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Abstract

This supplement provides additional technical material, expanded proofs, and
reports on a Monte Carlo study that explores the small sample properties of
our estimators. For the main Assumptions, notations and definitions of various

quantities appearing in the sequel, the reader is referred to the main paper.



D Supplement to Appendix A

. _ m n . _ m P
Proof of Lemma A.1: Let Cs = sup, max;" > 5, |aijn|, Cp = sup, max;™y E |p; n|

Mn

and C,, = sup,, max.""; E |n; »|". Clearly

M, Mn
Einl < |pinl + Z laijnl Mjn| < |pin] +Ca Z bijn Mjn]
Jj=1 j=1

with bij,n = |a”7n|/ (Z;le aij,n|) if Z?L:TH az‘j’n| > 0and blj,n =0if Z;ﬁ:ﬂl
0. Clearly E |§; n|" < Cy, for 377 |agjn| = 0. For 377" |aijn| > 0 observe that

since 0 < by, <1 and Z;nz"l bij,n = 1 it follows from Holder’s inequality that

1/p
Z;'n:nl bij,n |nj,n| < {ZT:% bij,n ‘nj,nlp} and Consequently

Qijn| =

P
Elginl" < 2PE|pinl” +2°CRE | > bijm Mjn]
j=1
< 2B |pinl’ +2°CH > bijnEllnjnl"] < 2°Cp + 2°CHCy < 00
j=1
which proves the claim since C'4, C,, and C,, do not depend on 7 and n. |

Proof of Lemma A.2: By assumption X, is non-stochastic with sup,, sup; j [Zixn| <
0o, and so (A.1) holds trivially if z;; , corresponds to an element of X,,. Next
observe that by (7) and (9) we have

Yn = ap + An”nv
an (L — B:)_l Crxn,
A, = (InG - B’}:L)71 (InG - R2)71 (2; ® In)‘

In light of Assumptions 1-3 the absolute elements of a,, are uniformly bounded,
and furthermore the row and column sums of the absolute elements of A, are
uniformly bounded; compare, e.g., Remark A.1 in Kelejian and Prucha (2004).
By Assumption 4 the elements of v,, are i.i.d. with finite fourth moments. Thus
it follows immediately from Lemma A.1 that sup,, sup,; |yilvn|4 < oo. Next

observe that the columns of Y, are of the form Yis;n = WsnYin. Since by As-



sumption 1 the row and column sums of the absolute elements of W ,, are uni-
formly bounded it follows further from Lemma A.1 that sup,, sup, ; ; £ |yﬂ,syn |4 <
00, which completes the proof. |

Proof of Lemma A.3: In light of the proof of Lemma A.2, and observing that
u, = (I,g — R:) 12, ® I,)v,, it is readily seen that under the maintained

assumptions ug , and all columns of Z,, are of the generic form
CynVn, Cgn OF Cgr + Cy nlp, (D.1)

where ¢, ,, is an n X 1 nonstochastic vector with uniformly bounded elements
and C, ,, is an n X nG nonstochastic matrix whose row and column sums are
uniformly bounded in absolute value. By Assumption 4 the elements of the
nG x 1 vector v, are iid. (0,1) with finite fourth moments. Given this,
it is readily seen that n~'uj  A,u,, and the elements of n™'Z; A, u,, and
n1Z,A,Z, are of the generic form d,, n~'d,v, or n~'v/D,v,, or sums
thereof, where |d,|, the absolute elements of d,, and the row and column sums
of the absolute elements of D,, are uniformly bounded by some finite con-
stant, say K. In the following let D,, = (djx,) = (D, + D})/2. Observe
that E [n~'d,v,] = 0 and E [n~ ', D,v,] = n~'tr(D,) = O(1). Further-
more observe that var(n='d/v,) < n"!K? = o(1), and that in light of, e.g.,
Lemma A.l in Kelejian and Prucha (2004) and Remark A.2 in Kapoor et al.
(2007), we have var(n~'v,D,v,) < n‘ztr(ﬁi) +n2K iy |Evfgyn -3| <
n~'K. = o(1) for some finite constant K,. Thus clearly n~"'uj ,Ayuy, =
O,(1), n7'Z,A,uy, = Op(1) and n'Z,A,Z, = O,1). The third claim in

the lemma follows from Chebychev’s inequality. |
Proof of Lemma A.4: Clearly,

nl/Q(ggm —8yp) = f’;g,nn_l/QF;g,nsgm,
where f’gg,n and Fg, ,, are defined in the lemma. Given Assumption 6 clearly
f’gg,n =Py, + 0,(1) with Py, being finite, which establishes (c). Since by As-
sumption 2 the row and column sums of (I, — R}/, )~ are uniformly bounded
in absolute value, and since by Assumption 5 the elements of H,, are uni-
formly bounded in absolute value, it follows that the elements of Fg, , are
uniformly bounded in absolute value. By Assumption 4, E(g;,) = 0 and

E(egnel,) = 0ggln. Therefore, En~'/2F/  e,, = 0 and the elements of



Vc(n_l/zF{rLEQ,n) = Uggn_lF;g,n

value. Thus, by Chebyshev’s inequality n’1/2F’gg7n€gyn = Op(1), and conse-

quently n'/2(3, ,—8,.,) = P;gnfl/QF;gme:g,n—l-op(l) and P;gnfl/QF;gmeg’n =

Op(1). This establishes (a) and (b), recalling that Tgg, = FggnPggn. Next

observe that

F,4.n are also uniformly bounded in absolute

)‘min(nilT,gg,nng,n)
Z >\min |:(In - R;:n)71 (In - R;,n)71:| )\min [nilH{an]

Amin {1 Qbz,g Qrn Quiz o] ' Qhiz , Qun Qi Quz.¢ [Quz, Qe Quiz.g] '}
> c

for some ¢ > 0, since in light of Assumptions 1 and 2 the largest eigenvalue of
(L, — Rzn) (L, - R} ») is bounded from above, and thus the smallest eigen-
value of (I, — R;{n)_l (L, — R;’n)_1 is bounded away from zero, and since
Amin [nilH’an] > [Amin(Qumu)] /2 > 0 for n sufficiently large in light of As-

sumption 6. This establishes (d). |

Proof of Lemma A.5: Note from (1) and (10) that

Yiegn(Pgn) = Lingn(Pgn)Ogn + €gn — (R;m —Ryn)ugn
and hence

n2[8y . — 8.0

~ -1 ~ ~
= [n_lzigm(pg,n)z*g,n(l’g,n)] n_1/2Z;g7n(pg7n) €gn — (R;n —Ryn)ugn

D/ —1/2/ ~ —1/25*
= Pygn |7 Fygn€an — § : (Pg.rn = Pgrm)n Fogrn€an|
rely,p

with R}, = R} ,(Py,n), and where P’ is defined in the lemma, F} = H,,

and F. = (I, - R;:n)_l M, H,. In light of Assumption 6, and since p,

99,7,n
is consistent, it follows that

n_lZ;g,n(ﬁg,n)z*g,n(ﬁg,n) - Q/HZA,g*(Pg,n)QﬁlHQHZ,g*(pg,n) = 0p(1).

Since by Assumption 6 we have Q’sz*(pg,n)QﬁhQHz,g*(pg’n) = 0O(1) and



[Q/HZ,g* (Pg,n)Q;Ii{QHZ,g*(pg,n)]_l = O(1) it follows that
[n _1Zikg n(ﬁgyn)z*gyn(ﬁg,n)}_l - [QIHZ,g*(pg,n)Q;IhQszg* (pg,n)]_l = 0p(1);

compare, e.g., Pétscher and Prucha (1997), Lemma F1. In light of this it follows
further that P, —P* op(1) and P} . = O(1), with P}, defined in the

gg.n ggn — gg.n gg.n
lemma. By argumentation analogous to that in the proof of Lemma A.4 it is
readily seen that n’1/2F*’ = 0p(1) and n*1/2Fgg rn€gn = Op(1). Conse-
quently n'/2[8y ,—8y.n] = P;'gn n~l2Fy  egntop(1) and Py n~2F egn =
0,(1), observing again that p,,, — pgn = 0p(1). This established (a)-(c) recall-

ing that Ty, , =¥y, Py, .. Next observe that

Amin(n” T4, Tgq.0)
> i [ Qi H HL Qi
Amin { QHz,g*(Pg n)QHHQHZg* Pg.n) 1}
> )\mln(QHH) min {[QHZ g (Pg n)QHHQHZ 9*(p 1} Amin [ “'H] H"]
> /\mm(QIiIi—I»‘min {[QHZ,g*(pq, )QHHQHZQ* 1} [ min QHH ] /2 > C

for some ¢, > 0 in light of Assumption 6, and observing that Ay, [n_lH;Hn} >
[Amin (Qumu)] /2 > 0 for n sufficiently large. This establishes (d). |

Proof of Lemma A.6: Note from (1) and (11) that

and hence

n'/2[8, — 8,
~ ~ —1 ~ ~
= [n‘lZin(ﬁw(E; '® In>Z*n<ﬁn)} n 27 (pn)(E, @ L)

X [sn — (ﬁ* — Rn)un}

n

= [0 2,0 (5 @ L) Zun(B)| diag [0 2Ly (P H]

X {f);l ® (n_lH;Hn)_l} (I¢ @ n~Y2H) {en — (R — Rn)un}
~ —kk/
Zreh,p(plwrvn P, r")n 12 Fll rn€ln
— ﬁ:,*/n_l/zF:L*lsn +ﬁ;«l*/ . ,
—kok/

ZTEIG’p(ﬁGyrvn - pG,Tﬂl) -1/ FGG r, n€g.mn



with R = diagS_, [R} . (Pg.n)]|, and where P:* and F** are defined in the
lemma, and F;* = (I, - R;fn)fl M; ,,H,.. Observe that the (g, )-th block

of

g,mn

”_1Z;n(ﬁn)(z};l@In)Z*n(ﬁn)_dwg [QII—IZ,g*(pgmﬂ [2_1 ® Ql_ﬁ—l] diag [QHZ,g*(pg,n)]
is
Ggnmnn” 2y o (Pg.n)Zunn(Phn) — Tgn Qtaz gr (Pg.n) Qg QEz hx (Ph,n) = 0p(1)

in light of Assumption 6, and since p,, and f]n are consistent. By Assumption
6 we have diag [Qug, 4. (Pg.n)] (X' ® Qunl diag [Quz,g+(pg,n)] = O(1) and

Amin {diag [Q/I—Iz,g* (pg,n)] [271 by Qﬁi—[] diag [QHZ,g* (pg,n)]}
> )\min {271 & I} Amin {dzag [Q/HZ,g*(pg,”)QITIi-IQHZvQ* (pg,n)]} > Cx

for some ¢, > 0. This in turn implies that

{diag [Q/I-Iz,g* (pg,n)] [271 ® QI?IIH} diag [QHZ,g*(pg,n)]}71 = O(1).

Consequently

~ ~ —1
{7 2L,(5) (57 O L) Zen(Ba) } -

{diag [Q/Hz,g* (pg,n)] [271 by QI_J&{] diag [QHZ,g* (qu)]}il = Op(1)§

compare, e.g., Potscher and Prucha (1997), Lemma F1. In light of this it is now
readily seen that P%* — P** = 0,(1) and P5* = O(1), with P** defined in the
lemma. By argumentation analogous to that in the proof of Lemma A.4 it is
readily seen that n='/2F*e, = O,(1) and n_l/QFZ;,T.msg,n = 0,(1). Conse-
quently n/2[8,, —68,] = Prn=Y2F ¢, 4+0,(1) with P:*'n~1/2F:"e, = 0,(1),
observing again that py , — pg.n = 0p(1). This establishes (a)-(c), recalling that



T:* =F;*P;*. Next observe that

)\min(n—lT**/T**)

> Ain(5 ™) A [ Qi 20 L HL Q]
><)\mln [{dlag [QHZ g*( g")] [E ® QHH] dzag [QHZ 9*(pg n)]}_1:|
> Anin (S Amin Qi) Amin [~ H, H,]
Amin | {diag [Qbrz g (o)) [ © Qi) diag [Quzg-(pyn)]} |
> (QHH)/Q]
)

Py,
)\min(zil) min(Q;IH)[ min
><)\m1n [{dzag [QHZ g*(pg,n ] [2 ® QHH] dla’g [QHZ,g*(pg n)]}_1i| Z Cx

for some ¢, > 0 in light of Assumption 6, and observing that Ay, [nilH;Hn} >
[Amin(Quam)] /2 > 0 for n sufficiently large. This establishes (d). |

Proof of Lemma A.7: Without loss of generality, assume that o2 = 1, since
the model in Assumption A.1 can always be normalized accordingly.

We first prove part (a) of the lemma. Let 9, = n~'uw,A*u, and ¥,

W A*u,, then, in light of Assumption A.1, we have 9, = n~'e/, B¢, with
B = (1/2)R,,Y(A: + AX)R, L. Furthermore, by Assumption A.1, the row and
column sums of the matrices R,, are uniformly bounded in absolute value. Since
this property is preserved under matrix addition and multiplication - see, e.g.,
Remark A.1 in Kelejian and Prucha (2004) - it follows that also the row and
column sums of the matrices B} and B B> are uniformly bounded in absolute
value. In the following let K < oo be a common bound for the row and column
sums of the absolute elements of B} and B B, and of their respective elements.

Then, using the triangle inequality and the Cauchy-Schwarz inequality, we have

E |0, |_n*122|bw|E|em||W| <n*122|bw| < K.

=1 j=1 =1 j=1

Furthermore, utilizing the expression for the variance of linear quadratic forms
given in Lemma A.1 in Kelejian and Prucha (2007) we have in light of Assump-
tion A.1

un ln

var(¥,) = n 22tr(B:B}) +n_2Zb
i=1
< n 2K +n'K?sup [Eej,, — 3]
i

_3]



Given that the fourth moments of the ¢;, are uniformly bounded in light of
Assumption A.1, this establishes the first two claims of part (a) of the lemma.

We next prove the last claim of part (a) of the lemma. The above discussion
implies that ¥,, — Ed,, = 0,(1). Hence it suffices to show that Tp — O = op(1).
By Assumptions A.1 and A.2

with

bn = nTALD (AL + A u, =n"tAI D] Cle,,

Yo = nTTALDLAND,A,,
and C}, = (cj;,,) = (A}, + A}/) R, !. The row and column sums of the matrices
C; are again seen to be uniformly bounded in absolute value. Let K < oo
denote a uniform bound for the row and column sums of the absolute elements
of the matrices A}, and Cj,, and let ¢} , and 0; , denote the i-th row of Cj,
and ®,,, respectively.

To prove the claim we now show that both ¢,, and ¥, are 0,(1). Using the

triangle and Holder inequality we get

|¢n| =

n

—1 I~/ *

n § :Anai.7nci.,nen
i=1

n n n n
< A Z 10i..nl Z |c:j,n’ lejnl < nHAl Z lejnl Z 19i.,nl |
i=1 j=1 j=1 i=1
n n 1/p n 1/q
< a7 AD el (Z ||ai.,n||") (Z Icz;-,n!q>
j=1 i=1 i=1
n n 1/[)
< Entr 2 (2 an)) [ 07 lesal (n > ||az-.,n||1’>
j=1 i=1

forp=2+dand 1/p+1/q =1, and where § > 0 is as in Assumption A.2. The
last inequality utilizes the observation of Remark C.1 in Kelejian and Prucha
(2007). Since the ¢; , are independent with bounded second moments, it follows
that =t 3" fejn| = Op(1). The terms n'/? [|A, || and n=' Y77 [[0; n[|” are
0,(1) by Assumption A.2. Since n'/P~1/2 — 0 as n — oo it follows that ¢,, =
op(1).

(D.2)

E3
Cz‘j,n’



Again, using the triangle and Hélder inequality yields

n n
Wnl = [nTPD D ALY a0 A, (D.3)
i=1 j=1
n n
_ 2
< ALY D 0inll D 105.ml [a ]
i=1 j=1
1/p 1/q
n n n
_ 2
< ALY Moiall [ 0507 ajjnl*
i=1 j=1 j=1
1/p
n n
< Enl/?|A,? <n1 3 ||al-.,n|> n Y [yl
i=1 j=1
<

n 2/]7
Fnl/pfl/anl/Z(nlﬂ ||An||)2 <n1 Z |Di.,n||p>
i=1

with p and g as before. By Assumption A.2 bothn™* 3" | [[0; |7 and n'/2 ||A, ||
are O,(1). Since n'/P=1/2 — 0 as n — oo it follows that 1, = 0,(1). From the

last inequality we see also that n'/2y,, = op(1).

We next prove part (b) of the lemma. In the following let ¥, , denote
the s-th element of n='®/ A*u,. Observe Eu,u/, = R 'R Y. Then given
Assumptions A.1 and A.2 there exists a constant K < oo such that Eui, <
K and E 050" < K. WLOG assume that the row and column sums of the
matrices A’ are uniformly bounded by K. Utilizing the Cauchy-Schwarz and

Lyapunov inequalities we then have E|u; | [0)sn] < [Ellin]l/2 [EDQ. ]1/2 <

js,m
—1/2+1/
[Eu? }1/2 (E |0js7n|p)1/p <K " with p as before and, hence,

i,Mm

" —1/241/ " —3/2+1/
B, =0 S5 at Ellual il <K 0SSN o <K < o0,

i=1 j=1 i=1 j=1

which shows that indeed E |n=10', , A%u,| = O(1) where d , ,, denotes the s-th
column of ®,,. Of course, the argument also shows that o = n " 'ED’/ (A% +
A u, = O(1). Next observe that

n71®;A;ﬁ,L = nilglnA:lun + yna

where b, = n~1D) AXD, A,. By argumentation analogous to that employed



to demonstrate that n'/21, = o0,(1) it follows that also ¥ = op(1), which
completes the proof of part (b).

We next prove part (c¢). In light of the proof of part (a) we have
—1/2 /A* =n —-1/2 ’A*un+[ u;l(A:l‘i‘A:Ll)@n]nl/QAn+n1/2wn

with n'/2¢),, = 0,(1). Inlight of part (b) and Assumption A.3 we have n~u/ (A% +
AND,, —a = 0,(1). The claim follows since n'/2A,, = O, (1) by Assumption
A2 |

Remark A.1: For future reference it proves helpful to note that in light of
Remark A.1 in Kelejian and Prucha (2004) the constant K used in proving the
last claim of part (a) of the above lemma can be chosen as K = 2cpca where cp
and c4 denote a bound for the row and column sums of the absolute elements
of R ! and A} . Furthermore it proves helpful to observe that in light of (D.2)
and (D.3)

Oy,

where ¢, = 0,(1) does not depend on A.

Proof of Lemma A.8: Given Assumption A.1 and the maintained assumptions
on A, it follows that the row and column sums of A% = PR/ A, R, are bounded
uniformly in absolute value. Thus by Lemma A.7(c), and utilizing Assumption
A .4, we have

V20 R AL R,
= n V2 R AR, + nl/zA + 0p(1)

—1/241 1/2
= n Y €gnAnEgn + 10~ 1q

Z Th n€hm +0p(1) | +o0p(1)

G
—1/2 1 —1/2 /
= nV €gnAnEgn +n / E ah,nshyn—i—op(l).
h=1

The last inequality holds since o, = O(1); see the remark in Lemma A.7(c).
Given this and the maintained assumption on P, it follows that cp, =

, .
(chims---»Chpan) = Prnay = O(1). Since ay ,, = Fj nCp,n, we have

n

<annZ|fhzsn|

Z fhzs nChs,n

s=1




using inequality (1.4.4.) in Bierens (1994). Thus

n pF n
supn > fanin|” <PERETY supn 'Y | fuical” < 0o
n i=1 s=1 " i=1

in light of Assumption A.4(a). This proves part (a). Part (b) follows readily
from, e.g., Lemma A.1 in Kelejian and Prucha (2010). |

10



E Supplement to Section 6

In the following we provide more details on the derivation of the results in the
Section on Limited and Full Information One-Step Estimators. We first discuss
limited information estimators. Let 0y, = [d; ,,py )" and égn = [ngmﬁg"n]’,
then by argumentation analogous to those for two-step estimators we have
(®°, )"1/2nl/2(6° —6,,) % N0, I] with

9g,n g,n
LL -1 -
(bo _ |:arngvn(097n):| [ lI’gg,n 0 ] |:6rng7n(eg’n):| = Op(].)
99, 00, , 0 w9 90,1

where

‘I’ﬁf,n = Oggn [nilH/nH"] J

QR  _ 2 QQ
'Ilgg’n - U!JWLK" ’

with K99 = (k2% and

k9 = (2n) Mtr (A + A L) (Asn + AL )]

rS,m

Recall that

Ygn = ng‘sgm"'ugvnv

W = Ugnpgnt+egn =Ry, (Pgn)tgn +Egn,
with R} . (pg.n) = Zrelw Pg.rnM; . Consequently

€gn = [In - R;n(pg,n)]ug,n

= [T, — R;,n(pg,n)] [.ng - Zg,n‘sg,n]

and

He,n = HL[L, - R;,n(pg,n)][YQ,n — Zgndg.nl,
onAsnggn = uy L =Ry (pg.n)]Asn [l — Ry, (pgn)]ugn
= uy, Ay, —2ug Ry (pgn)As s

+ulg,nRZtn(pgm)Xs,nR;,n(pg,n)ug,n'

11



Thus

0 ou,
—— [He ] = H,[I,-R; . (p )] D = -H,[I, - R} ,.(pg.n)]Zg.n,
0.1, g gy 004 n, g,n\g g
a * A * 8“ s
98y [Elg,nAs,neg,n] = 2ulg,n[1n - Rg:n(pg,n)]As,n L, — Rg,n(ﬂg;ﬂ)} 355:
= 72€/g,nK57"[In - R;n(pg,n)]zg,n
= _E‘Iq,n(AS,n + A;,n)[lﬂ - R;n(pg,n)]zg,nv
and
a ! ! !
G [H ] = ~[HL M, oty HEM,, )
g,m
8 ’ —_ —_ 81'1
€ WAsn€gn] =—2[u, M, A, u,,,.,u, M A u,, Hhl
apg,n[ g, 5 9, } [ g, 9.1 s 9, g, g,4g > 5 9, )] apg,n
" M. A, .M ' M. A,.M Or2.9.n
+[ug,n Tg,1,m" =51 Tg,l,nugfﬂ? A ug,n Tg,qq5T S5, Tg.qganuggan] apg n
— — ors o n
+2[Eufq,nM;g$lmAs’nM,«g‘z,nug,n, -'-7Eu;,nM;g,qg717nAsvnMrg‘qg,nug,n] 82797 )
g,n

Recalling that

4 _ —1yy/
mg,n(pg,magxn) = n Hnsgﬂﬁ
-1
n Eg,nAl,nEQ’n
P _ .
mg,n(pg,nyég,n) - . )
-1

n €g,nAS,n€g,n

12




we have

g1n
+ Op(l)a

g,8,m

om?
Wg,n = _n_lH;Z*g,n(pgyn) =—n" H%ZQ»” - Z pgﬂ“a"H;lMT’nzg’”
g.n relg
= —Quzg«(Pgn) +0p(1),
dm?°
9t = —n_l[H;erg ,nUgn, .- H{ﬂMTg q ,nug,n] = Op(1)7
9pg.n ’ -
4 _n_le/g,n[Al,n + A/Ln] [ITL B R;n(pgv")]zg’n
amgvn B .
9gn .
—nilsgyn[As,n + Aigm][In - R;,n(pg,n)]zg,"
om? Org n(pg,n)
gn —I‘_nénM+01:_Jn+Ol’
s an0) L) (1) = -3, 4 0,(1)

. _ * Org,n(Pg,n
with ey rp = —n 1EZiq7n(In—Rgfn(pg,n))(AT7n+Aﬁm)eg7n andJ, , = I‘g,n#.

Consequently, we have

0pg,n

omy .,
— 2 =G +o 1
8997n g,n ;D( )
with
G — Gé,ﬁ G;% . —Quz,gx+(Pg,n) 0
gm — =
Ggﬁ Ggg a;],n Jg,n
where agn, = [ | ..., g,5,,]. Furthermore
LL \—1 LL LQ
Sg n = G/ (‘I’gg,n) 0 Gg n = Sg,n Sg,n
s g,n _ s
0 (Tg2)~ S¢n S¢
where
LL LL LL \—1~LL L —1 L
= O'Q_gl’nQHZ,g*(pg,n)’(n—lH;LHn)—lQHZ“q*(pgm) + o'g_gzynag’n(KgQ)—lalg’T”
L L L —1 -2 —1
Sg,g = Sg,g/ = ng/(qngg%L) Ggg = _Ugg,nay7”(K7QLQ) JS’JL?
—1 -2 —1
Sg?,g = Ggg/(qlgg?n) G?,S = O—gg,nJ;,n(KSQ) Jg,n~
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The submatrices of S, ,, can be estimated consistently by

Sort = G T g n(P5,0) Bag n (B5,0)] + Gy, (KE9) 1A,
SO’LQ = SO’LQI = _ag_g%nag n g ) g n(ﬁ;n)?
1
S;%Q = gg2,nJ;] n(ﬁz,n) (K”?Q) '] ,’Vl(pg,n)7
where af , = [a] ;| ,,,..., @] g ,] with
a;,r,n = [kag n( g,n)(AT,n + A{r,n)(In - R;,n(ﬁg,n))ﬁgan] .
We next discuss full information estimators. Let 6, = [8),,pl] and 8,

[Sn , ﬁn] then by argumentatlon analogous to those for two-step estimators we
have (®9)~1/2 1/2(19 —0,) % N0, 1) with

—1

o [t [0 ] om0,

" 00, 0 TX 90,
where
vl = 8, [n'H,H,],
wie . wle,
poeo = : : zsz’n@)KgQ,
QQ QQ
‘IlGln lIIGGTL

with ‘I’QOQn =02, K39 and Bsq., = (07,,,)-

Observe that for g # h,

and thus

with

c - [dmggf‘_l[cg,ﬁ] dmgg_l[eg,%]]

diagG_,[GPL]  diag§,[GEY)

—diagle[QHz,g* (Pg.n)] 0
diagngl [a;],n] *diagg?:l [Jg.n]

14



Furthermore

plly-1 0 SLL QL@
0 (TRe)~! SPt sRe
where
SIF = GLM(REY) G+ g (ee9) 6"
= diagngl[QHZ,g*(pg, )][Esén®nilH/anrldiaggzl[QHZ,g*(pg,n)]
+diag [y n][S56 , © (KZ9)diags, [ ],
SLO = 819 = GgM(w99)lage
= _diaggG=1 [agm} [25612 n (KSQ)il]diaggv;l[Jg,n]?
SSQ _ GSQ/(\I,QQ)flGQQ

= diag§, (3, )[BsH.. ® (KI9) ™ diags [ g.n)-

Let o4, denote some consistent estimator for ogp, », and let 3, = (dgn.n)

and iSQ,n = (5§h,n)~ The submatrices of S,, can be estimated consistently by

~o,LL

S, = n'Z (*")(i—lm )Zon(P,)
+diagl (@, )[S5h., © (K9) diagt, [a,,,),
SoLQ = 8oL = —diag (@, ,)[B55, @ (KQ) Vdiagl,[Te.(p,)],
S09Q = diagl [, (PE5h,, ® (KQ) diagh (I, (5,)].
where EZ'n = [é;lﬁn, e ,éz,s,n}’ with

~

By = =1 2y (Py) A + AL )T =R (B )Ty

~ =0
and Ug,n = Ygn — Zgn0,.
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F Supplemental Remarks on Identification Con-
dition

In the following we provide a number of observations on the identification condi-
tion maintained by Assumption 6. As discussed in the text, in general, this high-
level condition is a necessary condition for the identification of the regression
parameters, based on linear moment conditions only. For ease of presentation
we focus the discussion on moment conditions corresponding to the untrans-
formed model (8), and we drop subscripts n. For clarity we denote the true
regression parameters of the g-th equation as dy, and thus u, =y, — Z,67.
The 2SLS estimator exploits the population moment condition En~'H'u, =
0, or asymptotically plim

noseo 'H/u, = 0. The corresponding sample mo-

ment vector satisfies

n'H'(y, — Z46,) = n 'Huy+n "H'Zy (8 - b,)
= [plimnﬁoon_lH/Zg} (65 — dg) +o0p(1).

Under the maintained assumptions Qg z, 4 = plim,,_, . ,n 'H'Z, = lim,,_,oon 'H' EZ,.
Assumption 6 maintains that Qg z 4 has full column rank. This ensures identifi-
cation through the instruments H in that then §, = § is seen to be the unique
solution of the Qz,4(7 — dy) = 0. For ease of presentation we will proceed by
discussing the finite sample analogue of the above assumption, i.e., that H'EZ,,
has full column rank. We will first relate this assumption to the rank condition
in a classical simultaneous equation system, and then discuss some situations

where the condition does not hold.

F.1 Interpretation from the Perspective of a Classical Sys-

tem

Our simultaneous equation model with network interactions contains the classi-
cal simultaneous equation model without network interactions as a special case.
For the classical simultaneous equation model it is well known that a necessary
and sufficient condition for the identification of the structural parameters of an
equation is that the matrix of reduced form parameters corresponding to the
exogenous regressors, which do not appear in that equation, has full column
rank; see, e.g. Dhrymes (1978, p. 283). In the following we show that in this

special case the identification condition maintained in Assumption 6 is equiva-
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lent to the classical assumption. WLOG we consider the first equation of (8),

which under the classical setting reduces to

Y1 =2Z101 + uy,

where Z; = [Y1,X4] and 8, = [B],1])’. For ease of presentation we assume
furthermore that the exogenous regressors are arranged such that X = [Xy, X7],
where X7 represents the matrix of observation on the exogenous variables that
do not appear in the first equation. Then EY; = X;II; + XJII}, where II;
and II} are the K7 x G7 and (K — K;) x G; matrices of reduced form param-
eters corresponding to X; and X7 respectively. For the classical simultaneous

equation model we have H = X. Thus, observing that

EZ, = [EY,X,] = XF;, F;=

I, Ig,
m o |’

we have H'EZ; = (X'X)F,. Provided the X are not perfectly multicollinear it
follows that H' EZ; has full column rank iff F; has full column rank. However,
F; has full column rank iff IT] has full column rank. This proves that for a
classical system the assumption that H'EZ; is equivalent to the classical rank
condition. Of course, the order condition K — K7 > (G1 is necessary for the rank

condition to hold.

F.2 Interpretations from a Stylized Two-Equation Model

with Network Interactions

In the following we consider the simple stylized two-equation model:

yi = Y261 +Xim + MWy, +u =761 + uy,
y2 = Xaoy2+uy,

where Z; = [y2, X1, Wy,] and &, = [B1,71, 1] While the setup is simple
it permits us to highlight several important scenarios where the identification
condition for the parameters of the first equation fails.

We first compute the best instruments EZ; for Z;. Observe that

(Xav2 +u2)f1 + Xiv1 + MWy, +uy
X+ MWy, +u; +uzxf;

Y1
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with 7, = (v, B1v%)’, and the reduced form for y; is given by
yi =T, - Alw)il[xﬁ +uy 4 uzf).

Consequently the best instruments EZ; for Z; is given by

EZ; = [Eys, X1, WEyi] = [Xy2,X1, W, — \\W) ' X7y
= [XQ’YQ,Xl,Z)\TWs+1X7T1].
s=0

The best IV estimator for §; is then given by
oF = [(BZ1) %] (EZ1)'y1.

From the above we see that the moment condition F(EZ;)'u; = 0 corresponding
to the best instruments is a weighted average of the basic underlying moment
conditions

EW*X)u; =0,...,5s=0,1,...,00. (F.1)

The best instruments EZ; depend on the inverse of the n x n matrix I,, — A\{ W,
which may be computationally challenging in large samples. In light of (F.1),
adapting Kelejian and Prucha (1998), we can define H to be composed of the
linearly independent columns of WX, ..., W5X for some S > 1, and work with
the moment condition

EH'u; =0.

The corresponding optimal GMM estimator is the S2SLS estimator

~

o1 = [(Z1)'2:)1(Z1)' v

with 21 = H(H/H)le’Zl, and where 21 can be viewed to represent an ap-
proximation of the ideal instruments.

Kelejian and Prucha (1998) discuss identification based on linear moment
restrictions for a single equation cross sectional spatial model. In line with their
discussion, clearly for H' EZ; to have full column rank we need EZ to have full
column rank. To provide guidance on where this condition may fail, we next

discuss several such scenarios.

B Scenario 1: Suppose the true model does not contain any exogenous variables,
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ie., v1 = 0 and 2 = 0. Obviously in this case m; = 0 and WEy; = 0, and
thus EZ; does not have full column rank. Apart from a complete failure of
identification by linear moments under this scenario, we expect the instruments
X, WX, W2X, ... to be weak, and estimators based only on linear moment
conditions to perform poorly, when the parameters of the exogenous variables
are “small”. Since the values of 7; and <2 depend on the chosen units of
measurement of the exogenous variables, it seems intuitive that “small” is best
interpreted as to correspond to a small ratio of the variance/signal stemming

from the exogenous variables to the variance/noise of the disturbances.

B Scenario 2: Suppose W is such that W2 = ¢;I,, + ¢ W, which implies that
(In—)qW)_l = d;I,,+d>yW where the constants d; and ds depend on A, ¢1, ¢a.!
Suppose further that X; = [X;, WX,], and correspondingly v = [v{, "],

and that 81 = 0. In this case we have

WEy, = W, - \MW) "X = (diW + daW?) X7,
= [aidoly + (di + dac2) W][X 77 + WXy
= 1deXy + (dy + doca) WX 7
+e1de WX 7y + (di + doca) |1 + WXy
= c1d2X 7 + (di + daca)er Xy
+(d1 + dac2) WX 7T + c1da WX + (dy + dacz)co WXy

which is clearly collinear with the columns of X;. We note that the result is
specific. It would generally not extend to the case where X; only contains a
subset of spatial lags of the exogenous variables. It would generally also not
extend to the case where 81 # 0, i.e., to the case where additional endogenous
variables are present that would depend on additional exogenous variables that
can serve as instruments.

A leading example where W2 = ¢;I,, + coW, and instrumentation in terms
of neighbor’s characteristics fails arises if there are R groups of size my, g =
1,..., R, and social interactions take place only within groups, and all members
of a group are friends of equal importance. If the calculation of group means
includes all members we have W = diagft (W, ) with W, = ey, €, /Mg,
where e, denotes an m, x 1 vector of ones. If the calculation of group means af-

fecting the i-th member excludes the i-th member we have W = diagll ;(W,,,)

IThis is readily verified by observing that I, = (I, — Ay W)(d11,, + daW) and utilizing
the expression for W?2.
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with W, = (em,e€;

my — Im,)/(mg —1). Both in the first case and, provided
that all groups are of the same size, also in the second case we have W2 =
11, + coW and identification via instruments fails. However, in the latter case
identification is achievable if there is variation in the group size. For a further
discussion of these cases for cross sectional data see Bramoulle, Djebbari and
Fortin (2009) and Paula (2017), and Kelejian and Prucha (2002) and Kelejian

et al. (2006) for an early discussion of identification in case of equal weights.
B Scenario 3: Consider the model
yi=X7 + WX v’ + MWy, +u; — A Wug.

Then EZ; = [X;, WX, WEy;] does not have full column rank for parameter
constellations where 4" = —A1v{. To see this observe that for those parameter
constellations Fy; = X;~{. For interpretation, we note that the above model
is observationally equivalent to y1 = X~ +uy, since pre-multiplication of this
model with I, — Ay W yields the above model.

F.3 Identification from Linear and Quadratic Moment Con-
ditions

A standard assumption in the literature on GMM estimation is that the prob-
ability limit of the matrix of first order derivatives of the moment vector w.r.t.
to the parameters has full column rank when evaluated at the true parame-
ter (or a small sample analogue thereof). Let mg’“(ég) = n~'H'uy(d,) with
uy(0y) =yg—Zy04. Then plim,L%ooamg’“(()‘;)/aé‘g = Qpz,4. Furthermore, let
mg(pg7 d,) and mf(py, d,) be defined as in (12) and recall the equivalent defini-
tion of the latter in (14). Then, plim,,_,.,0mS(p9,85)/08, = Quz,g«(py) and
plim,_, . .0m&(py,d,)/0p, = T'y[0ry,/0p,]. From this we see that the nature
of Assumptions 6 and 7 is in line with assumptions maintained by the classical
GMM literature; observe that dr,/dp, has full column rank.

As remarked in the text, the conditions postulated in Assumption 6 are
sufficient conditions to ensure identification of the regression parameters dg
from the linear moments only. Given §, is identified, the conditions postulated
in Assumption 7 are sufficient to ensure the identification of the autoregressive

parameters p,. Assumptions 6 and 7 are geared towards two-step estimation.
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Within the context of one-step estimation identification is still possible with
the use of the quadratic moment conditions, even if identification by the linear
moment conditions fails. In this case a sufficient condition for the parameters
0, = [py,0,]" to be identified is that plim dm,(07)/08, has full column

rank, where m,(8,) denotes the stacked vector of linear and quadratic moment

n— oo

conditions. For contributions on identification with the help of quadratic mo-
0m,(67)/00, has full column rank
see, e.g., Lee (2007a) and Kuersteiner and Prucha (2020) within a single equa-
tion framework, and see, e.g., Liu (2014, 2019, 2020), Liu and Saraiva (2019),

and Yang and Lee (2017,2019) for contributions within a systems framework.

ment conditions that ensure that plim,,_,

These contributions focus on the case where the disturbances are uncorrelated

in the cross section, i.e. where 8, = 4.
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G Monte Carlo Study

To analyze the small sample properties of our estimators we have conducted
a Monte Carlo study. The study considers both weights matrices motivated
by social interactions and spatial interactions. The study explores situations
where the parameters are identified by the linear moment conditions alone. It
also considers situations where the parameters are identified from utilizing both
linear and quadratic moment conditions jointly, but where identification from
the linear moment conditions alone is weak.

In Appendix G.1 we describe the Monte Carlo design and provide highlights
of the study for two-step estimators for the case where the parameters are iden-
tified by linear moment conditions. The simulation results in Appendix G.1
are based on weights matrices corresponding to an underlying social interac-
tions structure. In Appendices G.2 and G.3 we report on additional Monte
Carlo simulations for the identified case for weights matrices motivated by so-
cial interactions as well as by spatial interactions. We also report on results
for the three scenarios where identification is weak discussed in the Appendix

F included in this Online Supplementary Appendix.

G.1 Monte Carlo Design and Main Results

For the Monte Carlo results below we considered the following two equation

system as a special case of (2):

v1 = boa1y2 + [M1,1 M1 + A1 2Ma)y: + Eizl Ck1Xg + U,
V2 = biay1 + [A22,1 M1 + Aoz 2Molys + 22:4 CroXp + Ug, (G.1)
uy = [p1 M1 + pgaMalu, + €4, g=1,2.

The stylized social-network design employes a group structure, which can be
viewed as emulating groups of friends in a classroom setting. More specifically,
suppose there are P schools, and each school has three classrooms of size m;,

ms, and m3z. Now consider the matrix

E:(e,;j):Ip@) 0 Em

where the £, , ¢ = 1,2, 3, are my X my matrices with zeros on the diagonal and

with ones off the diagonal. Then the elements of E can be viewed as indicator
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variables that are equal to one if two students belong to the same classroom,
and zero otherwise. The matrix F is of dimension n X n, where the sample size
is n = mP with m = my +mgo +m3. We used the following values in our Monte

Carlo simulations:

my = 10, mo = 15, mg = 25, P = 10 or 20,

which implies a sample size of n = 500 or 1,000.

To generate the weights matrices M; and Mo, let £q; and &7; be, respec-
tively, an i.i.d. binary random variable taking values 0 and 1 with equal proba-
bility, and an i.i.d. discrete random variable taking values 1,2, ...,10 with equal
probability, and let p; be ii.d. N(0,1). Furthermore, (£¢i), (£1;) and (u;) are
generated independently. Now define

dij = [ca(ci —€aj)/oa + cr(€ri — &j) for + cu(ps — p3)] Jou

where 0g, = 1/4, 07 = (100 — 1)/12, o7, = 1 denote the variances of £a;,
&1, and p;, respectively. For an exemplary interpretation, g; could be an
indicator for the gender of an individual, &;; could represent the family income
decile of an individual, the yu; are unobserved characteristics, and d;; could then
be interpreted as a measure of similarity between two individuals. With this

interpretation we define

mig; o = U|di| < deij,
m;ij = 1(d* < |d”| < d**)eij,
where mj ;; and mj ;; are now indicators that equal one, respectively, if two
individuals are best friends or just friends, and zero otherwise.
Specific values that generate on average about 29% best friends and 40%

friends are:

cg=4,cr=4,¢c,=.2,d, = .3, di = 8.

The weights matrices My = [my ;] and My = [mg ;] are then obtained by
applying the following normalization (s = 1,2): mg,;; = m:,ij/Z?:1 my ;; if
Do my gy > 0and myg iy =mj i 375 my . = 0. Note that the design allows
for situations where an individual has no close friends or only close friends. That

is, we allow for a row of M; or My to only contain zeros. If a row contains
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nonzero elements, then that row is normalized so that the row sum is one.
We consider three sets of parameters of model (G.1). Set I corresponds to
positive spillovers, Set II to negative spillovers and Set III to zero spillovers. In

particular, we consider the parameter values as given in Table 1:

Table 1: Configuration of Autoregressive Parameters in Set I-I11

Auroregressive Parameters

Equation 1 \ Equation 2
A1 A2 Pl P12 A22,1 A222  pa1 P22
Set I 0.30 0.20 0.20 0.10 0.30 0.15 0.10 0
Set 11 -0.30 -0.20 -0.20 -0.10 -0.30 -0.15 -0.10 0
Set III 0 0 0 0 0 0 0 0

The remaining parameters are selected as b1o = 0.3, by = 0.15, ¢33, = 1
for k = 1,2,3, and co, = 1 for k = 4,5,6. The observations on the exogenous
regressors xi, ..., Xg are kept fixed for all Monte Carlo iterations, and are gen-
erated as independent of each other and as cross sectionally i.i.d. N(1,3). The
disturbances €1, €3 are generated as cross sectionally i.i.d. normal with mean
0, variance 1 and covariance .5.

In Table 2, given at the end of this subsection, we report on the bias and root
mean squared error (RMSE) of the maximum-likelihood estimator (ML), the
GS2SLS, and the GS3SLS estimator for parameter Set I based on 1,000 Monte
Carlo repetitions.? More specifically, to simplify the presentation, in Table 2
we only report on a subset of the parameters of the first equation of Model
(G.1), corresponding to yo as well as on the autoregressive parameters. For all
estimators the biases are fairly small, indicating that the linear moments alone
are able to identify the regression parameters. As expected, the ML estimator
has the smallest RMSE. In general, in terms of RMSE, the ML only dominates
GS3SLS slightly, and GS3SLS dominates GS2SLS. The differences in RMSE are

the most pronounced for the estimates of the autoregressive parameters in the

20ur measure of bias is defined as the difference between the median and the true parameter
value. Our measure corresponding to the RMSE is defined as [bias? + (1Q/1.35)2]1/2 where
1@ is the inter-quantile range. That is, IQ = c¢; — c2 where ¢ is the .75 quantile and c2 is
the .25 quantile. If the distribution is normal, 1Q/1.35 is (apart from rounding errors) equal
to the standard deviation. In the following we will refer to our measures simply as bias and
RMSE.
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disturbance process. As expected, biases and RMSE decline with the sample
size.

The results in Table 2 represent a subset of the results reported in Tables 4-6
in Appendix G.2. In Tables 4-6 we report on the estimators of all the parameters
of both equations for parameter Sets I-III. In addition to considering the above
described scenarios with social network interactions, we also report in Tables
7-9 in Appendix G.2 on results from scenarios with spatial network interactions,
using a spatial rook design. In general, the results are in line with those reported
above. In the Appendix G.3 we also cover several scenarios where identification
by linear moment conditions alone is weak, and where in consequence GS2SLS
and GS3SLS can be substantially biased. Our extended Monte Carlo results
also report on the performance of LQ-GS2SLS and LQ-GS3SLS. Under weak
identification LQ-GS2SLS and LQ-GS3SLS can greatly outperform GS2SLS and
GS3SLS. However, for the well identified scenarios underlying the results in
Tables 4-9 the benefit of combining linear and quadratic moment conditions
seems limited.

A leading hypothesis of interest is the absence of spillovers. Focusing on
equation 1 we can test the hypothesis Ho : AY) ; = A}, 5 = p¥; = py = 0. In Ta-
ble 3, given at the end of this subsection, we report on the power of the Wald test
for this hypothesis based on GS2SLS and GS3SLS estimates. More specifically,
we explore the power of the test for parameter values ()\(1)171, )\(1)172,p(1)1, 09 =
H(/\{l,h/\ﬁ,%/’{lap{z) where ()\{1,1,)\{1,2,0{1,9{2) = (.30,.30,.20,.10) is equal
to the values considered by parameter Set I, and where the factor k = 0,0.05, .., 0.30.
All other parameter values are kept as in parameter Set 1. The significance
level of the tests are close to the nominal 5 percent, especially for sample size

n = 1,000, and the tests seem to have good power.
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Table 2: Bias and RMSE of MLE, GS2SLS and GS3SLS Parameters of Equation
1, Social Interaction Weights Matrices

Soc. Interact. Matrices; n = 500

Soc. Interact. Matrices; n = 1000

MLE GS2SLS GS3SLS MLE GS2SLS GS3SLS

Parameter | True Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Eq. 1 Set I

bo1 0.15 0.00047 | 0.01372 | 0.00304 | 0.01358 | 0.00074 | 0.01357 | -0.00004 | 0.00973 | 0.00175 | 0.01011 | 0.00031 | 0.00978
A1 0.3 0.00030 | 0.01556 | 0.00156 | 0.01708 | 0.00281 | 0.01551 | -0.00089 | 0.01129 | -0.00084 | 0.01276 | 0.00016 | 0.01147
A1,2 0.2 -0.00028 | 0.01651 | -0.00366 | 0.01849 | -0.00209 | 0.01800 | 0.00072 | 0.01093 | -0.00029 | 0.01202 | -0.00007 | 0.01121
P11 0.2 -0.00536 | 0.05467 | -0.00261 | 0.05724 | -0.00271 | 0.05807 | -0.00157 | 0.03793 | 0.00074 | 0.04028 | 0.00021 | 0.04068
P12 0.1 -0.00113 | 0.06185 | 0.00162 | 0.07189 | 0.00137 | 0.06941 | -0.00338 | 0.04305 | -0.00043 | 0.04806 | -0.00046 | 0.04829
Eq. 1 Set 11

b1 0.15 0.00051 | 0.01319 | 0.00451 | 0.01360 | 0.00208 | 0.01333 | -0.00005 | 0.00963 | 0.00225 | 0.01002 | 0.00095 | 0.00952
A1 -0.3 0.00057 | 0.02187 | -0.00054 | 0.02364 | -0.00017 | 0.02262 | -0.00124 | 0.01310 | -0.00185 | 0.01475 | -0.00152 | 0.01313
1,2 -0.2 0.00013 | 0.02256 | -0.00204 | 0.02572 | -0.00096 | 0.02267 | 0.00160 | 0.01311 | 0.00039 | 0.01462 | 0.00053 | 0.01359
pi1 -0.2 | -0.00583 | 0.06664 | 0.00098 | 0.06941 | -0.00040 | 0.07170 | -0.00098 | 0.04289 | 0.00198 | 0.04644 | 0.00138 | 0.04717
P12 -0.1 -0.00048 | 0.07936 | 0.00398 | 0.08989 | 0.00403 | 0.09009 | -0.00279 | 0.05461 | -0.00069 | 0.06176 | -0.00095 | 0.05952
Eq. 1 Set 111

bay 0.15 0.00051 | 0.01351 | 0.00411 | 0.01367 | 0.00153 | 0.01336 | -0.00019 | 0.00980 | 0.00216 | 0.01014 | 0.00073 | 0.00982
A1 0 0.00064 | 0.02031 | 0.00157 | 0.02164 | 0.00258 | 0.01980 | -0.00137 | 0.01282 | -0.00125 | 0.01434 | -0.00053 | 0.01274
A2 0 -0.00035 | 0.02179 | -0.00331 | 0.02369 | -0.00211 | 0.02164 | 0.00117 | 0.01311 | 0.00020 | 0.01429 | 0.00034 | 0.01296
P11 0 -0.00538 | 0.06453 | -0.00145 | 0.06674 | -0.00351 | 0.06660 | -0.00084 | 0.04160 | 0.00055 | 0.04401 | -0.00010 | 0.04533
P12 0 -0.00066 | 0.07220 | 0.00343 | 0.08182 | 0.00414 | 0.08272 | -0.00404 | 0.05041 | -0.00108 | 0.05518 | -0.00073 | 0.05425

Table 3: Power Function of Joint Wald Tests Corresponding to GS2SLS and
GS3SLS for Hy : A} 1 = A1, = p§; = p§ = 0. The True Autoregressive
Parameters Equal Those of Set I Scaled by . The Significance Level is Displayed

at Kk = 0.

Social Interactions Matrices
n = 500 n = 1000

K GS2SLS | GS3SLS | GS2SLS | GS3SLS
0 0.068 0.072 0.058 0.054
0.05 0.129 0.170 0.226 0.272
0.1 0.423 0.514 0.773 0.840
0.15 0.832 0.889 0.993 0.999
0.2 0.987 0.994 1 1
0.25 1 1 1 1
0.3 1 1 1 1
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G.2 Additional Monte Carlo Simulations for the Identi-
fied Case

Tables 4-6, given at the end of this subsection, are an expansion of Table 2.
In Tables 4-6 we report additionally on the performance of the one-step LQ-
GS2SLS and LQ-GS3SLS estimators, as well as on a larger set of parameters.
More specifically, in Tables 4-6 we provide information on the bias and RMSE
for various estimators of the parameters in equations 1 and 2 of Model (G.1) for
parameter Sets I-I1I and sample sizes n = 500 and n = 1,000 each. Tables 4-6
are based on the same design of the social network weights matrices as those
underlying Table 2.

The results in Tables 4-6 are in line with the subset of results reported in
Table 2. For all estimators the biases are fairly small, indicating that the linear
moments alone are able to identify the regression parameters. As expected, the
ML estimator has the smallest RMSE. In general, in terms of RMSE, the ML
only dominates GS3SLS slightly, and GS3SLS dominates G2SLS. The differ-
ences in RMSE are the most pronounced for the estimates of the autoregressive
parameters in the disturbance process. The differences in RMSE for the pa-
rameters of the exogenous parameters are especially small. As expected, biases
and RMSE decline with the sample size. In Tables 4-6 we also report on the
performance of the LQ-GS2SLS and LQ-GS3SLS. While LQ-GS2SLS and LQ-
GS3SLS have the potential to greatly outperform GS2SLS and GS3SLS under
weak identification, for the well identified scenarios underlying the results in
Tables 4-6 the benefit of combining linear and quadratic moment conditions
seems limited.

In Tables 7-9, given at the end of this subsection, we provide information
on the bias and RMSE for the same estimators for the parameters of Model
(G.1) as in Tables 4-6, but for an alternative set of weights matrices. We
explore the same parameter specifications, but now generate the data based on
weights matrices “inspired” by a spatial network. More specifically, we derive
the weights matrices from a classical rook design. In more detail, to define
locations and neighbors, consider a square grid with both the x and y coordinates
only taking on the values 1, 2, ..., m. Next, define the Euclidean distance between

any pair of units, ¢; and i with coordinates (z1,y1) and (z2,y2), respectively,

,11/2
as d(i1,iz) = [(zl —22)%2 + (y1 — ¥2) . Moreover, define the cutoff distances
d. = 1 and d,« = 2 to determine inner- and outer-ring neighbors, respectively,

around any spatial unit on the lattice. Now define the (7,j)-th element of a
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row-normalized weights matrix M; and My as

n
Myij = m:,ij/ Z m:i,ij’ (S 1a 2a (GQ)
j=1
" 1 if 0< d(il,ig) < d, (G 3)
m = , .
L 0 else
1 if d. < d(il,ig) < dys
mk.. = G4
249 { 0 else (©-4)

We consider two configurations. The two configurations correspond to m = 22
and m = 31, which implies a sample size of n = 484 and n = 961, respectively.
The finding in Tables 7-9 are similar to those in Tables 4-6.
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Table 4: Bias and RMSE of Various Estimators for Parameters of Equation 1

and 2, Parameter Set I with Social Interaction Weights Matrices

Soc. Interact. Weights Matrices; n = 500

Parameter | True MLE GS2SLS GS3SLS LQ-GS2SLS LQ-GS3SLS
Eq. 1 Set I Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ba1 0.15 | 0.00047 | 0.01372 | 0.00304 | 0.01358 | 0.00074 | 0.01357 | 0.00538 | 0.01459 | 0.00256 | 0.01356
A1 0.3 | 0.00030 | 0.01556 | 0.00156 | 0.01708 | 0.00281 | 0.01551 | -0.00178 | 0.01656 | -0.00076 | 0.01570
Al1,2 0.2 | -0.00028 | 0.01651 | -0.00366 | 0.01849 | -0.00209 | 0.01800 | -0.00294 | 0.01911 | -0.00146 | 0.01784
P11 0.2 | -0.00536 | 0.05467 | -0.00261 | 0.05724 | -0.00271 | 0.05807 | 0.03205 | 0.07140 | 0.03635 | 0.07269
P12 0.1 | -0.00113 | 0.06185 | 0.00162 | 0.07189 | 0.00137 | 0.06941 | 0.01227 | 0.07803 | 0.01232 | 0.07579
c11 1 -0.00072 | 0.02415 | -0.00124 | 0.02677 | -0.00131 | 0.02407 | -0.00090 | 0.02739 | -0.00065 | 0.02393
c12 1 -0.00089 | 0.02580 | -0.00385 | 0.02596 | -0.00189 | 0.02559 | -0.00289 | 0.02587 | -0.00218 | 0.02561
c13 1 0.00034 | 0.02428 | -0.00288 | 0.02531 | -0.00040 | 0.02425 | -0.00336 | 0.02558 | -0.00037 | 0.02454
Eq. 2 Set I

b12 0.3 | -0.00068 | 0.01335 | 0.00219 | 0.01356 | -0.00121 | 0.01331 | 0.00388 | 0.01374 | 0.00031 | 0.01320
A221 0.3 | 0.00061 | 0.01451 | 0.00194 | 0.01540 | 0.00271 | 0.01496 | -0.00041 | 0.01579 | 0.00030 | 0.01509
22,2 0.15 | -0.00052 | 0.01457 | -0.00321 | 0.01693 | -0.00130 | 0.01547 | -0.00199 | 0.01685 | -0.00093 | 0.01584
P21 0.1 | -0.01171 | 0.05897 | -0.00924 | 0.06391 | -0.00992 | 0.06379 | 0.01850 | 0.07065 | 0.02952 | 0.07403
P22 0 -0.00412 | 0.06792 | -0.00091 | 0.07142 | -0.00213 | 0.07009 | 0.00954 | 0.07986 | 0.01287 | 0.07974
o 1 -0.00118 | 0.02173 | -0.00160 | 0.02191 | -0.00157 | 0.02139 | -0.00112 | 0.02288 | -0.00011 | 0.02193
25 1 0.00175 | 0.02423 | -0.00100 | 0.02605 | 0.00190 | 0.02437 | -0.00068 | 0.02658 | 0.00222 | 0.02438
Ca6 1 0.00192 | 0.02268 | 0.00005 | 0.02285 | 0.00128 | 0.02266 | 0.00008 | 0.02326 | 0.00207 | 0.02313

n = 1000

Eq. 1 Set I

ba1 0.15 | -0.00004 | 0.00973 | 0.00175 | 0.01011 | 0.00031 | 0.00978 | 0.00264 | 0.01025 | 0.00138 | 0.00968
A1 0.3 | -0.00089 | 0.01129 | -0.00084 | 0.01276 | 0.00016 | 0.01147 | -0.00221 | 0.01308 | -0.00132 | 0.01161
Al1,2 0.2 | 0.00072 | 0.01093 | -0.00029 | 0.01202 | -0.00007 | 0.01121 | 0.00038 | 0.01202 | 0.00039 | 0.01140
P11 0.2 | -0.00157 | 0.03793 | 0.00074 | 0.04028 | 0.00021 | 0.04068 | 0.01550 | 0.04566 | 0.01838 | 0.04524
P12 0.1 | -0.00338 | 0.04305 | -0.00043 | 0.04806 | -0.00046 | 0.04829 | 0.00305 | 0.04854 | 0.00448 | 0.04896
c11 1 -0.00001 | 0.01585 | -0.00108 | 0.01704 | -0.00060 | 0.01586 | -0.00132 | 0.01711 | -0.00011 | 0.01604
c12 1 -0.00026 | 0.01632 | -0.00130 | 0.01798 | -0.00079 | 0.01634 | -0.00146 | 0.01786 | -0.00016 | 0.01630
c13 1 -0.00025 | 0.01661 | -0.00107 | 0.01858 | -0.00050 | 0.01661 | -0.00136 | 0.01911 | -0.00033 | 0.01636
Eq. 2 Set I

bi2 0.3 | -0.00001 | 0.00912 | 0.00140 | 0.00949 | 0.00003 | 0.00941 | 0.00198 | 0.00953 | 0.00080 | 0.00931
22,1 0.3 | 0.00034 | 0.00957 | 0.00106 | 0.01111 | 0.00152 | 0.01020 | -0.00025 | 0.01136 | -0.00002 | 0.01017
X222 0.15 | 0.00012 | 0.01052 | -0.00231 | 0.01154 | -0.00107 | 0.01058 | -0.00158 | 0.01154 | -0.00041 | 0.01074
pa1 0.1 | -0.00593 | 0.04269 | -0.00494 | 0.04359 | -0.00404 | 0.04287 | 0.00970 | 0.04726 | 0.01557 | 0.04763
P22 0 -0.00424 | 0.04485 | -0.00132 | 0.04997 | -0.00365 | 0.04912 | -0.00089 | 0.05335 | 0.00104 | 0.05281
Co4 1 0.00051 | 0.01672 | -0.00047 | 0.01858 | 0.00056 | 0.01685 | -0.00075 | 0.01876 | 0.00089 | 0.01671
o5 1 0.00004 | 0.01698 | -0.00065 | 0.01838 | 0.00003 | 0.01667 | -0.00056 | 0.01795 | 0.00019 | 0.01634
Cog 1 -0.00046 | 0.01745 | -0.00087 | 0.01894 | -0.00037 | 0.01749 | -0.00067 | 0.01843 | -0.00005 | 0.01771
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Table 5: Bias and RMSE of Various Estimators for Parameters of Equation 1
and 2, Parameter Set II with Social Interaction Weights Matrices

Soc. Interact. Weights Matrices; n = 500

Parameter | True MLE GS2SLS GS3SLS LQ-GS2SLS LQ-GS3SLS
Eq. 1 Set IT Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
b1 0.15 | 0.00051 | 0.01319 | 0.00451 | 0.01360 | 0.00208 | 0.01333 | 0.00522 | 0.01390 | 0.00320 | 0.01369
Al1,1 -0.3 0.00057 | 0.02187 | -0.00054 | 0.02364 | -0.00017 | 0.02262 | -0.00193 | 0.02467 | -0.00248 | 0.02260
A11,2 -0.2 0.00013 | 0.02256 | -0.00204 | 0.02572 | -0.00096 | 0.02267 | -0.00259 | 0.02628 | -0.00122 | 0.02354
P11 -0.2 | -0.00583 | 0.06664 | 0.00098 | 0.06941 | -0.00040 | 0.07170 | 0.01529 | 0.08047 | 0.01857 | 0.08446
P12 -0.1 | -0.00048 | 0.07936 | 0.00398 | 0.08989 | 0.00403 | 0.09009 | 0.01167 | 0.09889 | 0.01737 | 0.09786
c11 1 0.00081 | 0.02336 | -0.00170 | 0.02603 | 0.00043 | 0.02369 | -0.00181 | 0.02624 | 0.00060 | 0.02415
c12 1 -0.00103 | 0.02473 | -0.00270 | 0.02627 | -0.00073 | 0.02483 | -0.00270 | 0.02603 | -0.00027 | 0.02502
C13 1 -0.00064 | 0.02382 | -0.00328 | 0.02435 | -0.00088 | 0.02387 | -0.00385 | 0.02484 | -0.00063 | 0.02430
Eq. 2 Set 1T

bi2 0.3 | -0.00051 | 0.01284 | 0.00368 | 0.01333 | 0.00063 | 0.01272 | 0.00460 | 0.01373 | 0.00183 | 0.01314
A22.1 -0.3 | -0.00001 | 0.02002 | -0.00048 | 0.02121 | -0.00035 | 0.02044 | -0.00236 | 0.02247 | -0.00223 | 0.02137
A22.2 -0.15 | -0.00011 | 0.02255 | -0.00181 | 0.02561 | -0.00109 | 0.02320 | -0.00095 | 0.02537 | -0.00107 | 0.02332
P21 -0.1 | -0.01172 | 0.06573 | -0.00280 | 0.07240 | -0.00337 | 0.07011 | 0.01500 | 0.07719 | 0.02104 | 0.07884
P22 0 -0.00309 | 0.07527 | 0.00096 | 0.08191 | 0.00067 | 0.08050 | 0.01465 | 0.09191 | 0.01799 | 0.08863
Co4 1 -0.00137 | 0.02099 | -0.00218 | 0.02283 | -0.00098 | 0.02083 | -0.00211 | 0.02312 | 0.00028 | 0.02141
C25 1 0.00188 | 0.02360 | -0.00094 | 0.02559 | 0.00193 | 0.02378 | -0.00080 | 0.02598 | 0.00219 | 0.02341
C26 1 0.00154 | 0.02132 | 0.00044 | 0.02186 | 0.00186 | 0.02115 | -0.00006 | 0.02244 | 0.00263 | 0.02185

n = 1000

Eq. 1 Set IT

b2y 0.15 | -0.00005 | 0.00963 | 0.00225 | 0.01002 | 0.00095 | 0.00952 | 0.00276 | 0.01010 | 0.00164 | 0.00944
Al1,1 -0.3 | -0.00124 | 0.01310 | -0.00185 | 0.01475 | -0.00152 | 0.01313 | -0.00248 | 0.01496 | -0.00200 | 0.01315
Al1,2 -0.2 0.00160 | 0.01311 | 0.00039 | 0.01462 | 0.00053 | 0.01359 | 0.00064 | 0.01485 | 0.00041 | 0.01369
P11 -0.2 | -0.00098 | 0.04289 | 0.00198 | 0.04644 | 0.00138 | 0.04717 | 0.00584 | 0.05098 | 0.00817 | 0.04907
P12 -0.1 | -0.00279 | 0.05461 | -0.00069 | 0.06176 | -0.00095 | 0.05952 | 0.00522 | 0.06380 | 0.00545 | 0.06143
c11 1 -0.00005 | 0.01546 | -0.00106 | 0.01656 | -0.00043 | 0.01574 | -0.00120 | 0.01689 | -0.00002 | 0.01566
c12 1 -0.00084 | 0.01666 | -0.00189 | 0.01768 | -0.00079 | 0.01661 | -0.00186 | 0.01789 | -0.00063 | 0.01655
c13 1 -0.00031 | 0.01654 | -0.00131 | 0.01828 | -0.00033 | 0.01661 | -0.00148 | 0.01816 | 0.00014 | 0.01655
Eq. 2 Set IT

bi2 0.3 | -0.00024 | 0.00878 | 0.00135 | 0.00868 | 0.00021 | 0.00876 | 0.00209 | 0.00885 | 0.00079 | 0.00874
A22,1 -0.3 0.00054 | 0.01225 | 0.00063 | 0.01402 | 0.00008 | 0.01245 | -0.00016 | 0.01392 | -0.00099 | 0.01262
A22,2 -0.15 | 0.00016 | 0.01450 | -0.00128 | 0.01557 | -0.00078 | 0.01466 | -0.00122 | 0.01616 | -0.00086 | 0.01457
P21 -0.1 | -0.00490 | 0.04463 | -0.00314 | 0.04672 | -0.00352 | 0.04549 | 0.00840 | 0.04993 | 0.00925 | 0.04872
P22 0 -0.00564 | 0.05227 | -0.00058 | 0.05685 | -0.00180 | 0.05542 | 0.00351 | 0.06174 | 0.00394 | 0.06008
€24 1 0.00065 | 0.01635 | -0.00079 | 0.01796 | 0.00075 | 0.01611 | -0.00106 | 0.01797 | 0.00128 | 0.01631
c25 1 -0.00005 | 0.01689 | -0.00066 | 0.01835 | 0.00042 | 0.01672 | -0.00066 | 0.01816 | 0.00035 | 0.01691
€26 1 -0.00020 | 0.01705 | -0.00054 | 0.01800 | 0.00040 | 0.01720 | -0.00040 | 0.01794 | 0.00008 | 0.01758
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Table 6: Bias and RMSE of Various Estimators for Parameters of Equation 1
and 2, Parameter Set III with Social Interaction Weights Matrices

Soc. Interact. Weights Matrices; n = 500

Parameter | True MLE GS2SLS GS3SLS LQ-GS2SLS LQ-GS3SLS
Eq. 1 Set 11T Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
bay 0.15 0.00051 | 0.01351 | 0.00411 | 0.01367 | 0.00153 | 0.01336 | 0.00532 | 0.01429 | 0.00296 | 0.01359
Al1,1 0 0.00064 | 0.02031 | 0.00157 | 0.02164 | 0.00258 | 0.01980 | -0.00137 | 0.02182 | -0.00065 | 0.02038
A11,2 0 -0.00035 | 0.02179 | -0.00331 | 0.02369 | -0.00211 | 0.02164 | -0.00256 | 0.02472 | -0.00116 | 0.02210
P11 0 -0.00538 | 0.06453 | -0.00145 | 0.06674 | -0.00351 | 0.06660 | 0.02438 | 0.07803 | 0.03037 | 0.08000
P12 0 -0.00066 | 0.07220 | 0.00343 | 0.08182 | 0.00414 | 0.08272 | 0.01411 | 0.09080 | 0.01733 | 0.08996
c11 1 -0.00008 | 0.02398 | -0.00109 | 0.02643 | -0.00098 | 0.02389 | -0.00140 | 0.02655 | 0.00016 | 0.02400
c12 1 -0.00064 | 0.02561 | -0.00349 | 0.02604 | -0.00152 | 0.02548 | -0.00307 | 0.02642 | -0.00157 | 0.02532
c13 1 0.00004 | 0.02425 | -0.00380 | 0.02496 | -0.00081 | 0.02396 | -0.00412 | 0.02459 | 0.00003 | 0.02428
Eq. 2 Set IIT

b12 0.3 -0.00058 | 0.01339 | 0.00296 | 0.01351 | -0.00019 | 0.01331 | 0.00444 | 0.01403 | 0.00156 | 0.01321
A22,1 0 0.00022 | 0.01861 | 0.00168 | 0.02032 | 0.00204 | 0.01930 | -0.00131 | 0.02129 | -0.00100 | 0.01936
A22.2 0 -0.00003 | 0.02049 | -0.00322 | 0.02294 | -0.00204 | 0.02120 | -0.00174 | 0.02329 | -0.00087 | 0.02135
P21 0 -0.01218 | 0.06197 | -0.00768 | 0.06843 | -0.00745 | 0.06707 | 0.01536 | 0.07472 | 0.02470 | 0.07542
P22 0 -0.00391 | 0.07103 | 0.00116 | 0.07894 | 0.00047 | 0.07619 | 0.01238 | 0.08824 | 0.01798 | 0.08705
[en 1 -0.00168 | 0.02193 | -0.00191 | 0.02265 | -0.00146 | 0.02148 | -0.00153 | 0.02323 | -0.00036 | 0.02207
Ca5 1 0.00202 | 0.02401 | -0.00112 | 0.02574 | 0.00178 | 0.02385 | -0.00108 | 0.02594 | 0.00186 | 0.02404
Co6 1 0.00165 | 0.02223 | 0.00001 | 0.02288 | 0.00163 | 0.02225 | 0.00002 | 0.02297 | 0.00251 | 0.02240

n = 1000

Eq. 1 Set 11

bo1 0.15 | -0.00019 | 0.00980 | 0.00216 | 0.01014 | 0.00073 | 0.00982 | 0.00270 | 0.01020 | 0.00148 | 0.00983
A1 0 -0.00137 | 0.01282 | -0.00125 | 0.01434 | -0.00053 | 0.01274 | -0.00243 | 0.01458 | -0.00166 | 0.01262
A2 0 0.00117 | 0.01311 | 0.00020 | 0.01429 | 0.00034 | 0.01296 | 0.00049 | 0.01457 | 0.00066 | 0.01320
P11 0 -0.00084 | 0.04160 | 0.00055 | 0.04401 | -0.00010 | 0.04533 | 0.01129 | 0.04862 | 0.01391 | 0.04871
P12 0 -0.00404 | 0.05041 | -0.00108 | 0.05518 | -0.00073 | 0.05425 | 0.00526 | 0.05768 | 0.00658 | 0.05572
c11 1 -0.00017 | 0.01602 | -0.00130 | 0.01694 | -0.00051 | 0.01604 | -0.00150 | 0.01737 | -0.00018 | 0.01606
ci2 1 -0.00070 | 0.01680 | -0.00204 | 0.01831 | -0.00084 | 0.01676 | -0.00202 | 0.01841 | -0.00055 | 0.01661
c13 1 -0.00007 | 0.01704 | -0.00142 | 0.01850 | -0.00001 | 0.01701 | -0.00155 | 0.01874 | -0.00004 | 0.01669
Eq. 2 Set 11T

bi2 0.3 -0.00006 | 0.00933 | 0.00141 | 0.00931 | 0.00051 | 0.00958 | 0.00216 | 0.00943 | 0.00102 | 0.00936
A22.1 0 0.00036 | 0.01268 | 0.00117 | 0.01364 | 0.00112 | 0.01266 | 0.00000 | 0.01386 | -0.00014 | 0.01250
A22.2 0 -0.00027 | 0.01352 | -0.00190 | 0.01480 | -0.00093 | 0.01373 | -0.00146 | 0.01491 | -0.00062 | 0.01395
pa1 0 -0.00587 | 0.04305 | -0.00522 | 0.04489 | -0.00467 | 0.04487 | 0.00870 | 0.04900 | 0.01195 | 0.04819
P22 0 -0.00412 | 0.04906 | -0.00045 | 0.05481 | -0.00189 | 0.05234 | 0.00245 | 0.05758 | 0.00334 | 0.05741
Coy 1 0.00060 | 0.01659 | -0.00079 | 0.01826 | 0.00057 | 0.01656 | -0.00093 | 0.01864 | 0.00076 | 0.01653
Co5 1 -0.00011 | 0.01692 | -0.00058 | 0.01836 | 0.00026 | 0.01674 | -0.00060 | 0.01811 | 0.00036 | 0.01664
C26 1 -0.00019 | 0.01755 | -0.00100 | 0.01838 | -0.00011 | 0.01741 | -0.00057 | 0.01812 | 0.00001 | 0.01753
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Table 7: Bias and RMSE of Various Estimators for Parameters of Equation 1
and 2, Parameter Set I with Spatial Rook-type Weights Matrices

Rook-type Weights Matrices; n = 484

Parameter | True MLE GS2SLS GS3SLS LQ-GS2SLS LQ-GS3SLS
Eq. 1 Set I Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ba1 0.15 | 0.00030 | 0.01395 | 0.00435 | 0.01465 | 0.00117 | 0.01405 | 0.00594 | 0.01540 | 0.00283 | 0.01471
A11,1 0.3 | 0.00011 | 0.01822 | -0.00208 | 0.02199 | -0.00112 | 0.01904 | -0.00171 | 0.02134 | -0.00096 | 0.01863
Al1,2 0.2 | -0.00027 | 0.01813 | -0.00202 | 0.02055 | 0.00016 | 0.01813 | -0.00390 | 0.02091 | -0.00242 | 0.01926
p11 0.2 | -0.00284 | 0.05874 | -0.00119 | 0.06197 | -0.00082 | 0.06418 | 0.00668 | 0.06494 | 0.00552 | 0.06381
P12 0.1 | -0.00731 | 0.05813 | -0.00547 | 0.06625 | -0.00582 | 0.06349 | 0.01667 | 0.07192 | 0.02253 | 0.06910
c11 1 0.00017 | 0.02225 | -0.00171 | 0.02517 | -0.00029 | 0.02214 | -0.00215 | 0.02463 | -0.00042 | 0.02203
c12 1 -0.00092 | 0.02288 | -0.00353 | 0.02509 | -0.00174 | 0.02278 | -0.00361 | 0.02606 | -0.00216 | 0.02249
c13 1 0.00039 | 0.02429 | -0.00124 | 0.02531 | -0.00008 | 0.02425 | -0.00181 | 0.02564 | -0.00018 | 0.02391
Eq. 2 Set I

b12 0.3 | 0.00042 | 0.01300 | 0.00345 | 0.01401 | 0.00044 | 0.01340 | 0.00460 | 0.01420 | 0.00151 | 0.01346
X221 0.3 | -0.00097 | 0.01852 | -0.00265 | 0.01951 | -0.00244 | 0.01884 | -0.00188 | 0.01960 | -0.00111 | 0.01854
22,2 0.15 | 0.00026 | 0.01878 | 0.00029 | 0.02081 | 0.00137 | 0.01903 | -0.00228 | 0.02195 | -0.00142 | 0.01938
P21 0.1 0.00073 | 0.06013 | 0.00307 | 0.06813 | 0.00118 | 0.06898 | 0.00316 | 0.07124 | 0.00520 | 0.07404
P22 0 -0.00393 | 0.05632 | -0.00543 | 0.06503 | -0.00569 | 0.06153 | 0.01548 | 0.07350 | 0.01855 | 0.07269
Co4q 1 -0.00136 | 0.02601 | -0.00336 | 0.02745 | -0.00211 | 0.02571 | -0.00275 | 0.02854 | -0.00005 | 0.02615
ca5 1 0.00135 | 0.02378 | 0.00018 | 0.02529 | 0.00165 | 0.02374 | 0.00107 | 0.02505 | 0.00284 | 0.02382
C26 1 0.00064 | 0.02272 | -0.00100 | 0.02444 | 0.00089 | 0.02278 | -0.00088 | 0.02485 | 0.00135 | 0.02316

n =961

Eq. 1 Set I

ba1 0.15 | -0.00020 | 0.00994 | 0.00213 | 0.00997 | 0.00057 | 0.00985 | 0.00291 | 0.01039 | 0.00137 | 0.01003
A1, 0.3 | 0.00011 | 0.01352 | -0.00205 | 0.01516 | -0.00111 | 0.01333 | -0.00200 | 0.01520 | -0.00122 | 0.01369
Al1,2 0.2 | -0.00049 | 0.01325 | 0.00018 | 0.01531 | 0.00015 | 0.01369 | -0.00088 | 0.01560 | -0.00093 | 0.01364
P11 0.2 | -0.00232 | 0.04129 | 0.00099 | 0.04607 | 0.00009 | 0.04424 | 0.00234 | 0.04798 | 0.00135 | 0.04576
P12 0.1 | -0.00231 | 0.04338 | -0.00043 | 0.04829 | -0.00213 | 0.04669 | 0.01064 | 0.05075 | 0.01222 | 0.04986
c11 1 0.00047 | 0.01766 | -0.00118 | 0.02092 | -0.00007 | 0.01789 | -0.00133 | 0.02058 | 0.00003 | 0.01759
c12 1 -0.00015 | 0.01756 | -0.00107 | 0.01857 | -0.00093 | 0.01723 | -0.00121 | 0.01807 | -0.00072 | 0.01741
c13 1 0.00018 | 0.01677 | -0.00100 | 0.01879 | -0.00053 | 0.01696 | -0.00112 | 0.01907 | -0.00025 | 0.01729
Eq. 2 Set I

b12 0.3 | -0.00005 | 0.00988 | 0.00176 | 0.00988 | 0.00010 | 0.00984 | 0.00223 | 0.00991 | 0.00048 | 0.00970
X221 0.3 | 0.00083 | 0.01260 | -0.00072 | 0.01500 | 0.00027 | 0.01288 | -0.00035 | 0.01545 | 0.00047 | 0.01291
222 0.15 | -0.00085 | 0.01385 | -0.00089 | 0.01509 | -0.00003 | 0.01399 | -0.00129 | 0.01495 | -0.00133 | 0.01355
P21 0.1 | -0.00295 | 0.04679 | -0.00214 | 0.05208 | -0.00179 | 0.05039 | 0.00034 | 0.05322 | 0.00105 | 0.05215
P22 0 -0.00502 | 0.04425 | -0.00498 | 0.04669 | -0.00673 | 0.04552 | 0.00361 | 0.04921 | 0.00553 | 0.04831
[on 1 -0.00025 | 0.01627 | -0.00113 | 0.01750 | -0.00014 | 0.01633 | -0.00111 | 0.01757 | 0.00046 | 0.01627
Ca5 1 0.00193 | 0.01854 | 0.00104 | 0.02031 | 0.00199 | 0.01834 | 0.00108 | 0.02028 | 0.00236 | 0.01872
C26 1 -0.00002 | 0.01765 | -0.00024 | 0.01862 | 0.00012 | 0.01764 | -0.00041 | 0.01872 | 0.00056 | 0.01791
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Table 8: Bias and RMSE of Various Estimators for Parameters of Equation 1
and 2, Parameter Set II with Spatial Rook-type Weights Matrices

Rook-type Weights Matrices; n = 484

Parameter | True MLE GS2SLS GS3SLS LQ-GS2SLS LQ-GS3SLS
Eq. 1 Set IT Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
b1 0.15 | -0.00006 | 0.01373 | 0.00475 | 0.01461 | 0.00228 | 0.01399 | 0.00584 | 0.01461 | 0.00308 | 0.01421
A111 -0.3 0.00045 | 0.01847 | -0.00196 | 0.02171 | -0.00230 | 0.01901 | 0.00049 | 0.02111 | -0.00015 | 0.01959
A11,2 -0.2 | -0.00055 | 0.01779 | -0.00040 | 0.02000 | -0.00030 | 0.01798 | -0.00360 | 0.02016 | -0.00253 | 0.01860
P11 -0.2 | -0.00300 | 0.06501 | 0.00157 | 0.06740 | 0.00245 | 0.06735 | -0.00580 | 0.07495 | -0.00761 | 0.07299
P12 -0.1 | -0.00452 | 0.05882 | -0.00295 | 0.06462 | -0.00408 | 0.06426 | 0.01089 | 0.07022 | 0.01641 | 0.06848
c11 1 0.00038 | 0.02213 | -0.00269 | 0.02446 | -0.00012 | 0.02218 | -0.00282 | 0.02527 | 0.00036 | 0.02140
c12 1 -0.00033 | 0.02182 | -0.00202 | 0.02491 | -0.00088 | 0.02176 | -0.00321 | 0.02532 | -0.00127 | 0.02231
C13 1 -0.00001 | 0.02382 | -0.00076 | 0.02489 | -0.00008 | 0.02342 | -0.00137 | 0.02492 | 0.00038 | 0.02388
Eq. 2 Set 1T

bi2 0.3 0.00038 | 0.01337 | 0.00382 | 0.01357 | 0.00132 | 0.01304 | 0.00486 | 0.01361 | 0.00237 | 0.01324
A22.1 -0.3 | -0.00028 | 0.01615 | -0.00384 | 0.01746 | -0.00352 | 0.01687 | -0.00144 | 0.01812 | -0.00132 | 0.01735
A22.2 -0.15 | 0.00040 | 0.01871 | 0.00151 | 0.02009 | 0.00093 | 0.01886 | -0.00270 | 0.02092 | -0.00204 | 0.01890
P21 -0.1 0.00231 | 0.05824 | 0.00559 | 0.06581 | 0.00496 | 0.06723 | -0.00082 | 0.07060 | -0.00308 | 0.06936
P22 0 -0.00225 | 0.05764 | -0.00465 | 0.06666 | -0.00518 | 0.06369 | 0.01972 | 0.07576 | 0.02030 | 0.07460
Co4 1 -0.00167 | 0.02478 | -0.00270 | 0.02770 | -0.00118 | 0.02492 | -0.00279 | 0.02755 | -0.00089 | 0.02507
Ca5 1 0.00167 | 0.02311 | 0.00043 | 0.02466 | 0.00247 | 0.02307 | 0.00132 | 0.02549 | 0.00372 | 0.02373
C26 1 0.00043 | 0.02266 | -0.00114 | 0.02475 | 0.00133 | 0.02278 | -0.00050 | 0.02506 | 0.00165 | 0.02258

n = 961

Eq. 1 Set IT

b2y 0.15 | -0.00011 | 0.00966 | 0.00263 | 0.01011 | 0.00133 | 0.00982 | 0.00290 | 0.01024 | 0.00169 | 0.01006
Al1,1 -0.3 | -0.00040 | 0.01361 | -0.00183 | 0.01531 | -0.00231 | 0.01383 | -0.00110 | 0.01557 | -0.00106 | 0.01378
Al1,2 -0.2 0.00017 | 0.01322 | 0.00040 | 0.01476 | 0.00078 | 0.01342 | -0.00052 | 0.01499 | -0.00063 | 0.01366
P11 -0.2 | -0.00160 | 0.04336 | 0.00207 | 0.04970 | 0.00114 | 0.04733 | -0.00482 | 0.05256 | -0.00571 | 0.05156
P12 -0.1 | -0.00155 | 0.04317 | -0.00096 | 0.04821 | -0.00084 | 0.04759 | 0.00781 | 0.05042 | 0.00993 | 0.05103
c11 1 0.00062 | 0.01648 | -0.00116 | 0.01963 | 0.00056 | 0.01658 | -0.00114 | 0.01942 | 0.00073 | 0.01659
c12 1 -0.00061 | 0.01827 | -0.00117 | 0.01840 | -0.00084 | 0.01825 | -0.00165 | 0.01857 | -0.00110 | 0.01856
c13 1 -0.00018 | 0.01717 | -0.00169 | 0.01856 | -0.00018 | 0.01727 | -0.00194 | 0.01857 | -0.00053 | 0.01708
Eq. 2 Set IT

bi2 0.3 | -0.00007 | 0.01019 | 0.00205 | 0.01025 | 0.00066 | 0.00994 | 0.00230 | 0.01002 | 0.00109 | 0.00978
A22,1 -0.3 0.00016 | 0.01393 | -0.00141 | 0.01486 | -0.00138 | 0.01383 | -0.00070 | 0.01518 | -0.00085 | 0.01406
A22,2 -0.15 | -0.00072 | 0.01295 | 0.00010 | 0.01378 | 0.00011 | 0.01288 | -0.00118 | 0.01409 | -0.00128 | 0.01283
P21 -0.1 | -0.00120 | 0.04742 | 0.00031 | 0.05182 | -0.00029 | 0.04901 | -0.00144 | 0.05227 | -0.00320 | 0.05098
P22 0 -0.00526 | 0.04545 | -0.00502 | 0.04915 | -0.00615 | 0.04796 | 0.00688 | 0.05104 | 0.00824 | 0.05135
€24 1 -0.00038 | 0.01584 | -0.00090 | 0.01691 | 0.00004 | 0.01600 | -0.00119 | 0.01723 | 0.00035 | 0.01593
Cos 1 0.00232 | 0.01822 | 0.00116 | 0.01978 | 0.00255 | 0.01816 | 0.00112 | 0.02001 | 0.00274 | 0.01842
Cog 1 0.00011 | 0.01678 | -0.00064 | 0.01853 | 0.00034 | 0.01653 | -0.00092 | 0.01872 | 0.00069 | 0.01707
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Table 9: Bias and RMSE of Various Estimators for Parameters of Equation 1
and 2, Parameter Set III with Spatial Rook-type Weights Matrices

Rook-type Weights Matrices; n = 484

Parameter | True MLE GS2SLS GS3SLS LQ-GS2SLS LQ-GS3SLS
Eq. 1 Set 11T Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
bay 0.15 0.00006 | 0.01409 | 0.00481 | 0.01473 | 0.00164 | 0.01413 | 0.00604 | 0.01520 | 0.00287 | 0.01447
Al1,1 0 0.00049 | 0.01856 | -0.00249 | 0.02100 | -0.00185 | 0.01905 | -0.00088 | 0.02125 | -0.00081 | 0.01923
A11,2 0 -0.00052 | 0.01833 | -0.00103 | 0.02026 | -0.00008 | 0.01808 | -0.00350 | 0.02026 | -0.00270 | 0.01909
P11 0 -0.00328 | 0.06282 | 0.00100 | 0.06496 | -0.00031 | 0.06585 | 0.00211 | 0.06942 | 0.00081 | 0.06853
P12 0 -0.00586 | 0.05788 | -0.00460 | 0.06559 | -0.00365 | 0.06381 | 0.01654 | 0.07267 | 0.02004 | 0.07024
c11 1 0.00052 | 0.02259 | -0.00258 | 0.02475 | -0.00010 | 0.02211 | -0.00284 | 0.02491 | -0.00009 | 0.02209
c12 1 -0.00062 | 0.02244 | -0.00276 | 0.02536 | -0.00166 | 0.02224 | -0.00340 | 0.02553 | -0.00159 | 0.02303
c13 1 0.00020 | 0.02385 | -0.00107 | 0.02594 | -0.00019 | 0.02377 | -0.00170 | 0.02576 | 0.00023 | 0.02408
Eq. 2 Set IIT

b12 0.3 0.00042 | 0.01381 | 0.00390 | 0.01438 | 0.00114 | 0.01395 | 0.00500 | 0.01457 | 0.00209 | 0.01349
A22,1 0 -0.00073 | 0.01763 | -0.00285 | 0.01822 | -0.00266 | 0.01756 | -0.00146 | 0.01870 | -0.00087 | 0.01763
A22.2 0 0.00010 | 0.01939 | 0.00088 | 0.02074 | 0.00149 | 0.01963 | -0.00256 | 0.02204 | -0.00164 | 0.01976
P21 0 0.00189 | 0.05972 | 0.00508 | 0.06761 | 0.00385 | 0.06899 | 0.00152 | 0.07181 | 0.00129 | 0.07172
P22 0 -0.00346 | 0.05684 | -0.00583 | 0.06572 | -0.00563 | 0.06269 | 0.01748 | 0.07473 | 0.01955 | 0.07454
[en 1 -0.00182 | 0.02561 | -0.00292 | 0.02810 | -0.00190 | 0.02554 | -0.00312 | 0.02827 | -0.00044 | 0.02600
Ca5 1 0.00155 | 0.02290 | 0.00019 | 0.02515 | 0.00217 | 0.02307 | 0.00117 | 0.02570 | 0.00333 | 0.02380
Co6 1 0.00077 | 0.02280 | -0.00111 | 0.02489 | 0.00104 | 0.02282 | -0.00070 | 0.02444 | 0.00169 | 0.02290

n =961

Eq. 1 Set 11

bo1 0.15 | -0.00014 | 0.00983 | 0.00254 | 0.01020 | 0.00094 | 0.00975 | 0.00298 | 0.01036 | 0.00156 | 0.01015
A1 0 0.00002 | 0.01279 | -0.00200 | 0.01454 | -0.00135 | 0.01310 | -0.00156 | 0.01482 | -0.00097 | 0.01308
A2 0 -0.00005 | 0.01349 | 0.00046 | 0.01501 | 0.00091 | 0.01360 | -0.00090 | 0.01537 | -0.00037 | 0.01352
P11 0 -0.00247 | 0.04337 | 0.00111 | 0.04784 | 0.00067 | 0.04729 | -0.00025 | 0.05003 | -0.00013 | 0.04842
P12 0 -0.00140 | 0.04384 | -0.00116 | 0.04852 | -0.00188 | 0.04792 | 0.00981 | 0.05217 | 0.01188 | 0.05151
c11 1 0.00044 | 0.01753 | -0.00116 | 0.02016 | 0.00018 | 0.01746 | -0.00118 | 0.02024 | 0.00041 | 0.01719
ci2 1 -0.00037 | 0.01807 | -0.00074 | 0.01888 | -0.00071 | 0.01797 | -0.00151 | 0.01862 | -0.00108 | 0.01811
c13 1 0.00015 | 0.01709 | -0.00125 | 0.01883 | -0.00018 | 0.01698 | -0.00128 | 0.01906 | -0.00040 | 0.01712
Eq. 2 Set 11T

bi2 0.3 0.00017 | 0.01017 | 0.00186 | 0.01019 | 0.00059 | 0.00994 | 0.00238 | 0.01023 | 0.00086 | 0.00994
A22.1 0 0.00010 | 0.01292 | -0.00102 | 0.01478 | -0.00069 | 0.01295 | -0.00045 | 0.01513 | -0.00065 | 0.01288
A22.2 0 -0.00076 | 0.01333 | -0.00014 | 0.01479 | 0.00005 | 0.01361 | -0.00137 | 0.01452 | -0.00120 | 0.01347
pa1 0 -0.00222 | 0.04786 | -0.00085 | 0.05181 | -0.00219 | 0.04922 | -0.00087 | 0.05351 | -0.00023 | 0.05171
P22 0 -0.00493 | 0.04463 | -0.00465 | 0.04706 | -0.00625 | 0.04630 | 0.00571 | 0.04953 | 0.00730 | 0.05053
Coy 1 -0.00011 | 0.01627 | -0.00134 | 0.01729 | 0.00019 | 0.01625 | -0.00125 | 0.01746 | 0.00067 | 0.01606
Co5 1 0.00231 | 0.01865 | 0.00101 | 0.02021 | 0.00271 | 0.01862 | 0.00107 | 0.02007 | 0.00250 | 0.01910
C26 1 0.00030 | 0.01714 | -0.00041 | 0.01869 | 0.00029 | 0.01736 | -0.00069 | 0.01880 | 0.00062 | 0.01717
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G.3 Monte Carlo Simulations for the Weakly Identified

Case

In Appendix F included in this Online Supplementary Appendix we discussed
three scenarios where identification from the linear moment conditions fails. In
this case the two step GS2SLS and GS3SLS estimators, which rely on the linear
moment conditions, will be inconsistent. In the following we illustratively report
on the performance of ML, and one-step and two-step estimators for scenarios
that are “close” to the non-identified scenarios. We refer to those experiments

as Weak Identification Scenario 1, 2 and 3.

B Weak Identification Scenario 1

To explore this scenario we consider a simplified variant of the first equation
of the model discussed in Appendix G.1, based on parameter Set I, but with
ba1 = A1,2 = p11 = p12 = 0. To explore the effect of the X instruments being
weak we consider a case where the parameters on the exogenous variables in
equation 1 are c;; = 0.0001, kK = 1,2,3. The simulations employ the social
interaction weights matrix M; with sample size n = 500. The results reported
in Table 10 at the end of this subsection show that in this case the GS2SLS
estimator for autoregressive parameter Ai1,; is substantially biased, in contrast
to ML and LQ-GS2SLS.

B Weak Identification for Scenario 2

To explore the effect when the weights matrix is close to the case where all
weights are equal (except for the zero diagonal elements) we consider a simplified
variant of the first equation of the model discussed in Appendix G.1, based on
parameter Set I, but with ba; = 112 = p11 = p12 = 0. For this simulation the
social interaction weights matrix M; with sample size n = 500 is generated as
in Appendix G.1, however with d, = 1.5 (instead of d, = .3). This leaves most
of the 500 considered individuals with more than 400 friends in the simulations
presented in Table 11 at the end of this subsection. As expected, all estimators
show bias for the autoregressive parameter A;; ;. The absolute bias for the ML

is close to 0.1. All other estimators exhibit even larger biases.

B Weak Identification for Scenario 3

To explore this scenario we consider the single equation case with the data
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generated from the following model:

3 3
yi =AM Miyr 4 D0 GaXe + D g Gz Mixg 4 ug,
u = priMiug + €.

The matrix M, the exogenous covariates xj, and corresponding parameters cg1,
k = 1,2, 3, and the innovations €; are as described in Appendix G.1. For the case
where cr43,1 = —Ai1,1¢61 and p11 = —Aq1,1 the above model is approximately

equal to the following model without network interdependencies:

3
y1 = E Ck1Xg + €1.
k=1

This is readily seen upon pre-multiplying the last equation with I-X;; 1M; and
exploiting the approximation u; = (I — p;;M;) te; = €1 + p11Me€; for the
disturbance process. Now let cxys1 = —(A1,1 + V)egr and p1 = —(A11 + V),
then we expect the parameters to only be weakly identified for v small. (Of
course, proximity to the non-identified set of parameters can be modeled in
various ways. We adopted this approach for its simplicity.) In Table 12 at
the end of this subsection we report on the small sample behavior of various
estimators for A\j;; = .5 and v = .3. The results in Table 12 indicate that
for v = .3 the ML estimator, and to a lesser degree the LQ-GS2SLS estimator,
are still able to estimate the parameters Aiq1, p11, €41, ¢51, C61 reasonably well,
while GS2SLS is already severely biased.
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Table 10: Bias and RMSE under Scenario 1 of Various Estimators for Pa-
rameters of a Simplified Version of Equation 1. Parameter Set I, except that
bgl = )\1172 = P11 = P12 = 0 and Clk = 0.0001 for all & = {1,2,3}

Parameter Soc. Interact. Matrix; n = 500

MLE GS2SLS LQ-GS2SLS
One equ. True Bias RMSE Bias RMSE Bias RMSE
A1 0.30 | -0.00134 | 0.04676 | 0.17807 | 0.50151 | 0.00179 | 0.04714
c11 0.0001 | 0.00013 | 0.02149 | 0.00182 | 0.02158 | 0.00034 | 0.02149
C12 0.0001 | -0.00050 | 0.02439 | -0.00090 | 0.02529 | -0.00064 | 0.02449
c13 0.0001 | 0.00015 | 0.02417 | 0.00058 | 0.02314 | 0.00049 | 0.02410

Table 11: Bias and RMSE under Scenario 2 of Various Estimators for Pa-
rameters of a Simplified Version of Equation 1. Parameter Set I, except that
bo1 = A2 = p11 = pi2 = 0. Social Interaction Weight Matrix with High
Number of Friends

Parameter Soc. Interact. Weights Matrices; n = 500
MLE GS2SLS GS3SLS LQ-GS2SLS LQ-GS3SLS

Eq. 1 True Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
bo1 0.15 | -0.00009 | 0.01357 | 0.00273 | 0.01387 | 0.00143 | 0.01383 | 0.00316 | 0.01389 | 0.00198 | 0.01378
A1 0.30 | -0.09312 | 0.44336 | 0.20473 | 0.36126 | 0.20307 | 0.36233 | 0.23556 | 0.43856 | 0.22588 | 0.47735
c11 1 0.00037 | 0.02424 | -0.00013 | 0.02642 | 0.00076 | 0.02461 | -0.00033 | 0.02644 | 0.00084 | 0.02434
ci2 1 -0.00113 | 0.02546 | -0.00142 | 0.02556 | -0.00064 | 0.02534 | -0.00125 | 0.02591 | -0.00004 | 0.02560
c13 1 -0.00071 | 0.02450 | -0.00155 | 0.02584 | 0.00001 | 0.02476 | -0.00189 | 0.02559 | -0.00003 | 0.02482

Table 12: Bias and RMSE under Scenario 3 of Various Estimators in Neighbor-
hood of Parameter Singularity (where Order of Spillovers is Overspecified)

Parameter Soc. Interact. Matrix; n = 500
MLE GS2SLS LQ-GS2SLS

One equ. True Bias RMSE Bias RMSE Bias RMSE
A111 0.3 | -0.03320 | 0.17906 | -0.34951 | 0.69577 | 0.06243 | 0.20602
P11 -0.3 | 0.03192 | 0.21385 | 0.36910 | 0.55993 | -0.08737 | 0.27132
c11 1 -0.00103 | 0.03952 | -0.00992 | 0.04777 | 0.00161 | 0.03982
ci2 1 -0.00511 | 0.04634 | -0.01437 | 0.05319 | -0.00274 | 0.04586
c13 1 -0.00280 | 0.04570 | -0.01507 | 0.05369 | 0.00051 | 0.04810
Ci4 -0.4 | 0.03411 | 0.18339 | 0.30034 | 0.62913 | -0.04263 | 0.18271
ci5 -0.4 | 0.04620 | 0.18502 | 0.29730 | 0.64222 | -0.04365 | 0.18606
Ci6 -0.4 | 0.02592 | 0.16655 | 0.28633 | 0.63019 | -0.05244 | 0.19939
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