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In this Online Appendix we provide technical details pertaining to the results in Ghysels,

Mykland, and Renault (2021). Section OA.1 covers the proof of Proposition 3.1. Additional

volatility examples are covered in Section OA.2, whereas examples beyond volatility appear

in Section OA.3. Section OA.4 provides insights on the connection of our analysis with the

Kalman filter. Finally, Section OA.5 discusses a forecasting example.

OA.1 Proof of Proposition 3.1

We study the details for across-sample efficiency gains pertaining to the first Example 1

for the standard realized volatility (RV), obtained by summing squared intra-daily returns,

yielding the so called realized variance, namely:

Θ̂n,t =
∑

t−1<ti+1≤t

(Xti+1
−Xti)

2. (OA.1.1)

We study here the case of equidistant sampling, ti − ti−1 = ∆ ti = 1/n. When the sampling

frequency increases, i.e. n→∞, then the realized variance converges uniformly in probability

to the increment of the quadratic variation i.e.

lim
n→∞

Θ̂n,t →p

∫ t

t−1

θ(s)ds. (OA.1.2)

To streamline the notation we will drop the superscript n. Barndorff-Nielsen and Shephard

(2002), Jacod and Protter (1998) and Zhang (2001) show that the error of realized variance

is asymptotically
n1/2(Θ̂n,t −

∫ t
t−1

θ(s)ds)
√
Vt

d→ N (0, 1) (OA.1.3)

where Vt = 2
∫ t
t−1

σ(s)4ds is called (twice) the integrated quarticity. It should be noted that

in the case of no leverage effect, the result in (OA.1.3) follows directly from the simplified

example in Section 2 of Ghysels, Mykland, and Renault (2021).

We want to estimate Θt =
∫ t
t−1

σ2(s)ds and take advantage of observations on the previous

day, summarized by Θ̂n,t−1, the estimator of Θt−1. The key assumption is that the two

estimators Θ̂n,τ , τ = t−1 and t have an asymptotic accuracy of the same order of magnitude
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and are asymptotically independent, for a given volatility path, namely:

n1/2(Θ̂n,t−1 −Θt−1)√
Vt−1

d→ N(0, 1)

n1/2(Θ̂n,t −Θt)√
Vt

d→ N(0, 1) (OA.1.4)

and the joint asymptotic distribution is the product of the marginals. We consider possible

improvements of our estimator of
∫ t
t−1

θ(s)ds, assuming for the moment that we know the

correlation coefficient:

ϕn =
Cov(Θ̂n,t, Θ̂n,t−1)

V ar(Θ̂n,t−1)
(OA.1.5)

and the unconditional expectation E(Θ̂n,t) = E(Θ̂n,t−1) = E(
∫ t
t−1

σ2(s)ds). Note that equa-

tion (OA.1.5) does not imply that our analysis is confined to AR(1) models. Instead, equation

(OA.1.5) only reflects the fact that we condition predictions on a single lag Θ̂t−1. Equation

(OA.1.5) is essentially a general version of equation (2.6). There may be potential gains

from considering more lags, as the underlying models would result in higher order dynamics.

Yet, for our analysis we currently focus exclusively on prediction equations with a single

lag. Higher order equations are a straightforward extension discussed later. In analogy with

equation (2.12) we also need:

ϕ0
n =

Cov(Θn,t,Θn,t−1)

V ar(Θn,t−1)
. (OA.1.6)

The theory presented in the sequel will mirror the development in Section 2 of Ghysels,

Mykland, and Renault (2021), but be valid even when volatility is not piecewise constant.

Consider the best linear forecast of using (only) Θ̂n,t−1 :

Θ̆n,t|t−1 = ϕnΘ̂n,t−1 + (1− ϕn)E (Θt) . (OA.1.7)

Note that this realized forecast is infeasible in practice and, to make it feasible, estimators

of ϕ and E(
∫ t
t−1

σ2(s)ds) are required. These estimators will be based on past time series of

realized volatilities: Θ̂n,τ , τ = t− 1, ..., t− T + 1. The estimation error on these coefficients

will be made negligible when (T/n) goes to infinity.

Our goal is to combine the two measurements Θ̂n,t and Θ̆n,t|t−1 of
∫ t
t−1

θ(s)ds to define a new
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estimator:

Θ̂n,t(ωt) = (1− ωt)Θ̂n,t + ωtΘ̆n,t|t−1. (OA.1.8)

Intuitively, the more persistent the volatility process, the more Θ̂n,t|t−1 is informative about

Θ̂n,t and the larger the optimal weight ωt should be. Note that the weight depends on t, as

indeed its computation will be volatility path dependent. To characterize such an optimal

choice, one may apply a conditional control variable principle, given the volatility path. The

criterion to minimize will be the conditional mean squared error:

Eσ

[
Θ̂n,t(ωt)−Θt

]2

= Eσ

{
Θ̂n,t −Θt − ωt

(
Θ̂n,t − Θ̆n,t|t−1

)}2

. (OA.1.9)

Then, the problem to solve is obviously nearly identical to the one considered in Section 2

of Ghysels, Mykland, and Renault (2021), so that:

Θ̂n,t(ω
∗
n,t) = Θ̂n,t − ω∗n,t

(
Θ̂n,t − Θ̆n,t|t−1

)
(OA.1.10)

will be an optimal improvement of Θ̂n,t if ω∗n,t is defined according to the following control

variable formula:

ω∗n,t =
CovΘ

[
Θ̂n,t, Θ̂n,t − Θ̆n,t|t−1

]
EΘ

[
Θ̂n,t − Θ̆n,t|t−1

]2 =
V arΘ[Θ̂n,t]

EΘ

[
Θ̂n,t − Θ̆n,t|t−1

]2 . (OA.1.11)

Note that ω∗n,t has been shrunk with respect to the conditional regression coefficient Θ̂n,t

on (Θ̂n,t - Θ̆n,t|t−1). This is due to the need to take into account the non-zero mean of

(Θ̂n,t − Θ̆n,t|t−1) given the volatility path.

A closed form formula for the optimal weights is obtained by computing moments, given the

volatility path, according to the asymptotic distribution appearing in (OA.1.4). Then, given

the volatility path, we have:

Eσ

(
Θ̂n,t − Θ̆n,t|t−1

)
= Θt − ϕnΘt−1 − (1− ϕn)E [Θt]

V arσ

(
Θ̂n,t − Θ̂n,t|t−1

)
=

Vt
n

+ ϕ2
n

Vt−1

n
+ o

(
1

n

)
Covσ

[
Θ̂n,t, Θ̂n,t − Θ̂n,t|t−1

]
= V arσ

[
Θ̂n,t

]
=
Vt
n

+ o

(
1

n

)
.
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Therefore, ω∗n,t defined by (OA.1.10) can be described by:

1

ω∗n,t
= 1 + ϕ2

n

Vt−1

Vt
+ n

B2
F,n(t)

Vt
+ o

(
1

n

)
(OA.1.12)

BF,n(t) = Θt − ϕnΘt−1 − (1− ϕn)E [Θt] .

The above yields the result in equation (3.7) of Proposition 3.1. Note that, in order to

understand this optimal weight, it is useful to rewrite it as follows (as a general version of

(2.11) in Ghysels, Mykland, and Renault (2021)):

1

ω∗n,t
= 1 + ϕ2

n

Vt−1

Vt
+ n

B2
F,n(t)−B2

I (t)

Vt
+ n

B2
I (t)

Vt
+ o

(
1

n

)
BI(t) = Θt − ϕ0Θt−1 − (1− ϕ0)E [Θt]

ϕ0 =
Cov [Θt,Θt−1]

V ar (Θt)
= ϕn +O

(
1√
n

)
.

Moving to Example 2, in order to separate the jump and continuous sample path compo-

nents in quadratic variation, (and thus estimate
∫ t
t−1

σ2(s)ds), Barndorff-Nielsen and Shep-

hard (2004a) and Barndorff-Nielsen and Shephard (2004b)introduce the concept of bi-power

variation (BPV) defined as:

Θ̂n,t(k) =
π

2

n∑
j=k+1

∣∣Xn,tj

∣∣ |Xn, tj−k| . (OA.1.13)

Henceforth we will, without loss of generality, specialize our discussion to the case k = 1, and

therefore drop it to simplify notation. Barndorff-Nielsen and Shephard (2004b) establish the

sampling behavior of Θ̂n,t as n → ∞, and show that under suitable regularity conditions:

plimn→∞Θ̂n,t(k) =
∫ t
t−1

σ(s)2ds. Therefore, in the presence of jumps, Θ̂n,t converges to the

continuous path component of
∫ t
t−1

θ(s)ds and is not affected by jumps. The sampling error

of the bi-power variation is nα
(

Θ̂n,t −
∫ t
t−1

σ (s)2 ds
)
/
√
νbbVt ∼ N (0, 1) , where νbb ≈ 2.6

and under the null where there are no jumps. Based on these results, Barndorff-Nielsen and

Shephard (2004a) and Barndorff-Nielsen and Shephard (2004b) introduce a framework to test

for jumps based on the fact that QV consistently estimates the quadratic variation, while

Θ̂ consistently estimates the integrated variance, even in the presence of jumps. Therefore,

the difference between the BPV and the scaled RV is sum of squared jumps (in the limit).
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Once we have identified the jump component, we can subtract it from the realized variance

and we will have the continuous part of the process.

Using the arguments presented earlier we can improve estimates of both RV and BPV.

This should allow us to improve estimates of integrated volatility as well as improve the

performance of tests for jumps. To do so we introduce:

Θ̂n,t(ω
∗
t ) = Θ̂n,t − ω∗t (Θ̂n,t − Θ̂n,t|t−1). (OA.1.14)

It will be an optimal improvement of Θ̂n,t when ω∗t is again defined according to the control

variable formula (OA.1.11) where QV is replaced by BPV. Note that we do not assume the

same temporal dependence for QV and BPV, as the projection of QV on its past (one lag)

and that of BPV on its own past (one lag) in general do not coincide.

OA.2 Additional Volatility Examples

Example 1 (Two-Scales Realized Volatility) The observations are as in (3.2) of

the paper. The classical Two-Scales Realized Volatility (TSRV; Zhang, Mykland, and Aı̈t-

Sahalia (2005), Aı̈t-Sahalia, Mykland, and Zhang (2011)) has a convergence rate of α = 1/6.

The cited papers show consistency and stable convergence. �

Example 2 (Multi-Scale and Kernel Realized Volatility) The observations are

again as in (3.2). The convergence rate is α = 1/4. Conditions [i] and [iia] (and in particular

[ii]) have been shown for Multi-Scale Realized Volatility (MSRV, Zhang (2006)) and Realized

Kernel estimators (RK, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)). The two

methods are close in view of Bibinger and Mykland (2016). The rate is efficient since it also

occurs in the parametric case (see Gloter and Jacod (2000)), and also see the non-parametric

bound in Reiss (2011). �

In the interest of brevity we discuss the above Example 1 in more detail. The efficient

price Xt is now latent and observed with microstructure noise, as in equation (3.2) of the

paper. The analysis in the earlier sections for the no-jump case goes through with these
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modifications. In the case of the TSRV,

Vt = c
4

3

∫ t

t−1

σ4
udu+ 8c−2ν4,

where ν2 is the variance of the noise, and c is a smoothing parameter. For the more com-

plicated case of the MSRV and the kernel estimators, we refer to the publications cited.1 In

the case where there are both jumps and microstructure, there are two different targets that

can be considered, either the full quadratic variation Θt, or only its continuous part. For

estimation of the full quadratic variation, the estimators from the continuous case remain

consistent, and retain the same rate of convergence as before. The asymptotic variance Vt

needs to be modified. The results in this paper for the no-jump case therefore remain valid.2

For other approaches to the estimation of volatility under microstructure noise, see, inter alia,

Aı̈t-Sahalia, Mykland, and Zhang (2005), Bandi and Russell (2006) and Hansen and Lunde

(2006), Jacod, Li, Mykland, Podolskij, and Vetter (2009), Podolskij and Vetter (2009b), Xiu

(2010), and Bibinger and Reiss (2014). The case of bi-power variation can be also extended

to measures involving more general functions, as in Barndorff-Nielsen, Graversen, Jacod, and

Shephard (2006). Provided such measure feature persistence we can apply the above analysis

in a more general context. One particular case of interest is power variation, typically more

persistent than quadratic variation or related measures, as discussed in detail in Forsberg

and Ghysels (2006).

OA.3 Beyond Realized Volatility

The set of examples discussed in this section go beyond measures of quadratic variation.

1For estimation of the continuous part of Θt only, apart from bi- and multipower, the most fully developed
theory involves removal by truncation, see Mancini (2001), Fan and Wang (2007), Aı̈t-Sahalia and Jacod
(2007), Aı̈t-Sahalia and Jacod (2008), Aı̈t-Sahalia and Jacod (2009), Aı̈t-Sahalia and Jacod (2012), Jacod
and Todorov (2010), Lee and Mykland (2008), Lee and Mykland (2012), Jing, Kong, Liu, and Mykland
(2012), as well as the work cited in the previous paragraph. The work by Huang and Tauchen (2006)
provides a complete theory, but under the assumption that the microstructure noise is Gaussian. Irregular
observations can be handled using the concept of quadratic variation of time (see e.g. Mykland and Zhang
(2006), Mykland and Zhang (2016), Mykland, Zhang, and Chen (2019)).

2See, Jacod and Protter (2012), Aı̈t-Sahalia and Jacod (2014), Mykland and Zhang (2016), Mykland,
Zhang, and Chen (2019).
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Example 3 (Estimation of Covariance from Asynchronous Observations) There

are a number of different ways of handling covariances, including the Hayashi and Yoshida

(2005) estimator, see also Podolskij and Vetter (2009a), Christensen, Podolskij, and Vetter

(2013), and Bibinger and Vetter (2015) for micro-structure, jumps, and asymptotic dis-

tributions. Alternatives include the Previous-Tick estimator (Zhang (2011), Bibinger and

Mykland (2016)), and Quasi-Likelihood (Shephard and Xiu (2012)). The estimator in Myk-

land and Zhang (2012, p. 172-175) is a hybrid of Hayashi-Yoshida and Quasi-Likelihood.

Consistency and stable convergence hold here again with varying rates α. �

Example 4 (Block Estimation of Higher Powers of Volatility) The parameter

of interest is θ(s) = g(σ(s)2), with g not being the identity function. To make estimators ap-

proximately or fully efficient, one can use block estimation. In the absence of microstructure

noise, the convergence rate is α = 1/2 (Mykland and Zhang (2009, p. 1421-1426)), Mykland

and Zhang (2011, p. 224-229), Jacod and Rosenbaum (2015) and Jacod and Rosenbaum

(2013)). If microstructure noise is present, the convergence rate is α = 1/4 (Jacod and

Protter (2012, p. 512-554)).3 �

Next, we are concerned with systems on the form dVt = βtdXt + dZt, where Vt and Xt can

be observed at high frequency, either with or without microstructure noise. Moreover, Xt

can be multidimensional. The coefficient process βt can either be the “beta” from portfolio

optimization, with Zt in the role of idiosyncratic noise, or βt can be the hedging “delta” for

an option, with Zt as tracking error. Nonparametric estimates can be used directly, or for

forecasting, or for model checking.

Example 5 (High Frequency Regression, and ANOVA) The regression problem

seeks to estimate or make tests about
∫ t
t−1

β(s)ds (Mykland and Zhang (2009, p. 1424-

1426), Kalnina (2012), Zhang (2012, p. 268-273), Reiss, Todorov, and Tauchen (2015)).

The ANOVA problem seeks to f [Z,Z]t (Zhang (2001) and Mykland and Zhang (2006)).

Convergence rates are as for realized or other powers of volatility, with α = 1/2 when there

is no microstructure noise, and α = 1/4 otherwise. �
3See also Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006), Mykland and Zhang

(2012, p. 138) and Renault, Sarisoy, and Werker (2017) for related developments.
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OA.4 Connection with Kalman Filter

In-sample asymptotics applies to situations where the period t variable of interest, say Yt,

is observed by a sequence of noisy measurements Xt which are, when the number n of

intraday observations goes to infinity, asymptotically unbiased and normally distributed

with a possibly time dependent and random variance. In other words, adopting a commonly

used abuse of notation, we have for large n a measurement equation:

Xt = Yt + ctZt Zt ∼ N(0, 1). (OA.4.1)

Traditional Kalman filtering applies to a Gaussian measurement equation like (OA.4.1) aug-

mented with a Gaussian transition equation:

Yt = aYt−1 + g +
√
Htut ut ∼ N(0, 1). (OA.4.2)

Note that the Kalman filter considered here is slightly more general than the traditional

one, since we allow for conditional heteroskedasticity in equations (OA.4.1) and (OA.4.2).

Conditioning on the values of the variables ct and Ht allows us to consider heteroskedasticity

as predetermined and to use standard Bayes formula to obtain recursion formulas for the fil-

tering distribution, that is the conditional normal distribution of Yt given (Xt, Xt−1, . . . , X1).

If N(Y ∗t , Kt) stands for this conditional distribution (the superscript n is omitted for conve-

nience), the Kalman recursion formulas (see e.g. Williams (1991), p. 168) can be written:

1

Kt

=
1

a2Kt−1 +Ht

+
1

c2
t

(OA.4.3)

Y ∗t
Kt

=
aY ∗t−1 + g

a2Kt−1 +Ht

+
Xt

c2
t

.

Hence, the filtered values are defined as:

Y ∗t = (1− ωt)Xt + ωt(aY
∗
t−1 + g) (OA.4.4)

with:

ωt =
c2
t

c2
t + a2Kt−1 +Ht

. (OA.4.5)

As will be discussed in detail later, our way to take advantage of past information to improve

upon the measurement Xt is quite similar in spirit to the Kalman-Bucy filter with however
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a couple of important differences. First, we do not deal with a Gaussian transition equation.

The processes we consider, like realized variance or bi-power variation (defined later) are

often constrained to be positive (and therefore cannot be Gaussian). However, even more

importantly, we want to remain model free. Therefore, instead of the model (OA.4.2), we

will simply refer to a linear projection of the variable Yt on some of its lagged values. Yt|t−1

will denote such an optimal linear predictor for a given number of lags. If for instance we

decide to use only one lag, α and g will be defined as (maintaining a model-free setting):

Yt|t−1 = aYt−1 + g

Yt = Yt|t−1 + ut

E(ut) = 0, Cov(ut, Yt−1) = 0.

Note that the structure of equation (OA.4.1) is maintained but in a model-free context, up

to some regularity conditions ensuring its asymptotic validity.

Second, without a Gaussian transition equation we have to give up the Bayes formula which

enables us to compute conditional expectations and variances like (OA.4.3). Moreover,

maintaining the model-free setting, we do not want to define a filtered value function of all

past information (Xt, Xt−1, ..., X1), but instead only for a fixed number of lags every single

day t. For instance, in the case of one lag, our filtered value will be defined by:

Ỹt = (1− ω∗t )Xt + ω∗t (aXt−1 + g). (OA.4.6)

Note that the actual filtered value will be slightly different due to estimation error, an issue

that also appears in traditional Kalman filtering and that will be discussed later. It is

important to note that our filtered value Ỹt is different from the Kalman filter Y ∗t in two

respects. First, it combines the current measurement Xt with the measured optimal forecast

aXt−1 + g based on yesterday’s information (measured counterpart of Yt|t−1 = aYt−1 + g)

and not on the filtered counterpart aY ∗t−1 +g. Second, we have shown that an optimal weight

for minimizing the conditional mean squared error is given by:

ω∗t =
c2
t

c2
t + a2c2

t−1 +Ht

. (OA.4.7)

Note that our optimal weight (OA.4.7), albeit similar to the Kalman one (OA.4.5), is

smaller since c2
t > Kt (using equation (OA.4.3)). Intuitively, our weighting schemes give
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less weight to past information since we summarize past information by the measured coun-

terpart aXt−1 + g (with conditional variance a2c2
t−1) of the past forecast Yt|t−1 = aYt−1 + g,

whereas the Kalman filter weights use the more accurate filtered counterpart aY ∗t−1 + g (i.e.

with smaller conditional variance a2Kt−1 < a2c2
t−1).

OA.5 A Forecasting Example

We mainly focus on the measurement of high frequency data related processes such as

quadratic variation, bi-power variation and quarticity. Yet, forecasting future realizations of

such processes is often the ultimate goal. The purpose of this subsection is to discuss the

impact on forecasting performance of our improved measurements.

We start from the observation that standard volatility measurements feature a measurement

error that can be considered, at least asymptotically, as a martingale difference sequence.

Therefore, suppose we want to forecast Yt+1, using past observations (Xs), s ≤ t which are

noisy measurements of past Y ′s. The maintained martingale difference assumption implies

that:

Cov[Yt −Xt, Xs] = 0,∀s < t.

Suppose now that we also consider past ”improved” observations: Z(s) = (1−ω)Xs+ωY (s)∗,

where Y (s)∗ is an unbiased linear predictor of Xs.
4 Since Y ∗t+1 is an unbiased linear predictor

of Xt+1 :

Xt+1 = Y ∗t+1 + v∗t+1, E(v∗t+1) = 0, Cov[v∗t+1, Y
∗
t+1] = 0.

Suppose we have a preferred forecasting rule for (Xt) (based on say an ARFIMA model for

QV such as in Andersen, Bollerslev, Diebold, and Labys (2003)) and let us denote it as Y X
t+1.

This alternative unbiased linear predictor of Xt+1 would be such that:

Xt+1 = Y X
t+1 + vXt+1, E(vXt+1) = 0, Cov[vXt+1, Y

X
t+1] = 0.

4We consider here weights that are not time varying - unlike in the previous subsection. Hence, we
are assessing here the impact on forecasting performance of fixed weights ω. Optimally chosen time varying
weights should ensure at least a comparable forecasting performance. We will refer to the latter as conditional
schemes, in contrast to unconditional ones that are also discussed in subsection 4 of the paper.
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It is natural to assume in addition that:

Cov[vXt+1, Y
∗
t+1] = 0

hence, the predictor Y ∗t+1 does not allow us to improve the preferred predictor Y X
t+1. Consider

now a modified forecast Y Z
t+1, based on past and current improved observations Z(s), s ≤ t.

By the definition of Z we have:

Y Z
t+1 = (1− ω)Y X

t+1 + ωY ∗t+1.

It is easy to show that the forecasting errors obtained from respectively Y X
t+1 and Y Z

t+1 satisfy:

V ar(Y X
t+1 − Yt+1)− V ar(Y Z

t+1 − Yt+1) = ω2(V ar(vXt+1)− V ar(v∗t+1)). (OA.5.8)

This result has the following implication: using the proxy (Z) instead of the proxy (X) we

will not deteriorate the forecasting performance, except if we build on purpose the proxy (Z)

from a predictor (Y ∗) less accurate than the preferred predictor (Y X). More generally, using

a proxy Z computed with time varying weights optimally chosen in a conditional setting

should indeed improve the forecasting performance.

The above result pertains to a simple linear forecasting setting. We expect that improvements

of measurement are going to be even more important nonlinear settings. The most prominent

example where the objective of interest is a nonlinear function of future volatility is option

pricing. The future path of volatility until some time to maturity of the derivative contract

determines the current option price through a conditional expectation of a nonlinear payoff

function. A simplified example is the model of Hull and White (2005) where the price of a

European call option of time to maturity h and moneyness k equals:

Ct(h, k) = Et[BS(
1

h

∫ t+h

t

σ2(u)du, k, h)]

and BS(σ2, k, h) is the Black-Scholes option price formula. Note that the above equation

assumes no leverage and no price of volatility risk.5 This is a common example of derivative

pricing that will be studied later via simulation. It will be shown that the improved volatility

measurement has a significant impact on option pricing.

5Note that volatility is not priced in Hull and White (2005), but nevertheless it is still a conceptually
interesting example.
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The conclusions regarding the ranking of weights appearing in Section 5 of the paper change

when we turn our attention to forecasting gains associated with the example discussed in

this section. We consider two experiments. The first is a linear forecasting exercise:

IVt+1 = a+ bXt + εXt+1

where the regressor Xt is either one of the following: IVt, Θ̂t and corrected Θ̂n,t using the

optimal weighting ω∗vt and ω∗ut schemes with one-day lag of information. Obviously the

infeasible benchmark is the regression involving IV as regressor. Hence, we compare how

close the feasible raw Θ̂n,t and corrected measure perform in comparison. We do this for 5

and 10 minute sampling schemes.

To appraise the more realistic and interesting nonlinear forecasting setting we consider the

following prediction problem:

log(BSimpt+k (ATM, TTM)) = a+ b log(Xt) + εX,TTMkt

where k = 1 day, 5 days, 20 days. The BSimpt+k (ATM, TTM) is the Black-Scholes implied

volatility generated for a sample of data obeying the stochastic volatility dynamics of the

Heston model mentioned in the first subsection. We selected the Heston because we know

how to price options, and hence compute Black-Scholes implied volatilities. We picked three

times-to-maturity (TTM), namely 22, 44 and 66 days, corresponding to one-, two- and three-

month options. Finally, we focused exclusively on at-the-money options (ATM) since those

are typically accurately priced and liquid.

The simulation evidence is reported in Table OA.1 and focuses exclusively on the second

experiment described above - as the first one did not yield many differences between the

various estimation schemes. There is now a clear difference between the ranking in Table

2 in the main paper and that in Table OA.1. In the case of filtering, we find that ω∗vt is

slightly better than ω∗ut. Hence, the conditional weighting scheme with realized Ut, i.e. ω∗ut

outperforms ω∗vt, and therefore as far as forecasting a nonlinear function goes, the ranking is

reversed. Although the differences are not as significant, there is a clear pattern of dominance

which we did not observe in Table 2 pertaining to volatility appearing in the paper.
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Table OA.1: Forecasting Log Black-Scholes Implied Volatilities - Heston Model

We consider:
log(BSimp

t+k (ATM,TTM)) = a + b log(Xt) + εX,TTM
kt

where k = 1 day, 5 days, 20 days. The BSimp
t+k (ATM,TTM) is the Black-Scholes implied volatility generated

by a Heston model for at-the-money options (ATM) with times-to-maturity (TTM) 22, 44 and 66 days.

IV QV QV QV
Xt Corrected(ω∗

vt) Corrected(ω∗
ut)

R2 1-day ahead forecast, ATM
TTM: 22days 5 Min 0.98 0.93 0.94 0.93

10 Min 0.98 0.88 0.91 0.90

TTM: 44days 5 Min 0.98 0.91 0.94 0.93
10 Min 0.98 0.86 0.91 0.90

TTM: 66days 5 Min 0.98 0.93 0.94 0.93
10 Min 0.98 0.92 0.94 0.93

R2 5-day ahead forecast, ATM
TTM: 22days 5 Min 0.91 0.86 0.88 0.87

10 Min 0.91 0.82 0.85 0.84

TTM: 44days 5 Min 0.91 0.86 0.88 0.87
10 Min 0.91 0.82 0.85 0.84

TTM: 66days 5 Min 0.91 0.85 0.87 0.87
10 Min 0.91 0.82 0.85 0.84

R2 20-day ahead forecast, ATM
TTM: 22days 5 Min 0.72 0.68 0.70 0.69

10 Min 0.72 0.65 0.67 0.66

TTM: 44days 5 Min 0.72 0.68 0.69 0.69
10 Min 0.72 0.65 0.67 0.67

TTM: 66days 5 Min 0.72 0.68 0.69 0.69
10 Min 0.72 0.64 0.67 0.67
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