fitted, by Assumption A.7 and Lemma A.6, we have

P

(
min

M∈M+

IC(M) > IC(M0)

)
= P

(
min

M∈M+

[
ln(σ̂2(M)/σ̂2(M0)) + TρT (M −M0)

]
> 0

)
→ 1 as T → ∞,

given M > M0. Therefore, we have proved that

P

(
min

M∈M−∪M+

IC(M) > IC(M0)

)
→ 1 as T → ∞.

■

B Proofs of Technical Lemmas
Proof of Lemma A.1 GivenM is a finite number, without loss of generality, we let j = 1. By the definition
of εt(u), we have

E

 1

T

∫
Rd

∣∣∣∣∣
T1∑
t=1

εt(u)

∣∣∣∣∣
2

W (u)du

 =

∫
Rd

1

T

T1∑
s=1

T1∑
t=1

Re {E [εt(u)εs(u)
∗]}W (u)du

≤ 1

T

T1∑
s=1

T1∑
t=1

∫
Rd

∣∣∣cov(eiu′Yt , eiu
′Ys

)∣∣∣W (u)du

≤ 8r1

(
sup
u∈Rd

max
1≤t≤T1

|eiu
′Yt |q

)2
1

T1

T1∑
s=1

T1∑
t=1

α(s− t)(q−2)/q

∫
Rd

W (u)du

≤ 8r1

∞∑
l=−∞

α(l)(q−2)/q

∫
Rd

W (u)du

≤ C.

The second inequality is due to the Davydov’s inequality and the fact that r1 = T1/T . The second inequality
holds since

sup
u∈Rd

max
1≤t≤T1

|eiu
′Yt |q = 1

for any q > 2. And the last inequality holds due to Assumption A.1(ii) and Assumption A.2. Hence, by the
Markov inequality,

1

T

∫
Rd

∣∣∣∣∣
T1∑
t=1

εt(u)

∣∣∣∣∣
2

W (u)du = OP (1).

■
Proof of Lemma A.2 Without loss of generality, we consider j = 1. Let

KT (η) ≡
[∫

Rd

∣∣∣vT ∑⌊ηv−2
T ⌋

t=1 εt(u)
∣∣∣2W (u)du

]1/2
,
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we want to show that supη∈[0,C] [KT (η)]
2
= OP (1). Given [0, C] is compact set, it suffices to show (i)

KT (η) = OP (1) for each fixed η; and (ii) KT (η) is asymptotically tight.
For (i), by the definition of εt(u), for each η ∈ [0, C],

E [KT (η)]
2

= v2T

∫
Rd

E

∣∣∣∣∣∣
⌊ηv−2

T ⌋∑
t=1

εt(u)

∣∣∣∣∣∣
2

W (u)du

= v2T

∫
Rd

⌊ηv−2
T ⌋∑

s=1

⌊ηv−2
T ⌋∑

t=1

Re {E [εt(u)εs(u)
∗]}W (u)du

≤ v2T

⌊ηv−2
T ⌋∑

s=1

⌊ηv−2
T ⌋∑

t=1

∫
Rd

∣∣∣cov(eiu′Yt , eiu
′Ys

)∣∣∣W (u)du

≤ 8η

(
sup
u∈Rd

max
1≤t≤⌊ηv−2

T ⌋
|eiu

′Yt |q

)2

η−1v2T

⌊ηv−2
T ⌋∑

s=1

⌊ηv−2
T ⌋∑

t=1

α(s− t)(q−2)/q

∫
Rd

W (u)du

≤ 8η

∞∑
l=−∞

α(l)(q−2)/q

∫
Rd

W (u)du

≤ C,

by analogous arguments in the proof of Lemma A.1. Hence, by the Markov inequality,

[KT (η)]
2
= OP (1),

for any fixed η.
Now, we show (ii). Without loss of generality, consider 0 ≤ η1 < η2 ≤ C. By the Minkowski inequality,

|KT (η2)−KT (η1)| ≤

∫
Rd

∣∣∣∣∣∣vT
⌊η2v−2

T ⌋∑
t=⌊η1v−2

T ⌋+1

εt(u)

∣∣∣∣∣∣
2

W (u)du


1/2

.

Let q > 2, for any ϵ > 0,

P (|KT (η2)−KT (η1)| ≥ ϵ) ≤ P


∫

Rd

∣∣∣∣∣∣vT
⌊η2v−2

T ⌋∑
t=⌊η1v−2

T ⌋+1

εt(u)

∣∣∣∣∣∣
2

W (u)du


q/2

≥ ϵq



≤
E

[∫
Rd

∣∣∣vT ∑⌊(η2−η1)v−2
T ⌋

t=1 εt(u)
∣∣∣2W (u)du

]q/2
ϵq

,

where the last equality is by stationarity and the Markov inequality. By Jensen’s inequality,

E

∫
Rd

∣∣∣∣∣∣vT
⌊(η2−η1)v−2

T ⌋∑
t=1

εt(u)

∣∣∣∣∣∣
2

W (u)du


q/2

≤ vqT

∫
Rd

E

∣∣∣∣∣∣
⌊(η2−η1)v−2

T ⌋∑
t=1

εt(u)

∣∣∣∣∣∣
q

W (u)du
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≤ vqTC
[
(η2 − η1)v

−2
T

]q/2
= C|η2 − η1|q/2,

where the last equality is by Theorem 2 of Yokoyama (1980) given the mixing condition in Assumption
A.1(ii), supu∈Rd |εt(u)| < C, and the integrability of W (u) in Assumption A.2. Hence, by Theorem 15.6 of
Billingsley (1968), KT (η) is tight. Thus, (ii) is established. It follows

sup
η∈[0,C]

KT (η) = OP (1).

That completes the proof. ■
Proof of Lemma A.3 By the definition of dt(u) = ψ̂k(u) − ψ0

j (u), for t ∈ [T̂k−1 + 1, T̂k] ∩ [T 0
j−1 + 1, T 0

j ]

with k, j = 1, 2, ...,M0 + 1,

1

T

T∑
t=1

∫
Rd

Re [εt(u)dt(u)∗]W (u)du =
1

T

M0+1∑
k=1

T̂k∑
t=T̂k−1+1

∫
Rd

Re
[
εt(u)ψ̂k(u)

∗
]
W (u)du

− 1

T

M0+1∑
j=1

T 0
j∑

t=T 0
j−1+1

∫
Rd

Re
[
εt(u)ψ

0
j (u)

∗]W (u)du

≡ Q1 −Q2.

Consider Q1. By the definition of ψ̂k(u),

Q1 =
1

T

M0+1∑
k=1

T̂k∑
t=T̂k−1+1

∫
Rd

Re

εt(u)
 1

T̂k − T̂k−1

T̂k∑
t=T̂k−1+1

(
ϕ0t (u) + εt(u)

)∗W (u)du

=
1

T

M0+1∑
k=1

∫
Rd

Re


 T̂k∑
t=T̂k−1+1

εt(u)

 1

T̂k − T̂k−1

T̂k∑
t=T̂k−1+1

ϕ0t (u)

∗W (u)du

+
1

T

M0+1∑
k=1

1

T̂k − T̂k−1

∫
Rd

∣∣∣∣∣∣
T̂k∑

t=T̂k−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du

≡ Q11 +Q12,

where ϕ0t (u) ≡ E(eiu
′Yt). By the Cauchy-Schwarz inequality,

|Q11| ≤ 1

T

M0+1∑
k=1

∫
Rd

∣∣∣∣∣∣
T̂k∑

t=T̂k−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du


1/2 ∫

Rd

∣∣∣∣∣∣ 1

T̂k − T̂k−1

T̂k∑
t=T̂k−1+1

ϕ0t (u)

∣∣∣∣∣∣
2

W (u)du


1/2

≤ 1√
T

M0+1∑
k=1

 1

T

∫
Rd

∣∣∣∣∣∣
T̂k∑

t=T̂k−1+1

εt(u)

∣∣∣∣∣∣
2

W (u)du


1/2 ∫

Rd

 1

T̂k − T̂k−1

T̂k∑
t=T̂k−1+1

∣∣ϕ0t (u)∣∣
2

W (u)du


1/2

= OP (T
−1/2),
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where the last equality holds by Lemma A.1 and the fact that

1

T̂k − T̂k−1

T̂k∑
t=T̂k−1+1

∣∣ϕ0t (u)∣∣ ≤ 1

T̂k − T̂k−1

T̂k∑
t=T̂k−1+1

E
∣∣∣eiu′Yt

∣∣∣ = 1.

Analogously, Q12 = OP (T
−1) by Lemma A.1. Hence, Q1 = OP (T

−1/2). Consider Q2.

Q2 =
1

T

M0+1∑
j=1

T 0
j∑

t=T 0
j−1+1

∫
Rd

Re
[
εt(u)ψ

0
j (u)

∗]W (u)du

=
1√
T

M0+1∑
j=1

∫
Rd

Re


 1√

T

T 0
j∑

t=T 0
j−1+1

εt(u)

ψ0
j (u)

∗

W (u)du

= OP (T
−1/2),

by Assumption A.4. Hence, we establish the desired result. ■
Proof of Lemma A.4 If there exists a break, say r0j , which is not consistently estimated, then for some
positive probability 0 < c0 < 1, there exists a τ > 0 such that no estimated break dates fall into the interval[
T 0
j − ⌊κT ⌋+ 1, T 0

j + ⌊κT ⌋
]
for a subsequence of T . Suppose this interval is classified into the k-th regime,

i.e., T̂k−1 ≤ T 0
j − ⌊κT ⌋+ 1 < T 0

j + ⌊κT ⌋ ≤ T̂k, then

dt(u) =

 ψ̂k(u)− ψ0
j (u), for t ∈

[
T 0
j − ⌊κT ⌋+ 1, T 0

j

]
;

ψ̂k(u)− ψ0
j+1(u), for t ∈

[
T 0
j + 1, T 0

j + ⌊κT ⌋
]
.
.

By the definition of dt,

1

T

∫
Rd

T∑
t=1

|dt(u)|2W (u)du

≥ 1

T

∫
Rd

T 0
j +⌊κT⌋∑

t=T 0
j −⌊κT⌋+1

|dt(u)|2W (u)du

=
1

T

∫
Rd

T 0
j∑

t=T 0
j −⌊κT⌋+1

|dt(u)|2W (u)du+
1

T

∫
Rd

T 0
j +⌊κT⌋∑
t=T 0

j +1

|dt(u)|2W (u)du

=
1

T

∫
Rd

T 0
j∑

t=T 0
j −⌊κT⌋+1

∣∣∣ψ̂k(u)− ψ0
j (u)

∣∣∣2W (u)du+
1

T

∫
Rd

T 0
j +⌊κT⌋∑
t=T 0

j +1

∣∣∣ψ̂k(u)− ψ0
j+1(u)

∣∣∣2W (u)du

= τ

∫
Rd

[∣∣∣ψ̂k(u)− ψ0
j (u)

∣∣∣2 + ∣∣∣ψ̂k(u)− ψ0
j+1(u)

∣∣∣2]W (u)du

≥ 1

2
τ

∫
Rd

∣∣ψ0
j+1(u)− ψ0

j (u)
∣∣2W (u)du,

by the triangle inequality. Define δ = 1
2η, we then get the desired result. ■

Proof of Lemma A.5 Without loss of generality, we assume that the true number of breaks is M0 = 2
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and the corresponding break fractions are r01 and r02, such that r01 < r02. Suppose (2.2) is solved by setting
the number of breaks at M = 1. Denoting the estimated break fractions by r̂, we want to show that r̂ is
consistent for r01 or r02. Let r ∈ (ϵ, 1− ϵ), consider the following process

ST (r) =
1

T
SSGR(rT )

=
1

T

T∑
t=1

∫
Rd

|ε̃t(u, r)|2W (u)du,

where ε̃t(u, r) = eiu
′Yt − ψ̃k(u, r) for with ψ̃k(u, r) = 1

Tk−Tk−1

∑Tk

t=Tk−1+1 e
iu′Yt being the ECF for t ∈

[Tk−1, Tk], k = 1, 2. Following the convention that T0 = 0 and T2 = T , we note that T1 = ⌊Tr⌋.
Let d̃t(u, r) = ψ̃k(u, r)− ψ0

j (u) for t ∈ [Tk−1 + 1, Tk] ∩ [T 0
j−1 + 1, T 0

j ] with k = 1, 2 and j = 1, 2, 3. Then
it follows

ST (r) =
1

T

T∑
t=1

∫
Rd

∣∣∣εt(u)− d̃t(u, r)
∣∣∣2W (u)du

=
1

T

T∑
t=1

∫
Rd

|εt(u)|2W (u)du+
1

T

T∑
t=1

∫
Rd

∣∣∣d̃t(u, r)∣∣∣2W (u)du

− 2

T

T∑
t=1

∫
Rd

Re
[
εt(u)d̃t(u, r)

∗
]
W (u)du

=
1

T

T∑
t=1

∫
Rd

|εt(u)|2W (u)du+ S
(1)
T (r)− 2S

(2)
T (r),

where

S
(1)
T (r) ≡ 1

T

T∑
t=1

∫
Rd

∣∣∣d̃t(u, r)∣∣∣2W (u)du,

and

S
(2)
T (r) ≡ 1

T

T∑
t=1

∫
Rd

Re
[
εt(u)d̃t(u, r)

∗
]
W (u)du.

Apparently, the first term 1
T

∑T
t=1

∫
Rd |εt(u)|2W (u)du does not dependent on r. Then, it suffices to

consider S(1)
T (r) and S(2)

T (r).
We first show that S(2)

T (r) = oP (1) for all r ∈ (ϵ, 1− ϵ).

S
(2)
T (r) =

1

T

T∑
t=1

∫
Rd

Re
[
εt(u)d̃t(u)

∗
]
W (u)du

=
1

T

2∑
k=1

Tk∑
t=Tk−1

∫
Rd

Re
[
εt(u)ψ̃k(u, r)

∗
]
W (u)du

− 1

T

3∑
j=1

T 0
j∑

t=T 0
j−1

∫
Rd

Re
[
εt(u)ψ

0
j (u)

∗]W (u)du

= Q1(r) +Q2, say.
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Following analogous treatment in the proof of Lemma A.3, we have Q1(r) = OP (T
−1/2) for all r ∈ (ϵ, 1− ϵ)

and Q2 = OP (T
−1/2). Thus, S(2)

T (r) = oP (1) for all r ∈ (ϵ, 1− ϵ).
Now, we consider S(1)

T (r). When r = r01, we have ψ̃1(u, r
0
1) = ψ0

1(u) +
1
T 0
1

∑T 0
1
t=1 εt(u), and ψ̃2(u, r

0
1) =

1
T−T 0

1

∑T
t=T 0

1 +1 e
iu′Yt =

T 0
2 −T

0
1

T−T 0
1
ψ0
2(u) +

T−T 0
2

T−T 0
1
ψ0
3(u) +

1
T−T 0

1

∑T
t=T 0

1 +1 εt(u). Then, it follows

S
(1)
T (r01) =

1

T

T∑
t=1

∫
Rd

∣∣∣d̃t(u, r01)∣∣∣2W (u)du

=
1

T

∫
Rd

[
T 0
1

∣∣∣ψ̃1(u, r
0
1)− ψ0

1(u)
∣∣∣2 + (T 0

2 − T 0
1 )
∣∣∣ψ̃2(u, r

0
1)− ψ0

2(u)
∣∣∣2 + (T − T 0

2 )
∣∣∣ψ̃2(u, r

0
1)− ψ0

3(u)
∣∣∣2]W (u)du

=

∫
Rd

{
r01

∣∣∣∣∣∣ 1T 0
1

T 0
1∑

t=1

εt(u)

∣∣∣∣∣∣
2

+ (r02 − r01)

∣∣∣∣∣∣T − T 0
2

T − T 0
1

[
ψ0
3(u)− ψ0

2(u)
]
+

1

T − T 0
1

T∑
t=T 0

1 +1

εt(u)

∣∣∣∣∣∣
2

+(1− r02)

∣∣∣∣∣∣T
0
2 − T 0

1

T − T 0
1

[
ψ0
2(u)− ψ0

3(u)
]
+

1

T − T 0
1

T∑
t=T 0

1 +1

εt(u)

∣∣∣∣∣∣
2}

W (u)du

=
(1− r02)(r

0
2 − r01)

1− r01

∫
Rd

|ψ0
2(u)− ψ0

3(u)|2W (u)du+ oP (1),

where the last equality is due to Assumption A.4(ii). Analogously, when r = r02, we can show that

S
(1)
T (r02) =

r01(r
0
2 − r01)

r02

∫
Rd

|ψ0
1(u)− ψ0

2(u)|2W (u)du+ oP (1).

Without loss of generality, we assume

(1− r02)(r
0
2 − r01)

1− r01

∣∣ψ0
2(u)− ψ0

3(u)
∣∣2 < r01(r

0
2 − r01)

r02

∣∣ψ0
1(u)− ψ0

2(u)
∣∣2 . (B.1)

That implies that r01 is the asymptotic minimizer for ST (r) relatively to r02. Now we divide the set (ϵ, 1− ϵ)
into three subsets (ϵ, r01], (r01, r02), and [r02, 1− ϵ).

When r ∈ (ϵ, r01], T1 < T 0
1 . It follows ψ̃1(u, r) = ψ0

1(u)+
1
T1

∑T1

t=1 εt(u), and ψ̃2(u, r) =
1

T−T1

∑T
t=T1+1 e

iu′Yt =
T 0
1 −T1

T−T1
ψ0
1(u) +

T 0
2 −T

0
1

T−T1
ψ0
2(u) +

T−T 0
2

T−T1
ψ0
3(u) +

1
T−T1

∑T
t=T1+1 εt(u). Then, we have

ST (r)− ST (r
0
1)

= S
(1)
T (r)− S

(1)
T (r01) + oP (1)

=
1

T

∫
Rd

[
T1

∣∣∣ψ̃1(u, r)− ψ0
1(u)

∣∣∣2 + (T 0
1 − T1)

∣∣∣ψ̃2(u, r)− ψ0
1(u)

∣∣∣2
+(T 0

2 − T 0
1 )
∣∣∣ψ̃2(u, r)− ψ0

2(u)
∣∣∣2 + (T − T 0

2 )
∣∣∣ψ̃2(u, r)− ψ0

3(u)
∣∣∣2]W (u)du

− (1− r02)(r
0
2 − r01)

(1− r01)

∫
Rd

|ψ0
2(u)− ψ0

3(u)|2W (u)du+ oP (1)

=

∫
Rd

r ∣∣∣∣∣ 1T1
T1∑
t=1

εt(u)

∣∣∣∣∣
2

+ (r01 − r)

∣∣∣∣∣T 0
1 − T

T − T1
ψ0
1(u) +

T 0
2 − T 0

1

T − T1
ψ0
2(u) +

T − T 0
2

T − T1
ψ0
3(u) +

1

T − T1

T∑
t=T1+1

εt(u)

∣∣∣∣∣
2
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+(r02 − r01)

∣∣∣∣∣T 0
1 − T1
T − T1

ψ0
1(u) +

T 0
2 − T 0

1 − T + T1
T − T1

ψ0
2(u) +

T − T 0
2

T − T1
ψ0
3(u) +

1

T − T1

T∑
t=T1+1

εt(u)

∣∣∣∣∣
2

+(1− r02)

∣∣∣∣∣T 0
1 − T1
T − T1

ψ0
1(u) +

T 0
2 − T 0

1

T − T1
ψ0
2(u) +

T1 − T 0
2

T − T1
ψ0
3(u) +

1

T − T1

T∑
t=T1+1

εt(u)

∣∣∣∣∣
2
W (u)du

− (1− r02)(r
0
2 − r01)

(1− r01)

∫
Rd

|ψ0
2(u)− ψ0

3(u)|2W (u)du+ oP (1)

=

∫
Rd

[
(r01 − r)

∣∣∣∣1− r01
1− r

[
ψ0
2(u)− ψ0

1(u)
]
+

1− r02
1− r

[
ψ0
3(u)− ψ0

2(u)
]∣∣∣∣2

+(r02 − r01)

∣∣∣∣r01 − r

1− r

[
ψ0
1(u)− ψ0

2(u)
]
+

1− r02
1− r

[
ψ0
3(u)− ψ0

2(u)
]∣∣∣∣2

+(1− r02)

∣∣∣∣r01 − r

1− r

[
ψ0
1(u)− ψ0

2(u)
]
+
r02 − r

1− r

[
ψ0
2(u)− ψ0

3(u)
]∣∣∣∣2
]
W (u)du

− (1− r02)(r
0
2 − r01)

(1− r01)

∫
Rd

|ψ0
2(u)− ψ0

3(u)|2W (u)du+ oP (1)

=

∫
Rd

{
(1− r01)(r

0
1 − r)

1− r

∣∣ψ0
1(u)− ψ0

2(u)
∣∣2 + (1− r02)(r

0
2 − r)

1− r

∣∣ψ0
2(u)− ψ0

3(u)
∣∣2

+2
(r01 − r)(1− r02)

1− r

[
ψ0
1(u)− ψ0

2(u)
] [
ψ0
2(u)− ψ0

3(u)
]∗}

W (u)du

− (1− r02)(r
0
2 − r01)

(1− r01)

∫
Rd

|ψ0
2(u)− ψ0

3(u)|2W (u)du+ oP (1)

=

∫
Rd

{
(1− r01)(r

0
1 − r)

1− r

∣∣ψ0
1(u)− ψ0

2(u)
∣∣2 + (1− r02)

2(r01 − r)

(1− r)(1− r01)

∣∣ψ0
2(u)− ψ0

3(u)
∣∣2

+2
(r01 − r)(1− r02)

1− r

[
ψ0
1(u)− ψ0

2(u)
] [
ψ0
2(u)− ψ0

3(u)
]∗}

W (u)du+ oP (1)

p→ r01 − r

(1− r)(1− r01)

∫
Rd

∣∣(1− r01)[ψ
0
1(u)− ψ0

2(u)] + (1− r02)[ψ
0
2(u)− ψ0

3(u)]
∣∣2W (u)du ≥ 0

for distinct ψ0
1(u), ψ

0
2(u), ψ

0
3(u) and nonnegative W (u).

For r ∈ [r02, 1 − ϵ), by symmetry, we have limT→∞
[
ST (r)− ST (r

0
2)
]
≥ 0 by analogous derviations as

above. Then, by (B.1),

lim
T→∞

[
ST (r)− ST (r

0
1)
]
= lim
T→∞

[
ST (r)− ST (r

0
2)
]
+ lim
T→∞

[
ST (r

0
2)− ST (r

0
1)
]

> 0,

for all r ∈ [r02, 1− ϵ).
For r ∈ (r01, r

0
2), by tedious but analogous derivation,

ST (r)− ST (r
0
1) =

∫
Rd

[
r01(r − r01)

r

∣∣ψ0
1(u)− ψ0

2(u)
∣∣2 + (r02 − r)(1− r02)

1− r

∣∣ψ0
2(u)− ψ0

3(u)
∣∣2]W (u)du

− (1− r02)(r
0
2 − r01)

(1− r01)

∫
Rd

|ψ0
2(u)− ψ0

3(u)|2W (u)du+ oP (1)
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=

∫
Rd

[
r01(r − r01)

r

∣∣ψ0
1(u)− ψ0

2(u)
∣∣2 − (r − r01)(1− r02)

2

(1− r)(1− r01)

∣∣ψ0
2(u)− ψ0

3(u)
∣∣2]W (u)du+ oP (1)

=
(r − r01)r

0
2

r

∫
Rd

[
r01
r02

∣∣ψ0
1(u)− ψ0

2(u)
∣∣2 − r(1− r02)

2

r02(1− r)(1− r01)

∣∣ψ0
2(u)− ψ0

3(u)
∣∣2]W (u)du+ oP (1)

>
(r − r01)r

0
2

r

∫
Rd

[
1− r02
1− r01

∣∣ψ0
2(u)− ψ0

3(u)
∣∣2 − r(1− r02)

2

r02(1− r)(1− r01)

∣∣ψ0
2(u)− ψ0

3(u)
∣∣2]W (u)du+ oP (1)

=
(r − r01)r

0
2(1− r02)

r(1− r01)

[
1− r(1− r02)

r02(1− r)

] ∫
Rd

∣∣ψ0
2(u)− ψ0

3(u)
∣∣2W (u)du+ oP (1)

=
(r − r01)r

0
2(1− r02)

r(1− r01)

[
r02 − r

r02(1− r)

] ∫
Rd

∣∣ψ0
2(u)− ψ0

3(u)
∣∣2W (u)du+ oP (1)

p→ (r − r01)(1− r02)(r
0
2 − r)

r(1− r01)(1− r)

∫
Rd

∣∣ψ0
2(u)− ψ0

3(u)
∣∣2W (u)du > 0,

where the first inequality is by (B.1) and the last one is by r ∈ (r01, r
0
2). Therefore, we have shown that ST (r)

has a unique asymptotic global minimum at r01 under (B.1). Besides, given r̂ is the global minimizer for
ST (r), we have ST (r̂) ≤ ST (r1) for all T . Thus, and the consistency of r̂ = T̂1/T

p→ r01 holds. Analogously,
we can show that r̂ = T̂1/T

p→ r02 if we assume that r02 is an asymptotic minimizer for ST (r) relatively to
r01. We note that the proof for M0 > 2 and M > 1 is virtually quite similar, but much more tedious. For
space, we neglect it. ■
Proof of Lemma A.6 WhenM ≥M0, following the proof of Theorem 2.1, we can show that the collection
{r̂k}Mk=1 contains at least M0 distinct estimated break fractions, say r̂k1 < · · · < r̂kM0 , such that r̂kj − r0j =

OP (T
−1) for j = 1, 2, ...,M0, where {kj}M

0

j=1 is a subset of {k}Mk=1.
Let σ̂2(M) = T−1SSGRM (r̂1, ..., r̂M ), then

σ̂2(M) =
1

T

M+1∑
k=1

T̂k∑
t=T̂k−1+1

∫
Rd

∣∣∣eiu′Yt − ψ̂k(u)
∣∣∣2W (u)du

=

M+1∑
k=1

σ̂2
k(M),

where ψ̂k(u) = 1
T̂k−T̂k−1

∑T̂k

t=T̂k−1+1
eiu

′Yt is the feasible ECF of Yt for t ∈ [T̂k−1 + 1, T̂k] and

σ̂2
k(M) ≡ 1

T

T̂k∑
t=T̂k−1+1

∫
Rd

∣∣∣eiu′Yt − ψ̂k(u)
∣∣∣2W (u)du. (B.2)

Consider the break fractions r̂k1 < · · · < r̂kM0 , such that r̂kj − r0j = OP (T
−1) for j = 1, 2, ...,M0. Note

that they divide the sample into M0+1 segments, the j-th of which is [T̂kj−1
+1, T̂kj ], for j = 1, ...,M0+1.

Here, we let k0 = 0, and kM0+1 = M + 1. Following the convention, it follows T̂k0 = T̂0 = 0, and
T̂kM0+1

= T̂M+1 = T .
It is obvious that each interval [T̂kj−1 + 1, T̂kj ] can contain Lj sub-intervals specified by r̂kj−1 <
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r̂kj−1+1 · · · < r̂kj−1 < r̂kj , where Lj ≥ 1. Then, we have

σ̂2(M) =

M0+1∑
j=1

Lj∑
l=1

σ̂2
kj−1+l(M),

such that kj−1 + Lj = kj for Lj ≥ 1 and j = 1, ..,M0 + 1.
Now, consider the SSGR under M0 breaks.

σ̂2(M0) =
1

T
SSGR(M0)

=

M0+1∑
l=1

1

T

T̂l∑
t=T̂l−1+1

∫
Rd

∣∣∣eiu′Yt − ψ̂l(u)
∣∣∣2W (u)du,

where {T̂l}M
0

l=1 is the collection of estimated breaks and ψ̂l(u) is the feasible ECF given {T̂l}M
0

l=1. Denote

ς̂2l (M0) =
1

T

T̂l∑
t=T̂l−1+1

∫
Rd

∣∣∣eiu′Yt − ψ̂l(u)
∣∣∣2W (u)du. (B.3)

Then

σ̂2(M0)− σ̂2(M) =

M0+1∑
j=1

ς̂2j (M0)−
Lj∑
l=1

σ̂2
kj−1+l(M)


=

M0+1∑
j=1

ς̃2j (M0)−
Lj∑
l=1

σ̃2
kj−1+l(M)

+OP (T
−1),

where ς̃2j (M0) and σ̃2
kj−1+l

(M) are defined as (B.2) and (B.3) with each T̂kj and T̂j replaced by the cor-
responding true break date T 0

j for j = 1, ...,M0 . The last equality holds since r̂kj − r0j = OP (T
−1) for

the estimated break fractions {r̂kj}
M0
j=1 under M breaks and r̂j − r0j = OP (T

−1) for the estimated break
fractions {r̂j}M

0

j=1 under M0 breaks.
Now, it remains to show

ς̃2j (M0)−
Lj∑
l=1

σ̃2
kj−1+l(M) = OP (T

−1).

Consider the j-th segment specified by the true break dates [T 0
j−1 + 1, T 0

j ], then

ς̃2j (M0) =
1

T

T 0
j∑

t=T 0
j−1+1

∫
Rd

∣∣∣eiu′Yt − ψ̃0
j (u)

∣∣∣2W (u)du,

Given

eiu
′Yt = ψ0

j (u) + εt(u),

for t ∈ [T 0
j−1 + 1, T 0

j ]. Obviously, T ς̃2j (M0) is equivalent to the SSGR for a sample with no breaks, and
T
∑Lj

l=1 σ̃
2
kj−1+l

is equivalent to the SSGR by setting the number of breaks at Lj for that sample. Following
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analogous arguments in the proof of Theorem 3.1, T ς̃2j (M0)−T
∑Lj

l=1 σ̃
2
kj−1+l

is equivalent to the sup-F test
in Theorem 3.1. Thus,

ς̃2j (M0)−
Lj∑
l=1

σ̃2
kj−1+l = OP (T

−1),

for all j = 1, ...,M0. Therefore,

σ̂2(M0)− σ̂2(M) = OP (T
−1),

for all M0 ≤M ≤Mmax, where Mmax is a finite integer. ■

C Additional Results
As mentioned in the paper, the trimodality phenomenon in the finite sample theory exists in our estimation
for break fractions. When the considered DGPs have a small signal-to-noise ratio, Figure C.1 provides the
histograms of estimated break fractions under DGPs.P1 and P2. We decrease the break size from 1 to 0.5
in mean under DGP.P1 and the break size from 2 to 1.5 in variance under DGP.P2, and the trimodality
appears corresponding histograms when the sample size is small.

Table C.1 shows the effect of the penalty coefficients on the performance of our IC. We provide the
results of our IC with the penalty coefficient cρ = 1, 1.5, and 2, under DGPs.P1-P5. Tables C.2 and C3
evaluate the impact of weighting functions on the finite sample power of our test. We report the empirical
rejection rates of our test under DGPs.P1-P5 with different values c for the uniform weighting function
U(−c, c) and different values b for the normal weighting function N(0, b) in Tables C.2 and C3, respectively.
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Figure C.1: Histograms of estimated break fractions under DGPs.P1 and P2 with small break size
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Table C.1 Performance of our IC with different penalty coefficients

DGP T cρ = 1 cρ = 1.5 cρ = 2
Num Perc Num Perc Num Perc

P1 100 1.254 79.4 0.925 88.9 0.732 72.8
200 1.140 88.9 1.003 99.3 0.982 98.2
500 1.072 94.0 1.004 99.6 1.000 100

P2 100 0.842 66.4 0.358 35.6 0.105 10.5
200 1.014 92.3 0.734 73.4 0.422 42.2
500 1.025 97.7 1.00 100 0.991 99.1

P3 100 0.980 61.0 0.415 39.3 0.179 17.9
200 1.070 87.1 0.769 75.6 0.526 52.6
500 1.039 96.5 1.004 99.4 0.992 99.0

P4 100 1.093 91.1 0.583 57.1 0.107 10.7
200 1.081 92.2 1.004 99.6 0.955 95.5
500 1.048 95.7 1.001 99.9 1.00 100

P5 100 1.774 68.1 1.032 3.10 0.948 1.0
200 2.062 94.1 1.912 90.8 1.081 8.0
500 2.034 96.6 2.002 99.8 2.000 100

Notes: (i) The main entries report the results based on 1000 replications. (ii) “Num” and “Perc” denote
the “average number of breaks” and the “percentage of correct selection”.

Table C.2: Power of tests under DGPs.P1-P5 with uniform weighting function

U1, 1 U1, 2 U2, 1 U2, 2 U5, 1 U5, 2 U10, 1 U10, 2
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 T = 100 95.8 99.0 79.1 92.0 85.6 93.8 65.4 80.8 51.6 69.4 39.2 58.4 33.2 51.8 26.8 44.8
T = 200 100 100 96.0 99.4 98.2 100 88.6 98.2 91.6 97.4 76.8 89.2 72.8 88.4 57.0 75.8
T = 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

P2 T = 100 74.8 83.4 60.4 76.2 66.2 77.0 55.6 69.6 33.6 50.2 31.2 44.8 23.4 36.6 19.8 34.6
T = 200 98.8 99.6 95.4 98.4 94.4 97.6 89.8 94.4 72.0 82.4 62.4 75.4 50.2 65.4 40.6 52.8
T = 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

P3 T = 100 34.2 45.2 23.6 36.8 78.2 86.4 67.0 78.6 90.6 95.6 85.0 93.4 90.4 95.4 84.0 90.2
T = 200 59.8 70.8 44.8 58.2 97.4 98.8 95.0 97.6 99.6 99.6 99.2 99.4 99.8 100 99.4 100
T = 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

P4 T = 100 69.8 88.0 62.4 82.4 99.0 99.8 95.2 99.8 100 100 98.6 100 98.6 99.8 94.0 98.2
T = 200 97.4 99.2 90.0 97.8 100 100 99.4 100 100 100 99.8 100 100 100 99.8 100
T = 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

P5 T = 100 84.4 98.8 78.6 98.2 97.6 100 97.8 100 58.2 93.6 99.8 100 65.0 92.8 92.0 98.4
T = 200 98.2 99.8 97.4 99.8 99.6 100 100 100 93.8 99.6 100 100 97.8 100 100 100
T = 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Notes: Uc,M denotes our joint test with uniform(−c, c) weighting function for the alternative hypothesis
of M breaks. The main entries report the percentage of rejections..

36



Table C.3: Power of tests under DGPs.P1-P5 with normal weighting function

N(0, 1), 1 N(0, 1), 2 N(0, 2), 1 N(0, 2), 2 N(0, 5), 1 N(0, 5), 2 N(0, 10), 1 N(0, 10), 2
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 T = 100 88.6 96.6 65.2 85.1 81.7 93.9 57.3 78.6 69.8 85.6 48.0 67.6 55.5 76.6 34.8 58.6
T = 200 99.7 100 84.6 97.9 98.3 99.9 84.4 97.2 96.4 99.8 78.2 93.8 92.8 98.9 71.9 91.0
T = 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

P2 T = 100 67.9 81.1 55.7 71.3 62.6 77.8 49.8 64.1 53.7 68.9 42.1 56.0 39.5 57.1 28.7 43.7
T = 200 98.0 99.3 91.7 96.3 95.7 98.2 90.3 95.3 92.4 95.2 83.4 90.4 84.9 92.0 74.5 85.9
T = 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

P3 T = 100 63.7 77.1 49.3 64.3 81.9 90.6 67.9 81.7 89.0 95.6 79.4 89.9 91.7 96.5 82.6 91.5
T = 200 95.5 97.4 89.8 94.8 99.3 99.8 97.9 99.1 99.8 99.8 98.9 99.5 99.9 100 99.2 99.8
T = 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

P4 T = 100 90.7 98.3 76.3 94.4 96.3 99.8 88.9 98.9 97.8 100 92.5 99.6 97.9 100 92.1 99.7
T = 200 100 100 98.6 100 99.9 100 99.4 100 100 100 99.8 100 100 100 99.6 100
T = 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

P5 T = 100 86.0 99.0 86.2 99.1 88.6 99.7 95.9 100 79.8 99.5 98.2 100 56.3 95.4 97.9 100
T = 200 99.5 100 99.9 100 99.5 100 100 100 99.4 100 100 100 98.7 99.9 100 100
T = 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Notes: N(0, b),M denotes our joint test with normal weighting function with variance b in each dimension
for the alternative hypothesis of M breaks. The main entries report the percentage of rejections.
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