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Throughout this appendix, denote X−l for the matrix X without its l-th column. Recall that

S =


√
NMIk0 0 0

0
√
MIN0 0

0 0
√
NIM0

 .

Denote Q = S/
√
NM and a = p ∨ (NM). Also, for a matrix A, denote ‖A‖∞ = maxi,j |Ai,j |.

B Auxiliary Lemmas

B.1 Oracle Inequalities

Assumption B.1 (Oracle Inequalities). For each (N,M) and for some choice of µ that depends on

(N,M), we have 2‖Υ̂−1
1 ε′X‖∞ ≤ µ/c, 2‖Υ̂−1

2 ε′D1‖∞ ≤ µ/
√
Nc and 2‖Υ̂−1

3 ε′D2‖∞ ≤ µ/
√
Mc with

probability 1− o(1) for some c > 1.

Assumption B.2 (Weights for Penalty). There exists the ideal penalty loading matrix Υ̂0
l with all

elements bounded and bounded away from zero uniformly over (N,M), sequences u, ` with 0 < ` ≤

1 ≤ u, `
p→ 1, and u

p→ u′ > 1 for some constant u′ such that

`Υ̂0
l ≤ Υ̂l ≤ uΥ̂0

l

with probability 1− o(1) for l = 1, 2, 3.

Remark B.1. There are many possible situations where one may want to impose weights to penalize

different parameters differently. These situations include (1) the case where one incorporates extra

information from economic theory; (2) a penalty choice based on the theory of moderate deviation

inequality for self-normalized sums as in Belloni, Chen, Chernozhukov and Hansen (2012); (3) the

case where one conducts an iterating lasso algorithm such as the conservative lasso as in Caner and

Kock (2018); and (4) the common practice of normalizing the standard errors of all covariates to one.

4
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For a p× p matrix A, define the restricted eigenvalue as

κ2
C(A, s1, s2, s3) = min

R1⊂[k], |R1|≤s1
R2⊂[N0], |R2|≤s2
R3⊂[M0], |R3|≤s3
R=R1∪R2∪R3

min
δ∈Rp\{0}

‖δcJ‖1≤C‖δJ‖1

(s1 + s2 + s3)
δ′Aδ

‖δJ‖21
. (B.1)

Assumption B.3 (Restricted Eigenvalues). For any C > 0, there exists κC > 0 which depends only

on C such that κ2
C := κ2

C(Ψ̄, s1, s2, s3) ≥ κC for all (N,M).

Remark B.2. As highlighted in Belloni et al. (2012), Assumption 4 implies that Assumption B.3

holds with probability at least 1− o(1) by the argument in Bickel, Ritov and Tsybakov (2009). 4

The following lemma presents oracle inequalities for the three-dimensional panel lasso. Its proof

is closely related to Lemma 6 of Belloni et al. (2012). The main difference is that it accounts for the

presence of fixed effects with different effective sample sizes.

Lemma B.1 (Oracle Inequalities). If Assumptions 2, B.1, B.2, and B.3 are satisfied, then

‖Z(η̂ − η)‖ =
√

(η̂ − η)′Q−1Ψ̄Q−1(η̂ − η) .
µ
√
s√

NMκc0
+ cs,√

(η̂ − η)′
Z ′Z

NM
(η̂ − η) .

µ
√
s

NMκc0
+

cs√
NM

,

‖Υ̂0
1(β̂ − β)‖1 .

µs

NMκ2c0κc0
+

√
scs√

NMκ2c0

+
c2
s

µ
,

‖Υ̂0
2(α̂−α)‖1 .

µs√
NMκ2c0κc0

+

√
scs√

Mκ2c0

+
N1/2c2

s

µ
, and

‖Υ̂0
3(γ̂ − γ)‖1 .

µs

N
√
Mκ2c0κc0

+

√
scs√

Nκ2c0

+
M1/2c2

s

µ
.

Furthermore, these bounds are valid uniformly over the `0-ball {η ∈ Rp : ‖η‖0 ≤ s}.

Proof. From the definition of η̂, we have

‖y − Zη̂‖2 + µP (η̂) ≤ ‖y − Zη‖2 + µP (η).

Rewriting this inequality yields

‖Z(η̂ − η) + (R+ ε)‖2 + µP (η̂) ≤ ‖(R+ ε)‖2 + µP (η) and

‖Z(η̂ − η) + (R+ ε)‖2 ≤ ‖(R+ ε)‖2 + µ(P (η)− P (η̂)).
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Using the reverse triangle inequality and the dual norm inequality,

‖Z(η̂ − η)‖2 ≤2|ε′Z(η̂ − η)|+ 2|R′Z(η̂ − η)|+ µ
{
P ((η − η̂)J)− P ((η − η̂)Jc)

}
≤2‖(Υ̂1)−1ε′X‖∞‖Υ̂1(β̂ − β)‖1 + 2‖(Υ̂2)−1ε′D1‖∞‖Υ̂2(α̂−α)‖1

+ 2‖(Υ̂3)−1ε′D2‖∞‖Υ̂3γ̂ − γ‖1

+ 2‖R‖‖Z(η̂ − η)‖+ µ
{
P ((η − η̂)J)− P ((η − η̂)Jc)

}
≤µ
c

(
‖Υ̂1(β̂ − β)‖1 +

1√
N
‖Υ̂2(α̂−α)‖1 +

1√
M
‖Υ̂3(γ̂ − γ)‖1

)
+ 2cs‖Z(η̂ − η)‖+ µ

{
P ((η − η̂)J)− P ((η − η̂)Jc)

}
,

where the third inequality follows from Assumptions 2 and B.1. By the definition of P , we have

‖Z(η̂ − η)‖2 ≤µ
(
u+

1

c

)(
‖Υ̂0

1(β̂ − β)J1‖1 +
1√
N
‖Υ̂0

2(α̂−α)J2‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)J3‖1
)

− µ
(
`− 1

c

)(
‖Υ̂0

1(β̂ − β)Jc
1
‖1 +

1√
N
‖Υ̂0

2(α̂−α)Jc
2
‖1 +

1√
M
‖Υ̂0

3(γ̂ − γ)Jc
3
‖1
)

+ 2cs‖Z(η̂ − η)‖ (B.2)

under Assumption B.2.

We now branch into two cases. First, suppose that ‖Z(η̂ − η)‖ < 2cs. In this case, since

µ
√
s/(
√
NMκc0) > 0, we have ‖Z(η̂ − η)‖ . µ

√
s/(
√
NMκc0) + cs, as required. Second, suppose

that ‖Z(η̂ − η)‖ ≥ 2cs. In this case,

‖Z(η̂ − η)‖2 ≤µ
(
u+

1

c

)(
‖Υ̂0

1(β̂ − β)J1‖1 +
1√
N
‖Υ̂0

2(α̂−α)J2‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)J3‖1
)

− µ
(
`− 1

c

)(
‖Υ̂0

1(β̂ − β)Jc
1
‖1 +

1√
N
‖Υ̂0

2(α̂−α)Jc
2
‖1 +

1√
M
‖Υ̂0

3(γ̂ − γ)Jc
3
‖1
)

+ ‖Z(η̂ − η)‖2,

and thus

(
‖Υ̂0

1(β̂ − β)Jc
1
‖1 +

1√
N
‖Υ̂0

2(α̂−α)Jc
2
‖1 +

1√
M
‖Υ̂0

3(γ̂ − γ)Jc
3
‖1
)

≤c0

(
‖Υ̂0

1(β̂ − β)J1‖1 +
1√
N
‖Υ̂0

2(α̂−α)J2‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)J3‖1
)
, (B.3)
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where c0 = (uc+ 1)/(`c− 1). Assumption B.3 implies that, for any δ which is in the choice set of the

minimum of restricted eigenvalue definition, we have

κ2
c0 = min

R1⊂[k], |R1|≤s1
R2⊂[N0], |R2|≤s2
R3⊂[M0], |R3|≤s3
R=R1∪R2∪R3

min
δ∈Rp\{0}

‖δcJ‖1≤C‖δJ‖1

(s1 + s2 + s3)
δ′Ψ̄δ

‖δJ‖21
≥ κ > 0.

Since δ′Ψδ = δ′S−1Z ′ZS−1δ = b′Z ′Zb for b = S−1δ, we can rewrite the condition in terms of b and

obtain

κ2
c0 = min

R1⊂[k], |R1|≤s1
R2⊂[N0], |R2|≤s2
R3⊂[M0], |R3|≤s3
R=R1∪R2∪R3

min
b∈Rp\{0}

‖b1
Rc
1
‖1+ 1√

N
‖b2

Rc
2
‖1+ 1√

M
‖b3

Rc
3
‖1

≤c0‖bR2
‖1+ 1√

N
‖b2R2

‖1+ 1√
M
‖b3R3

‖1

(s1 + s2 + s3)
‖Zb‖2

NM‖(NM)−1SbJ‖21
.

Note that (B.3) implies that we can let b = η̂ − η. Thus,∥∥∥∥∥
(β̂−β)J1
1√
N

(α̂−α)J2
1√
M

(γ̂−γ)J3

∥∥∥∥∥
2

1

≤ (s1 + s2 + s3)

κ2
c0NM

‖Z(η̂ − η)‖2.

Taking the square root on both sides yields

‖Υ̂0
1(β̂ − β)J1‖1 +

1√
N
‖Υ̂0

2(α̂−α)J2‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)J3‖1 ≤
√
s1 + s2 + s3

κc0
√
NM

‖Z(η̂ − η)‖. (B.4)

Finally, substituting this equation into (B.2) and dropping the negative terms on the right-hand side

yields

‖Z(η̂ − η)‖ ≤µ
(
u+

1

c

)√s1 + s2 + s3

κc0
√
NM

+ 2cs.

This shows the first equation in the statement of the lemma. The second result of the lemma follows

by dividing the first by
√
NM .

We next obtain the L1-norm bounds. We branch into two cases. First, suppose that

(
‖Υ̂0

1(β̂ − β)Jc
1
‖1 +

1√
N
‖Υ̂0

2(α̂−α)Jc
2
‖1 +

1√
M
‖Υ̂0

3(γ̂ − γ)Jc
3
‖1
)

≤2c0

(
‖Υ̂0

1(β̂ − β)J1‖1 +
1√
N
‖Υ̂0

2(α̂−α)J2‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)J3‖1
)
.
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By definition of κ2c0 , we have(
‖Υ̂0

1(β̂ − β)‖1 +
1√
N
‖Υ̂0

2(α̂−α)‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)‖1
)

≤(1 + 2c0)
(
‖Υ̂0

1(β̂ − β)J1‖1 +
1√
N
‖Υ̂0

2(α̂−α)J2‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)J3‖1
)

≤(1 + 2c0)

√
s1 + s2 + s3

κ2c0

√
NM

‖Z(η̂ − η)‖

by applying similar lines of arguments to those of the first part of the proof using 2c0 in place of c0.

Second, suppose that(
‖Υ̂0

1(β̂ − β)Jc
1
‖1 +

1√
N
‖Υ̂0

2(α̂−α)Jc
2
‖1 +

1√
M
‖Υ̂0

3(γ̂ − γ)Jc
3
‖1
)

>2c0

(
‖Υ̂0

1(β̂ − β)J1‖1 +
1√
N
‖Υ̂0

2(α̂−α)J2‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)J3‖1
)
. (B.5)

In this case, equation (B.2) implies

‖Z(η̂ − η)‖2 ≤µ
(
u+

1

c

)(
‖Υ̂0

1(β̂ − β)J1‖1 +
1√
N
‖Υ̂0

2(α̂−α)J2‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)J3‖1
)

− µ
(
`− 1

c

)(
‖Υ̂0

1(β̂ − β)Jc
1
‖1 +

1√
N
‖Υ̂0

2(α̂−α)Jc
2
‖1 +

1√
M
‖Υ̂0

3(γ̂ − γ)Jc
3
‖1
)

+ 2cs‖Z(η̂ − η)‖ ≤ 2cs‖Z(η̂ − η)‖,

where the last inequality is due to the definition of c0 = (uc + 1)/(`c − 1). Equation (B.2) further

implies that (
‖Υ̂0

1(β̂ − β)Jc
1
‖1 +

1√
N
‖Υ̂0

2(α̂−α)Jc
1
‖1 +

1√
M
‖Υ̂0

3(γ̂ − γ)Jc
3
‖1
)

≤c0

(
‖Υ̂0

1(β̂ − β)J1‖1 +
1√
N
‖Υ̂0

2(α̂−α)J2‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)J3‖1
)

+
c

`c− 1

1

µ
‖Z(η̂ − η)‖(2cs − ‖Z(η̂ − η)‖)

≤c0

(
‖Υ̂0

1(β̂ − β)J1‖1 +
1√
N
‖Υ̂0

2(α̂−α)J2‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)J3‖1
)

+
c

`c− 1

1

µ
c2
s

≤c0

2

(
‖Υ̂0

1(β̂ − β)Jc
1
‖1 +

1√
N
‖Υ̂0

2(α̂−α)Jc
2
‖1 +

1√
M
‖Υ̂0

3(γ̂ − γ)Jc
3
‖1
)

+
c

`c− 1

1

µ
c2
s,
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where the first inequality follows from (B.2), the second inequality follows from ‖Z(η̂ − η)‖(2cs −

‖Z(η̂ − η)‖) ≤ maxx≥0 x(2cs − x) ≤ c2
s, and the third inequality follows from (B.5). Therefore,

(
‖Υ̂0

1(β̂ − β)‖1 +
1√
N
‖Υ̂0

2(α̂−α)‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)‖1
)

≤
(

1 +
1

2c0

)(
‖Υ̂0

1(β̂ − β)Jc
1
‖1 +

1√
N
‖Υ̂0

2(α̂−α)Jc
2
‖1 +

1√
M
‖Υ̂0

3(γ̂ − γ)Jc
3
‖1
)

≤
(

1 +
1

2c0

) 2c

`c− 1

1

µ
c2
s,

where the first inequality is due to (B.5) and the second inequality is due to the previous equation.

Combining the two cases together, we obtain

(
‖Υ̂0

1(β̂ − β)‖1 +
1√
N
‖Υ̂0

2(α̂−α)‖1 +
1√
M
‖Υ̂0

3(γ̂ − γ)‖1
)

≤(1 + 2c0)

√
s1 + s2 + s3

κ2c0

√
NM

‖Z(η̂ − η)‖+
(

1 +
1

2c0

) 2c

`c− 1

1

µ
c2
s,

which, after some re-arrangements, implies results 3-5 in Lemma B.1.

Finally, the uniformity follows from the fact that all the arguments above depend on η only through

s.

B.2 Concentration Inequality

The following lemma follows from Chernozhukov, Chetverikov and Kato (2014) and Chernozhukov,

Chetverikov and Kato (2015).

Lemma B.2 (A Concentration Inequality). Let (Xi)i∈[n] be p-dimensional independent random vec-

tors, B =
√
E[maxi∈[n] ‖Xi‖2∞], and σ2 = maxj∈[p]

1
n

∑n
i=1E|Xij |2. With probability at least 1 −

C(log n)−1,

max
j∈[p]

∣∣∣ 1
n

n∑
i=1

(Xij − E[Xij ])
∣∣∣ .√σ2 log(p ∨ n)

n
+
B log(p ∨ n)

n
.

Proof. The claim follows from applying Theorem 5.1 of Chernozhukov, Chetverikov and Kato (2014)

to Lemma 8 of Chernozhukov, Chetverikov and Kato (2015) with t = log n, α = 1, and q = 2.
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B.3 Regularized Events

Lemma B.3 (Regularized Events). Fix constants c > 1 and C > 0, and let Υ̂ = I. If Assumption 3 is

satisfied, then we have 2‖ε′X‖∞ ≤ µ/c, 2‖ε′D1‖∞ ≤ µ/c
√
N and 2‖ε′D2‖∞ ≤ µ/c

√
M with probability

at least 1−C(log(N ∧M))−1 where µ = C
√
NM log a. Similarly, if Assumption 3 is satisfied, then we

have ‖X−lζ l‖∞ ≤ µlnode/2c, ‖D1ζ
l‖∞ ≤ µlnode/2c

√
N , and ‖D2ζ

l‖∞ ≤ µnode,l/2c
√
M uniformly over

l ∈ [p] with probability at least 1− C(log(N ∧M))−1 where µlnode = C
√
NM log a.

Proof. Applying Lemma B.2, we have

‖X ′ε‖∞
NM

= max
l∈[k0]

∣∣∣ 1

NM

N∑
i=1

M∑
j=1

T∑
t=1

(Xijt,lεijt − E[Xijt,lεijt])
∣∣∣

.

√
σ2 log(p ∨ (NM))

NM
+
B log(p ∨ (NM))

NM

with probability 1 − C(logNM)−1, where σ2 = maxl∈[k0] maxt∈[T ]
1

NME[X2
ijt,lε

2
ijt] ≤ O(K4). Note

that we have

B2 =E[ max
i∈[N ],j∈[M ],t∈[T ]

‖Xijtεijt‖2∞]

≤(E[ max
i∈[N ],j∈[M ],t∈[T ]

‖Xijt‖q∞|εijt|q])2/q

.(NM)2/q(E[
1

NM

N∑
i=1

M∑
j=1

T∑
t=1

‖Xijt‖q∞|εijt|q])2/q

.(NM)2/q
[(
E[

1

NM

N∑
i=1

M∑
j=1

T∑
t=1

‖Xijt‖2q∞]
)1/2(

E[
1

NM

N∑
i=1

M∑
j=1

T∑
t=1

|εijt|2q]
)1/2]2/q

=O((NM)2/qB2
NM )

where the first inequality is due to Jensen’s inequality, the third inequality is due to Hölder’s inequality,

and the last equality is due to Assumption 3 (1) and (3). Thus BNM log(p∨(NM))

(NM)1−1/q = O(
√

log a
NM ), and this

implies

2c‖X ′ε‖∞ = max
l∈[k0]

∣∣∣ N∑
i=1

M∑
j=1

T∑
t=1

(Xijt,lεijt − E[Xijt,lεijt])
∣∣∣ .√NM log a = C−1µ

with probability at least 1− C(log(NM))−1 for K > 0 large enough.
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Since ‖(D1, D2)‖∞ = 1 under Assumption 3 (2), an application of Lemma B.2 gives

2c‖D′1ε‖∞ = max
l∈{k0+1,...,k0+N0}

∣∣∣ M∑
j=1

T∑
t=1

(D1,ijt,l − ED1,ijt,l)
∣∣∣ .√M log a = C−1µ/

√
N

with probability at least 1 − C(log(N ∧M))−1, where i depends on the choice of l. Note that there

are at most MT = O(M) nonzero terms in the summand for each l. Analogous arguments hold for

‖D′2ε‖∞ with the number of nonzero terms being at most NT = O(N) in place of MT .

Under Assumption 3 and the choice µlnode = C
√
NM log a, similar lines of argument to those above

show that the regularized events ‖X−lζ l‖∞ ≤ µlnode/2c, ‖D1ζ
l‖∞ ≤ µlnode/2c

√
N , and ‖D2ζ

l‖∞ ≤

µlnode/2c
√
M occur with probability approaching one. Applying Lemma B.2, we have

‖Z−lζ l‖∞
NM

≤ max
k∈[k0−1],l∈[p]

∣∣∣ 1

NM

N∑
i=1

M∑
j=1

T∑
t=1

(Z−lijt,kζ
l
ijt − E[Z−lijt,kζ

l
ijt])

∣∣∣
.

√
σ2 log(p2 ∨ (NM))

NM
+
B log(p2 ∨ (NM))

NM
.

√
log a

NM

with probability 1− C(log(N ∧M))−1.

B.4 Rates of Nuisance Parameters

Throughout this section, we use the following notation. For any diagonal matrix A, Al denotes the

l-th diagonal entry and A−l denotes A with the l-th column and row removed. Also, denote Ψ̄−l,−l

for Ψ̄ with its l-th column and row removed.

The following lemma establishes the behavior of the nuisance parameters based on nodewise re-

gressions under the three-dimensional panel setting. It is closely related to Lemma C.9 of Kock and

Tang (2019). The main difference is that, in Kock and Tang (2019), their one-way fixed effect modeling

assumption implies their D2 = ∅ and D′1D1 = I, which in turn implies the diagonal structure of

Θ =

ΘX 0

0 I

 ,
and greatly simplifies their estimation procedure. In our case, however, due to the potential presence

of multi-way fixed effects, such a decomposition is not available. Therefore, the theory of our nodewise

regression needs to simultaneously account for these fixed effects with different convergence rates.

9
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Lemma B.4 (Nodewise Lasso for Nuisance Parameters). Suppose Assumptions 3, 4, and 5 are sat-

isfied and Θ̂ is calculated following (3.3) with µlnode = C
√
NM log a for a C > 0. It holds uniformly

over l ∈ [k0] that

‖φ̂l − φl‖1 =Op

(√s2
l log a

N ∧M

)
,

‖φ̂l − φl‖ =Op

(√ sl log a

N ∧M

)
,

|τ̂2
l − τ2

l | =Op
(√sl log a

NM

)
,∣∣∣ 1

τ̂2
l

− 1

τ2
l

∣∣∣ =Op

(√sl log a

NM

)
,

‖Θ̂′l −Θ′l‖1 =Op

(√s2
l log a

N ∧M

)
,

‖Θ̂′l −Θ′l‖ =Op

(√ sl log a

N ∧M

)
,

‖Θ̂l‖1 =Op(s
1/2
l ), and

max
l∈[k0]

∣∣∣ 1

τ̂2
l

∣∣∣ =Op(1).

Furthermore, these bounds are valid uniformly over the `0-ball {η ∈ Rp : ‖η‖0 ≤ sl}.

Proof. The proof consists of three steps.

Step 1 First, under Assumption 3 and by the choice µlnode = C
√
NM log a, Lemma B.3 gives that the

regularized events ‖X−lζ l‖∞ ≤ µlnode/2c, ‖Dlζ
l‖∞ ≤ µlnode/2c

√
N , ‖D2ζ

l‖∞ ≤ µlnode/2c
√
M occur

with probability approaching one uniformly over [k0]. Under Assumptions 4 and 5 (1) and (2), apply

Lemma B.1 with (Z−l, Z l, ζ l, Rl, φl) in place of (Z, Y, ε,R,η), we have the following oracle inequality

‖Z−l(φ̂l − φl)‖ =

√
(φ̂l − φl)′Q−lΨ̄−l,−lQ−l(φ̂l − φl) .

µlnode

√
sl√

NMκlc0
+ csl ,

where the restricted eigenvalue κlc0 is defined as in (B.1) with Ψ̄−l,−l replacing Ψ̄. Observe that

κlc0 ≥ k > 0 is satisfied with probability 1− o(1) following Assumption 4. Hence by replacing µlnode in

the oracle inequality with its upper bound, one has

1

NM
‖Z−l(φ̂l − φl)‖2 = (φ̂l − φl)′Q−lΨ̄−l,−lQ−l(φ̂l − φl) = Op

(sl log a

NM

)
. (B.6)

10
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Similarly, by Lemma B.1, under Assumptions 4 and 5 (1) and (2)

‖Q−l(φ̂l − φl)‖1 =Op

(
sl

√
log a

NM

)
, (B.7)

‖φ̂l − φl‖1 =Op

(
sl

√
log a

N ∧M

)
, (B.8)

uniformly for l ∈ [k0].

Now, to find a bound for ‖φ̂l − φl‖ that holds uniformly over [k0], note that

(φ̂l − φl)′Q−lΨ−l,−lQ−l(φ̂l − φl) ≤(φ̂l − φl)′Q−lΨ̄−l,−lQ−l(φ̂l − φl) + ‖Ψ̄−Ψ‖∞‖Q−l(φ̂l − φl)‖21.

≤Op
(s log a

NM

)
+ ‖Ψ̄−Ψ‖∞‖Q−l(φ̂l − φl)‖21, (B.9)

by (B.6), where ‖A‖∞ denotes the maximal element of a matrix A. We now bound the second term

on the right-hand side. Note that

P
(
‖Ψ̄−Ψ‖∞ ≥ r

)
≤P
(

max
t∈[T ]

max
l∈[k0]

∥∥∥ 1

NM

∑
i,j

(X2
ijt,l − EX2

ijt,l)
∥∥∥
∞
≥ r/T

)
+P
(

max
t∈[T ]

max
l∈{k0+1,...,k0+N0}

∥∥∥ 1

M

∑
j

(D2
1,ijt,l − ED2

1,ijt,l)
∥∥∥
∞
≥ r/T

)
+P
(

max
t∈[T ]

max
l∈{k0+N0+1,...,k0+N0+M0}

∥∥∥ 1

N

∑
i

(D2
2,ijt,l − ED2

2,ijt,l)
∥∥∥
∞
≥ r/T

)
.

We want to show all three terms go to zero with r = C
√

log a
NM . Assumption 3 (1) and (3) imply

B2 = E[ max
i≤N, j≤M, t≤T

‖Xijt‖4∞] ≤(E[ max
i≤N, j≤M, t≤T

‖Xijt‖2q∞])2/q

≤(NM)2/q
(
E
[ 1

NM

N∑
i=1

M∑
j=1

max
t≤T
‖Xijt‖2q∞

])2/q

≤(NM)2/qB4
NM .

Thus, with probability at least 1− C(log(NM))−1,

max
t∈[T ]

max
l∈[k0]

∥∥∥ 1

NM

∑
i,j

(X2
ijt,l − EX2

ijt,l)
∥∥∥
∞
.

√
log(k2

0 ∨ (NM))

NM
+
B2
NM log(k2

0 ∨ (NM))

(NM)1−1/q
.

√
log a

NM
,

11
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by Lemma B.2. Similarly, with probability at least 1− C((logN ∧M))−1,

max
t∈[T ]

max
l∈{k0+1,...,k0+N0}

∥∥∥ 1

M

∑
j

(D2
1,ijt,l − ED2

1,ijt,l)
∥∥∥
∞
.

√
logM

M
+

logM

M
.

√
log a

M
,

max
t∈[T ]

max
l∈{k0+N0+1,...,k0+N0+M0}

∥∥∥ 1

N

∑
i

(D2
2,ijt,l − ED2

2,ijt,l)
∥∥∥
∞
.

√
logN

N
+

logN

N
.

√
log a

N

by Assumption 3 (2). Thus, with probability at least 1− C(log(N ∧M))−1,

‖Ψ̄−Ψ‖∞ = Op

(√ log a

N ∧M

)
.

Following Assumption 5(4), sl

√
log a
N∧M = o(1), we therefore have

‖Ψ̄−Ψ‖∞‖Q−l(φ̂l − φl)‖21 =Op

(√ log a

N ∧M

)
Op

(s2
l log a

NM

)
=Op

(
sl

√
log a

N ∧M

)
Op

(sl log a

NM

)
= op

(sl log a

NM

)
uniformly in l ∈ [k0]. Substituting into (B.9), we obtain

(φ̂l − φl)′Q−lΨ−l,−lQ−l(φ̂l − φl) = Op

(s log a

NM

)
uniformly in l ∈ [k0]. Since under Assumption 5(3), Λmin(Ψ) > 0 and

Λmin(Ψ)‖Q̂−l(φl − φl)‖2 ≤ max
l∈[k0]

(φ̂l − φl)′Q−lΨ−l,−lQ−l(φ̂l − φl)

uniformly in l ∈ [k0], we conclude that

‖Q−l(φ̂l − φl)‖ = Op

(√sl log a

NM

)
,

uniformly in l ∈ [k0]. Thus, the triangle inequality and definition of Q together imply it holds uniformly

over [k0]

‖φ̂l − φl‖ = Op

(√ sl log a

N ∧M

)
.

Step 2 We next derive the rate of maxl∈[k0] |τ̂2
l −τ2

l |. By the definition of τ̂l and the K.K.T. condition,

12
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we get the following equality using the decomposition Z l = Z−lφl +Rl + ζ l.

τ̂2
l =

(Z l − Z−lφ̂l)′Z l

NM

=
[Rl + ζ l − Z−l(φ̂l − φl)]′(Z−lφl + rl + ζ l)

NM

=
(ζ l)′ζ l

NM
+

(ζ l)′Z−lφl

NM
− (φ̂l − φl)′(Z−l)′Z−lφl

NM
− (φ̂l − φl)′(Z−l)′ζ l

NM

+
((Rl)′Rl

NM
+

(Rl)′Z−lφl

NM
+

2(Rl)′ζ l

NM
− (φ̂l − φl)′Z−lRl

NM

)
.

Thus,

max
l∈[k0]

|τ̂2
l − τ2

l |

≤max
l∈[k0]

∣∣∣(ζ l)′ζ l
NM

− τ2
l

∣∣∣+ max
l∈[k0]

∣∣∣(ζ l)′Z−lφl
NM

∣∣∣+ max
l∈[k0]

∣∣∣(φ̂l − φl)′(Z−l)′Z−lφl
NM

∣∣∣+ max
l∈[k0]

∣∣∣(φ̂l − φl)′(Z−l)′ζ l
NM

∣∣∣
+ max
l∈[k0]

∣∣∣(Rl)′Rl
NM

+
(Rl)′Z−lφl

NM
+

2(Rl)′ζ l

NM
− (φ̂l − φl)′Z−lRl

NM

∣∣∣ = (i) + (ii) + (iii) + (iv) + (v).

(B.10)

It suffices to find bounds for each of the five terms in the last expression.

First we consider (i). Under Assumption 3 (1), we have

E
[

max
i,j,t
|ζ lijt|4

]
=
(
E
[

max
i,j,t
|ζ lijt|2q

])2/q

=(NM)2/q
(
E
[ 1

NM

∑
i,j

max
t
|ζ lijt|2q

])2/q

.(NM)2/q
(
E
[ 1

NM

N∑
i=1

M∑
j=1

max
t≤T
‖Xijt‖2q∞

])2/q
≤ (NM)2/qB4

NM

for all l ∈ [k0]. Therefore, by Lemma B.2 and Assumption 3 (1),

max
l∈[k0]

∥∥∥ 1

NM

∑
i,j,t

[(ζ lijt)
2 − E(ζ lijt)

2]
∥∥∥
∞
≤T max

t∈[T ]
max
l∈[k0]

∥∥∥ 1

NM

∑
i,j

[(ζ lijt)
2 − E(ζ lijt)

2]
∥∥∥
∞

.

√
log(k0 ∨ (NM))

NM
+
B2
NM log(k0 ∨ (NM))

(NM)1−1/q
.

√
log a

NM

with probability at least 1− C(log(NM))−1. It follows that

max
l∈[k0]

∣∣∣(ζ l)′ζ l
NM

− τ2
l

∣∣∣ = Op

(√ log a

NM

)
.

13
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Second, we consider (iv) in (B.10). By the regularized events established in Step 1, we have∥∥∥(Q−l)−1(Z−l)′ζ l

NM

∥∥∥
∞

= max
{∥∥∥(X−l)′ζ l

NM

∥∥∥
∞
,
√
N
∥∥∥D′1ζ l
NM

∥∥∥
∞
,
√
M
∥∥∥D′2ζ l
NM

∥∥∥
∞

}
= Op

(√ log a

NM

)
.

Thus, by (B.7),

max
l∈[k0]

∣∣∣(φ̂l − φl)′(Z−l)′ζ l
NM

∣∣∣ ≤∥∥∥(Q−l)−1(Z−l)′ζ l

NM

∥∥∥
∞
‖Q−l(φ̂l − φl)‖1 = Op

(sl log p

NM

)
= Op

(√sl log p

NM

)
follows.

We next consider (ii) in (B.10). Note that ‖φl‖1 = O(
√
sl) in Assumption 5(1) implies ‖Q−lφl‖1 =

O(
√
sl). Combining this and the regularized events as before, we have

max
l∈[k0]

∣∣∣(ζ l)′Z−lφl
NM

∣∣∣ ≤ max
l∈[k0]

∥∥∥(ζ l)′Z−l(Q−l)−1

NM

∥∥∥
∞
‖Q−lφl‖1 = Op

(√sl log a

NM

)
.

Now, we consider (iii) in (B.10). Using Assumptions 4 and 5 (1) and (3), the fact that Q−1 =

√
NMS−1, and the definition of Ψ̄, we obtain

‖Z−lφl‖ ≤‖Q−lφl‖ max
‖ξ‖=1
‖ξ‖0≤sl

√
ξ′(Q−l)−1(Z−l)′Z−l(Q−l)−1ξ

≤
√
NM‖Q−lφl‖ max

‖ξ‖=1
‖ξ‖0≤sl

√
ξ′Ψ̄ξ

≤
√
NM ·O(1) ·

√
ϕmax(Ψ̄, sl) = Op(

√
NM).

Furthermore, (B.6) implies,

1

NM
‖Z−l(φ̂l − φl)‖ ≤ Op

((sl log a)1/2

NM

)
.

Combining these two intermediate results, we have

max
l∈[k0]

∣∣∣(φ̂l − φl)′(Z−l)′Z−lφl
NM

∣∣∣ ≤ max
l∈[k0]

‖Z−l(φ̂l − φl)‖‖Z−lφl‖
NM

= Op

(√sl log a

NM

)
.

Finally, we consider the remaining terms in (B.10) that involve rl. Note that

|(Rl)′Rl|
NM

.
sl
NM

,

|(Rl)′ζ l|
NM

≤ 1

NM
‖Rl‖‖ζ l‖ ≤ 1√

NM

√
slOp

(√√√√max
t∈[T ]

max
l∈[k0]

T

NM

N∑
i=1

M∑
j=1

E(ζ lijt)
2
)
. Op

(√ sl
NM

)

14
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follows from Assumption 5 (2) and Assumption 3 (3). Also, under Assumptions 4 and 5 (1) and (2)

|(Rl)′Z lφl|
NM

≤‖R
l‖‖Z−lφl‖
NM

≤ 1

NM

√
sl‖Q−lφl‖ max

‖δ‖=1
‖δ‖0≤sl

√
δ′(Q−l)−1(Z−l)′Z−l(Q−l)−1δ

≤ 1√
NM

√
slO(1) max

‖δ‖=1
‖δ‖0≤sl

√
δ′Ψ̄δ

≤
√

sl
NM

√
ϕmax(Ψ̄, sl) = O

(√ sl
NM

)
with probability at least 1− o(1). A similar argument under Assumptions 4 and 5 (1) and (2) shows

that |(R
l)′Zl(φ̂l−φl)|
NM = O

(√
sl
NM

)
.

Combining all the results above, we obtain

|τ̂2
l − τ2

l | = Op

(√sl log a

NM

)
uniformly over [k0].

Step 3 Since l ∈ [k0],

1

τ2
l

= Θl,l = (Ql)−1Θl,l(Q
l)−1 ≤ Λmax(Q−1ΘQ−1) = Λmax(Ψ−1) = 1/Λmin(Ψ) = O(1), (B.11)

holds for each (N,M) under Assumption 5 (3), where the first inequality follows from the discussion

following (B.30) in the Proof of Theorem 1 in Caner and Kock (2018). Therefore, τ̂2
l is bounded away

from zero in probability, and we have

max
l∈[k0]

∣∣∣ 1

τ̂2
l

− 1

τ2
l

∣∣∣ = Op

(√sl log a

NM

)
(B.12)

by Step 2.

Now, we bound maxl∈[k0] ‖Θ̂l −Θl‖1. Since ‖φl‖1 = O(
√
sl) under Assumption 5 (1), we have

max
l∈[k0]

‖Θ̂l −Θl‖1 ≤max
l∈[k0]

∥∥∥ Ĉl
τ̂2
l

− Cl
τ2
l

∥∥∥
1

≤max
l∈[k0]

∣∣∣ 1

τ̂2
l

− 1

τ2
l

∣∣∣+ max
l∈[k0]

∥∥∥ φ̂l
τ̂2
l

− φl

τ̂2
l

+
φl

τ̂2
l

− φl

τ2
l

∥∥∥
1

≤max
l∈[k0]

∣∣∣ 1

τ̂2
l

− 1

τ2
l

∣∣∣+ max
l∈[k0]

‖φ̂l − φl‖1
τ̂2
l

+ max
l∈[k0]

‖φl‖1 max
l∈[k0]

(∣∣∣ 1

τ̂2
l

− 1

τ2
l

∣∣∣).
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The first and the third terms can be bounded by (B.12) and the second term can be bounded by (B.8).

Therefore,

max
l∈[k0]

‖Θ̂l −Θl‖1 =Op

(sl log a

NM

)
+Op

(
sl

√
log a

N ∧M

)
+Op

(
sl

√
log a

NM

)
=Op

(
sl

√
log a

N ∧M

)
.

Similar lines of argument under Assumption 5 (1) and ‖φ̂l − φl‖ from Step 1 lead to

‖Θ̂l −Θl‖ =Op

(√ sl log a

N ∧M

)
.

Since ‖Θl‖1 ≤ maxl∈[k0]
1
τ2l

+maxl∈[k0] ‖ φ
l

τ2l
‖1 = O(

√
sl) by (B.11) and Assumption 5 (1), it follows that

‖Θ̂l‖1 = Op(
√
sl) for all l ∈ [k0].

B.5 Sufficiency for Assumption 1 (i)

Lemma B.5. If Assumptions 2, 3, 4, and 5 are satisfied, then

max
l∈[k0]

∣∣∣√NM(Θ̂′lQΨ̄Q− e′l)(η̂ − η)
∣∣∣ = op(1).

Proof. Recall Ψ̄ = S−1Z ′ZS−1 and Q = S/
√
NM . Also, if we let Γ = ZS−1, then Ψ̄ = Γ′Γ and

Z ′Z

NM
= QΓ′ΓQ = QΨ̄Q.

Since l ∈ [k0], Qll = 1. Let Ψ̄l, Γl denote the l-th column of Ψ̄ and Γ and Ψ̄−l, Γ−l be the respective

original matrices with l-th column removed. Using the K.K.T. condition for the nodewise lasso, we

have

1 =
(Z l − Z−lφ̂l)′Z l

τ̂2
l NM

=
Θ̂′lZ

′Z l

NM
= Θ̂′lQΓ′Γl · 1 = Θ̂′lQΨ̄lQll. (B.13)

Also using the K.K.T. condition, we have

Q−lκ̂l
NM

=
(Z−l)′(Z l − Z−lφ̂l)

µlnodeNM
.
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Using the property of the sub-gradient κl, we have∥∥∥(Z−l)′(Z l − Z−lφ̂l)
µlnodeNM

∥∥∥
∞
≤ ‖κ̂l‖∞

NM
≤ 1

NM
,

which is the same as ∥∥∥(Z−l)′ZĈl
NM

∥∥∥
∞
≤
µlnode

NM
,

since Z l − Z−lφ̂l = ZĈl. Divide both sides by τ̂2
l and use Θ̂l = Ĉl/τ̂

2
l to obtain∥∥∥(Z−l)′ZΘ̂l

NM

∥∥∥
∞
≤

µlnode

τ̂2
l NM

.

With some rewriting

µlnode

τ̂2
l NM

≥
∥∥∥(Z−l)′ZΘ̂l

NM

∥∥∥
∞

=
∥∥∥S−lΓ′−lΓSΘ̂l

NM

∥∥∥
∞

=
∥∥∥S−lΨ̄−lSΘ̂l

NM

∥∥∥
∞

=
∥∥∥Q−lΨ̄−lQΘ̂l

∥∥∥
∞
, (B.14)

where S−l is S with both the l-th column and the l-th row removed. Q−l is defined similarly. Applying

Lemma B.4 under Assumptions 3, 4, and 5, we have 1/τ̂2
l = Op(1). Therefore, by (B.13) and (B.14),

max
l∈[k0]

∥∥∥Θ̂′lQΨ̄Q− e′l
∥∥∥
∞

= max
l∈[k0]

∥∥∥(Z l)′XΘ̂l

NM

∥∥∥
∞
. max

l∈[k0]

µnode

τ̂2
l NM

= Op

(√ log a

NM

)
.

Finally, Lemma B.1 and Lemma B.3 with µ = C
√

(NM) log a under Assumptions 2, 3, and 4 together

imply

max
l∈[p]
|
√
NM(Θ̂lQΨ̄Q− e′l)(η̂ − η)| ≤

√
NM max

l∈[k0]

∥∥∥Θ̂′lQΨ̄Q− e′l
∥∥∥
∞
‖η̂ − η‖1

=
√
NMOp

(√ log a

NM

)
Op

(
s

√
log a

N ∧M

)
= Op

(√s2(log a)2

N ∧M

)
= op(1)

as claimed.1

B.6 Sufficiency for Assumption 1 (ii)

Lemma B.6. Suppose that Assumptions 2, 3, 4, and 5 are satisfied. Then,

max
l∈[k0]

∣∣∣Θ̂′lZ ′R/√NM ∣∣∣ = op(1).

1Note that Lemma B.1, as it is stated, requires Assumptions 2, B.1, B.2, and B.3. While Assumption 2 is directly

invoked by the statement of Lemma B.5, Assumption B.1 is implied by Assumption 3 through Lemma B.3, Assumption

B.2 is trivially satisfied under the current setting with Υ̂ = I, and Assumption B.3 is implied by Assumption 4.
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Proof. Note that

max
l∈[k0]

‖Θ̂l‖ = Op(1)

by Assumption 5 (1) and (4) and Lemma B.4 under Assumptions 3, 4, and 5. Therefore,

max
l∈[k0]

∣∣∣Θ̂′lZ ′R/√NM ∣∣∣ ≤ 1

NM
max
l∈[k0]

‖Θ̂l‖‖Z ′R‖ = op(1)

follows under Assumption 2 (3).

B.7 Sufficiency for Assumption 1 (iii)

Lemma B.7. Suppose that Assumptions 3, 4, 5 and 6 are satisfied. Then,

V
−1/2
ll Θ̂′lZ

′ε/
√
NM  N(0, 1).

Proof. First we show 1√
NM

Θ′lZ
′ε N(0, Vll). Note that we have

E

[
1√
NM

Θ′lZ
′ε

]
=

1√
NM

E[Θ′lZ
′E[ε|Z]] = 0

and

Vll = E

[( 1√
NM

Θ′lZ
′ε
)( 1√

NM
Θ′lZ

′ε
)′]

= Θ′lΩΘl ≥ k > 0

under Assumption 6. Furthermore, by Assumption 3

E

∣∣∣∣ 1√
NM

Θ′lZ
′ε

∣∣∣∣q ≤ 1

(NM)q/2
E‖Θl‖q1 max

k∈supp(Θl)

N∑
i=1

M∑
j=1

T∑
t=1

∣∣∣Zijt,kεijt∣∣∣q
.

s
q/2
l

(NM)q/2

∑
k∈supp(Θl)

E

N∑
i=1

M∑
j=1

T∑
t=1

∣∣∣Zijt,kεijt∣∣∣q
≤
s
q/2
l · sl

(NM)q/2
max
l∈[p]

E
N∑
i=1

M∑
j=1

T∑
t=1

∣∣∣Zijt,kεijt∣∣∣q

≤
s
q/2+1
l (NM)

(NM)q/2
max
l∈[p]

√√√√ 1

NM
E

N∑
i=1

M∑
j=1

T∑
t=1

∣∣∣Zijt,k∣∣∣2q 1

NM
E

N∑
i=1

M∑
j=1

T∑
t=1

∣∣∣εijt∣∣∣2q
≤

s
q/2+1
l

(NM)q/2−1
O(1) = o(1),
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where q > 4, the first inequality follows from a dual norm inequality, the second and the third from the

fact that ‖Θl‖1 .
√
sl and ‖Θl‖0 ≤ sl implied by Assumption 5(1), the fourth from Cauchy-Schwartz’s

inequality, and the fifth from Assumption 3 and the last equality follows from Assumption 5 (4). This

verifies the Lyapunov’s condition. Thus, we have 1√
NM

Θ′lZ
′ε N(0, Vll).

Now, we show | 1√
NM

(Θ̂l − Θl)
′Z ′ε| = op(1). Invoking Lemmata B.3 and B.4 under Assumptions

3, 4, 5, we have ∣∣∣∣ 1√
NM

(Θ̂l −Θl)
′Z ′ε

∣∣∣∣ ≤‖Θ̂l −Θl‖1
∥∥∥ 1√

NM
Z ′ε
∥∥∥
∞

≤Op
(√s2

l log a

N ∧M

)
Op

(√
log a

)
=Op

(√s2
l (log a)2

N ∧M

)
= op(1).

Combining these results concludes 1√
NM

Θ̂′lZ
′ε N(0, Vll).

B.8 Empirical Pre-Sparsity

The following lemma is a minor modification of Lemma 8 in Belloni et al. (2012).

Lemma B.8 (Empirical Pre-sparsity). If Assumptions 2, 3, 4, and 5 are satisfied, then we have

ŝ` = Op(s`) and ŝ = Op(s),

where ŝ` = ‖φ̂`‖0 and ŝ = ‖η̂‖0.

Proof. Let m̂` =
∣∣∣T̂` \ T`∣∣∣, where T` = supp(φ`) and T̂` = supp(φ̂`). From K.K.T. condition, we have

2((Q−`)−1(Z−`)′(Z` − Z−`φ̂`))k = µ`node · sign(φ̂`k)

for all ` ∈ [k0] and k ∈ T̂` \ T`. Thus,

µ`node

√
m̂` ≤2‖((Q−`)−1(Z−`)−1(Z` − Z−`φ̂`))T̂`\T`‖+ 2‖((Q−`)−1(Z−`)′R`)T̂`\T`‖

+ 2‖((Q−`)−1(Z−`)′Z−`(φ̂` − φ`))T̂`\T`‖

=(1) + (2) + (3). (B.15)
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We bound the three terms in the last expression separately. First, Lemma B.3 under Assumption 3

yields

(1) ≤2
√
m̂`‖(Q−`)−1(Z`)′ζ`‖∞ ≤

√
m̂`

µ`node

c

with probability at least 1− C(log(N ∧M))−1. Second,

‖((Q−`)−1(Z−`)′R`)T̂`\T`‖ = sup
‖δ‖=1
‖δ‖0≤m̂`

|δ′(Q−`)−1(Z−`)′R`|

≤ sup
‖δ‖=1
‖δ‖0≤m̂`

‖δ′(Q−`)−1(Z−`)′‖‖R`‖

≤ sup
‖δ‖=1
‖δ‖0≤m̂`

(NM)
√
δ′Ψ̄δ

√
s`
NM

≤(NM)
√
ϕmax(Ψ̄, m̂`)

√
s`
NM

follows by Assumptions 4 and 5. Therefore,

(2) ≤ 2(NM)
√
ϕmax(Ψ̄, m̂`)

√
s`
NM

.

Finally, by Lemma B.4 under Assumptions 3, 4, 5, we obtain

‖((Q−`)−1(Z−`)′Z−`(φ̂` − φ`))T̂`\T`‖ ≤ sup
‖δ‖=1
‖δ‖0≤m̂`

|δ′(Q−`)−1(Z−`)′Z−`(φ̂` − φ`)|

≤ sup
‖δ‖=1
‖δ‖0≤m̂`

‖δ′(Q−`)−1(Z−`)′‖‖Z−`(φ̂` − φ`)‖

≤(NM)
√
ϕmax(Ψ̄, m̂`)

√
s` log a

NM

with probability at least 1−C(log(N ∧M))−1, where the last inequality is due to Assumption 4 and

Lemma B.4. Using these bounds and (B.15), we obtain

√
m̂` .

√
ϕmax(Ψ̄, m̂`)

√
s` = O(

√
s`)

with probability 1 − o(1). Under Assumptions 2, 3, 4, and 5, the result for ŝ can be established

following analogous arguments.
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C Additional Discussions on Simulation Results

In this section, we present omitted details of the discussions on simulation results presented in Section

6.2 in the main text.

In the middle panel of Table 1, where the true data generating model is Model (II), OLS and FE-I

are biased while FE-II and FE-III yield little biases. These results are consistent with the current

simulation setting as OLS and FE-I mis-specify the true model while FE-II and FE-III correctly

specify the true model. The bias of POST (2.1) is slightly larger than those of FE-II and FE-III,

but much smaller than those of OLS and FE-I. In other words, POST (2.1) is de-biased to a large

extent but not to the full extent so that desired balance between the bias and variance is maintained.

FE-II, as the oracle estimator, yields a smaller root mean square error than OLS, FE-I, or FE-III.

Furthermore, POST (2.1) yields an even smaller root mean square error than the oracle estimator,

FE-II. The coverage frequency of FE-II, as the oracle estimator, is closer to the nominal level 95%

than those of OLS, FE-I, or FE-III. POST (2.1) yields the coverage frequency as close to the nominal

level as the oracle estimator, FE-II.

In the bottom panel of Table 1, where the true data generating model is Model (III), OLS, FE-I,

and FE-II are biased while FE-III yields little bias. These results are consistent with the current

simulation setting as OLS, FE-I, and FE-II mis-specify the true model while FE-III correctly specifies

the true model. The bias of POST (2.1) is between those of OLS, FE-I, and FE-II and that of FE-

III. As above, POST (2.1) balances the trade-off between bias and variance in the sense that it is

de-biased to some extent, but not fully. POST (2.1) yields a smaller root mean square error than any

other estimator, including the oracle estimator, FE-III. POST (2.1) also yields a coverage frequency

closer to the nominal level than any estimator, including the oracle estimator, FE-III. In summary, we

observe that, when the true model is rich, POST (2.1) is more precise than parsimonious estimators

and allows for as accurate inference as the oracle estimator.
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D Additional Simulations

This section presents additional simulation designs and simulation results based on them that we

omitted from the main draft.

D.1 Alternative Sample Sizes

While the main text presents simulation results in Table 1 under the baseline design only for the sample

size N = 200 (NMT = 1900), we now present results under alternative sample sizes. Tables D.1 and

D.2 display Monte Carlo simulation results with the smaller sample sizes N = 10 (NMT = 450) and

N = 15 (NMT = 1050), respectively. The overall patterns of these results resemble that of Table 1

presented in the main text, although the latter is more precise due to the larger sample size.

D.2 Alternative Simulation Designs

In the baseline model presented in Section 6 in the main text, the i and j fixed effects are generated

by αi = sα
/(
i · (log(i+ 1))3/2

)
and γj = sγ

/(
j · (log(j + 1))3/2

)
, where sα = sγ = 1. We used this

design because it satisfies our assumptions – see Examples 1 and 2 – and the proposed method therefore

is expected to work well. In this appendix, we examine alternative fixed effect designs including those

that are known to violate our assumptions.

D.2.1 Alternative FE Design (1)

The i and j fixed effects are generated by

αi ∼ N
(
mα, s

2
α

/(√
i · (log(i+ 1))3

))
and

γj ∼ N
(
mγ , s

2
γ

/(√
j · (log(j + 1))3

))
independently, where mα = mγ = 0 and sα = sγ = 1. The t fixed effects are generated by λt = 0 for

all t but for one year t when a universal shock of λt = 2 is applied. The it and jt fixed effects are
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True Model = (I) Fixed Effect Estimators POST POST

N = 10 (NMT = 450) OLS FE-I FE-II FE-III (2.1) (2.2)

Under-Fitting or Over-Fitting Under Correct Over Over Robust Robust

Average 1.317 0.997 0.997 0.999 1.056 1.100

Bias 0.317 -0.003 -0.003 -0.001 0.056 0.100

Standard Deviation 0.344 0.481 0.483 0.530 0.401 0.411

Root Mean Square Error 0.468 0.481 0.483 0.530 0.405 0.423

95% Coverage 0.836 0.942 0.941 0.909 0.962 0.959

True Model = (II) Fixed Effect Estimators POST POST

N = 10 (NMT = 450) OLS FE-I FE-II FE-III (2.1) (2.2)

Under-Fitting or Over-Fitting Under Under Correct Over Robust Robust

Average 1.316 1.216 0.997 1.007 1.117 1.131

Bias 0.316 0.216 -0.003 0.007 0.117 0.131

Standard Deviation 0.351 0.463 0.483 0.529 0.407 0.415

Root Mean Square Error 0.472 0.511 0.483 0.529 0.423 0.435

95% Coverage 0.840 0.915 0.941 0.912 0.958 0.956

True Model = (III) Fixed Effect Estimators POST POST

N = 10 (NMT = 450) OLS FE-I FE-II FE-III (2.1) (2.2)

Under-Fitting or Over-Fitting Under Under Under Correct Robust Robust

Average 1.619 1.603 1.551 1.053 1.206 1.157

Bias 0.619 0.603 0.551 0.053 0.206 0.157

Standard Deviation 0.347 0.355 0.370 0.518 0.431 0.473

Root Mean Square Error 0.710 0.700 0.663 0.521 0.478 0.498

95% Coverage 0.559 0.595 0.664 0.911 0.939 0.941

Table D.1: Monte Carlo simulation results under Model (I) (top panel), Model (II) (middle panel),

and Model (III) (bottom panel) with size N = 10 (NMT = 450).
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True Model = (I) Fixed Effect Estimators POST POST

N = 15 (NMT = 1050) OLS FE-I FE-II FE-III (2.1) (2.2)

Under-Fitting or Over-Fitting Under Correct Over Over Robust Robust

Average 1.283 0.995 0.995 0.995 1.003 1.051

Bias 0.283 -0.005 -0.005 -0.005 0.003 0.051

Standard Deviation 0.224 0.312 0.313 0.331 0.270 0.273

Root Mean Square Error 0.360 0.312 0.313 0.331 0.270 0.278

95% Coverage 0.745 0.943 0.942 0.928 0.960 0.957

True Model = (II) Fixed Effect Estimators POST POST

N = 15 (NMT = 1050) OLS FE-I FE-II FE-III (2.1) (2.2)

Under-Fitting or Over-Fitting Under Under Correct Over Robust Robust

Average 1.281 1.233 0.995 1.000 1.063 1.080

Bias 0.281 0.233 -0.005 0.000 0.063 0.080

Standard Deviation 0.229 0.298 0.313 0.331 0.275 0.276

Root Mean Square Error 0.363 0.378 0.313 0.331 0.282 0.287

95% Coverage 0.757 0.870 0.942 0.928 0.954 0.952

True Model = (III) Fixed Effect Estimators POST POST

N = 15 (NMT = 1050) OLS FE-I FE-II FE-III (2.1) (2.2)

Under-Fitting or Over-Fitting Under Under Under Correct Robust Robust

Average 1.554 1.501 1.428 0.995 1.080 1.085

Bias 0.554 0.501 0.428 -0.005 0.080 0.085

Standard Deviation 0.228 0.239 0.252 0.331 0.284 0.277

Root Mean Square Error 0.599 0.555 0.496 0.331 0.295 0.290

95% Coverage 0.324 0.448 0.598 0.928 0.942 0.943

Table D.2: Monte Carlo simulation results under Model (I) (top panel), Model (II) (middle panel),

and Model (III) (bottom panel) with size N = 15 (NMT = 1050).
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generated by

αit ∼ N
(
mα, s

2
α

/(√
i · (log(i+ 1))3

))
and

γjt ∼ N
(
mγ , s

2
γ

/(√
j · (log(j + 1))3

))
,

independently, where mα = mγ = 0 and sα = sγ = 1.

Table D.3 displays Monte Carlo simulation results under Model (I) (top panel), Model (II) (middle

panel), and Model (III) (bottom panel) with the sample size N = 200 (NMT = 1900). Observe that

this table exhibits the same qualitative pattern as that in Table 1 presented in the main text, and

hence we can draw the same conclusion here as well. Namely, POST (2.1) delivers a robust and

superior performance compared with any other method even under the stochastic fixed effect design.

D.2.2 Alternative FE Design (2)

The i and j fixed effects are generated by αi = (−1)i for each i ∈ N and γj = (−1)j for each j ∈ N.

The t fixed effects are generated by λt = 0 for all t but for one year t when a universal shock of

λt = 2 is applied. Note that this fixed effect design violates the approximate sparsity condition, and

therefore, our proposed method is no longer guaranteed to work in this design.

Table D.4 displays Monte Carlo simulation results under Model (I) (top panel), Model (II) (middle

panel), and Model (III) (bottom panel) with the sample size N = 200 (NMT = 1900). Interestingly,

POST (2.1) still performs at least as well as all the other estimators including the oracle one in terms

of root mean square error. On the other hand, the coverage accuracy by POST (2.1) is not as well as

in the baseline FE design presented in the main text.

D.2.3 Alternative FE Design (3)

The i and j fixed effects are generated by αi ∼ N
(
mα, s

2
α

)
and γj ∼ N

(
mγ , s

2
γ

)
independently, where

mα = mγ = 0 and sα = sγ = 1. The t fixed effects are generated by λt = 0 for all t but for one

year t when a universal shock of λt = 2 is applied. The it and jt fixed effects are generated by

αit ∼ N
(
mα, s

2
α

)
and γjt ∼ N

(
mγ , s

2
γ

)
, independently, where mα = mγ = 0 and sα = sγ = 1.
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True Model = (I), Alternative FE (1) Fixed Effect Estimators POST

N = 20 (NMT = 1900) OLS FE-I FE-II FE-III (2.1)

Under-Fitting or Over-Fitting Under Correct Over Over Robust

Average 1.467 1.000 1.000 0.998 0.952

Bias 0.467 0.000 0.000 -0.002 -0.048

Standard Deviation 0.165 0.231 0.231 0.241 0.198

Root Mean Square Error 0.495 0.231 0.231 0.241 0.204

95% Coverage 0.203 0.947 0.946 0.935 0.954

True Model = (II), Alternative FE (1) Fixed Effect Estimators POST

N = 20 (NMT = 1900) OLS FE-I FE-II FE-III (2.1)

Under-Fitting or Over-Fitting Under Under Correct Over Robust

Average 1.467 1.161 1.000 1.001 1.016

Bias 0.467 0.161 0.000 0.001 0.016

Standard Deviation 0.167 0.227 0.231 0.241 0.203

Root Mean Square Error 0.496 0.278 0.231 0.241 0.203

95% Coverage 0.211 0.888 0.946 0.935 0.958

True Model = (III), Alternative FE (1) Fixed Effect Estimators POST

N = 20 (NMT = 1900) OLS FE-I FE-II FE-III (2.1)

Under-Fitting or Over-Fitting Under Under Under Correct Robust

Average 1.415 1.411 1.362 0.999 1.037

Bias 0.415 0.411 0.362 -0.001 0.037

Standard Deviation 0.170 0.172 0.181 0.244 0.216

Root Mean Square Error 0.448 0.445 0.405 0.244 0.219

95% Coverage 0.311 0.328 0.472 0.933 0.946

Table D.3: Monte Carlo simulation results for the alternative fixed effect design (1) under Model (I)

(top panel), Model (II) (middle panel), and Model (III) (bottom panel) with size N = 20 (NMT =

1900).
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True Model = (I), Alternative FE (2) Fixed Effect Estimators POST

N = 20 (NMT = 1900) OLS FE-I FE-II FE-III (2.1)

Under-Fitting or Over-Fitting Under Correct Over Over Robust

Average 1.725 1.000 0.999 0.998 1.060

Bias 0.725 0.000 -0.001 -0.002 0.060

Standard Deviation 0.161 0.233 0.233 0.243 0.221

Root Mean Square Error 0.743 0.233 0.233 0.243 0.229

95% Coverage 0.005 0.946 0.945 0.934 0.925

True Model = (II), Alternative FE (2) Fixed Effect Estimators POST

N = 20 (NMT = 1900) OLS FE-I FE-II FE-III (2.1)

Under-Fitting or Over-Fitting Under Under Correct Over Robust

Average 1.725 1.112 0.999 1.000 1.076

Bias 0.725 0.112 -0.001 0.000 0.076

Standard Deviation 0.162 0.231 0.233 0.243 0.223

Root Mean Square Error 0.743 0.257 0.233 0.243 0.236

95% Coverage 0.005 0.916 0.945 0.934 0.918

True Model = (III), Alternative FE (2) Fixed Effect Estimators POST

N = 20 (NMT = 1900) OLS FE-I FE-II FE-III (2.1)

Under-Fitting or Over-Fitting Under Under Under Correct Robust

Average 1.563 1.482 1.314 1.002 1.073

Bias 0.563 0.482 0.314 0.002 0.073

Standard Deviation 0.175 0.186 0.204 0.243 0.225

Root Mean Square Error 0.589 0.516 0.374 0.243 0.237

95% Coverage 0.106 0.258 0.650 0.933 0.933

Table D.4: Monte Carlo simulation results for the alternative fixed effect design (2) under Model (I)

(top panel), Model (II) (middle panel), and Model (III) (bottom panel) with size N = 20 (NMT =

1900).
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True Model = (I), Alternative FE (3) Fixed Effect Estimators POST

N = 20 (NMT = 1900) OLS FE-I FE-II FE-III (2.1)

Under-Fitting or Over-Fitting Under Correct Over Over Robust

Average 1.683 1.000 1.000 1.000 1.041

Bias 0.683 0.000 0.000 0.000 0.041

Standard Deviation 0.163 0.234 0.234 0.244 0.219

Root Mean Square Error 0.702 0.234 0.234 0.244 0.223

95% Coverage 0.014 0.946 0.945 0.934 0.936

True Model = (II), Alternative FE (3) Fixed Effect Estimators POST

N = 20 (NMT = 1900) OLS FE-I FE-II FE-III (2.1)

Under-Fitting or Over-Fitting Under Under Correct Over Robust

Average 1.683 1.117 1.000 1.002 1.060

Bias 0.683 0.117 0.000 0.002 0.060

Standard Deviation 0.163 0.232 0.234 0.244 0.223

Root Mean Square Error 0.702 0.259 0.234 0.244 0.231

95% Coverage 0.015 0.915 0.945 0.934 0.926

True Model = (III), Alternative FE (3) Fixed Effect Estimators POST

N = 20 (NMT = 1900) OLS FE-I FE-II FE-III (2.1)

Under-Fitting or Over-Fitting Under Under Under Correct Robust

Average 1.762 1.716 1.667 0.999 1.069

Bias 0.762 0.716 0.667 -0.001 0.069

Standard Deviation 0.165 0.172 0.176 0.243 0.228

Root Mean Square Error 0.780 0.736 0.689 0.243 0.239

95% Coverage 0.004 0.014 0.038 0.934 0.929

Table D.5: Monte Carlo simulation results for the alternative fixed effect design (3) under Model (I)

(top panel), Model (II) (middle panel), and Model (III) (bottom panel) with size N = 20 (NMT =

1900).
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Table D.5 displays Monte Carlo simulation results under Model (I) (top panel), Model (II) (middle

panel), and Model (III) (bottom panel) with the sample size N = 200 (NMT = 1900). Similarly to

the case of the alternative FE design (2), POST (2.1) still performs at least as well as all the other

estimators including the oracle one in terms of root mean square error. On the other hand, the

coverage accuracy by POST (2.1) is not as good as in the baseline FE design presented in the main

text.
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