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B.1 Introduction

This document provides online supplementary material to Yamada (2021). In

Section B.2, the Matlab user-defined functions referred to in Yamada (2021) are

provided. Section B.3 presents the figures referred to in Section 5 of Yamada

(2021). Note that the equation numbers referred to in this document are the

same as those in Yamada (2021).

B.2 Matlab functions

In this section, we provide five Matlab user-defined functions. We note that

among such functions, calcxhat_nast requires CVX, a package for specifying

and solving convex programs (CVX Research, Inc., 2011; Grant and Boyd,

2008).

B.2.1 A function to make Dn in (6)
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1 function D_n=makeD_n(tau_n)

2 n=length(tau_n);

3 D1=diff(eye(n));

4 D2=D1(1:n-2,1:n-1);

5 invDelta=diag(ones(n-1,1)./diff(tau_n));

6 D_n=D2*invDelta*D1;

7 end

B.2.2 A function to calculate x̂n in (8)

1 function xhat_n=calcxhat_n(tau_n ,y_n ,lambda_n)

2 D_n=makeD_n(tau_n);

3 n=length(tau_n);

4 xhat_n =(eye(n)+lambda_n*D_n ’*D_n)\y_n;

5 end

B.2.3 A function to calculate the solution of the convex problem

given by (26)–(27)

1 function xhat_nast=calcxhat_nast(tau_n ,y_n ,c)

2 D_n=makeD_n(tau_n);

3 n=length(tau_n);

4 cvx_clear

5 cvx_begin

6 variables xhat_nast(n)

7 minimize(sum((D_n*xhat_nast).^2))

8 subject to

9 sum((y_n -xhat_nast).^2) <=c

10 cvx_end

11 end

B.2.4 A function to calculate x̂T in (11) and Sx̂T in (12)

1 function [xhat_T ,Sxhat_T ]= calcxhat_T(tau_n ,y_n ,lambda_T)

2 T=tau_n(end);
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3 I=eye(T);

4 D_T=diff(I,2);

5 S=I(tau_n ,:);

6 xhat_T =(S’*S+lambda_T*D_T ’*D_T)\(S’*y_n);

7 Sxhat_T=S*xhat_T;

8 end

B.2.5 A function to calculate ψ̂ in (A.38) and ϕ̂ in (A.42)

1 function [psihat ,phihat ]= calcxhat_T2(tau_n ,y_n ,lambda_T)

2 T=tau_n(end);

3 n=length(tau_n);

4 I_T=eye(T);

5 I_n=eye(n);

6 D_T=diff(I_T ,2);

7 tau_n_c=setdiff ((1:T)’,tau_n);

8 S=I_T(tau_n ,:);

9 S_p=I_T(tau_n_c ,:);

10 R=eye(T-2)-D_T*S_p ’*inv(S_p*D_T ’*D_T*S_p ’)*S_p*D_T ’;

11 F=R*D_T*S’;

12 psihat =(I_n+lambda_T*F’*F)\y_n;

13 phihat=-inv(S_p*D_T ’*D_T*S_p ’)*S_p*D_T ’*D_T*S’* psihat;

14 end

B.3 Figures

In this section, we present the figures referred to in Section 5 of Yamada (2021).

Figures B.1–B.5 correspond to the case where n = 90. Likewise, Figures B.6–

B.10 (resp. Figures B.11–B.15) correspond to the case where n = 50 (resp.

n = 30). Recall that Figures 5–9 in Yamada (2021) correspond to the case

where n = 70.

From the figures in this material, we may confirm that the results shown

in Yamada (2021) are also observable even for n = 90, 50, 30. For example, we

may observe that x̂n and Sx̂T are almost the same. Nevertheless, we remark
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that the deviations between the gHPT filter and the HP filter increase as n/T

decreases. See Figure 9 in Yamada (2021) and Figures B.5, B.10, and B.15 in

this material.
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Figure B.1: For the explanation of yT, see Figure 5 in Yamada (2021).
yT(missing) denotes 10(= 100 − 90) missing observations selected randomly
from {y2, . . . , yT−1}. gHPT filter denotes Sx̂T in (12) estimated with λT =
1600. gHPT filter denotes x̂n in (8) estimated with λn = 1491.99, which is
specified so that ∥yn − x̂n∥2 = ∥yn − Sx̂T ∥2.
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Figure B.2: Panel A (resp. Panel B) plots the smoother matrix corresponding
to x̂n (resp. Sx̂T ) in Figure B.1. Panel C plots their difference.
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Figure B.3: For the explanation of yT and yT(missing), see Figure B.1. gHPn
filter denotes x̂n in (8) estimated with λn = 108 and gHPT filter de-
notes Sx̂T in (12) estimated with λT = 108. Linear trend denotes Pyn[=
Πn(Π

′
nΠn)

−1Π′
nyn].
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Figure B.4: For the explanation of yT and yT(missing), see Figure B.1. gHPn
filter denotes x̂n in (8) estimated with λn = 10−4 and gHPT filter denotes
Sx̂T in (12) estimated with λT = 10−4.
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Figure B.5: For the explanation of yT and yT(missing), see Figure B.1. HP

filter denotes x̂ in (16), which is estimated with λ = 1600 from not only
available observations but also missing observations. gHPT filter denotes Sx̂T

in (12) estimated with λT = 1600 and gHPT filter(missing) denotes S⊥x̂T in
(13) estimated with λT = 1600.
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Figure B.6: For the explanation of yT, see Figure 5 in Yamada (2021).
yT(missing) denotes 50(= 100 − 50) missing observations selected randomly
from {y2, . . . , yT−1}. gHPT filter denotes Sx̂T in (12) estimated with λT =
1600. gHPT filter denotes x̂n in (8) estimated with λn = 870.14, which is
specified so that ∥yn − x̂n∥2 = ∥yn − Sx̂T ∥2.
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Figure B.7: Panel A (resp. Panel B) plots the smoother matrix corresponding
to x̂n (resp. Sx̂T ) in Figure B.6. Panel C plots their difference.
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Figure B.8: For the explanation of yT and yT(missing), see Figure B.6. gHPn
filter denotes x̂n in (8) estimated with λn = 108 and gHPT filter de-
notes Sx̂T in (12) estimated with λT = 108. Linear trend denotes Pyn[=
Πn(Π

′
nΠn)

−1Π′
nyn].
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Figure B.9: For the explanation of yT and yT(missing), see Figure B.6. gHPn
filter denotes x̂n in (8) estimated with λn = 10−4 and gHPT filter denotes
Sx̂T in (12) estimated with λT = 10−4.
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Figure B.10: For the explanation of yT and yT(missing), see Figure B.6. HP

filter denotes x̂ in (16), which is estimated with λ = 1600 from not only
available observations but also missing observations. gHPT filter denotes Sx̂T

in (12) estimated with λT = 1600 and gHPT filter(missing) denotes S⊥x̂T in
(13) estimated with λT = 1600.
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Figure B.11: For the explanation of yT, see Figure 5 in Yamada (2021).
yT(missing) denotes 70(= 100 − 30) missing observations selected randomly
from {y2, . . . , yT−1}. gHPT filter denotes Sx̂T in (12) estimated with λT =
1600. gHPT filter denotes x̂n in (8) estimated with λn = 464.34, which is
specified so that ∥yn − x̂n∥2 = ∥yn − Sx̂T ∥2.
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Figure B.12: Panel A (resp. Panel B) plots the smoother matrix corresponding
to x̂n (resp. Sx̂T ) in Figure B.11. Panel C plots their difference.
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Figure B.13: For the explanation of yT and yT(missing), see Figure B.11.
gHPn filter denotes x̂n in (8) estimated with λn = 108 and gHPT filter

denotes Sx̂T in (12) estimated with λT = 108. Linear trend denotes Pyn[=
Πn(Π

′
nΠn)

−1Π′
nyn].
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Figure B.14: For the explanation of yT and yT(missing), see Figure B.11. gHPn
filter denotes x̂n in (8) estimated with λn = 10−4 and gHPT filter denotes
Sx̂T in (12) estimated with λT = 10−4.
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Figure B.15: For the explanation of yT and yT(missing), see Figure B.11. HP

filter denotes x̂ in (16), which is estimated with λ = 1600 from not only
available observations but also missing observations. gHPT filter denotes Sx̂T

in (12) estimated with λT = 1600 and gHPT filter(missing) denotes S⊥x̂T in
(13) estimated with λT = 1600.
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