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This supplement provides additional technical material, expanded proofs for the main paper, and

further simulation results.

S.1 Derivation of bias expressions for MLE/QMLE

In this section we report the derivation of the bias function displayed in Figure 1 of the manuscript. To

assist in the bias calculation we derive the following explicit moment expressions

E(IM (X)) = m — %tr(G) +o(1), (S.1.1)
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and ,
E(IM(X)?) = m + %trQ(G) - ztr(G)m +o(1). (S.1.5)

Let B(v, o) = E(Agarr) — Ao. From these calculations and Bao (2013), we deduce the following result.

Corollary S1 Let € be a vector of n independent random variables, normally distributed and such that
E(ee’) = Qo(7), where Qo(7) is defined in (2.7) in the manuscript with o = 1. Let Assumptions 2-4,
reported in the manuscript, hold. The leading term of B(vy, Ao) is given by

Bly.20) =~ 2 (B (30))) BV + (B 00) EE (20)i ()

5 (BI®(00) ™ BIO o) (30)?) (5.1.6)

Under Qo(7y) in (2.7), terms in (S.1.1)), (S.1.3) and (S.1.5) do not vanish as n increases, unless

v = 0 (i.e. the homoskedastic case) and/or some specific structure of W is imposed which ensures
that a condition related to (2.8) in the manuscript holds. Given the likelihood function (2.3) in the
manuscript, the calculation of — is based on the explicit computation of moments of ratio
of quadratic form. Most of the moments of ratios involved are indeed exactly ratio of moments, as ratios
of the form € Ae/e’ Mxe for a generic n x n matrix A are independent of ¢/ M X(ﬂ However, since we
are only interested in the leading terms of , we can approximate moments of ratios as ratios of
moments even when the independence conditions fails. The computation of moments is standard (Bao

and Ullah (2007)) and details are omitted here.

S.2 Proofs of the Theorems

Proof of Theorem 1:

Proof of part (i). Let t;; and 1;; be the 2 x 1 vectors defined as v;; = ( Viij oy ) =

((P+P)i/2 (QQ)y ) and thij = (hrij oy ) = ( (MxP)y; (MxQ'Q)y ), respectively.
After showing
1 ¢ Pe —tr(PQ) + 26, X' PMxe

U, =—4 - + o0p(1), (S.2.1)
Vi \ Q' Qe — tr(Q Q) + 28, X' Q'QMxe !

1See, for example, Conniffe and Spencer (2001), for an analysis and history of this result on ratios of quadratic forms
and other moments.



as reported in the manuscript, the rest of the proof is similar to KPR (2017). In order to avoid repetition
we refer to their proof when steps follow in a similar way.
Define
wi=(uy uy )= 26121/;”)(/50 +26 ) ijej, (S.2.2)

7<i
so that /nU, = >, u; + o0p(1), according to (S.2.1). The {u;;1 < i < n,n = 1,2,.....} form a
triangular array of martingale differences with respect to the filtration formed by the o-field generated

by {e;;j <i}. Let

A=Var (Zu) = 420222%2( BoBL X, + 4220 o2l (S.2.3)

i=1 j=1t=1 i=175<1

Define z;,, = 7/ A~Y/?u;, where 7 is a 2 x 1 vector satisfying n'n = 1. By Theorem 2 of Scott (1973)
S Zin —a N(0,1) if the following stability and Lindeberg conditions hold:

D E(2,lejid < i) B 1, (S.2.4)
i=1
and .
> E(22,1(|zin > £])) = 0 VE>0. (S.2.5)
i=1
As n — oo,
A/n — lim V,, (S.2.6)
n—oo
where
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where C; and C5 contain the first and second terms in , respectively. All terms in C; are
O(1), while those in Cy are bounded by O(1/h) under Assumptions 3 and 4, and by standard algebra.
Existence of limits in is guaranteed under Assumption 7, and non singularity of C is ensured
by Assumptions 2, 3(ii) and 5. Thus, we can replace A by n when showing ([S.2.4) and -



We start by establishing (S.2.4)), which can equivalently be written as
> E (2 ]ej,d <i) = ATH2AATV2n — 0. (S.2.8)
: P

The latter, by standard manipulations and (S.2.6)), is equivalent to showing

ZO’? quzj Z€j¢ij —ZZU TP n?O, (5.2.9)

j<t j<i i j<i
and
ZZZ%‘Q%XJ' (J%ﬂ/f;t + ﬂ’iﬂ[’z{j) & |n—0 (S.2.10)
i g t<i P
as n — 0o.

In order to avoid replications, we omit the proof of (S.2.9)), referring to KPR and observing that
1Plloc + [1P'loe < K, [|Qllo + [|Q[loe < 00 (S.2.11)

and both P;; and Q;j, for i,j = 1,....,n, are uniformly bounded by O(1/h), so that 1;; and 1)s;;
have, respectively, similar asymptotic properties to (G + G’);;/2 and (G'G);; appearing in the proof of
Theorem 1 in KPR. We verify (S.2.10)) by examining the convergence of each typical element, i.e. by

showing

*ZZZUQBOX baijPuiter > 0 (S.2.12)

i J t<i
for each s,v = 1,2. Under Assumption 5, i.e. for uniformly bounded X;; for i,5 = 1,....,n, the left
hand side (LHS) of (S.2.12)) has mean zero and variance bounded by

K|ZZZZ Z wsmwsuhd)mtd)vut| = 2 KZZZZZ|,&S”¢S"}L¢U”¢MM|

u  h t<i,u

K sup D16, Sl Sld s Sl = () (5.213)

0<i<n

since (|S.2.11)) holds and

|Mx Plloc + ||[P"Mx|loo < K, [[MxQ'Qlloc + ||QQ@Mx|loc < o0. (5.2.14)



In order to prove (S.2.5) we verify the sufficient Lyapunov condition
> Elzin[** =0 (S.2.15)
i=1

by considering a typical standardized element of u;, i.e. >, E[(1/n)Y2u|?*° for s = 1,2. Under
Assumption 1, using Y, Elus;|? = Y, E(E|us;|?>0|e;,j < 7)) and the ¢, inequality,

1\ 1+6/2 1\ 1+6/2 1\ 1+6/2 i
(1) SEwres(s) KT sl (1) KEIE R
7 i 7

i j<i

(S.2.16)

Convergence to zero of the first term on the right hand side (RHS) of (S.2.16)) can be shown as in KPR.
Convergence of the third term on the RHS of (S.2.16)) can be shown after observing that

1> 86X e 7T < K sup |BLXGPT0D e [P (S.2.17)
- 0<j<n -
J J

where 8,X; is uniformly bounded under Assumption 5. Thus, the second term on the RHS of ([S.2.16))
is bounded by

14+68/2

1 14-8/2 ~ 1 14-6/2 ~
(1) KXt (i) RS (T
T g ? J

1\ 14672 ) o ) L
< (n) K Sgpz%z‘j Zzl/}g@j =0 (n> (5.2.18)
J g J

similarly to KPR, under Assumptions 3-5.
Thus, A~V23", u; e N(0,I), and the statement in Theorem 1(i) follows by standard delta argu-

ments.

Proof of part (ii). Again, we proceed similarly to KPR and we refer to their proof to avoid repetitions.

We rewrite the binding function 7,,()\) as

A tr(P(N)Q) + BN X' P(N)XB(N) 1
Ta(\ 2, BON)) = ’ 40, (-
(. 5) tr(QA)QN)2) + BN X'Q(N)Q(N)XB(N) i (n)
_a(N) +b(N) 1
= C()\) —|—d()\) +Op (n) , (8.2.19)



where

ah) = ~tr(PO)0N), BY) = AV X PAOXBR),  eN) = - tr(QUYQU)0).
d =~ BOYX'QUY QWX F() (5.2.20)
We write
e A FEO0) (D) +dD ) @) +b(N) | (1
Ay = _ - 2.
n =T T () + (V)2 o (q): (5.221)
where
aV() = T WP + (PRGN + ~r(POS),
BOR) = — 2y W (L, — Mx)PO)XBO) + ) X' GOY PO)XAO) + - BOY X PRGN XA,
D) = Ztr( G QN QNN + —tr( QW' QNaM),
AV () = 2y WL = M)QUY QXA + 2B X GO QN QXA (5.2.22)
and
O = —2diag(Mx Wye(\)). (S.2.23)
Since
Acvurr = 2o =7, (A) = 7 (T (M), (S.2.24)

we can derive the limit distribution of \/E(S\CU 17 — Ao) by the delta method, as long as the asymptotic
local relative equicontinuity condition (Phillips, 2012) holds. Thus, similar to KPR, we need to show

i (o) = 7 (1)
i (r)

(S.2.25)

as n — oo, uniformly in N5 = {r € R : [s(r — \g)| <J, & >0}, s =5, — oo and s(1/n)'/2 — 0. Under
Assumption 6(ii), the expression on the LHS of ([S.2.25)) is bounded by

K| (00) = 70| (S.2.26)




which by the mean value theorem is in turn bounded by

K |rP ()Xo = 1), (S.2.27)

where A\* is an intermediate point between Ao and r. The expression in (S.2.27)) is O, (|Ao—7]) = Op(s™1)
as long as
() = 0,(1), (S.2.28)

which holds under Assumptions 3-5, a derivation of which will be supplied on request.

Therefore, by a delta argument we conclude that
virlY (eurr = Xo) = N(0, f lim V., f), (S.2.29)

where V,, and f,, are defined in (4.4) and (4.11), respectively. The statement in Theorem 1 follows by

standard algebra once we write

7 = 7MW (X)) =p lim 7Y (N), (S.2.30)

n—oo

in terms of a(*, b 1) and dV). 7 exists and is non singular under Assumption 7(ii).

Proof of Theorem 2:

In order to prove (A.8) in the manuscript, we need to show

1
522(6365‘ — 070 Wsijthrij = 0p(1), (S.2.31)

i j<i
322@365 — €6} Vsijtheij = 0p(1) (S.2.32)

and

*ZZAQA 1;[}31]77[}&] d)Sijwtij) = Op(l)' (8233)

i <t

We start by (S.2.31f). We have, for s,t = 1,2

722 6126 - U 0 wszjwtzj = %ZZ¢S’L]¢MJ(€$ - 0'12)(6? - 0_]2) + %Zwaljwtz]U?(Ei - UJQ)

i g<t i g<t 1 j<t

+ %Zz%ij%iﬂ? (€ —af). (S.2.34)

i oj<i



The first term on the RHS of (S.2.34) has mean zero and variance bounded by

C C C
;ZZ%W?U < EZZT/’;‘]’U’% < WZZ#’?” =0 (7;13) (5.2.35)
v i g

i g<t

since
n
Zzlﬁ;j = tr(07) =0 (ﬁ)
i

for t = 1,2. The second term on the RHS of (S.2.34) has mean zero and variance bounded by

C C

ﬁzzzszijwtijwsw¢tw‘| < WZZZ|¢SUH¢“‘J|

g i ou

¢ 1
< ngpzi]wsijlsgpzj]wsiﬂ =0 <nh2> : (S.2.36)

Similarly, we can show that the third term on the RHS of (S.2.34)) converges to zero in quadratic mean.
By Markov’s inequality ([S.2.31]) follows.
In order to show (S.2.32)) we write

éi = €; — ZBijGj - (;\CUII — )\o)Q;X,B - (S\CUII - /\O)Qée, (8'2'37)
J

where @ is the 1 x n vector displaying the i—th row of @ and B;; = X/(X'X )X}, as defined at the
beginning of the proof of Theorem 1. By standard arguments, we can show that the last two terms on

the RHS of (S.2.37) are bounded in probability by 1//n, uniformly in i. Let
;=& — e =—Y Biper+0 1) (S.2.38)
k "\vn
Thus, (S.2.32) is equivalent to

1 . . e .
ﬁzz%ij%/}tij (005 + €05 + €;0;) (00 + Diej + €05 + 2€5€5) = 0,(1), (S.2.39)
i j<i

as n — 0o. We therefore need to show, as n — oo, that

1
ﬁzz%ijwijf@? = 0p(1), (S.2.40)

i g<i

1 .
ﬁzzwsijwtijﬁfvjej = 0,(1), (S.2.41)

i J<i



1 L
EZZ¢Sij¢tijvi0jei€j = Op(l)7 (8242)

ioj<i

*ZZwswmv ;= op(1), (S.2.43)

i j<i

%Zz%z’j%iﬁjf?% = op(1). (S.2.44)

i j<i

We only consider the leading term in 9; in (S.2.38) when showing ([S.2.40))- (S.2.48)), but similar routine

arguments can be applied to deal with higher order terms.

The modulus of the left hand side (LHS) of (S.2.40)) has expectation bounded by

*ZZWWH%ME )1/2 1/2 ZZWsnglptzﬂ (Z‘B > (ZBJQ}L>
i j<i h

ZZ|¢SI]||¢tz]|BzszJ = h2 ZZBMB]] = (h2 ) (S.2.45)

Similarly, the modulus of the LHS of (S.2.41)) has expectation bounded by

NS vl (E02)* (B2 (Bet) ™ < Zzwwnwm(Z )1/2 (ZB>

i j<i 1 g<t
C 1/2 C 1
< n;;|¢sij||¢tij|3ﬂ/ Bii < %zi:zj:w)siﬂBii < MSIZ}P;WW\;BM =0 <nh) ., (S.2.46)

as B;J/Q < 1. The modulus of the LHS of (S.2.42|) has expectation bounded by

C ~ A
OS> Wil (0™ (=) (Bed)™" (met) " < 55 sl B2 B

i g<t i g<i
C 1
7;;‘:‘#}3””#}”” By + B_]j 7h SupZW}%ﬂZBm + SupZ|¢gz]|ZBj] = (nh> .

(S.2.47)

(S.2.43)) can be shown by similar arguments as (S.2.40])-(S.2.42)), while ([S.2.48|) can be written as

7221/}31]7[)&] jZE €5 + Zzwmgwtuf 6 B 75 + ZZ Z wSljwtwei GJEu ju- (8248)

i g<i i j<i i J<tu#j,i

The modulus of the first term in the last displayed expression has expectation bounded by

C 1
EZZ|¢SUWJMJHBH| < ZZWW\%M By + B“) (0] (hn) ) (8249)

i j<i



as in previous calculations. Similarly, the second term in (S.2.48)) is O(1/nh), while the third term has

mean zero and variance bounded by

%ZZZZ|wsijwtijwsilwtil|Bq2U‘ + %Zzzz‘wszjwtijwsklwthl|Bl2j
T w1 i J ko

%222|wszjwtzj¢silwtil|Bjj + %Zzzzwsz‘jwm%kzwtkl|B]21- (S.2.50)
T PGk

Proceeding as before, the first term in the last displayed expression is bounded by O(1/n?h?), while
the second one is bounded by O(1/nh?). By Markov’s inequality, this concludes the proof of (S.2.32).
In order to show (S.2.33) we apply a standard mean value theorem argument, such as

7ZZA2A wsz]wtzj w52]¢t1j ZZQ A2 (wﬁj 7/ng ¢tij) + "/—}tij(zz}sij - ql}Sij)) ) (8251)

i g<i i j<i

where 1/19”- (or q[;n-j) is an intermediate point between z/?sij and 1)s;;. From Theorem 1, Q/AJSZ']' — Psij =

O,(1/y/n) and thus 1s;; — 1si; = 0,(1). Therefore, (S.2.51)) is bounded by

SUPWSU w317| ZZA2A2|wtz]‘ (8252)

i g<i

By similar arguments to those applied to prove (S.2.31)) and (S.2.32)), we conclude that as n — oo

%ZZ W’tw|_>hm ZZU o [Pt (S.2.53)

i j<i i j<i

which is O(1) in the limit. Thus, (S.2.52) is O,(1/4/n), concluding the proof of (A.8).

S.3 Additional simulation results

This section reports additional simulation results to support the discussion in Section 7 of the paper.
Results in Tables S1 and S2 have been obtained using a symmetric, randomly generated matrix of zeros
and ones, where the number of ones is restricted to be 20% of the total entries. The resulting matrix is
then normalized so that each row sums to 1. As discussed in the manuscript, W is generated once for
each n and is kept fixed across scenarios. Table S1 contains results for o; generated as in (7.2) in the
manuscript, while Table S2 displays values for o; generated from y2(5).

Tables S3 and S4 have been obtained by setting By = (2,1.5, —1) and X being n x 3, with the first
regressor being an n X 1 column of ones and the other two being randomly drawn from two independent

uniform distributions on the support [0,4]. The rest of the design is identical to that described in

10



Section 7 in the main manuscript. In both S3 and S4 W is ‘exponential’, with S3 corresponding to o;
generated as in (7.2) in the manuscript, with S4 displaying values for o; generated from x2(5).

Tables S5 and S6 report results for CUIL, QML, MQML and RGMM when the true data generating
process is a pure SAR, while the estimated model is a SARX with intercept and one exogenous regressor
which is drawn from a uniform distribution on the support [0, 1]. In both S5 and S6 W is ‘exponential’,
with S5 corresponding to o; generated as in (7.2) in the manuscript, with S6 displaying values for o;

generated from y2(5). The rest of the design is identical to that described in Section 7 of the manuscript.
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n =30 n =50 n = 100 n = 200

CUII A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0929 0.2956 -0.0476 0.1763 -0.0064 0.1307 -0.0156  0.1311

0.3 0.0110 0.2437 0.0193 0.1760 0.0073  0.1376  0.0029  0.1333

0.5 0.0474 0.2298 0.0419 0.1854 0.0477  0.1405 0.0061  0.1394

0.8 0.1142 0.2000 0.0550 0.1526 0.0332  0.1230  0.0385  0.1235

ML A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0322 0.1031 -0.0833 0.1068 -0.0686 0.1056  -0.0806  0.1162

0.3 -0.1788 0.1403 -0.1713 0.1286 -0.1725 0.1166  -0.1680  0.1134

0.5 -0.2266 0.1484 -0.1855 0.1202 -0.1839  0.1023 -0.2093  0.1191

0.8 -0.2760 0.1486 -0.2629 0.1299 -0.2757  0.1235 -0.2686  0.1245

MQML A bias MSE bias MSE bias MSE bias MSE
—0.5 0.0508 0.1425 0.0127 0.1187 0.0165  0.1156  -0.0035  0.1244

0.3 -0.0281 0.1423 -0.0073 0.1308 -0.0084  0.1181 -0.0084  0.1199

0.5 -0.0261 0.1393 -0.0206 0.1283 0.0120  0.1109 -0.0127  0.1241

0.8 -0.0136 0.1173 -0.0286 0.1093 -0.0205 0.1011  0.0060  0.1094

2SLS A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.6496 3.3561 -0.7360 6.4335 -0.7703 11.0633 -0.3523 17.3900
0.3 -0.2990 3.6600 0.3778 4.4825 -0.1449  7.5171  0.0250  11.5254
0.5 0.0666 3.7634 0.2094 4.2141 0.1665 6.2116  0.3013  10.6641

0.8 0.3420 2.0216 0.2889 2.7892  0.2744  3.8288  0.1160  5.1442

RGMM A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.3042 0.8991 -0.1418 0.2627 -0.0892  0.1509 -0.0956  0.1434

0.3 -0.1103 0.6274 -0.0616 0.4327 -0.1353  0.5117 -0.1319  0.4633

0.5 -0.0825 0.5744 -0.0103 0.9525 -0.1008 0.4841 -0.1327  0.6457

0.8 0.0582 0.9081 0.0306 0.8375 -0.0524 0.8867 -0.0916  2.6146

Table S1: Bias & MSE of CUII, QML, MQML, 2SLS and RGMM estimators for ‘random’ W. The
€;s are defined as in (7.1) with ¢; ~ iid ¢(5) and o; defined as in (7.2). The design corresponds to an
artificially dense choice of W.
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n =30 n =50 n = 100 n = 200

CUII A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0464 0.1597 -0.0079 0.1646 -0.0100 0.1352 -0.0106  0.1193

0.3 -0.0181 0.1473 -0.0118 0.1411 0.0032  0.1315  0.0087  0.1349

0.5 0.0234 0.1435 0.0126 0.1353 0.0094  0.1307  0.0240  0.1298

0.8 0.0126 0.1401 0.0351 0.1329 0.0272  0.1226  -0.0026  0.1196

QML A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0264 0.0806 -0.0200 0.1036 -0.0582 0.1073  -0.0757  0.1063

0.3 -0.1866 0.1208 -0.1706 0.1144 -0.1679  0.1087 -0.1601  0.1130

0.5 -0.1662 0.1092 -0.1911 0.1111 -0.2081 0.1135 -0.1909  0.1081

0.8 -0.2536 0.1320 -0.2397 0.1114 -0.2690  0.1192  -0.2919 0.1344

MQML A bias MSE bias MSE bias MSE bias MSE
—0.5 0.0258 0.0967 0.0429 0.1219 0.0162  0.1187  0.0016  0.1133

0.3 -0.0097 0.1092 -0.0240 0.1134 -0.0052  0.1140  0.0039  0.1249

0.5 -0.0034 0.1076 -0.0167 0.1055 -0.0090 0.1115  0.0120  0.1166

0.8 -0.0361 0.1007 -0.0166 0.1017 -0.0096  0.0996  -0.0257  0.1067

2SLS A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.2671 1.9420 -0.1351 5.3380 -0.9920 12.0616 -1.0292 22.5435
0.3 -0.1673 23131 -0.0803 4.4500 -0.5362 8.1619  0.0281  25.9411
0.5 0.0434 29366 0.3936 54701 0.1937  7.4490  0.2233  15.9209

0.8 0.2173 1.0161 0.2689 1.9738 0.0910  6.4317  0.0224  8.4702

RGMM A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.1750 0.6055 -0.0583 0.2043 -0.0973 0.1515 -0.1020  0.1471

0.3 -0.1162 0.5475 -0.1183 0.7414 -0.1641  0.2754  -0.1658  0.2963

0.5 -0.0365 0.6129 -0.0125 0.8190 -0.1210  0.7283  -0.1509  0.6385

0.8 0.0011  0.7205 0.0344 0.8222 -0.1000 1.1082  -0.1832 1.4971

Table S2: Bias & MSE of CUII, QML, MQML, 2SLS and RGMM estimators for ‘random’ W. The ¢;s
are defined as in (7.1) with ¢; ~ iidN(0,1) and o; ~ x?(5). The design corresponds to an artificially

dense choice of W.
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n =30 n =50 n = 100 n = 200
CUII A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0293 0.0408 -0.0293 0.0451 -0.0176 0.0243 -0.0156 0.0161
0.3 -0.0162 0.0119 -0.0195 0.0113 -0.0104 0.0083 -0.0149 0.0091
0.5 -0.0140 0.0139 -0.0130 0.0060 -0.0061 0.0070 -0.0117  0.0056
0.8 -0.0119 0.0036 -0.0114 0.0024 -0.0063 0.0018 -0.0044 0.0007
QML A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0463 0.0416 -0.0475 0.0449 -0.0331 0.0254 -0.0242 0.0166
0.3 -0.0254 0.0126 -0.0257 0.0118 -0.0149 0.0086 -0.0181 0.0093
0.5 -0.0286 0.0148 -0.0185 0.0064 -0.0085 0.0073 -0.0129 0.0057
0.8 -0.0175 0.0040 -0.0139 0.0026 -0.0070 0.0019 -0.0043 0.0007
MQML A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0108 0.0490 -0.0215 0.0440 -0.0141 0.0239 -0.0144 0.0161
0.3 -0.0423 0.0815 -0.0275 0.0332 -0.0112 0.0083 -0.0153 0.0091
0.5 -0.0205 0.0257 -0.0464 0.1466 -0.0077 0.0071 -0.0125 0.0056
0.8 -0.1472 1.4401 -0.0132 0.0026 -0.0082 0.0019 -0.0047 0.0008
2SLS A bias MSE bias MSE bias MSE bias MSE
—0.5 0.0031 0.0563 0.0103 0.0654 0.0059 0.0359 0.0039 0.0227
0.3 0.0031 0.0124 -0.0086 0.0131 0.0094 0.0097 -0.0019 0.0105
0.5 0.0093 0.0165 -0.0002 0.0059 0.0106 0.0087 -0.0033 0.0062
0.8 0.0043 0.0036 -0.0030 0.0025 0.0034 0.0022 -0.0001 0.0008
RGMM A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0221 0.0439 -0.0266 0.0509 -0.0143 0.0273 -0.0095 0.0184
0.3 -0.0121 0.0124 -0.0086 0.0131 -0.0074 0.0091 -0.0132 0.0100
0.5 -0.0069 0.0151 -0.0123 0.0065 -0.0055 0.0083 -0.0116 0.0061
0.8 -0.0110 0.0043 -0.0104 0.0030 -0.0045 0.0027 -0.0030 0.0007
CUGMM A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0067 0.0940 -0.0063 0.0388 -0.0021 0.0246 -0.0101 0.0233
0.3 -0.0063 0.0080 -0.0104 0.0177 -0.0088 0.0094 -0.0046 0.0073
0.5 -0.0078 0.0067 -0.0081 0.0060 -0.0066 0.0039 -0.0086 0.0046
0.8 -0.0033 0.0016 -0.0020 0.0009 -0.0037 0.0010 -0.0037 0.0009

Table S3: Bias & MSE of CUII, QML, MQML, 2SLS, RGMM and CUGMM estimators for ‘exponential’
W using 1000 Monte Carlo replications. The ¢;s are defined as in (7.1) with ¢; ~ éid t(5) and o; is

defined as in (7.2). The design corresponds to a strong relevance of instruments.

14



n =30 n =50 n = 100 n = 200
CUII A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0668 0.1386 -0.0386 0.0791 -0.0220 0.0465 -0.0074 0.0342
0.3 -0.0458 0.0540 -0.0246 0.0464 -0.0113 0.0165 -0.0146 0.0287
0.5 -0.0427 0.0312 -0.0316 0.0298 -0.0093 0.0139 -0.0163 0.0125
0.8 -0.0222 0.0091 -0.0155 0.0071 -0.0083 0.0050 -0.0077 0.0079
QML A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0702 0.1064 -0.0564 0.0696 -0.0158 0.0404 -0.0202 0.0349
0.3 -0.0793 0.0539 -0.0603 0.0435 -0.0298 0.0165 -0.0315 0.0281
0.5 -0.0726 0.0344 -0.0685 0.0302 -0.0352 0.0140 -0.0284 0.0123
0.8 -0.0472 0.0115 -0.0334 0.0084 -0.0289 0.0049 -0.0257 0.0066
MQML A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0473 0.1358 -0.0215 0.0742 -0.0140 0.0450 -0.0033 0.0336
0.3 -0.0483 0.0510 -0.0303 0.0426 -0.0134 0.0161 -0.0179 0.0274
0.5 -0.0453 0.0309 -0.0419 0.0271 -0.0137 0.0130 -0.0211 0.0119
0.8 -0.0297 0.0094 -0.0220 0.0073 -0.0159 0.0042 -0.0213 0.0063
2SLS A bias MSE bias MSE bias MSE bias MSE
—0.5 0.1104 0.3900 0.0265 0.2288 0.0332 0.1513 0.0402 0.0806
0.3 0.0421 0.0812 0.0351 0.1248 0.0148 0.0290 0.0401  0.0625
0.5 0.0031 0.0412 0.0101 0.0582 0.0127 0.0270 -0.0138 0.0224
0.8 0.0109 0.0113 0.0043 0.0114 0.0001 0.0074 0.0006  0.0082
RGMM A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0588 0.2053 -0.0413 0.1093 -0.0199 0.0681 -0.0025 0.0502
0.3 -0.0317 0.0619 -0.0073 0.0853 -0.0120 0.0219 -0.0108 0.0375
0.5 -0.0361 0.0434 -0.03451 0.0741 -0.0085 0.0195 -0.0321 0.0208
0.8 -0.0080 0.0144 -0.0108 0.0159 -0.0235 0.0223 -0.0149 0.0220
CUGMM bias MSE bias MSE bias MSE bias MSE
—0.5 0.0492 0.3059 0.0178  0.4043 -0.0210 0.0806 -0.0142 0.0568
0.3 -0.0454 0.1164 -0.0585 0.0811 -0.0309 0.0443 -0.0145 0.0246
0.5 -0.0332 0.0568 -0.0270 0.0247 -0.0159 0.0138 -0.0274 0.0270
0.8 -0.0079 0.0046 -0.0155 0.0683 -0.0130 0.0053 -0.0226 0.0130

Table S4: Bias & MSE of CUII, QML, MQML, 2SLS, RGMM and CUGMM estimators for ‘exponential’
W using 1000 Monte Carlo replications. The ¢;s are defined as in (7.1) with ¢; ~ 4id t(5) and o; ~ x?(5).

The design corresponds to a strong relevance of instruments.
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n =30 n =50 n = 100 n = 200

CUII A bias MSE bias MSE bias MSE bias MSE
—-0.5 -0.1099 0.1836 -0.0689 0.1035 -0.0219 0.0379 -0.0128 0.0167

0.3 -0.0443 0.0819 -0.0334 0.0487 -0.0149 0.0197 -0.0072  0.0096

0.5 -0.0273 0.0672 -0.0214 0.0338 -0.0118 0.0142 -0.0052 0.0073

0.8  0.0413 -0.0937 0.0260 0.0233 0.0224 0.0113 0.0115  0.0060

QML A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0384 0.0636 -0.0139 0.0448 0.0156 0.0224 0.0190 0.0122

0.3 -0.1326 0.0763 -0.0943 0.0472 -0.0478 0.0200 -0.0305 0.0098

0.5 -0.1402 0.0692 -0.0948 0.0364 -0.0546 0.0154 -0.0360 0.0078

0.8 -0.0937 0.0316 -0.0643 0.0155 -0.0362 0.0061 -0.0247 0.0031

MQML A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0312 0.0867 -0.0257 0.0615 -0.0066 0.0300 -0.0052 0.0146

0.3 -0.0536 0.0642 -0.0417 0.0423 -0.0188 0.0187 -0.0093 0.0093

0.5 -0.0611 0.0509 -0.0406 0.0283 -0.0212 0.0128 -0.0109 0.0067

0.8 0.0004 0.0842 0.0021 0.0283 0.0293 0.0299 -0.0005 0.0053

RGMM A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0898 0.1885 -0.0681 0.1877 -0.0188 0.1372 -0.0109 0.1161

0.3 0.0780 0.4495 0.2229 0.6669  0.4425 0.9531 0.2037  0.4949

0.5 0.2137 0.5528 0.4398 0.9161 0.6847 1.1509 0.7826  1.3339

0.8 0.2979 0.3711 0.4606 0.4411 0.4389 0.4054 0.5763  0.4810

Table S5: Bias & MSE of CUII, QML, MQML and RGMM estimators for ‘exponential’ W using 1000
Monte Carlo replications. The ;s are defined as in (7.1) with {; ~ iid t(5) and oy is defined as in (7.2).
The design corresponds to a misspecification setting where the true data generating process is a pure
SAR, while the fitted model includes an intercept and one exogenous regressor drawn from a uniform

distribution on [0, 1].
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n =30 n =50 n = 100 n = 200

CUII A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0886 0.1403 -0.0470 0.0648 -0.0150 0.0254 -0.0024 0.0141

0.3 -0.0396 0.0675 -0.0210 0.0393 -0.0139 0.0168 -0.0031 0.0090

0.5 -0.0255 0.0556 -0.0096 0.0286 -0.0054 0.0107 -0.0012  0.0068

0.8 0.0129 0.0320 0.0139 0.0211 0.0115 0.0089 0.0124  0.0056

QML A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0328 0.0541 -0.0365 0.0417 -0.0290 0.0206 -0.0135 0.0136

0.3 -0.1269 0.0674 -0.0669 0.0385 -0.0327 0.0177 -0.0134 0.0090

0.5 -0.1107 0.0547 -0.0611 0.0278 -0.0168 0.0105 -0.0125 0.0063

0.8 -0.0901 0.0266 -0.0595 0.0148 -0.0148 0.0039 -0.0071  0.0023

MQML A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0175 0.0690 -0.0156 0.0457  0.0009 0.0202 0.0013  0.0132

0.3 -0.0419 0.0557 -0.0263 0.0352 -0.0179 0.0160 -0.0054 0.0087

0.5 -0.0430 0.0429 -0.0234 0.0240 -0.0109 0.0096 -0.0068 0.0060

0.8 -0.0070 0.0610 0.0021 0.0452 0.0239 0.0269 0.0014  0.0055

RGMM A bias MSE bias MSE bias MSE bias MSE
—0.5 -0.0940 0.1472 -0.0543 0.0833 -0.0382 0.0327 -0.0169 0.0158

0.3 0.0380 0.2930 0.0845 0.2877 0.0683 0.1795 0.0327 0.0776

0.5 0.1411 0.3761 0.2661 0.5124 0.398 0.6379 0.3764  0.6269

0.8 0.2016 0.2253 0.3360 0.3320 0.3735 0.2693  0.5598  0.4289

Table S6: Bias & MSE of CUII, QML, MQML and RGMM estimators for ‘exponential’ W using 1000
Monte Carlo replications. The ¢;s are defined as in (7.1) with ¢; ~ iid t(5) and o; ~ x*(5). The design
corresponds to a misspecification setting where the true data generating process is a pure SAR, while

the fitted model includes an intercept and one exogenous regressor drawn from a uniform distribution

on [0,1].
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S.4 Figures

Circulant W at n=100, row normalized

Block diagonal W matrix at n=100 (m=20, r=5), row normalized

20
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100 =3

Randomly Generated W at n=100, row normalized

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 920 100

Figure S1: Weight Matrix structures. Top: (L) block diagonal W; (R) circulant, two ahead-two behind;
Bottom: (L) ‘exponential’; (R) ‘random’. n = 100.
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Figure S2: 3D plot of W9¢°. W9 is defined such that w;; = 1/geo;;, resulting in a non-sparse structure

with weights that decay with Euclidean/geographical distance. n = 506.
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Figure S3: 3D plot of W9°:¢P, W9°%:¢P is defined such that w;; = exp (—|geo;;|) 1(|geoi;| < log(n)),

resulting in sparsity that amounts to about 37%. n = 506.
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Figure S4: 3D plot of W9¢2:0-9. 1779¢0,0-9 ig defined such that w;; = 1(|geo;;| < D*), resulting in sparsity
that amounts to about 9%. n = 506.
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Figure S5: 3D plot of weight matrix W', W' is defined such that w;; = 1/|taz; — taz,|, resulting
in a non-sparse structure with weights that decay with an economic distance driven by tax similarity.

n = 506.
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Figure S6: 3D plot of weight matrix Wsehool| Jrschool ig defined such that w;; = 1/|school; — school;|,
resulting in a non-sparse structure with weights that decay with an economic distance driven by socio-

economic similarity. n = 506.
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Figure S7: Approximate binding functions for W9¢e  Wep.dis 1j7ge0.0.9 Jytaz and Jpyschool p — 506.
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